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Abstract

Do households cooperate or not? Existing models force a binary choice between full cooperation
and non-cooperation, yet reality likely lies in between. I develop an empirical biform game framework
that identifies the degree of spousal cooperation from data. The model treats enforceable decisions
(labor supply) cooperatively and non-enforceable decisions (childcare) non-cooperatively, with a caring
parameter nesting both extremes. Equilibrium uniqueness and monotonicity properties deliver a novel
identification strategy: the cooperation parameter is identified from slope moments—how childcare
responds to wages and labor supply—rather than level moments. Applying the framework to households
with disabled children, I find 33% lower cooperation, reduced paternal childcare efficiency, and shifted
happiness benchmarks. Counterfactual analysis shows that even large Child SSI increases cannot
realistically close the welfare gap. This highlights the fundamental limits of cash transfers and the

importance of policies supporting spousal cooperation.

Keywords: Spousal cooperation, Biform game, Intra-household allocation, Structural estimation, Disabled

children, Subjective well-being
JEL Classification: D13, J13, J22, 112

1 Introduction

A central question in family economics is whether households behave cooperatively or non-cooperatively.

The answer has first-order consequences for welfare analysis, policy evaluation, and understanding intra-
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household inequality. Yet existing models force a binary choice. The collective model (e.g., Chiappori,
1992) assumes Pareto efficiency for all household decisions, while non-cooperative models (e.g., Del Boca
and Flinn, 2012; Flinn et al., 2018) assume simultaneous Nash play throughout. Reality likely lies between
these extremes, but the literature has lacked a framework that can identify the degree of spousal cooperation
from data.

This paper develops an empirical biform game framework that nests cooperative and non-cooperative
behavior within a single model. The key insight is that household decisions differ in their enforceability:
labor supply, governed by employment contracts, involves credible commitment, while daily childcare
allocation is difficult to monitor and enforce. The biform structure—cooperative at Stage 1 (labor supply),
non-cooperative at Stage 2 (childcare)—captures this asymmetry naturally. A caring parameter A € [0, 1]
governs the degree of spousal altruism in Stage 2 (childcare allocation), with 4 = 0 corresponding to
purely egoistic play and A = 1 to fully internalized spousal welfare. The main methodological contribution
is proving equilibrium uniqueness and establishing monotonicity properties of equilibrium outcomes
under standard functional form assumptions. These results resolve the multiple equilibria problem that
has limited non-cooperative models, while maintaining weaker assumptions than the collective model.
Crucially, because A is estimable, the degree of spousal cooperation becomes falsifiable—a dimension that
the prior literature, by assuming the game structure a priori, could not test. The monotonicity properties
also deliver a novel identification strategy: the cooperation parameter A can be identified from slope
moments—specifically, how the childcare-labor slope and cross-wage effects vary with A—rather than
relying solely on level moments.

I apply this framework to a setting where variation in cooperation is both substantively important and
empirically salient: households with disabled children. These households present a striking puzzle. Parents
of disabled children report nearly identical life satisfaction to other parents—a Kolmogorov-Smirnov test
fails to reject equality (p = 0.47). Yet their behavior differs markedly: fathers spend about 3 fewer hours
per week with their children, mothers spend about 2.6 more hours, and mothers are nearly 5 percentage
points less likely to be employed. Three channels could explain this puzzle—reduced childcare efficiency,
lower spousal cooperation, or shifted happiness perception—and they are observationally intertwined.
Therefore, disabled-child households thus provide an ideal testing ground for the biform game framework,
which can separate these channels through the structure of the model and the slope-based identification
Strategy.

Beyond this application, the framework applies generally to any household setting where formal and
informal decisions coexist, including elderly care allocation among siblings, division of household chores,
and resource sharing in multi-generational households.

The identification strategy proceeds as follows. The cooperation parameter cannot be directly observed;



it must be inferred from behavior through the lens of economic theory. The monotonicity properties
established in the theoretical analysis guarantee that increases in A generate predictable directional changes
in the slope of childcare time with respect to labor supply and in cross-wage effects. Combined with sub-
jective well-being data that identify the happiness perception channel, all three channels can be separately
identified using publicly available datasets (SIPP, PSID, PSID-CDS). Because households with disabled
children constitute a small fraction of the population, the analysis combines these datasets and uses an
indirect inference approach that matches key moments from the data to those simulated from the model.

Estimation reveals the following. Households with disabled children exhibit a cooperation parameter
that is approximately 33 percent lower than households without disabled children—placing them close
to the fully non-cooperative benchmark studied in Gobbi (2018) and Del Boca and Flinn (2012). The
father’s childcare efficiency parameter is substantially lower for households with disabled children. The
analysis also finds structural evidence of response shift in subjective well-being: households with disabled
children report equivalent satisfaction at lower underlying utility levels, indicating that these households
have recalibrated their happiness benchmarks. These results demonstrate that the biform game framework
can successfully disentangle channels that are observationally equivalent under conventional approaches.

Counterfactual analysis yields important policy implications. Under the structural model, the welfare
gap between households with and without disabled children cannot realistically be closed through Child
SSI benefit increases alone—the required increase would be economically infeasible. Even fully restoring
fathers’ childcare efficiency to the non-disabled level closes only about one-third of the welfare gap. In
contrast, equalizing the cooperation parameter closes approximately 76%. These findings underscore a key
insight: spousal cooperation matters more for household welfare than either cash transfers or caregiving
technology. Although the cooperation parameter is difficult to influence directly, the results suggest that
policies supporting spousal coordination—such as respite care programs and family support services—may
play an important role alongside income support.

The remainder of this paper proceeds as follows. Section 2 documents motivating facts. Section 3
develops the theoretical model. Sections 4-7 describe the data, identification strategy, econometric
specification, and estimation. Section 8 reports results, and Section 9 presents counterfactual policy

analyses.

2 Motivating Facts

2.1 The Happiness Puzzle

Figure 1 presents the distribution of life satisfaction scores from the PSID 2009, 2011, 2013, and

2015, comparing households with and without disabled children. The survey measures life satisfaction

3



on a 5-point scale, where 1 indicates “Completely Satisfied” and 5 indicates “Not at all Satisfied.” For
estimation purposes, the scale is reverse-coded so that higher values indicate higher satisfaction (i.e., 5 =

“Completely Satisfied”); all threshold estimates reported below use this reverse-coded scale.
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Figure 1: Distribution of life satisfaction by disability status. Data from PSID. Sample restricted to one-child
households with spouse/partner present. Disability is defined broadly to include special education receipt and
activity limitations.

The distributions are statistically indistinguishable. A Kolmogorov-Smirnov test fails to reject equality
(p = 0.47), and the modal response for both groups is “Very Satisfied” (category 2), at approximately 41%.
If anything, parents of disabled children report slightly higher rates of complete satisfaction (23.66% vs.
20.96%).

2.2 Behavioral Differences Despite Similar Happiness

The similarity in reported happiness is puzzling because observable behaviors differ substantially.
Table 1 summarizes key differences in parental time allocation and labor supply.

Conditional on working, parents of disabled children work similar hours (fathers: 44.6 vs. 44.5; mothers:
37.8 vs. 37.9). However, time allocation with children differs markedly: fathers spend 3.2 fewer weekly
hours with disabled children (15.6 vs. 18.8), while mothers spend 2.6 more hours (20.8 vs. 18.2). The
share of non-working mothers is about 5 percentage points higher in the disabled group (34.8% vs. 30.0%).

The puzzle: How can reported happiness be nearly identical when behavior differs so substantially?
The structural model developed below provides a framework for decomposing this puzzle into its underlying

channels.



Table 1: Parental Time Allocation and Labor Supply by Child Disability Status

Disabled Child Non-Disabled Child

Variable Mean (S.E.) Mean (S.E)
Panel A: Labor Supply (SIPP, workers only)

Father’s weekly work hours 4459 (0.50) 44.49 (0.13)
Mother’s weekly work hours 37.75 (0.55) 37.89 (0.14)
Mother not employed (%) 34.8 30.0

Panel B: Time with Child (PSID-CDS, weekly hours)
Father’s weekly hours with child  15.63 (0.83) 18.79 (0.57)
Mother’s weekly hours with child 20.78 (0.78) 18.16 (0.45)

N (Panel A) 1,975 18,268
N (Panel B) 399 879

Notes: Panel A: Weekly work hours conditional on positive hours; from pooled SIPP
2004 and 2008 (household-wave observations). Panel B: Weekly hours with child from
time diaries; pooled PSID-CDS 2007 and 2014, restricted to one-child households (the full
PSID-CDS sample in Appendix I includes multi-child households).

3 Model

This section develops a static model of intra-household allocation in which a husband and wife jointly
determine labor supply and choose childcare time independently. The model incorporates two key features
central to understanding the welfare of households with disabled children: (i) a childcare efficiency
parameter that captures how effectively each parent’s time translates into child quality, which may differ
depending on whether the child has a disability, and (ii) a caring parameter that captures the degree of
spousal altruism in the non-cooperative childcare stage through interdependent utility.

The model builds on the household literature but makes a distinct theoretical contribution. Existing
approaches span two extremes. Fully cooperative collective models (e.g., Chiappori, 1992) assume Pareto
efficiency for all decisions, while fully non-cooperative approaches (e.g., Del Boca and Flinn, 2012; Flinn
etal., 2018) model all choices as simultaneous Nash equilibria. Neither extreme captures a key institutional
feature: household decisions differ in their enforceability. Labor supply, governed by employment contracts,
involves credible commitment; childcare allocation, occurring daily without monitoring, does not.

The empirical model in this paper adopts a biform game structure (Brandenburger and Stuart, 2007;
d’Aspremont and Jacquemin, 1988) similar to Gobbi (2018), treating labor supply as cooperative (Stage 1)
and childcare allocation as non-cooperative (Stage 2). The model incorporates the caring parameter from
Friedberg and Stern (2014), enabling the framework to nest cooperative and non-cooperative behavior as
special cases. The key methodological contribution is establishing equilibrium uniqueness and proving

monotonicity properties of equilibrium outcomes under standard functional forms—properties not estab-



lished in prior work. These results resolve the multiple equilibria problem that plagues non-cooperative
models while maintaining weaker assumptions than collective models (Table 2). The monotonicity prop-
erties also prove useful for identification, as discussed in Section 5.

Beyond tractability, the biform structure offers a deeper conceptual advantage. Existing household
models impose the degree of spousal commitment a priori—full cooperation or full non-cooperation—and
this maintained assumption is not itself testable. By introducing a continuously valued caring parameter
(defined in Section 3.1) that governs altruism in the non-cooperative childcare stage, the framework nests
both extremes as special cases and makes the degree of spousal cooperation estimable and falsifiable—a

dimension of household behavior that the prior literature could not test.

3.1 Environment

Players and Household Structure. I consider a game played by two players within a household, indexed
by i € {h, w}, representing the husband and wife, respectively. Let j denote the household index. I confine
attention to households with a single child.! Let z; € {0, 1} be an indicator for whether household j has a
disabled child: z; = 1 if the household has a disabled child, and z; = 0 otherwise.

Time Allocation. Each individual i in household j allocates a total time endowment 7" (set to 112 hours
per week, following Del Boca and Flinn 2012) among three activities: work ll.VJV, leisure 15, and childcare
ll.‘J'.. The time constraint is given by

W1+ 15 =T, (D)

For notational convenience, I suppress the household subscript j hereafter and simply write /1", lf, and [7.

Let d; € {0, 1} indicate whether household j receives Child SSI (Supplemental Security Income).

Budget Constraint. Let w; denote individual i’s wage and y; denote i’s non-labor income; both are

assumed exogenously given and observable from data. I define household consumption x as,
x =wply +wyl + yu + y, + Child SSI; - I[z; = 1,d; = 1]. )

I assume there is no saving, so consumption equals total income within the period. This is justified by

the fact that the SIPP and PSID samples used in this study primarily consist of low- to middle-income

TAs noted in Sauer and Taber (2021), the number of children matters for household behavior. Previous literature, such as
Gobbi (2018) and Del Boca et al. (2014), focuses on multiple children. Here, even at the cost of losing some observations, |
ignore this point. I focus on households with one child for simplicity.



households, for whom savings rates are low.2 Wages are determined by wage equations specified in

Section 6.

Child Quality Production. Let 7 denote the age of the child. Child quality k is produced according to

the following Cobb—Douglas production function,

) 0.5

k = (gh(Zj 0l + 1 . (gw(Zj LIS+ 1)0.5‘ -

Conceptually, k is a household production good that enters both spouses’ utility as a public good within the
household. Following the child quality literature (e.g., Del Boca and Flinn, 2012; Del Boca et al., 2014),
child quality is determined by both parents’ time inputs, /; and [}, and the functional form is chosen to
derive analytical solutions.

The term g;(z; : t) > Ofori € {h, w} captures the efficiency of childcare time—reflecting factors such as
conversion efficiency, communication quality, and technology of care. This efficiency may differ between
households with and without disabled children. For notational simplicity, I sometimes write g;(z;) when
the dependence on child age ¢ is clear from context.

I'model g;(z; : t) as

8i(zj : 1) = exp(BLz; + Bit), “)

where f; is symmetric across spouses but ,8; depends on i. This exponential specification ensures positivity
and is used in Del Boca et al. (2014) and Flinn et al. (2018).

Several remarks on the production function are in order. First, while more general CES specifications
are possible, the Cobb—Douglas form is restrictive but necessary for identification. As Del Boca and Flinn
(2005, 2012, 2014) and Flinn et al. (2018) discuss, I observe four optimal behaviors (labor supply and
childcare time for each spouse). So the number of unknown preference parameters which I can back up from
four optimal behaviors is at most four (1, p, v, ), Which I will introduce below. A CES specification
would introduce an additional parameter that cannot be uniquely backed up without restrictions.?

Second, the 0.5 Cobb—Douglas specification is empirically supported by Del Boca et al. (2014) and
used in Gobbi (2018). As shown in Section 8, my in-sample fit is very good with these restrictions.
Importantly, Theorems 1, 2, and 3 below are robust to the specific value of 0.5; what matters is the closed

form solutions from the Cobb—Douglas structure itself, which is used in nearly all structural estimation

2The determination of Child SSI in equation (2) is discussed in detail in Section 6. Briefly, properly accounting for Child SSI
matters because setting it to zero would mechanically attribute all behavioral differences between households with and without
disabled children to the childcare technology or the cooperation parameter, rather than to resource differences.

3For the same reason, the assumption that each spouse contributes equally (with exponent 0.5) to child quality may appear
restrictive, but treating this as a free parameter would also preclude identification.



papers on intra-household allocation.*

Under this specification, the marginal return to childcare d In k/dl} is increasing in efficiency gn(z;).
Consequently, when a child’s disability reduces g;(z;), the father’s optimal childcare time decreases.>

Third, following Gobbi (2018), I allow corner solutions: [; and [j, can be zero. The “+17 term
in equation (3) prevents the marginal product from going to infinity when inputs are zero, addressing
Inada-type issues with Cobb—Douglas functions.®

Fourth, the specification of k implicitly assumes I do not model monetary investment in children. The
implication is discussed in Del Boca et al. (2014) and Gobbi (2018). Brown et al. (2025) also do not

include monetary investment.

Preferences: Felicity Utility. Let u;(x, lf, k) for i € {h,w} denote the felicity utility of the husband
and wife. Following Del Boca and Flinn (2012) and Del Boca et al. (2014), I specify felicity utility in
Cobb-Douglas form,”

wi(x, 1, k) = (1= g =) Inx + g Inf + o In(k = k), 5)

where y; € (0, 1) is the weight on leisure, n; € (0, 1) is the weight on child quality for individual i, and
k; > 0 is a subsistence level of child quality. Following Del Boca and Flinn (2005), I normalize k;, = 0
without empirical loss of generality. The joint distributions of y; and n;, denoted Fj;,,
This is natural because how much spouses care about their child may differ depending on whether the child

may depend on z;.

has a disability.?
The parameters 7; and g;(z;) in equations (5) and (3) affect individual observable choices, especially
labor supply and childcare time. Therefore, these observable choices can identify the means of 7; and

gi(zj : t) fori € {h,w}. Conditional on all else being equal, the mean difference in optimal behavior

4The key conditions are that the production function is log-additive and that utility is linear in In k£ (constant marginal utility
with respect to log child quality). These assumptions are standard in the literature. By contrast, Byrne et al. (2009) assume
linear production technology.

5This formulation is consistent with, for example, Cunha and Heckman (2007), who emphasize that parents invest more in
children with higher productivity. Empirically, fathers spend more time with non-disabled children; see Section 8.

That both /; and [}, can be 0 in the functional form for k implies that ;" and /|| represent active parenting time: it would be
dangerous if neither parent took care of their child, especially when the child is very young. See Del Boca et al. (2014) for the
difference between active and passive parenting time. My leisure terms implicitly include passive childcare time. Housework
time, which is also important for a household in the literature, is likewise included in leisure.

7As with the child quality production function, where adding a free parameter would preclude identification, using more
general functional forms such as CES would preclude parameter identification also. Again, since I observe only labor supply
and childcare time for each spouse—two observables per person—I cannot have more than two unknown parameters per person.

8This is a simplification to obtain analytical solutions. Several papers in this literature (for example, Del Boca and Flinn
2005; Del Boca and Flinn 2012; Flinn et al. 2018) do not include childcare time directly in the utility function. However, for
disabled-child care, the direct utility or disutility may be substantial. Recall that any direct effect can be captured through shifts
in the distribution of 7; between z = 0 and z = 1.



between households with and without disabled children identifies these parameters. The key is that I have
4 x 2 = 8 observable outcomes (labor supply and childcare time for each spouse, under z = 0 and z = 1).
Using z = 0 as the baseline, I identify 4 preference parameters (the means of y; and n; fori = h, w). The
remaining degrees of freedom identify ﬁ; fori = h, w and allow the distribution of 7; to depend on z. The
identification argument follows Del Boca and Flinn (2012, 2014).

In this static framework, child quality is better understood as a form of public consumption rather than
investment. Time with children, [, is purely an input to child quality production, with no direct effect on

utility, as in Del Boca et al. (2014).

Super Utility and the Caring Parameter. Let A(z;) € [0, 1] be a caring parameter (restricted to (0, 1)
in the econometric specification; see Section 6.1), which governs how much individual i internalizes —i’s
welfare when choosing childcare in Stage 2. Let cost; denote the participation cost for receiving Child
SSI, and recall that d; € {0, 1} indicates whether household j receives Child SSI.
The payoff function—corresponding to the “super utility” in Friedberg and Stern (2014)—for individual
i1is
p p p cost;

Ui(x, I7, k) = ui(x, 7, k) + Az )u—i(x, 2, k) — — I[zj =1,d; = 1] (6)
for both husband and wife.® %! The parameter A(z;) governs the degree of altruism in Stage 2 (childcare
allocation). When A(z;) = 1, each spouse fully internalizes the other’s welfare, so Stage-2 childcare choices
coincide with the social planner’s solution. When A(z;) = 0, the payoff function (6) reduces to an egoistic
utility function, yielding purely non-cooperative childcare allocation as in Gobbi (2018). In both cases,

Stage 1 labor supply remains cooperative. The identification of A(z;) is discussed in detail in Section 5.

Participation Cost for Child SSI. The term cost; represents the participation cost for Child SSI; the
empirical specification is given in Section 6.4. As Friedrichsen et al. (2018) discuss, disentangling actual
costs associated with participation for Child SSI from observable data is difficult because all types of
costs (administration cost, phycological costs) moves together when a recipient takes benefits. 1 therefore
interpret cost; as a participation cost following the literature. 2

Since I cannot use credible micro moments for Child SSI take-up, I normalize cost;/2 = 0. This

normalization is partially justified because participation costs in the literature typically represent “welfare

9Theoretically, this specification is restrictive and not fully general; see Chiappori and Mazzocco (2017). However, it is
commonly used in the family economics literature. Practically, functional form assumptions are necessary, just as recursive
utility is assumed in dynamic models.

10T ove causes people to derive happiness from seeing their partner happy, which motivates the super utility specification.

As Keane and Wolpin (2001) note, such costs can be modeled either in the budget constraint or in utility. While applying
for benefits involves dynamic aspects and belief formation (Moffitt, 1983), traditionally (e.g., Blundell and Shephard, 2012) a
static model is typically used in the literature.

12As Fang and Silverman (2009) note, this is standard practice since Moffitt (1983).
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stigma” for the person taking up benefits; here, however, the child is the recipient, so it is unclear whether
parents would feel such stigma.!*> The application for Child SSI is made at the household level (a joint
decision). Because the participation cost enters super utility additively, it does not alter the first-order
conditions for within-period allocations, so the take-up decision can be separated from the allocation
problem and estimated outside the main model.!# Child SSI itself, once received, does affect allocations
through income effects on consumption (equation (2)), which is why it must be properly accounted for in
estimation rather than set to zero.

My primary objective is to identify the disability-dependent primitives governing within-period allo-
cations and the subjective well-being decomposition—specifically, the childcare technology shifters g;(z;)
fori € {h,w} and the caring parameter A(z;). Structurally modeling the application/learning/diagnosis
process for d; is a secondary goal.'s

Borrowing the idea of indirect inference, to prevent mechanical mismatch between simulated and
observed data due to unobserved or misreported d;, I assign d; probabilistically in simulations using
externally informed take-up rates P(d; = 1 | z;), reproducing the same mixture distribution as in observed
data. This reduces measurement-driven discrepancies while keeping focus on identifying g;(z;) and A(z;).

This simplification does not claim that participation costs are irrelevant; rather, it defines a baseline
clarifying identification under data limitations. The framework accommodates counterfactual analyses with
nonzero participation costs (e.g., changes in application frictions). To assess sensitivity to the externally
imposed take-up rate, I conducted robustness checks varying P(d; = 1 | z; = 1) around the benchmark

value (e.g., 0.7) and verified that main results for A(z;) and g;(z;) remain stable.

3.2 Game Structure

This subsection specifies the timing of decisions and the equilibrium concept. I adopt a two-stage
(“biform”) game structure that delivers a unique subgame perfect equilibrium, which is essential for well-

defined comparative statics and identification. Table 2 summarizes the position of this paper relative to

BImportantly, there is no work requirement for Child SSI receipt, so this decision can be handled outside the main model.
In contrast, SSI for adults imposes work requirements on the recipient, directly affecting the recipient’s (i.e., the parent’s) labor
supply decision and requiring joint modeling.

14Specifically, the participation cost enters super utility additively as a constant,

cost;

- Az = Ld; =1,

and hence does not alter the first-order conditions (FOCs) characterizing within-period allocations. Consequently, it does not
directly affect the main identifying moments for g;(z;) and A(z;) (FOC invariance).

I5Low and Pistaferri (2010) and French and Jones (2011) use reduced-form approaches, and Low and Pistaferri (2020)
emphasize the difficulty of explicitly modeling disability insurance. However, in principle, with reliable Child SSI data, cost;
could be identified: one could compare cost ;2 Child SSI 7, where Cﬁ&?sy is imputed from institutional parameters (Federal
Benefit Rate by state and year) and observed income as an exogenous policy shifter (see Abrahams et al., 2025).
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existing approaches. The key distinction across these approaches is whether and to what extent cooperative

behavior is permitted within the model.

Table 2: Comparison of Game-Theoretic Assumptions in Household Models

Model Assumption Restrictiveness

Collective model (Chiappori) Pareto efficiency in all decisions Most restrictive
Biform game (this paper) Partial cooperation Intermediate
Non-cooperative No cooperation Least restrictive

Timing. Players are assumed to play a two-stage game within a single period. In Stage 1, each household
member chooses labor supply in a cooperative manner. In Stage 2, time allocation for childcare is decided
non-cooperatively.

I focus on a static model because (i) I do not model child development dynamics, and (ii) I wish to
avoid multiple equilibrium issues that typically arise in dynamic games. Static models are common in this

literature.!®

Why a Two-Stage Structure? Commitment over labor supply is reasonable because employment con-
tracts are typically signed, so employees cannot easily change their work arrangements, at least in the short
term. In contrast, for childcare, partners cannot assume commitment because there is generally no written
agreement and monitoring is difficult.!” Therefore, I model Stage 2 as a non-cooperative game.!® This
justification follows Gobbi (2018).

Without dividing the game into stages, with players selecting all choices simultaneously, equilibrium
multiplicity would almost certainly arise.!® The biform structure avoids this problem by isolating childcare
into a separate stage. Since this is a finite-stage game, the equilibrium concept is subgame perfection with

backward induction, and existence follows immediately.

16 Gobbi (2018), Friedberg and Stern (2014), Del Boca and Flinn (2012), Flinn et al. (2018), and Gayle and Shephard (2019)
all use static models. As Chiappori et al. (2018) note, family economics typically employs static models without investment
dynamics. This is appropriate for short-term analysis, though it may introduce bias for long-term outcomes. Incorporating
learning, applications, human capital, and matching after diagnosis is beyond this paper’s scope. More importantly, as Del Boca
and Flinn (2012) and Flinn et al. (2018) emphasize, even with very restricted Cobb—Douglas functional forms in a limited static
model, parameters cannot be nonparametrically identified. Adding dynamic aspects would introduce more parameters requiring
additional arbitrary assumptions without restrictions.

7Even if couples could contract over childcare time, there would always be incentive to deviate due to lack of monitoring—a
typical issue with cooperative game assumptions, often termed “lack of monitoring.”

18] implicitly assume employment contracts precede daily childcare decisions.

19See Quint and Shubik (1997) for a general discussion of how the dimension of the action space relates to equilibrium
multiplicity.
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Equilibrium Uniqueness. Let [;* and /i denote equilibrium childcare time for husband and wife.

Throughout, superscript * denotes equilibrium values.

Theorem 1 (Uniqueness of Stage 2 Equilibrium). Given I}’ and I}j, and A(z;), there is a unique Nash

equilibrium (1", [\)*) at Stage 2.

The key to uniqueness is that the Cobb—Douglas child quality function is additively separable in logs, so
each parent’s first-order condition depends only on their own childcare choice. Stage 2 therefore reduces
to a pair of independent one-dimensional problems, each strictly concave, guaranteeing a unique optimum

for each player and hence a unique Nash equilibrium.
Proof of Theorem 1. See Appendix A for the full derivation. O

Remark 1. The key conditions for Theorem 1 are:

(A) The production function is Cobb—Douglas (standard in the literature):

1 1
Ink = 2 In(aplj + 1) + 5 In(ay Ly, +1).

(B) Utility is linear in In k (constant marginal utility with respect to In k), which is satisfied by the
Cobb-Douglas specification adopted here:

ouU;

U= +nnk
THE = Sk

= 7; (constant).

Remark 2. Although Stage 2 FOCs are strategically independent under the Cobb—Douglas specification,
Stage 2 remains a non-cooperative game: each parent’s childcare choice affects the other’s payoff through
child quality. Because each parent maximizes their own objective without internalizing the spillover on

their spouse’s utility, the Stage 2 outcome generates an efficiency loss relative to the joint optimum.

Let ;" and [;* denote equilibrium labor supply, and let k* denote equilibrium child quality mapped
from /;* and [i".
Theorem 2 (Uniqueness of Stage 1 Equilibrium). Given A(z;), equilibrium labor supply (I}*,1}*) is
uniquely determined by

{00y = argmax[Uh(x, T-10" =17 k) + Uy(x, T = Iy = I, k*)] .

wow
LYy

Note that x is also a function of [}’ and )1 x = wpl}’ + wy Ly + yp + y +1[dj = 1,z; = 1] - Child SSI;.
The Child SSI term is exogenously given and does not affect this proof. Because players solve backwards,

childcare times are equilibrium values /;* and /" at this stage.
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Proof of Theorem 2. Stage 1 is a cooperative game where the couple jointly decides allocations. The
objective Uy, + U,, = (1 + A)(uy + uy) is strictly concave in (1}’ ;) on the (convex) constraint set: under
the Cobb-Douglas specification, the Stage-2 equilibrium childcare /7" is affine in 1" (see Appendix D), so
substituting it into the log-linear felicity utilities preserves strict concavity. A strictly concave function on

a convex set has at most one maximizer, so (", [}*) is unique. O

Implication of Theorems 1-2. Together, these theorems guarantee that the subgame perfect equilibrium
of the entire biform game is unique. This uniqueness is essential for two reasons: (i) comparative statics
with respect to parameters (e.g., 4, wages) are well-defined, and (ii) the identification strategy in Section 5

relies on the monotonicity of equilibrium outcomes, which requires uniqueness.

Theorem 3 (Monotonicity of Indirect Utility in A). Define V(A(z;)) at equilibrium as
V(A(zj)) = up(x™, lf;*, K*) + uy,(x7, lf;*, k™).

Then V(A(z))) is weakly increasing in A(z;). If, in addition, V(A(z;)) > 0, then the joint indirect utility
Un + U, = (1+ A(z))) V(A(z;)) is also weakly increasing in A(z;).

Proof. The proof exploits the supermodular game structure at Stage 2. The key steps are: (i) verifying
increasing differences of payoffs in (I, 1), (ii) applying Tarski’s fixed-point theorem together with the
uniqueness result of Theorem 1, and (iii) using the fact that the max operator preserves monotonicity. The
result holds under Cobb—Douglas preferences and child quality technology without requiring the specific

0.5 exponent or symmetry of A between spouses. See Appendix B for the full proof. O

The condition V(A(z;)) > 0 is natural in my setting: as equation (5) shows, each argument of the felicity
utility—consumption x, leisure lf, and child quality k—exceeds 1 under the units adopted here (weekly
hours with 7" = 112, weekly dollar consumption, and child quality with the “+1” term in equation (3)), so
In(-) > O for each term, u; > 0 for each spouse, and hence V(A(z;)) > 0.

Theorem 3 is nontrivial: while high 4 might increase U; + U,, because it scales up indirect utility
(shifting the whole function upward), the felicity utilities up(x", lf;*, k*) and u,,(x", lf;*, k*) at equilibrium
could decrease when A is larger. The direction is not obvious a priori. Note that U,(}", [;*) + Uy (1", 1)
is increasing in A(z;), but Uy or U,, individually need not be.

While Theorem 3 establishes that improvements in A lead to higher indirect utility for married couples,
the quantitative magnitude of this improvement remains unknown from theory alone. To assess the welfare
implications quantitatively, I employ structural estimation (Section 7) to recover the model primitives,

and then conduct counterfactual analysis (Section 9) to measure how much welfare would improve under

alternative cooperation levels.
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The first and second moments of y; and 7; can be identified using standard arguments from the intra-
household allocation literature, since I observe labor supply and childcare time. The parameter A(z;) is

identified through the monotonicity of slopes with respect to wage changes (Proposition 4 below).

3.3 Monotonicity of Equilibrium Outcomes

Theorems 1 and 2 guarantee uniqueness of equilibrium, so derivatives are well-defined and comparative

statics can be summarized as follows.

Proposition 4 (Monotone Comparative Statics with Respect to A(z;)). Consider the cross-wage effect
evaluated at within-period equilibrium,

C*

i—i(A(z))) = — (i € {h,w}),

6w_,-

the childcare-labor marginal rate of substitution (slope) for each spouse:

C*

maq»saﬁ (i € {h,w}),

and the equilibrium (household) indirect utility:
W(A(z))) = Un(l;", ;") + Un (L35 1))

Provided the equilibrium is interior and differentiable, the following hold:

1. Monotonicity of cross-wage effect: \; _;(A(z;)) is strictly increasing in A(z;) for eachi € {h,w}.

2. Monotonicity of childcare-labor slope: k;(A(z;)) is monotone in A(z;) (decreasing in this model).
3. Monotonicity of (household) indirect utility: If V(A(z;)) > 0, then W (A(z;)) is increasing in A(z;).

I emphasize that Cobb—Douglas preferences, Cobb—Douglas child quality technology, and the biform
game structure are sufficient conditions for these results. Proposition 4 plays an important role in the

identification strategy of Section 5.

Proof. See Appendix C. O

Monotonicity of Equilibrium Variables and Sign Reversal. By Proposition 4, these are continuous

and monotone on A € (0, 1),

oy _i(1) >0 Ok (1)

51 3 <0 forallAde(0,1), i€ {hw}.
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Proposition 5 (Threshold Sign Reversal under Monotonicity). Let f(A) be a continuous, monotone function
of A. If there exist A, A € (0, 1) such that f(1) and f(2) have opposite signs, then by the intermediate value
theorem, there exists 1* € (4, 1) with f(1*) = 0.

Application to ;_;: Since y;_i(1) is monotonically increasing for each i € {h,w} (Proposition 4), if
Yi_i(D) < 0 and y; _;(2) > 0, there exists /l;‘/ such that

Yi—i() <0if A < A, Yi-i(2) > 0if A > 4,,.

Application to «;: Since k;(1) is monotonically decreasing (Proposition 4), if k(1) < 0 and k(1) > 0,
there exists A, such that
k(1) >0ifa < A, k() <0ifa> A,

Implications.

Although y; _;(1) and k;(1) are monotone in A, their signs can reverse when crossing zero. Therefore,
the sign of the observed (reduced-form) slope provides information about whether A lies above or below
the threshold A*. Accordingly, for identifying A, the key information comes from the magnitude of these
slopes (measured in absolute value) rather than sign consistency. Consequently, sign inconsistency across

different slope moments does not pose a problem for identification (see Section 8.3 for details).

Remark 3 (Dependence on Cobb—Douglas). Consider replacing the Cobb—Douglas child quality function
with a CES specification k = [%(ahlfl + 1)+ %(awlfv + 1) ] lie , where p — 0 recovers Cobb—Douglas. For

p < 0 (complementary inputs), the cross-partial

2Ink  —panay (aplf + 1P (ayls + 17!

O 0L, [(apls + 1)0 + (ayls, + 1))

> 0,

so the Stage-2 game remains supermodular. Combined with 6%7;/ Olf 04 = n-; - dInk/Alf > O (which
holds for any production function in which childcare is productive), Topkis’s theorem guarantees that
equilibrium childcare [7*(4) is weakly increasing in A—i.e., equilibrium level monotonicity is preserved.
The identification strategy in Section 5, however, relies not on the level of equilibrium childcare but on
the monotonicity of equilibrium slopes—the childcare-labor tradeoft «;(1) = 417" /91" and the cross-wage
effect y; —i(1) = 917" /dw_;—with respect to 4. These are second-order comparative statics that Topkis
does not deliver; the analytical proof (Proposition 4) exploits the closed-form solutions available under
Cobb-Douglas (p = 0). A natural concern is therefore whether the identification result is knife-edge—valid
only at the single point p = 0. It is not. Because the equilibrium is interior and the Jacobian of the first-

order conditions is non-singular at p = 0, the implicit function theorem guarantees that [{*(4; p) is smooth
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in p in a neighborhood of p = 0. The signs of d«;/dA and dy;_;/dA, being continuous functions of p,
are therefore preserved whenever |p| < & for some € > 0. In other words, the slope monotonicity that
underpins identification holds not only under Cobb—Douglas but extends to CES specifications with p
sufficiently close to zero—that is, production technologies that remain sufficiently close to Cobb—Douglas.
The identification strategy is therefore not a knife-edge result tied to a single functional form, but is locally

robust within this neighborhood.

3.4 Equilibrium Concept

The equilibrium concept is subgame perfect equilibrium with a biform game modification. For a given
household j, at each subgame, each individual behaves rationally and has no incentive to deviate from
equilibrium. From the perspective of the entire game, no player has an incentive to deviate. Existence and

uniqueness of the equilibrium follow from Theorems 1 and 2.

4 Data

This section describes the data sources used for estimation. Following Del Boca and Flinn (2012)
and Flinn et al. (2018), I condition on already-married couples. The key parameters to identify are the
distribution of F;,, the childcare efficiency g;(z;) (defined in the production function), and the cooperation
parameter A(z;) (in the super utility).

The approach to combining multiple data sources follows the methodology developed by Friedberg and
Stern (2014), Keane and Wasi (2013) and Del Boca et al. (2026), with a twist suited to the present context.

To address this data limitation, I employ three different types of datasets to identify g;(z; : ), A(z;)
and happiness thresholds separately, following a conceptually two-step estimation approach. This strategy
circumvents two challenges: the scarcity of observations of households with disabled children, and the
age-dependent nature of intra-household behavior (as described in Section 3, household behavior changes
substantially depending on child age).

The analysis draws on three complementary data sources: the Survey of Income and Program Partici-
pation (SIPP), the Panel Study of Income Dynamics Child Development Supplement (PSID-CDS), and the
PSID Main Interview. The specific waves used are PSID-CDS III (2007/08) and CDS 2014, SIPP 2004
Waves 4 and 8 (February 2005-May 2005 and June 2006—September 2006), and SIPP 2008 Panel Waves
5 and 8 (January—April 2010 and January—April 2011), along with PSID Main waves from 2009, 2011,
2013, and 2015. The pooled sample covers the period 2005-2014. By pooling these datasets, I implicitly

assume that the economy is stationary within this period.?°

20The primary concern is child age effects rather than calendar time effects; in family economics, spousal ages are generally
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Each dataset offers distinct advantages and disadvantages. SIPP provides information on household
time use and child disability status with a large sample size, and is available annually. However, SIPP
lacks information on subjective well-being, which is needed to identify how the presence of a disabled
child affects perceived happiness (see Section 5).Additionally, the quality of childcare time data in SIPP is
relatively low. PSID-CDS provides high-quality childcare time data for each spouse, which is essential for
identifying the childcare production function. However, its sample size alone is insufficient, and it does
not contain subjective well-being data. PSID Main includes subjective well-being data for the responding
spouse, enabling identification of happiness thresholds. However, it lacks childcare time information and
is collected biennially.

An important consideration is that disability definitions differ between SIPP and PSID-CDS; the survey
questions are phrased differently, though they capture the same underlying concepts. Prior literature has
successfully combined multiple datasets with differing variable definitions (Goeree, 2008; Del Boca et al.,
2026), suggesting this approach is feasible for the present study as well. The detailed correspondence
between disability variables across datasets is documented in Table K1 in Appendix K.

Following the structural estimation approach in industrial organization, I pool these datasets and treat
observations across waves as repeated cross-sectional data. This pooling strategy is standard in the 1O
literature; for example, Berry (1994), Berry et al. (1995), and Nevo (2000) employ similar approaches.
Nevo (2001) absorbs time variation using year dummies while maintaining parameter stationarity.

Specifically, the deep structural parameters (u;, 7;, 8i» A) are assumed to be time-invariant, while g;(z;)
and A(z;) incorporate child age effects. Differences in wages and SSI benefit amounts across waves are
absorbed into the model through the observed income variables w;, y;, and Child SSI;, which are taken
directly from data. The primary concern is controlling for age effects rather than trend or year effects
in the literature.?! As a robustness check, one could allow for wave-specific shifts (hyperparameters) in
the specification. The rationale for pooling is twofold: to increase event counts by pooling a stationary
one-shot stage game across three waves, and to address the rarity of households with disabled children.

PSID has included subjective well-being measures (life satisfaction) since 2009, though these measures
are only available for interview respondents (primarily Head and Spouse/Partner). Subjective well-being
is used to identify happiness thresholds. The identification approach following Friedberg and Stern (2014)
and Byrne et al. (2009) does not require both spouses’ happiness data simultaneously—one can run ordered

response models separately for each spouse. Additionally, K6 measures serve as auxiliary statistics for

less important than child age. Even with a relatively small available sample, structural estimation remains feasible: the Del
Boca et al. series works with sample sizes around 120 observations. See Appendix J for a discussion of missing data in the
PSID-CDS time diary.

2IMore broadly, parameter stationarity is a common assumption in this literature. Del Boca et al. (2024) assume that the
discount rate does not vary with age. Eckstein et al. (2019) assume that preferences are stable even across different cohorts—in
essence, conditioning on enough observable characteristics.
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indirect inference, capturing information that is not orthogonal to the indirect utility function.?? Following
Byrne et al. (2009), randomness is introduced through the econometric specification (see Section 6). Even
if using non-revealed preference data is somehow controversial, it is worth noting that using non-revealed-
preference data such as job satisfaction and collapsing it to a single index through regression is a well-used
approach, for example, employed by French and Jones (2011).

Descriptive statistics from the SIPP and PSID-CDS samples are reported in Appendix I. A notable
pattern emerges: mothers spend more time with disabled children, while fathers spend less time, suggesting
asymmetric responses to child disability within the household. Detailed moment statistics used for structural

estimation are presented in Appendix F.

5 Identification

The identification of the technology parameter g;(z; : 7) and the preference distribution F;, has been
discussed in Section 3; this section therefore focuses on identifying the remaining structural objects. In
particular, I exploit moments associated with comparative statics that are derived from the theoretical

monotonicity properties of the equilibrium outcomes established in Section 3.3.

5.1 Identification of Caring Parameter 1(z;): Revealed Preference Approach via

Indirect Inference

Because I employ indirect inference, the auxiliary statistics need not be correctly specified in the usual
sense. What matters is that the auxiliary statistics computed from actual data and those computed from
simulated data share the same data-generating process. By using the relationship between wages and
individuals’ optimal behavior as auxiliary statistics, my approach—unlike Flinn et al. (2018) and related
work—allows for correlation between unobserved preference heterogeneity and wage heterogeneity.?3

The identification of the caring parameter A(z;) constitutes one of the main contributions of this paper.
Given that time-allocation data identify the technology parameter g;(z;) and the preference distribution F;

Ik
I identify the caring parameter A(z;) by matching model-implied slopes to their empirical counterparts;

22[n addition, using PSID-CDS III (2007/08) and CDS 2014 with additional subjective well-being information (K6). K6
psychological distress measures are available for both parents in PSID since 2001. The K6 asks respondents (primarily Head
and Spouse/Partner) about psychological distress over the past 30 days and has been included since at least 2001. While studies
such as Flinn et al. (2018) and Todd and Zhang (2020) construct Big Five personality measures in a relatively straightforward
manner, similar approaches can be used to construct a single well-being index from K6. Life satisfaction should be closer to the
concept of indirect utility; K6 serves primarily as a robustness check.

23Consistency of indirect inference requires that the actual data-generating process and the model-implied process be suffi-
ciently aligned; even if the auxiliary model is misspecified, estimates remain consistent provided both simulated and actual data
are subjected to the same auxiliary regression.
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see Section 3.3 for the underlying monotonicity results.
This identification strategy enables me to disentangle whether the observed “happiness puzzle” arises
from changes in preferences (Fj;,), changes in technological constraints (g;(z;)), or changes in spousal

cooperation (A(z;)).

5.2 Auxiliary Regressions: Childcare—Work Slope
This subsection constructs moments based on the childcare—work slope introduced in Section 3.3,

A1, )
alL” ’

=0

K,'(/].) =

which captures how individual i’s equilibrium childcare time in Stage 2 responds to i’s (predetermined)
market-work time chosen in Stage 1. By Theorem 1, the Stage-2 equilibrium is unique, so derivatives are
well-defined and «;(1) exists. As established in Section 3.3, ;(1) varies monotonically with the cooperation
parameter A(z;), which allows us to use empirical estimates of «;(1) as identifying moments for A(z;).

Because

olc* m .

i 2
oA\ aL” 20 +mi + A(zj)n—i)

so a larger A makes the childcare—work slope «;(1) smaller (more negative or less positive, depending on

the sign convention in the solution).

Indirect inference via auxiliary regression. To implement indirect inference, using actual data, I

estimate the following auxiliary regression for individual i’s childcare time in household j,

=a + K lgj. + K_j lﬁ”hj + X]’~7T + &ij, (Aux-«)

c
I

where X; includes controls (demographics, number and ages of children, etc.), r is the coefficient vector

for controls, and g;; is the error term. Alternatively, one may use a simplified specification,

lC

— w L
=@t kL] S+ &) (Aux-k:simple)

In the main results, I use the above simpler one. The moment condition targets the OLS coefficient itself.

Let K;n"del(/l; #) denote the OLS slope obtained by running the same auxiliary regression (Aux-k:simple)
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on simulated data generated under 6. I treat k; as an auxiliary statistic and match it to K}"Odel(/l; 0)

mi(0) = & — k™%, 0) = 0.

5.3 Auxiliary Regressions: Cross-Wage Effect on Childcare

This subsection constructs auxiliary moments based on the cross-wage response of parent i’s equilibrium
childcare time. Let j index households, let i denote one spouse/parent, and let —i denote the other.
Following Section 3.3, I define the level-derivative

ol e
Yi—i() = ’ ’ (7)

5W_,',j W_ij 01n W_ij ’

The second equality follows from the chain rule; the existence of a closed-form expression for llfj’f‘—and
hence for y; _;,—relies on the Cobb—Douglas specification of preferences and child quality production. By
Theorems 1 and 2, the equilibrium is unique, so ¢; _;(1) is well-defined. As discussed in Section 3.3, the
model-implied mapping A4 — i; _;(4) is monotone.

To exploit this monotonicity, I estimate the auxiliary regression

lC

=T Wo  iwi + XJ’.yr +uj, (Aux-A)

where X; denotes controls (demographics, number and ages of children, year fixed effects, etc.). As before,

one may use a simplified specification, and I use the following one in the main results,

lC

i =YW t+uj. (Aux-A: Simple)

To incorporate this information in estimation, I treat lZI\L_l‘ as an auxiliary statistic and match it to the

model-implied counterpart

my(0) = Wi i — y™%(;60) = 0,

i,—1

where g[/l.m_ol.del(/l; ) is the OLS slope from running the same auxiliary regression (Aux-A: Simple) on

simulated data under 6. As with «, the target is the OLS coefficient, not the structural derivative.
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5.4 Identification of Happiness Sensitivity (Thresholds)

I follow a similar approach to Friedberg and Stern (2014) by matching subjective well-being.?* My
framework distinguishes between changes in structural parameters and changes in the “happiness reporting
function.” Specifically, by estimating the thresholds {7x(z)} in the ordered response model separately for
households with a disabled child (z = 1) and those without (z = 0), I capture differences in how spouses
perceive and report happiness.

Parents of children with disabilities may shift their satisfaction standards (reference points) and derive
greater joy from “trivial things” or small daily achievements. In the model, such behavioral adaptation is
represented as a shift in the thresholds that map latent utility onto Life Satisfaction response categories
(e.g., “very satisfied”).

As a result, the model structurally separates two distinct mechanisms:

* Technology and Cooperation Effect: An increase in underlying utility driven by changes in g;(z;)
or A(z;).
* Response Shift Effect: A change in the way happiness is perceived and reported, captured by shifts
in 7¢(z).
This distinction provides a complete interpretation of the puzzle discussed in Section 2.1: despite the
considerable difficulties associated with raising a child with disabilities, reported happiness remains com-
parable to that of households without disabled children.

5.4.1 Subjective well-being threshold

At this stage, all structural parameters 6 have been identified from behavioral data. The term &; in the
equations below represents the reporting error commonly discussed when using subjective data.?>
Denoting the latent satisfaction as S = Ui(8, €;) with the scale normalization Var(e;) = 1, I estimate

thresholds separately for each group z € {0, 1}:
Si=k ‘IA'k_1’Z<Sl-*S7A'k’Z, k=1,...,K.

This procedure reveals how thresholds differ across z—that is, whether individuals become more
“lenient” or “strict” in their happiness reporting (i.e., whether they tend to report higher satisfaction from

small achievements).2¢

24Robustness checks using K6 (psychological distress scale) are conducted in supplementary analyses.

25See, for example, French and Jones (2011) and Low and Pistaferri (2015).

26Because Ui(é, &;) already pins down the location of the latent index, no location normalization is required. However,
the variance must be normalized because threshold values scale with the variance of the latent utility distribution. Without
normalization, changes in utility scale and changes in thresholds would be observationally equivalent.

21



The use of subjective data for identification is well-established; see French and Jones (2011), Friedberg
and Stern (2014), Byrne et al. (2009), Chiappori et al. (2018), and Wiswall and Zafar (2018). Low and
Pistaferri (2020) also note that while discrete measures pose challenges, they are practically useful, as in
Low and Pistaferri (2015).

To implement this ordered regression in practice, I use PSID waves from 2009, 2011, 2013, and 2015,
as only PSID contains subjective well-being measures. However, PSID lacks detailed childcare time data
needed to construct indirect utility. Therefore, in this step, I simulate optimal individual behaviors using
R =200 draws for each household, compute simulated indirect utility, and then average across draws. The
ordered regression is then estimated using this simulated utility. The construction of simulated indirect
utility follows Friedberg and Stern (2014). Conceptually, this is similar to CCP-based methods that first
estimate conditional choice probabilities and then simulate the value function. Friedberg and Stern (2014)
explicitly include the discrete subjective happiness measure in the likelihood function, thereby targeting it

as a moment. For the precise econometric specification, see Section 6.5.

Sequential Identification of Utility and Reporting Thresholds. A key methodological contribution is
resolving the classical non-identification problem in comparing subjective well-being across groups. In
standard ordered response models, utility levels U; and reporting thresholds 74 are jointly estimated from
subjective data, making it impossible to distinguish whether group differences reflect true utility gaps or
differences in reporting scales. My approach circumvents this problem by first identifying all structural
parameters—including the caring parameter A(z;) and technology g;(z;)—from behavioral data (labor
supply, childcare time, wages) via indirect inference. With U;(6) pinned down from revealed preference,
subjective well-being data are used solely to identify thresholds 74(z), enabling a clean decomposition of
the happiness puzzle into genuine welfare effects versus response shift.

As an alternative approach, one may jointly estimate all parameters following Friedberg and Stern

(2014), augmenting the moment conditions with residuals from the ordered response model.?”

5.5 Wage equation, measurement error and second moments

Wage equation parameters are identified from observed wages and individual characteristics following
standard Mincer regression approaches. As described in more detail in Section 6.2, the observed log
wage is assumed to be decomposed as In w?bs = Inw; + &, where w; is the true wage determining

labor supply and childcare decisions and & ~ N(0, o2

< .;) is classical measurement error independent

of all structural shocks and behavioral outcomes (equation (9)). The variance of true wages, Var(Inw),

is identified through behavioral moments—covariances between labor hours and log wages, cross-spouse

27Friedberg and Stern (2014) augmented moments of quite different types in a loss-function-like form.
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wage covariances Cov(ln wy, Inw,,), and cross-wage childcare slopes—because these moments depend
on the true wage but are orthogonal to €™ by the independence assumption.?® Given Var(lnw), the

measurement error variance is identified as the residual: o2, = Var(In w°) — Var(In w).

6 Econometrics

This section details the econometric specification for the structural model introduced in Section 3. The
preference parameters are specified in Section 6.1, and the wage equation follows in Section 6.2. These
specifications determine the functional forms used in the equilibrium conditions (Theorems 1-2) and the

identification strategy (Section 5).

6.1 Preference Specification

Household heterogeneity is captured by the preference parameters u; and n; for i € {h,w}, which
are drawn from a joint distribution Fj;, that depends on the child’s disability status z. Both the mean
vector and the covariance matrix of this distribution are allowed to vary with z. For each value of z,
there are four preference parameters (i, 7, iy, 1w ) and four corresponding endogenous choice variables
(e, Ly, 1 1), representing the optimal labor supply and childcare time for the husband and wife
respectively.

Following the approach of Flinn et al. (2018), this paper treats labor force participation as endogenously
determined. Consequently, I must specify a distributional assumption for (uy, 71, tw, ) | z. This means
the model requires parametric functional forms in nature. An important consideration, as discussed in
Del Boca and Flinn (2012), is that when corner solutions are permitted, the magnitude of preference
parameters below the participation threshold cannot be backed up from observed data—if an individual’s
preference for leisure exceeds a certain level, they supply zero labor, but the data do not reveal how far
above that threshold their latent preference lies.

To parameterize the distribution, let ¢ = (¢1, ¢5, ¢3, ¢;) denote the vector of means of (1n, 74, fis Thy)-
The dependence of certain mean components on z allows the model to capture systematic differences in
preferences across households with and without a disabled child. Let X* denote the covariance matrix
of (tn, Mhs pw> Mw) | z. Both ¢* and E* (and hence the full distribution £, ) are permitted to vary across
disability status z.

28They are identified through generalized residuals constructed from first-stage estimates, following Gourieroux et al. (1987),
Goeree (2008), and Friedberg and Stern (2014).
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6.2 Wage Equation and Non-labor Income

When a reduced-form wage process is sufficient. In many applications, the counterfactual experi-
ments primarily target intra-household allocation, labor supply, and the household cooperation/bargaining
regime, while the distribution of wage offers is treated as exogenous (i.e., the policy does not directly shift
the offer distribution on the firm side). In this case, the goal of the model is not to micro-found wage
formation itself, but to identify household behavior from observed choices and outcomes. Accordingly,
it is sufficient to approximate the wage process as a parsimonious conditional offer distribution given the
relevant state variables (e.g., education, experience, persistent heterogeneity, and aggregate conditions),
rather than imposing a fully structural wage-setting mechanism.

Building on this motivation, I now specify the wage equation. Following Del Boca et al. (2014), the wage
specification includes education level, age, and age squared as explanatory variables.The wage equations
also capture a component of assortative mating on unobserved determinants by allowing correlation in the
error terms across spouses, as described in Del Boca et al. (2014). Unlike Gobbi (2018), who treats non-
labor income as negligible, this study incorporates non-labor income into the household budget constraint.

In household j, the wage offer processes are assumed to have the following structure,

Inwy, Vi e Ch

= + ~N (0, (8)

Inw,, Vi Ly ’ e

Ohh  Owh
Ohw  Oww

Here w; denotes the true wage that enters the household’s optimization problem; agents observe their own
w; when making labor supply and childcare decisions. Survey-reported wages, however, are subject to
reporting error (rounding, recall bias, imputation). The econometrician observes

pbs

O = Inw; + &, g ~ N(0, of] i € {hw}, 9)

Inw i)

where & is independent of all structural shocks (i, 74, fws s $ns &) and of all behavioral outcomes.
I include measurement error in the wage equation because, as discussed in Flinn et al. (2025), survey
data on wages typically include measurement error.?° In estimation, simulated moments are computed
from wf’bs to match the data moments constructed under the same measurement conditions. Let o =
(Thhy Thws Twhs Ty ) collect the wage shock variance-covariance parameters. The terms vy, and v,, are the

conditional means of the log wage draws for parent / and parent w, respectively. In my empirical work, I

29Bound et al. (1994) find that measurement error in survey-reported earnings accounts for 50%—60% of the variance. My
estimates of oy, reported in Section 8.1, are consistent with this range.
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assume a Mincer equation specification,
0, 1 2 2. .3 .
Vit = V; +V;age; + viage; +V; s, i€ {hw}, (10)

where s; is the completed schooling level (which is time-invariant) of parent i. The coefficients vl.l and
vl.z capture age effects in the wage offer, while vl.3 captures the labor market “return to schooling” for each
parent.30

The disturbances in the parental wage equations are allowed to be correlated, which could arise through
assortative mating on unobservable determinants of wages and through spouses sharing the same local
labor market. Importantly, the distribution of wage shocks F; and the distribution of preferences F;, are

correlated. The specific parameterization of this joint covariance structure is detailed in Section 6.3.1.

Parametric Specification of the Caring Parameter. In Section 3, the caring parameter A(z;) was
introduced as depending solely on the child’s disability status z;. For estimation, I generalize this to allow

dependence on the child’s age ¢,

1
1 +exp(—(ao + a1z + agt + azz; - 1))’

A(zj, 1) = (1)
which ensures A € (0, 1). The parameter @y governs the baseline level of Stage-2 altruism, a; captures the
main effect of having a disabled child on Stage-2 altruism, a» captures how this altruism evolves as the
child ages (common to all households), and a3 captures the interaction between disability status and child
age. When a; # 0 or a3 # 0, the caring parameter varies with the child’s age, allowing for the possibility
that the caregiving burden associated with a disabled child may evolve over time—for instance, through

caregiver burnout (@3 < 0) or adaptation (a3 > 0).

6.3 Implementation of Unobserved Heterogeneity
6.3.1 Restrictions on the Covariance Structure

Let A; = (W, iy o> M Cy &)’ denote the vector of unobserved heterogeneity for household j with
disability status z. The unrestricted covariance matrix contains 21 free parameters. | impose six zero
restrictions on cross-spouse different-type correlations (e.g., Cov*(up, 17,,) = 0), retaining all within-person

correlations and cross-spouse same-type correlations (leisure-leisure, childcare-childcare, wage-wage).

30The choice of covariates in the Mincer equation varies across the literature. For example, Flinn et al. (2018) does not
include year of birth, while Del Boca and Flinn (2014) includes it. Some specifications omit the quadratic age term. These
variations do not substantially affect the main results.
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This reduces the parameter count from 21 to 15. The restrictions capture assortative mating through
same-type correlations while maintaining computational tractability.3!

Positive definiteness is ensured via a restricted Cholesky factorization £* = U¥U* with 15 free param-
eters. The latent normal draws g ~ N((¢%, 0, 0), %) are then transformed into preference parameters via a

softmax mapping following Del Boca and Flinn (2012)

_ eXp(‘]u,i) ni = eXp(‘]n,i)
1+ exp(qy;) + exp(qy;)’ "1+ explqu) + exp(qy)

HMi 4 = qcs (12)
for i € {h,w}. This ensures y;, n; € (0,1) with y; + ; < 1. The full list of zero restrictions, the explicit

Cholesky factor, and the derivation of constrained elements are provided in Appendix H.

6.4 Latent Type of Child SSI Receipt

Following the approach of Sullivan (2006), French (2005), and Iskhakov (2010), I do not use the self-
reported d; (Child SSI receipt) directly, but instead impute it in estimation.32 This approach is motivated
by the observation that the self-reported Child SSI receipt rate in the data is approximately 10 percent,
which appears too low relative to external institutional and macro-level data.33

From external institutional and macro-level data, I know that P(d; = 1 | z; = 1) = 0.7, meaning that
approximately 70 percent of households with a disabled child receive Child SSI. Since individual-level
receipt data are unreliable, neither the variance nor the mean (i.e., the cost parameter cost;) of the receipt
decision can be identified directly from the micro data. I apply an indirect inference approach to address
this limitation.

Specifically, when generating simulated data in estimation, I randomly assign d; = 1 with probability
0.7 and d; = 0 with probability 0.3 for households with z; = 1. This ensures that the simulated data match
the population take-up rate implied by external information, thereby eliminating the discrepancy between
actual and simulated data that would arise from misreporting. This approach is a direct application of
indirect inference. The details of how this assignment is implemented in the simulation are described in

Section 7.2.

31More flexible covariance structures, as in Del Boca and Flinn (2012) and Flinn et al. (2018), could be accommodated but
would substantially increase the computational burden.

32A limitation of using self-reported disability status is that the reporting may not be reliable.

33As documented by Celhay et al. (2025), survey reports of program participation often suffer from measurement error.
Therefore, it may be preferable not to rely directly on self-reported receipt status.
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6.5 SWB Measurement Equation

This subsection specifies the measurement equation linking the structural model’s utility to observed
subjective well-being (SWB) data. Let Ui(é) denote the (latent) subjective welfare level for household
(individual) i implied by the structural model, and let S; € {1,..., K} denote the observed life satisfaction

response (e.g., on a 5-point scale). I treat this categorical response as an ordered response,

SF = Ui(f) + &, (13)

Si=k Tk_1<S;<STk, k=1,...,K,

where S7 is a continuous latent index and {Tk}fzo are threshold parameters (cutpoints) satisfying 1o = —oco

and tx = +oo.

Role of the Error Term ;. The error term &; in equation (13) represents measurement noise that causes
observed SWB responses to vary even when the underlying latent welfare U;(6) is the same. This noise
encompasses several sources: (i) transitory mood, fatigue, or variation in question interpretation (response
noise); (ii) determinants of SWB not explicitly included in the model (health shocks, family events,
etc.); and (iii) coarsening or quantization that arises from mapping a continuous quantity onto K discrete
categories. Consequently, the mapping from U;(8) to S; is probabilistic rather than deterministic, and &; is

an essential component of the observation equation for treating SWB data consistently.34

Cross-Group Comparability of Thresholds (z = 0 vs. z = 1). In this paper, the indirect utility obtained

from the structural model (via simulation) is denoted U;(6), and the SWB categorical response is denoted

Si € {1,..., K} (with latent index S;). The measurement (reporting) equation is
S; = Ui0) +&, & ~N(O,1), (14)
Si=k Tk—l,z<Si*STk,z7 k=1,... K.

The thresholds {7 . sz_ll are allowed to depend on the child’s disability status z € {0, 1}.

The key point is that in equation (14), I define S} in the same units as U;(6). This definition is equivalent
to normalizing to one the coefficient that would otherwise multiply U;() in the measurement equation.
Furthermore, by imposing the standard ordered probit scale normalization Var(g;) = 1 commonly across

both values of z, the scale of the latent index S is pinned down uniformly across groups. Consequently,

34For discussions of noise in subjective data, see French and Jones (2011) and Low and Pistaferri (2015).
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Tr0 and 71 are both estimated on the same U-scale, and
ATk = Tk,1 — Tk,0

is comparable across groups. This difference summarizes the response shift in reporting cutpoints—that
is, the shift in how households with disabled children (z = 1) map the same latent welfare level into

categorical responses, relative to households without disabled children (z = 0).

7 Estimation

The estimation combines data from multiple sources—the Survey of Income and Program Participation
(SIPP), the Panel Study of Income Dynamics (PSID), and the PSID Child Development Supplement
(CDS)—to construct moments that discipline different aspects of the structural model. Table 3 summarizes
the mapping between moment categories and their corresponding data sources. Appendix I presents

descriptive statistics for these moments.

Table 3: Moments and Data Sources

Label Moment Description Dataset
M1) Labor supply hours for husband and wife (conditional on SIPP 2004 W4 WS, SIPP
employment) 2008 W5 W8, PSID 2009

2011 2013 2015, PSID CDS
2007, 2014

M2) Time spent on childcare for husband and wife PSID CDS 2007, 2014

(M3) Household head’s subjective well-being, K6 PSID 2009 2011 2013 2015

M4) Wage information (conditional on employment) SIPP, PSID (all waves)

(M5) Child SSI receipt SIPP 2004, 2008

4 Although SIPP contains information on time spent with children, the measurement error and inconsistent definitions
are relatively large, making it difficult to construct childcare time at the same quality level as PSID CDS. Therefore,
this study does not use childcare time from SIPP (for either fathers or mothers), and instead relies exclusively on PSID
CDS for childcare time measures.

The moments can be organized into several categories based on their role in the estimation. Level
moments (L1, L2) target mean childcare time and labor supply by disability status z;, disciplining the
technology shifter g;(z;) and the resource channel. Slope moments (S1, S2) capture how childcare responds
to changes in own labor supply and spouse’s wage, providing the key variation for identifying A(z;) through
the monotonicity properties established in Proposition 4. Wage moments (W1) discipline the level and
scale of the wage distribution. Second-moment conditions (A1-A3, B1-B3, C1-C3) target variances

and covariances of residual wages, labor supply, and childcare time—both within individuals and across
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spouses—to pin down the joint distribution of unobserved heterogeneity (u;, n;, ¢;). Finally, SWB threshold
moments (T1, T2) calibrate the mapping from model-implied utility to observed well-being categories,
allowing for response shift across z. Appendix E provides the detailed construction, model counterparts,

and identification role of each moment.

7.1 Estimation Method

I estimate the model using indirect inference. Given individual exogenous characteristics and candidate
parameter values, the estimation procedure computes the distance between moments from simulated data
and their empirical counterparts.

Let R denote the number of simulation draws, setto R = 100 for the main structural estimation.33 Define
Z(6) as the vector of auxiliary statistics computed from R simulated datasets generated under parameter

vector 6, and let E denote the corresponding vector of auxiliary statistics computed from the actual data.

The SMM estimator § minimizes the weighted distance between simulated and empirical moments

A

0 = arg mgin [(é(@) -

[l

w3

where W is a weighting matrix.

Following much of the literature (e.g., Altonji and Segal, 1996), I do not use an optimal weighting
matrix. Instead, W is specified as a diagonal matrix whose baseline elements are the inverse variance of
each moment with scale adjustments applied as needed.3°

More concretely, because the estimation relies on indirect inference, the researcher has discretion over
which auxiliary statistics to include and how many moments to draw from each block—a choice that
itself implicitly determines each block’s relative influence on the estimates. However, inverse-variance
normalization alone does not equalize the influence of different moment blocks on the objective function.
Covariance moments, despite having large standard errors, also have raw magnitudes that far exceed those
of slope moments such as k and . Without further adjustment, the noisy covariance block would dominate
the objective function and swamp the well-identified slope moments that are central to identifying A and
gi. 1 therefore apply additional block-level scale weights so that each block of moments—first moments,
slope moments (k, i), standard deviations, covariances, and wage moments—contributes approximately

equally to the objective function (see Appendix G for details).3”

35For the ordered probit threshold estimation (Section 8.2), [ use R = 200 draws to reduce simulation noise in the latent utility
index, since the threshold estimates are sensitive to the precision of simulated indirect utility.

36See Sauer and Taber (2021) and Jakobsen et al. (2024) for discussions of weighting in indirect inference, and Flinn et al.
(2018) for discussion of moment selection. Additional weight adjustments are also used in Gayle and Shephard (2019) and
Sauer and Taber (2021).

37As a robustness check, I also estimated the model using an identity weighting matrix (i.e., equal weight on every moment
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The structural model ensures uniqueness of the game’s solution and continuity of all choice vari-
ables, which permits the use of derivative-based optimization methods. In practice, I employ both the
Nelder—Mead algorithm and derivative-based methods for optimization. I compute standard errors via

nonparametric bootstrap with 200 replications, clustering at the household level.

7.2 Structural Model Simulation

Given a set of parameter values and exogenous characteristics, I can simulate the model. The simulation
proceeds as follows. First, I extract households from the data (SIPP 2004 Waves 4 and 8, SIPP 2008 Waves
5 and &, PSID 2009/2011/2013/2015, and PSID-CDS 2007/2014) that have the exogenous characteristics
required for simulation: gender, each spouse’s education level, each spouse’s age (used in the wage
equation), each spouse’s non-labor income, whether the household has a disabled child, and the child’s
age. I construct the distribution of exogenous characteristics to generate simulated households.38

Second, for each simulated household j from the distribution constructed above, given their exogenous
variables (gender, education, age), I specify the wage equation parameters v?, vl.l, vl.z, vl.3, oﬁle’l. fori = h,w,
the mean vector of preferences ¢* = (41, ¢35, ¢3, ¢;) which may vary with z, and the joint distribution F ;n ;
of preference and wage equation error terms (parameterized by the covariance matrix X%).

Third, I specify the parameters of the child quality production function g;(z;; t), including the disability
dummy coefficient ,82 fori = h, w and the child’s age coefficient §; (see Section 3.1). Given these parameters
and A(z;), and given the randomly assigned d; = 1 (as described in Section 6.4), I compute the simulated
individual choices, O = {W;, Wlf’bs, l:?*, lAl.W*, dAj, Child SSI i}i=nw for all households. The computational

details for solving the optimal labor supply and childcare allocation are provided in Appendix D.

8 Results

This section presents the estimation results for the structural model developed in Section 3. The

identification strategy follows Section 5, and the moments used for estimation are detailed in Section 7.

8.1 Model Estimation Results

Table 4 reports the structural parameter estimates. The model includes 51 parameters. Panel A of Table 4
presents the preference parameters after transformation. As discussed in Section 3, the only constraint

required for identification is that leisure preferences remain invariant across z = 0 and z = 1. This

without inverse-variance normalization). The key qualitative result—A; < Ay and the relative magnitudes of g5, and g,,—is
robust to this alternative weighting scheme.
38The sample is restricted to households with exactly one child.
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Table 4: Structural Model Parameter Estimates (51 Parameters)

Parameter z=0 z=1 Notes
Panel A: Preference Parameters
Leisure Pref.  puy, 0.60** Invariant in z
(0.004)
s 0.45** Invariant in z
(0.003)
Childcare Pref. 7y, 0.192** 0.191"™ A=0
(0.005)  (0.017)  (0.017)
w 0.100** 0.132™* A =+0.032
(0.004)  (0.011)  (0.010)
Panel B: Std. Deviations of Heterogeneity
Leisure Tuh 120"  1.21* A =+0.01
0.060)  (0.131)  (0.117)
Ouw 0.80**  0.87* A =+0.07
(0.035)  (0.059)  (0.048)
Childcare Ok 1.90"*  1.90* A=0
(0.066)  (0.140)  (0.123)
Onw 1.21% 137" A =+0.16
0.026)  (0.045)  (0.037)
Wage Orn 0.55** Invariant in z
(0.012)
orw 0.32"* Invariant in z
’ (0.010)
Panel C: Wage Equation
Husband Yo,h 0.76** Intercept
(0.003)
Vih 0.057* Age effect
(<0.001)
Va.n -0.00062"*  Age? effect
(<0.001)
V3.n 0.078** College premium
(<0.001)
Wife Vo, w 0.71** Intercept
(0.001)
Viw 0.048** Age effect
(<0.001)
Vo —-0.00049**  Age? effect
(<0.001)
V3w 0.065™* College premium
(<0.001)

Panel D: Childcare Eff., Cooperation, ME

Childcare Eff. B — —1.88"
(0.350)
Bzw — -0.07
(0.326)
B 0.09**
(0.003)
Cooperation A7) 0.31"  0.21*
(0.040)  (0.070)
@,,0 —0.849**
(0.182)
. —0.481
(0.348)
@y 0.005
(0.007)
@y3 —-0.007
(0.008)
Meas. Error T me,h 0.45**
(0.038)
Tme,w 0.50**
(0.063)

gn(z=1)=0.15
gw(z=1)=0.93
Child age effect
133%

Intercept
Disability effect
Child age effect

Disability x age
Husband wage ME

Wife wage ME

Notes: 51 parameters estimated by SMM. z = 0: non-disabled; z = 1: disabled child households. Bootstrap standard errors in parentheses (200 replications, clustering at household
level; Panel A via delta method). ** Statistically significant at the 5% level (bootstrap 95% CI excludes zero). Panel A: softmax-transformed: p = edH /(1 + eqH + e9M),

Parameter z=0 z=1 Notes

Panel E: Within-Indiv. Corr. (Husband)

o, p) 027 0.19% A =—0.08"
(0.016) (0045  (0.042)

o(un, &) =030 —0.59"* A =-0.30
(0.047)  (0.076)  (0.060)

P, &) =039 —0.38" A = +0.01
0.012)  (0.055)  (0.054)

Panel F: Within-Indiv. Corr. (Wife)

plit, hw) =012 011 A= +0.23*
0.050)  (0.070)  (0.049)

Pt Sw) =033 —045* A =-0.12
(0.030)  (0.064)  (0.056)

P, &w)  —0.04  —046" A=-0.42
(0.030)  (0.064)  (0.057)

Panel G: Cross-Spouse Correlations

oun, pw) 053 0.66" A =+0.13
0.091)  (0.118)  (0.075)

p(un, nw)  0.00 0.00  Constraint: fixed

e, ) 0.00 0.00  Constraint: fixed

e, nw) —0.55 -0.87"" A =-0.32
0.037)  (0.069)  (0.058)

p(&n, &w) 0397 0.92* A =+0.53
0.023)  (0.109)  (0.107)

n=eD[(1+eTH +e9). Az, 1) = 1/(1 +exp(-aq,0 — @p,12 — @2t — @32 - 1)): A(f) at T = 9.5. O ppe: Wage measurement error std. dev.
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constraint ensures that changes in time allocation can be attributed to differences in childcare technology
and taste for childcare.

Panel D contains the key parameters capturing differences in childcare technology between disabled
and non-disabled child households. The childcare efficiency parameter for fathers is strongly negative
(B.n = —1.88), implying that fathers become substantially less efficient at caring for disabled children
(gn(z = 1) = 0.15 compared to the normalized g,(z = 0) = 1). While g, itself drops substantially, the
impact on child quality is more moderate because of the “+1” term in the production function (3). Ataverage
childcare hours, the father’s input to child quality is (gxl¢ + 1)°: approximately (1.0 x 18 + 1)°> ~ 4.4
for z = 0 and (0.15 x 16 + 1)* ~ 1.8 for z = 1—a reduction of about 59%, not an 85% decline. In
contrast, mothers’ childcare efficiency shows only a modest, statistically insignificant decline (5;,, = —0.07,
gw(z = 1) = 0.93). Mothers, who typically serve as primary caregivers, adapt to disability-specific care
demands, maintaining most of their effectiveness. This stark asymmetry in childcare efficiency provides
a technological foundation for the observed patterns of specialization in disabled child households, where
mothers tend to increase their childcare time while fathers decrease theirs.

Although 3. ,, is theoretically identified, it is weakly identified in my empirical setting: the bootstrap
standard error (0.326) is large relative to the point estimate (—0.07), and the 95% confidence interval spans
[-1.13,0.05]. To assess whether this imprecision affects the main conclusions, I re-estimate the model
under two alternative fixed values, §,,, = 0 and g,,, = —0.5, holding all other parameters free. The
key estimates—§f3; ,, A(z=0), and A(z=1)—remain stable across these specifications, confirming that the
paper’s central findings on the cooperation channel and the father’s childcare efficiency are robust to the
value of ;.

The cooperation parameter A is specified as a parametric function of disability status z and child age

1 Az t) = p(_aw_a;lz_au ek The individual coeflicients a, 1 through @, 3 have relatively large
bootstrap standard errors. This is a well-known property of logistic index models: the logistic function
o (-) is flat in the tails, so when the index a’x places the probability away from 0.5—as is the case here,
with A € [0.21, 0.31]—the marginal effect d4/da; = A(1 — A)x; is attenuated.>® However, the data can pin
down A itself precisely even when individual a coefficients are imprecisely estimated. What matters for the
economic question is not the precision of each a separately, but whether the composite objects—A(z=0, 7)
and A(z =1, f)—are precisely estimated. At the mean child age (f = 9.5), the bootstrap confirms that both
are: A(z=0) = 0.31 (SE = 0.040) and A(z=1) = 0.21 (SE = 0.070), representing approximately a 33%
reduction.

Importantly, while these estimates may appear low, they fall squarely within the range considered in

prior literature: my model nests Gobbi (2018) as the special case 4 = 0 (fully non-cooperative childcare

At A =031, A1 —2) =0.21;at 2 = 0.21, A(1 — 2) = 0.17. A unit perturbation in the index therefore shifts A by only
0.17-0.21.
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allocation), and further converges to Del Boca and Flinn (2012) if the cooperative assumption at Stage 1
is also relaxed. Thus, my estimates of A(z=1) and A(z=0) are, to some degree, consistent with previous
studies.

Several correlations change substantially between z = 0 and z = 1. I highlight two cross-spouse
correlations. First, the wage shock correlation (p(3, £,,)) increases from 0.39 to 0.92. This high correlation
reflects the common labor market constraints faced by disabled-child households: both spouses may need
to find employment near specialized care facilities, require flexible schedules, or face similar employer
responses to caregiving demands, generating strongly correlated wage shocks. Second, the correlation
between spouses’ childcare preferences (o(n, ,,)) shifts from —0.55 to —0.87, indicating pronounced
caregiving specialization patterns in disabled-child households—when one parent takes on the primary
caregiver role, the other shifts toward the labor market.

The measurement error standard deviations are estimated at o, = 0.45 and o,y = 0.50. These
magnitudes are consistent with the well-documented finding that hourly wages constructed from survey data
on earnings and hours contain substantial measurement error. Bound et al. (1994) report that measurement
error accounts for 50-60% of the variance in hourly wages, and Flinn et al. (2025) emphasize that this
noise is particularly relevant for structural models of labor supply. My estimates fall squarely within this
range. Note that the auxiliary regression for the cross-wage slope ¥; _; (Aux-A) is estimated using observed

wages wftt.’i. in both data and simulations.

8.2 Threshold Estimation

Table 5: Ordered Probit Threshold Estimates by Group

Group N T1 9 T3 T4

Husband, z =0 3,437 -0.824 0.308 1.543 2.128
Husband, z = 1 962 -0.843 0.188 1.465 2.088
Wife, z =0 1,702 -0.667 0.839 2.277 2.845
Wife, z = 1 482 —-0.682 0.775 2.034 2.650

Notes: Thresholds estimated via maximum likelihood. 7 represents the cutoff between life satisfaction
categories k and k + 1. The latent utility S* is the 200-draw average of simulated indirect utility, defined
on a common structural utility scale across groups.

Turning to the threshold estimates, Table 5 presents the ordered probit thresholds that map latent utility
S* into observed life satisfaction categories. I estimate the thresholds separately for each group defined by
gender and disability status.

Table 5 reveals that parents of disabled children have lower thresholds for reporting higher life satisfaction

categories, suggesting they become more sensitive to increments in well-being. For example, among

33



husbands, the threshold 1, decreases from 0.308 for z = 0 to 0.188 for z = 1. Similarly, among wives, 73
decreases from 2.277 to 2.034 when comparing z = 0 to z = 1. This pattern—Ilower thresholds for parents
of disabled children—helps explain the “happiness puzzle” documented in Section 2.1: despite facing
objectively more challenging circumstances, parents of disabled children do not report substantially lower
life satisfaction. The threshold estimates suggest that these parents adjust their reporting scale, requiring

less latent utility to report a given satisfaction level.

8.3 In-Sample Fit

I now evaluate how well the estimated model replicates the main data moments described in Section 7.

Table 6 compares the simulated moments from the model with their data counterparts.

Table 6: Comparison of Data and Simulated Moments

Panel A: Basic Moments (z = 0) Panel C: « (Childcare-Labor Slope)
Moment Data  Simulated Moment Data Simulated
Pr(employed,) 0.870 0.872 kp (2=0) -0.025 -0.056
Pr(employed,,) 0.700 0.697 kp(z=1) +0.082 +0.074
E[LY |}y >0] 4449 44.63 Ky (2 =0) ~0.015 —0.009
E[Ly |1y >0] 37.89 37.88 Kkw (2=1) -0.022 —0.058
E[lf] 18.79 17.66 .

El] 1816 18.41 Panel D: ¢ (Cross-Wage, x1000)

Panel B: Basic Moments (z = 1) Moment Data Simulated

. Ynw (2 =0) +0.060 +0.056
Moment Data  Simulated U (z = 1) Z0.013 +0.012
Pr(employed,)  0.826 0.831 Ywn (2=0) +0.013 +0.039
Pr(employed,,) 0.652 0.660 Uwh (z=1) +0.034 +0.050
E[Y |7 >0] 4459 44.50

Panel E: . Dev. (L. H

E[Y [ 1% >0] 3775 3726 ane Std. Dev. (Labor Hours)
E[l] 15.63 15.61 Moment Data Simulated

E[I6] 20.78  20.87

SD(}Y) (z=0) 1221 21.12
SDI¥) (z=0) 1142 20.36
SD(¥) (z=1) 1289 22.24
SD(I¥)(z=1) 1239 20.82

Panel F: Std. Dev. (Childcare Hours)

Moment Data Simulated

SD([f) (z=0)  16.32 16.70
SD(I$)(z=0) 13.83 13.21
SD(f) (z=1) 1552 15.84
SD(S) (z=1) 15.24 15.98

Notes: Data vs. simulated moments from the structural model (N = 20,000, 51 parameters). Estimation uses
Powell optimization with wage measurement error.

The model closely reproduces the level moments: the asymmetric childcare response—fathers reduce
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and mothers increase childcare time when z = 1—is matched in both direction and magnitude. The model
also fits the key identifying slope moments well: the standardized differences for x and ¢ are all below
one in absolute value (see Appendix G). Although ¥, under z = 1 exhibits a sign discrepancy between
data (—0.013) and model (+0.012), this is not problematic. By Proposition 4, y,,(1) is continuous and
monotone in A and crosses zero at some threshold 4*; when the true A lies near A%, the realized sign
is sensitive to small perturbations and is not the object of interest. What matters for identification is the
monotone relationship between A and the slope, not the sign at any particular point. The small standardized
differences across all k and ¢y moments support reliable identification of A(z;).

An internal consistency check further supports the model’s heterogeneity structure. In the model, both
labor hours and childcare hours are chosen through continuous optimization over the same underlying
preference heterogeneity (u;, n7;) and wage shocks (£;). The simulated data reveal a striking asymmetry:
the model over-predicts the standard deviation of labor hours (simulated ~ 21 vs. data ~ 12), yet accurately
reproduces the standard deviation of childcare hours (simulated ~ 13-17 vs. data = 14-16). The key
difference between these two outcomes lies not in the model but in the data-generating environment.
In the labor market, institutional constraints—standard full-time contracts clustered around 40 hours per
week and part-time norms around 20 hours—compress the observed distribution of work hours into a
bimodal shape with narrow peaks.4® The model, which allows a continuous hours choice without such
institutional frictions, naturally generates a wider distribution. Childcare hours, by contrast, are not subject
to any comparable institutional bunching: there is no “standard childcare week,” and parents genuinely
range from zero to over 40 hours. The model’s continuous optimization therefore maps preference
heterogeneity into childcare dispersion at roughly the correct scale. This selective pattern—where only
the institutionally constrained outcome exhibits excess dispersion—provides evidence that the variance
parameters are correctly estimated and that the labor-hour misfit reflects an omitted institutional feature
rather than a fundamental misspecification of the preference or technology structure. Incorporating discrete
hours choices, bunching, (e.g., 0/20/40-hour options) to model institutional bunching would eliminate the
closed-form solutions on which the equilibrium uniqueness proofs (Theorems 1-2) and the monotonicity
results (Proposition 4) depend. Since these theoretical properties constitute a central contribution of the
paper, sacrificing them to improve the fit of a secondary moment would be disproportionate.*!

Appendix G also reports large standardized differences in some covariances, including sign reversals.
Covariance moments have large raw scale, and accordingly the estimation assigns them very small per-

moment weights to equalize each block’s contribution to the objective function (Section 6). The estimation

40]n the literature, this is called bunching. See, for example, Keane and Wasi (2013).

410ne can see the similar pattern in, for example, Del Boca et al. (2014). As discussed in Kaplan (2012), even if the
structure of second moments is modified to seek for better fit, the estimators of A and the childcare efficiency parameters remain
approximately robust, because, as shown in Section 5, these parameters are primarily identified by moments associated with
first moments.
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therefore does not target these moments; the large standardized differences reflect this design choice. The
key structural parameters—A and g;—are identified by first moments that the model matches closely: A by
slope moments («, ) and g; by level moments of childcare time (L.1).4?

Following Flinn et al. (2018) and Del Boca et al. (2014), the present paper adopts a very parsimonious
specification. These fitting patterns are comparable to those in the existing literature on structural household
models (for example, Del Boca et al. (2014), Chiappori et al. (2018) and Gayle and Shephard (2019)), where
fitting all of first and second moments precisely is challenging due to the prevalence of corner solutions
and selection effects.** See Appendix G for fits of all moments. The present model’s simpler structure is
chosen to maintain computational tractability while still capturing the key behavioral differences between

disabled and non-disabled child households. More flexible specifications are left for future work.

9 Counterfactuals

Using the estimated structural parameters from Section 8 (Table 4), I conduct counterfactual analyses
to understand the sources of welfare differences between households with and without disabled children.
The key parameters that vary in my experiments are the amount of Child SSI and the childcare efficiency
parameters g;(z;) defined in Section 3.1.

These two parameters have distinct interpretations, as can be seen from the child quality production
function (3) and the super utility function (6). The childcare efficiency parameter g;(z;) is related to
technology and thus can be influenced by policy intervention. In contrast, the caring parameter A(z;)
governs the degree of altruism in Stage-2 childcare allocation and is more closely related to parental

attitudes.

9.1 Mom and Dad? If I Were Not Disabled, Would You Be Happier?

While existing research has documented that subjective well-being shows relatively little difference
between households with and without disabled children, my structural model allows us to compare house-
holds in terms of their indirect utility function values. The mean value of U, + U,, is 12.09 for households
with disabled children (z = 1) and 13.56 for households without disabled children (z = 0). At first glance,
it may appear that households with disabled children do not achieve substantially lower indirect utility
compared to those without disabled children.

However, a closer examination reveals a more nuanced picture. I ask whether Child SSI subsidies

42Fitting covariances is also a well-known structural challenge in household models. Comparable models—Del Boca et al.
(2014), Flinn et al. (2018), Chiappori et al. (2018), Gayle and Shephard (2019)—face similar fitting problems.
43See Arellano and Bonhomme (2017).
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alone can be helpful in closing this welfare gap. To investigate this question, I randomly generate 1,000
households with disabled children (z = 1) and compute their average indirect utility. I then fix the
realizations of random variables for each household and hypothetically change their status to z = 0. The
counterfactual experiment asks: how much Child SSI would be required for a household in the z = 1 state
to achieve the utility level it would have attained in the hypothetical z = O state?

Strikingly, this exercise reveals that the required monthly payment would be economically infeasible—
far exceeding any realistic policy intervention.

Household welfare is defined as the sum of super utilities from equation (6)
W =U,+ U, =1+ Az))) X (up, + uy) (15)

where A(z;) is the caring parameter and uy, +u,,, is the sum of the spouses’ felicity utilities from equation (5).

Using the estimated values from Table 4, simulation yields the following welfare levels:

z=0: Wo=(1+ )X (up +uy),—0 ~ 1.310 x 10.35 ~ 13.56 (16)
z=1: Wy=0+24)Xup+uy),=1 =~ 1.206x10.03 =~ 12.09 17

The welfare difference is therefore AW = 13.56 — 12.09 = 1.47.

Decomposing the sources of AW reveals two contributing factors. First, the coefficient (1 + A1) differs
between the two groups: 1.310 versus 1.206, representing an 8.6% difference. Second, the felicity utility
levels differ: 10.35 versus 10.03, representing a 3.1% difference. Thus, the vast majority of the welfare
gap originates from the difference in A(z;). This finding is consistent with Theorem 3, which establishes
that the caring parameter has a substantial impact on household welfare.

Increasing Child SSI raises consumption x through the budget constraint, which in turn increases felicity
utility (u;, + u,,). However, the coefficient (1 + ;) = 1.206 magnifies any shortfall in felicity utility.

To equalize the welfare of a z = 1 household to the z = 0 level of 13.56, I require
1.206 X (up + uy,)72) = 13.56 = (up +uy)c) = 11.24 (18)

Since the current felicity utility is (u;, + uy,),=1 = 10.03, an increase of Au = +1.21 is required.

From the felicity utility specification in equation (5), the household’s total felicity utility takes the form

up + = [(1 = —ma) + (1 =y — n)| X 1In(x) + (leisure and child quality terms) (19)

~0.63
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where I have used the estimated values from Table 4. To achieve Au = 1.21 through consumption alone,

0.63 x Aln(x) = 1.21 (20)
Aln(x) = 1.92 @1
X192 g8 22

old € ~ 0. (22)

That is, consumption would need to increase by approximately 6.8-fold.

The composition of consumption follows from the budget constraint
x = wpl) +wyl; +Y + Child SSI (23)
For the average z = 1 household in my simulation,
x =$2,032 + $109 ~ $2,142/week (24)

where Child SSI (currently $625/month per recipient X 70% take-up ~ $109/week on average) constitutes
approximately 5.1% of consumption.
To achieve 6.8-fold consumption ($14,566/week),

Required additional consumption = $14,566 — $2,142 = $12,424 /week (25)
New Child SSI = $109 + $12,424 = $12,533 /week (26)

This corresponds to approximately 115 times the current Child SSI level.44

The simple calculation above suggests that a Child SSI increase of orders of magnitude would be
necessary. However, the actual simulation results show that welfare equalizes at a comparable level, as
behavioral responses to the Child SSI increase partially offset the required transfer.

The estimation results in Table 4 reveal a striking asymmetry: fathers’ childcare efficiency drops
substantially when caring for a disabled child (g;(z=1) = 0.15), while mothers’ efficiency shows only a
modest decline (g,,(z =1) = 0.93). A natural policy question is whether programs that restore fathers’
caregiving skills—such as parent training, specialized respite support, or assistive technology—could close

the welfare gap.

44The specific multiplier depends on the logarithmic specification of felicity utility. Under a more general strictly concave
utility function, the exact figure would differ. However, the qualitative conclusion—that the required Child SSI increase is
economically infeasible—is robust to the choice of any strictly concave utility, because the welfare gap originates primarily
from the (1 + A) multiplier rather than from consumption levels, and any strictly concave function exhibits diminishing marginal
utility that makes it increasingly costly to close the gap through consumption alone.
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To investigate this, I conduct a counterfactual in which the father’s childcare efficiency parameter is set

to its non-disabled level, 3., = O (i.e., gn(z =1) = 1.0), while holding all other parameters—including

A(z;), gw(z;), preferences, and the current Child SSI level—fixed. I also consider a combined scenario in

which both gj and A are simultaneously restored to their z = 0 levels. Table 7 reports the results.

Table 7: Welfare Effects of Improving Paternal Childcare Efficiency

Scenario W AW  vs.SSIX2 Gap closed
Baseline (z = 1, current params) 12.09 — — —
Child SSI x2 ($1,250/month) 12.14 +0.06 1.0x 3.8%
Child SSI x5 ($3,125/month) 12.29 +0.20 3.6x 13.7%
Father training (gs: 0.15 — 1.0) 12.59 +0.50 9.0x 34.1%

A equalized (0.206 — 0.310) 13.21 +1.12 20.1x 75.9%
Both (g, restored + A equalized) 13.76 +1.67 30.0x 113.1%
Reference: z = 0 (no disability) 13.56 +1.47 26.4x 100.0%

Notes: N = 10,000 households, same-household comparison. “Father training” sets 8, , = 0 so that g5(z=1) = 1.0 =
gn(z=0). “A equalized” sets ay1 = a3 = 0sothat A(z=1,7) = A(z=0,7) for all #. “Both” simultaneously applies
both changes. The gap closure exceeds 100% because z = 1 households receive Child SSI, which the z = 0 reference

does not.

Two findings emerge. First, restoring fathers’ childcare efficiency to the non-disabled level closes 34.1%

of the welfare gap—approximately 9.0 times the effect of doubling Child SSI, but only 0.45 times the effect

of equalizing A. This confirms that the cooperation channel dominates the technology channel: even

fully eliminating the father’s efficiency disadvantage leaves about two-thirds of the welfare gap unresolved.

Simultaneously restoring both g, and A closes 113.1% of the gap, overshooting the z = 0 reference because

z = 1 households retain Child SSI, which the z = 0 reference does not receive.

Second, the behavioral responses to improved paternal efficiency are notable. Table 8 reports the time

allocation changes.

Table 8: Behavioral Responses to Paternal Efficiency Improvement

Baseline  Father A Both Reference
Variable (z=1) training equalized (z=0)
Father labor (h/week) 37.4 36.3 37.4 36.3 38.8
Mother labor (h/week) 23.6 24.1 23.6 24.1 26.5
Father childcare (h/week) 15.9 17.8 16.9 18.7 17.6
Mother childcare (h/week) 21.8 21.6 23.8 23.6 18.2
Child quality (k) 20.2 51.3 22.7 57.5 43.3

Notes: All time variables in hours per week. Child quality k = (gnl + 1)°(gw IS + 1)*>. In all scenarios, z = 1
households retain their Child SSI benefits (consistent with Table 7).
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Improving paternal efficiency from g; = 0.15 to g5 = 1.0 increases child quality by 154% (from 20.2
to 51.3), yet fathers’ childcare time increases only modestly (from 15.9 to 17.8 hours per week). This is
because higher efficiency means each hour of paternal care produces substantially more child quality, so
the father achieves a large quality improvement with only a small time increase. In contrast, equalizing 4
increases fathers’ childcare time by a comparable amount (to 16.9 hours) but raises child quality by only
12%, because the cooperation channel operates through time reallocation rather than through productivity
gains.

The preceding counterfactual analyses yield three policy implications. First, cash transfers alone are
insufficient. Compensating for the lower (1 + 1) coefficient requires a 12.1% increase in felicity utility (from
10.03 to 11.24). Due to the diminishing marginal utility inherent in logarithmic preferences, achieving
this increase through consumption alone necessitates increasing consumption to approximately 6.8 times
its current level. Since Child SSI constitutes only 5.1% of household consumption, this would require a
Child SSI increase of orders of magnitude—a clearly infeasible policy.

Second, improving spousal cooperation is the most effective single intervention. Equalizing A to the
non-disabled level closes 75.9% of the welfare gap, while fully restoring paternal childcare efficiency
closes only 34.1%. This asymmetry reflects the fact that A affects welfare both through the (1 + 1) scaling
of felicity utility and through equilibrium reallocation of childcare time in Stage 2, whereas g, operates
through child quality alone.

A reverse counterfactual reinforces this conclusion. When z = 0 households are assigned the z =
1 cooperation level—A(z = 0,7) — A(z = 1,¢) for all ¢, while retaining their non-disabled childcare
efficiency—the welfare gap shrinks by 75.3%, from AW = 1.47 to 0.36. In other words, imposing only
the cooperation breakdown observed in disabled-child households on otherwise identical non-disabled
households reproduces three-quarters of the welfare gap. This symmetry—whether one raises A; to Ay or
lowers Ay to A, approximately 75% of the gap is accounted for—confirms that the welfare cost of having
a disabled child is driven primarily not by the disability-specific caregiving burden (g;), but by the erosion
of spousal cooperation () that accompanies it.

Third, combining both channels closes the entire welfare gap (113.1%), overshooting the z = O reference
because z = 1 households retain Child SSI. Programs that simultaneously improve fathers’ caregiving skills
and support spousal cooperation—such as structured parent training with a couples-based component,
or workplace flexibility policies that enable shared caregiving—are therefore the most effective policy
approach. Since each channel alone leaves a substantial portion of the gap unresolved, policies targeting

only one channel are insufficient.
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10 Conclusion

This paper develops an empirical biform game framework for intra-household allocation and applies it to
understand the welfare of households with disabled children. My approach makes three main contributions
to the literature.

First, I introduce the biform game structure to family economics, providing a middle ground between
the fully cooperative collective model and fully non-cooperative approaches. By treating labor supply as
cooperative (enforceable via employment contracts) and childcare allocation as non-cooperative (difficult
to monitor), the framework captures the realistic asymmetry in household decision-making. I prove equi-
librium uniqueness under standard Cobb—Douglas assumptions, resolving the multiple equilibria problem
that has plagued non-cooperative household models while maintaining weaker assumptions than the col-
lective model. This framework is not limited to disabled-child households; it applies broadly to any setting
where some household decisions are enforceable while others are not—including elderly care among adult
children, division of household chores, and intergenerational resource sharing.

Second, I develop a novel identification strategy based on slope moments rather than level moments.
The monotonicity properties established in Proposition 4—that the childcare-labor slope « and cross-wage
effect ¢ vary monotonically with the cooperation parameter A—allow me to identify A from behavioral
responses without relying on exclusive instruments or unique datasets. This slope-based identification
approach may prove useful in other structural estimation contexts where a key parameter affects the
responsiveness of behavior rather than its level.

Third, I provide the first structural decomposition of the “happiness puzzle” in disabled-child households.
Despite reporting nearly identical life satisfaction, these households exhibit 33% lower spousal cooperation
and substantially reduced paternal childcare efficiency. My counterfactual analysis reveals that closing the
welfare gap through Child SSI alone would require benefit increases of orders of magnitude, highlighting the
fundamental limits of cash transfers. Even fully restoring fathers’ childcare efficiency to the non-disabled
level closes only 34.1% of the welfare gap, whereas equalizing spousal cooperation closes 75.9%. These
findings underscore the primacy of the cooperation channel and the importance of policies that support
spousal coordination—such as respite care programs, family counseling, and workplace flexibility—as
complements to income support and parent training.

Several limitations warrant discussion. The static nature of my model precludes analysis of how
cooperation evolves over time or how child disability affects long-run outcomes such as child development
and marital stability. Extending the model to a dynamic setting is a nontrivial task: it requires modeling joint
spousal search over labor markets, and, in addition, the best-response mappings in a dynamic household
game are highly nonlinear, making multiple fixed points difficult to rule out. The Cobb—Douglas functional

form, while standard in the literature and necessary for analytical tractability, imposes restrictions on
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substitution patterns. Additionally, my identification of A relies on the maintained assumption that the
biform game structure correctly describes household decision-making; alternative game structures could
yield different conclusions.

These limitations point to directions for future research. Extending the biform framework to a dynamic
setting would allow analysis of how cooperation responds to shocks and how it affects child development
trajectories. Incorporating richer heterogeneity in the cooperation parameter—allowing it to depend on
observable characteristics such as education or marriage duration—could shed light on which households
are most vulnerable to cooperation breakdown. Finally, combining the structural approach with policy vari-
ation (e.g., changes in Child SSI eligibility rules or respite care availability) would strengthen identification
and enable direct evaluation of policy interventions.

More broadly, the biform game framework opens new avenues for understanding household behavior.
The recognition that different household decisions have different enforceability—and that this asymmetry
shapes equilibrium outcomes—has implications beyond disabled-child households. As populations age
and caregiving responsibilities grow, understanding how families coordinate care provision becomes in-
creasingly important. The tools developed here—biform games, slope-based identification, and structural

decomposition of well-being—provide a foundation for addressing these questions.
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This supplementary material is organized as follows. Appendices A—C collect proofs of the theoretical
results stated in the main text: uniqueness of the Stage 2 Nash equilibrium (Theorem 1), monotonicity
of indirect utility in the caring parameter (Theorem 3), and monotone comparative statics of equilibrium
outcomes (Proposition 4). Appendix D derives the closed-form solutions for optimal labor supply and
childcare time. Appendix E details the construction of each moment condition used in estimation, and
Appendix F reports the corresponding descriptive statistics. Appendix G presents the full model fit
tables. Appendix H documents the restricted covariance structure, and Appendix I provides sample
descriptive statistics. Finally, Appendices J and K discuss missing data in the PSID-CDS time diary and

the correspondence of disability variables across datasets, respectively.

A Proof of Theorem 1

Because the child quality function is Cobb—Douglas, the child-input aggregator is additively separable
in logs,

1 1
Ink = 3 In(anly +1) + 3 In(a,l;, + 1),
where a; = g;(z; : ). The marginal contribution of the husband’s childcare input satisfies

Olnk 1 an

oIf 2 apls+ 1

which does not depend on [,. Hence the husband’s first-order condition (and thus his best response)
depends only on his own choice variable /; given (1}, [}) and parameters; symmetrically for the wife.

Therefore, Stage 2 is effectively a pair of independent one-dimensional problems: each i € {h, w}
chooses [{ to maximize a strictly concave objective on a convex feasible set [ € [0,T — 1]

To verify strict concavity, consider the husband’s FOC with respect to /. Fixing [;" and treating || as

given,
0 Olnk Olnk
O=up— T -0 -5) +np,—— + Az, )nyy——
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The second derivative is
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confirming strict concavity.! The same argument applies to [". Strict concavity implies each player’s
best response is single-valued. Since best responses do not depend on the opponent’s choice, the Nash

equilibrium is simply the product of the two unique optima, so (I}, [\,*) is unique. O

B Proof of Theorem 3

w

Because the structure is symmetric for i and —i, I focus on player i. Fix (I}

,1)y) and consider Stage 2.
Let the action setbe A; = [0, T — ll.W], which is a compact complete lattice.
Define player i’s Stage-2 payoft as
w16 165 ) i= wi(5 1 k) + Aui (L 1 k), IF=T-1"-1I.

=i’ -0’ i i
Under the Cobb—Douglas specification, one can verify directly that (i) %

ol .o 2 7 . . . . ~ ol
increasing differences in (If, 1), and (ii) ﬁ = 0, so 7; has (weakly) increasing differences in (If, [€,).

> 0, so m; has strictly

The Stage-2 game is therefore supermodular. Hence by Tarski/Topkis, the set of Stage-2 equilibria is a
nonempty complete lattice; by Theorem 1 the equilibrium is unique. Denote it by [“*(2) = (1;*(4), [ (4)).
By monotone comparative statics for supermodular games, each component of /“*(1) is weakly increasing
in A.

Next consider the sum of felicity utilities at Stage 2 for fixed (1}’ [};

S(A) = wp( 1), k() + (157 (), k¥ (D),

where lf* (1) =T -1 - [F*(4) and k*(Q) is induced by [“*(1). Suppose the Stage-2 equilibrium is interior.

The first-order conditions are

ouy, Ouy, ou,, Oup

o " are =0 G e =0
Differentiating S(A) and using the FOCs yields
dS(Q) _ (Buh (')uw) ai” ((%th N Guw) dly; . /l)(ﬁuw dr” N ouy, dlfv*)
da o1 " a1c ) ax " \aig a5 ) da oIc dA " I da

Therefore, for A < 1, if each spouse weakly benefits from the other’s childcare (i.e., du,,/ BIZ > 0 and
Ouy /A1, > 0), and since dI*/dA > 0 by supermodularity, we obtain dS(4)/dA > 0. Hence, given (1}", I}\),

the felicity sum is weakly increasing in A.

ISee Geanakoplos (2003).



At Stage 1, define the value function
V(A) = ?V}ellac S L, L.
hotw

Because S(4; 1)), 1)) is weakly increasing in A pointwise in (/}', );)), the max operator preserves monotonicity,
and thus V(1) is weakly increasing in A.
Finally, if V(1) > 0, then U, + U,, = (1 + 2) V(Q) is a product of two weakly increasing, nonnegative

terms, and therefore is itself weakly increasing in A. This proves Theorem 3.2

C Proof of Proposition 4

I use the model setup from Section 3: felicity (5), super utility (6), and child quality production (3) with
k; =0. Leta; = gi(zj : t) > 0 and A;(1) = n; + An—; (where A = A(z;) for notational simplicity).
Part 1: Monotonicity of ¢; _;(1).

I show the result for ¢,,; the case ¢, follows by symmetry (swapping i < w).

From Stage 2, the equilibrium childcare rule satisfies

Ai(Dai(T = 11") = 2

) = T A)

27)

Since Stage 2 depends on wages only through Stage-1 labor,

o one o

A T T
From (27)
o Ay
812’ 2,uh + Ah(/l)'
1
From Stage 1 (maximizing S = uj, + u,,), with C, = w where @ =2 — up — iy — 5 — Ny

* 1
6WW wp 1+Ch+CW ’

Stage-1 derivatives do not depend on A. To see this, note that Uy, + U,, = (1 + A)(uy, + u,,), So maximizing

Uy + Uy, is equivalent to maximizing S = u;, + u,,. Although Stage 2 equilibrium childcare [7*(1) depends

2Theorem 3 does not require the 0.5 specification nor symmetry of A between a husband and wife; the Cobb—Douglas
assumption for preferences and child quality is sufficient. These are standard in the literature, making the theorem robust.



on A, substituting it back into S yields A-dependent terms that are additive constants with respect to
(L7, Iy )—specifically, In lf* and In k* contribute terms In(2y;/ D;(1)) and In(A;(1)/D;(1)), which depend
on A butnoton /" (see Appendix D for the full derivation). These terms therefore drop out of the first-order

conditions 08/ ol¥ =0, so Cy, Cy, and all Stage-1 derivatives are A-free. Thus

1
An(2) ¢, T+

AN)= —m2 Zh 4w
whW( ) 2/Jh + Ah(/l) wp, 1+ChL+C,
=I'>0
Differentiating
a w w
Ui _ 2pnn T>0
01 Qun+ An(1))?
Part 2: Monotonicity of «;(1).
From (27)
olc™ i + An—;
k()= — = T
al; 20 + i + A
Differentiating
oK 2uin-i

< 0.

A Qui+mi+An_)?

Part 3: Monotonicity of W (1).

This follows directly from Theorem 3.

D Analytical Solutions

This appendix presents the closed-form derivations of optimal labor supply and childcare time allocation
in the biform game framework. The analytical solutions provide explicit expressions for equilibrium choices

as functions of model parameters and state variables.

D.1 Computation of Optimal Solutions

I now derive the closed-form solutions assuming interior solutions for both /;" and /.

D.2 Stage 1 Labor Supply: Closed-Form Solution

Setup. Foreachi € {h, w}, the time constraint is

P+l +lf=T, = Il =T-1"-I.



The budget constraint with no savings is
x =wply +wyly) +7Y,

where
Y =yu+yw +1[d; = 1,z; = 1] - Child SSI;,

and Child SSI ; is determined prior to the first stage.
Child Quality (Public Good): Updated Specification of k. Fori € {h, w}, define
a; = gi(z;;1) > 0 (with aj, = a,, = g(z;;t) under common efficiency).

Child quality (public good) is given by

k = \/(ahz,g + D)ayls + 1).

Therefore, 5
1 1 nk 1 q
Ink=-=1 £+1D+=1In(a,ls + 1), — = —— )
nk =g nady + Drghlanh, + D e = e

Felicity Utility (with k, = 0 Normalization).
wi(x, I k) = (1 — i — i) Inx + g InIf + 7 In k.

Super Utility with Caring.
U =u + /l(Zj)I/t_,'.

D.3 Stage 2 Childcare: Closed-Form Solution

Key Point of Stage 2. In Stage 2, /}" and [j} are predetermined from Stage 1, so consumption x is constant
with respect to [f. The only terms in U; that depend on [{ are w; In(T' = I}V — [f) and (17; + A(z;)n-;) In k.
Define

Ai(A) = i + Azj)n-i-



First-Order Condition (FOC).

o 9 9
0=22 = i In(T = 1 - I€) + Ai()— Ink
o = Mg M-I+ A g n

1 a;
- A (T—I.W —z.c) +Ai(/l)(§a,-ll.c + 1) '

4 4

Rearranging,

Ai(A(z)) @ Hi
2 i+l T

1

2,u,~(a,~lic +1)= Ai(/l(zj))ai(T - liw - lic)

2uiaily +2p; = Aj(A(z)ai(T = 1Y) — Ai(A(z))ailf
a; (2ui + Ai(A(z)) If = Ai(A(z)ai(T = 11") = 2p;.

Therefore, the Stage 2 best response is given in closed form by

A 4 (T = 1) = 24

(1", A(z))) = ai(2u; + Ai(A(z))))

G € {h,w)). (28)

Derived Expressions for Later Use. Define

Di(A(zj)) = 2u; + Ai(A(z))) = 2u; + ;i + A(zj)n-i-

Then
Wy 2Hi
P Ail(A(z))T - li ) — a_i L A[(/l(zj))(ai(T _ llw) " 1)
“hoTIEA Di(Az)) - Di(A(z))) ’
Ok _ o _qw __ qek _ 2#1 _qw l _ 2,“1 -ai(T_liw)+1
eI = 500 (T " ) = D) P

D.4 Stage 1 Cooperative Solution

Simplification of Welfare Maximization. Since Uy, = u;, + A(zj)u,, and U,, = u,, + A(z;)up, I have
Uup,+U, =1+ /l(zj))(uh + Uy).

For A(zj) > —1, I have (1 + A(zj)) > 0, so maximizing Uj, + U,, in Stage 1 is equivalent to maximizing

Up + Uy.



Stage 1 Objective Function. Define
WY, 1Y) = up(x, 15, k) + w(x, 15, k).

Then
W= [(1=pn—mn)+ (1= =m)] Inx + ppIn " + g In 15" + (i + 700) In &%,

o'
where @ = 2 — (uj, + np + My + Nyp).
From the Stage 2 derived expressions,

Il =In (L) +1In (T— I+ l)

ai

=In (ﬁ(;]») + ln(ai(T - ll-w) + 1) - 11’161,',

1 : 1 .
Ink* = 3 In(aply” + 1) + 3 In(a, I + 1)

_L Ap(A(zp) (an(T = 1)) + 1)
2 Di(A(z;))

1 (AW(/I(zj))(aW(T -1 +1)
2 DW(/I(Z ]))
Extracting only the terms in W that depend on [,

W=alnx+ (,uh + W%) In(ap(T-1))+1) + (,uw + WT””) In(ay(T - 1)) + 1) + (constants).

Define Nntn Nntn
+ th "W + th W
Cp = 'uh—Z’ C, = 'UW—Z (29)
a 0%
First-Order Conditions (FOC). Since x = wpl) + wyly +Y,
0x 0x 0 a;
— = wy, — =Wy, —In(a;(T-1")+1) = ———.
oLy oy " oY (a ) ai(T —1")+ 1
The FOCs are therefore
ow wp + ap
0= — =g—= — ( + Mh 77w) ,
IR ) =17y + 1
aW WW np+n ) aW
= =—qg—= - + = .
o~y (“W 2 ) a(T -1+ 1



Rearranging,

Wh — ( 77h+77w) an w _ X
ML + — T-1)+1=a,Cy—,
@ Hn > ) T+ 1 ap(T = 1)) anCis
WW _ ( 77h+77w) aW w _ X
v + — Tr-0)y+1=a,C,—.
R G PPNy 1 S aull = hy)+ 1= auCul
Hence,
1 C 1 C
D =T+—-—Ly =T+ —- (30)
ap wy ay Wy

Solving for x (Closed Form). Substituting equations (30) into x = wpl;” + wyly; +7Y,

1 C 1 G,
x:wh(T+———hx) +ww(T+———x) +Y
ap Wy ay Wy
1 1
= wh(T + —) + wW(T + —) +Y -(C,+Cy)x.
ap Ay
Therefore,
1 1
x(1+Cp+Cy) = wh(T+ —) +wW(T+ —) +7Y,
ap Ay
which yields
wh(T+i) +wW(T+l) +Y
X = - o 31)
1+ Ch + CW .

Stage 1 Labor Supply (Closed Form). Finally,

1 1
=T — -ty — -0 @ ‘ : (32)
g ap Wh ap Wh 1+C,+C,
1 1
= _—— —X = —_— . .
W Ay Wy a, Wy 1+C,+C,
Summary of Constants.
Ly + T L1y + T
@ =2—(wh+nn+ o + ), ch:Tz, CW:WTZ, (34)

Y =y + vy + Child SSLj[z; = 1,d; = 1].

Since corner solutions are permitted, I project onto [0, T']

[« min{T, max{0, [""}}, i=h,w.



D.5 Corner Solution Details

In practice, the Stage 2 solutions [{ and Stage 1 solutions ” for i = h, w may involve corner solutions.
The closed-form derivations in Sections D.2-D.3 assumed interior solutions.

The solution procedure is as follows. First, assume ll." fori = h, w are interior and derive ll.w* fori = h,w.
Given these ll.W*, check whether the implied ll."* are indeed interior. If so, the solution is consistent. If not,
the candidate is not an equilibrium since there would be an incentive to deviate.

Second, assume ll.c for i = h,w are at corner values (either 0 or 7 — liw). Given these corner values,
solve the Stage 1 optimization problem to obtain [}** for i = h, w. Then re-solve for [7* for i = h,w and
verify whether the solution coincides with the assumed corner values. This procedure is repeated for all

households j.

E Moment Construction Details

This appendix provides the detailed construction of estimation moments summarized in Section 7. For
each moment category, I describe the empirical construction from data, the model counterpart, and the
role in identification.

The moments used for identification can be organized into several categories based on their role in the
estimation. Table E1 presents the level and slope moments. These moments discipline the key structural
parameters governing household time allocation decisions.

Level moments (L1 and L2) capture the average time allocations for childcare and market work,
respectively. Specifically, level moment L1 targets the mean childcare time for fathers and mothers,
E[l; | z;] and E[[}, | z;], computed separately by child disability status z;. These moments primarily
discipline the technology shifter g;(z;) in the child quality production function (see equation (3)), while
also interacting with preference heterogeneity parameters y; and n;. Level moment L2 targets mean
market labor supply conditional on employment, E[/}" | z;, /" > O] and E[l}y | z;, " > 0]. These
moments discipline the resource channel in Stage 1 (Section 3.2), including income Y, and help stabilize
the interpretation of childcare level differences across disability status.

Slope moments (S1 and S2) capture how time allocations respond to changes in other endogenous
variables, providing key variation for identifying the cooperation parameter A(z;). Slope moment S1
measures the “childcare-labor” slope, defined as k; = A E[I | X;]/01". This is constructed through an
auxiliary regression where, for each z € {0, 1}, childcare time lfj is regressed on own labor supply ZZ;’
spouse’s labor supply lfi’j, and controls X;. The coefficient k;(z) on own labor supply serves as the empirical
moment. In the model, the theoretical counterpart K;nodel(e) = 017" /01" has a closed-form expression

under the log-Cobb-Douglas specification, with 8Kl?n°del /04 < 0 as established in Proposition 4. This



monotonicity property is central to identifying A(z;), as it ensures that the Stage 2 cooperation parameter
directly affects how childcare responds to changes in labor supply.

Slope moment S2 captures the cross-wage response of childcare, defined as ¢; ; = 417" /dw—;. This
is constructed through an auxiliary regression on the dual-earner sample (both /;’ > 0 and [, > 0),
where childcare time is regressed on spouse’s wage w_; ;, own wage w; ;, and controls X;. The coefficient
Ei,_,-(z) on spouse’s wage provides additional identification of A(z;) through the monotonicity property
A %In_‘;.del(/l) (Proposition 4). This moment disciplines how wage shocks propagate to childcare allocation

through Stage 2 cooperation.

10
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Building on these behavioral moments, Table E2 presents the wage-related identification moments. The
wage level moment (W1) targets the mean log wage for fathers and mothers conditional on employment,
E[llnwy, | z;,1" > 0] and E[Inw,, | z;, 1" > 0]. These moments are constructed by computing log wages
for the employed sample, stratified by z; and other characteristics such as education and child age. Care
is taken to align the timing of wage measurement, apply consistent deflation, and trim outliers uniformly
across samples. The model counterpart E[ln w;(-) | z;] combines the wage equation with heterogeneity.
These moments discipline the level and scale of the wage distribution, providing the foundation for the

price channel in labor supply decisions.
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Table E3 presents the moments used to identify the covariance structure of the heterogeneity distribution.
These second moments of observed outcomes—variances and covariances of wages, labor supply, and
childcare time—provide the variation needed to pin down the joint distribution of unobserved heterogeneity
(s mis &)

The variance moments (A1-A3) discipline the scale of each heterogeneity component. Variance
moment Al targets Var(lmi | zj, 1" > 0), where Inw; = In w; — E[ln w; | X;] denotes the residual log
wage after partialling out observables (e.g., via a Mincer-type regression on X;). This moment primarily
disciplines Var({;), the scale of wage heterogeneity. Variance moment A2 targets Var(Z.W | z;) for residual
labor supply, disciplining Var(y;), the scale of labor supply preference heterogeneity. Variance moment
A3 targets Var(zc | zj) for residual childcare time, disciplining Var(s;), the scale of childcare preference
heterogeneity. All variance moments are computed separately for z; € {0, 1}.

The within-individual covariance moments (B1-B3) discipline the correlations among heterogeneity
components. Covariance moment B1 targets Cov(lmi,zw | zj, > 0), which primarily identifies
Cov(&, ui)—the correlation between wage heterogeneity and labor supply preferences that underlies wage
endogeneity. Covariance moment B2 targets Cov(lm,-,l:? |z, > 0), identifying Cov(¢;, n;)—the
correlation between wage heterogeneity and childcare preferences that aids causal interpretation of cross-
wage effects. Covariance moment B3 targets COV(ZW,E | z;), identifying Cov(u;, n;)—the correlation
between labor and childcare preferences that reduces the risk of confounding « with A in identification.

The within-couple cross-covariance moments (C1-C3) discipline spousal correlations in heterogene-
ity, capturing assortative matching and common household shocks. Covariance moment CI1 targets
COV(EI\;V;Z, 1¥1‘va | Zj l;l” > 0,1 > 0) for dual-earner couples, identifying Cov({y, ¢). Covariance moment
C2 targets both Cov(ﬁl;:”,zvj | zj) and COV(F,Z‘;, | z;), identifying Cov(up, p) and Cov(1s, 1,). Covariance
moment C3 targets cross-covariances such as Cov(lﬁh,l?vv | z;,1) > 0) and Cov(lmh,Zi | zj, 1y > 0)
(and symmetrically for 2 < w), identifying Cov({p, ), Cov(&n, ), and related terms. These moments
flexibly accommodate common unobservables within couples and absorb spurious correlations that might

otherwise contaminate cross-wage effects and time allocation patterns.
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Finally, Table E4 presents the moments related to subjective well-being (SWB) thresholds, which
address response shift in reporting scales. At this stage, the structural parameters 6 have already been
estimated (i.e., 4 is given), and these moments serve to calibrate the mapping from model-implied utility
to observed SWB categories rather than to identify 6 itself.

Threshold moment T1 targets the cutpoints 7y ,—o for k = 1, ..., K — 1 estimated from an ordered probit
or ordered logit on the reference group (z = 0). These thresholds establish the baseline scale for mapping
the utility U;(0, ) implied by equation (5) to observed SWB response categories. Threshold moment T2
targets the cutpoints 7y .= for the comparison group (z = 1). By allowing the thresholds to differ across
z, the model accommodates response shift effects—systematic differences in reporting standards between
households with and without a disabled child. This separation ensures that “differences in utility levels”
and “differences in reporting scales” are not confounded. As a normalization, the ordered probit imposes

Var(e) = 1 for scale identification.

Table E4: SWB Threshold Moments: Response Shift Effect and Cutpoint Auxiliary Statistics

Category  Observed Mo- Construction from Model Role in Identifica- Data
ment Data Counterpart tion/Estimation Source
Auxiliary  Refer- Estimate ~ ordered TE"Z‘E}) Fixes the scale (re- SWB data
(T1) ence group probit/logit on sponse shift) baseline. (PSID, etc.)
thresholds z=0 sample; store Disciplines cutpoints
(Section 5.4): cutpoints Th.z=0- for mapping model-
Tk, =0 (k= (Condition on X if implied U;(f,&) to
I,...,K-1) needed) observed SWB cate-
gories
Auxiliary ~ Compari- Estimate  ordered 7"%%| Recovers  response SWB data
(T2) son  group probit/logit on z=1 shift (reporting (PSID, etc.)
thresholds:  sample; store 7y ;| standard shift) by
Tk, =1 (K = Z. Allows SWB
L...,K-1) cutpoints to differ

by z, separating util-
ity level differences
from reporting scale
differences

Note: At this stage, the structural parameters 6 have already been estimated (§ given); the moments
in this table serve to calibrate the SWB measure (response shift) rather than to identify 6. As
a normalization, the ordered probit imposes Var(¢) = 1 (scale normalization). The approach of
estimating (T1) and (T2) separately by z is not the only option; following Friedberg and Stern (2014),
one could integrate these into a single likelihood and estimate jointly with the main model.
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F Detailed Moment Statistics

This appendix presents the full set of empirical moments used for structural estimation, organized
by type: level moments (L1, L2), slope moments (S1, S2), wage moments (W1, W2), and covariance
moments. All moments are stratified by child disability status (z = O for non-disabled, z = 1 for disabled)

to facilitate identification of disability-specific parameters.

F.1 Level and Slope Moments

Table F1 reports level moments for childcare time (L.1) and labor supply (L2). The childcare time
moments reveal the asymmetric response documented above: husbands reduce childcare time by 3.16
hours when the child is disabled, while wives increase it by 2.62 hours. Conditional on employment, labor
supply differences are modest and statistically insignificant. Employment rates show a pronounced gap for
both spouses: husbands’ employment rate declines by 4.4 percentage points (87.0% to 82.6%) and wives’
by 4.8 percentage points (70.0% to 65.2%) in SIPP for households with disabled children.3

Table F2 presents slope moments that capture behavioral responses central to identification. The
coeflicient x; = 41 /01" measures how spouse i’s childcare time responds to their own labor supply, while
Yi—i = 07 [dw_; captures the response to the other spouse’s wage. These slopes are derived from auxiliary
regressions and serve as key identifying moments for the cooperation parameter A(z;).

Table F3 reports wage moments for employed couples. Both mean log wages and their variances are
similar across disability status, with no statistically significant differences. Households in which either
spouse reports an hourly wage above $100 or below $1 are excluded from the sample.

Table F4 presents the full covariance structure of the key variables, combining SIPP and PSID-CDS
via inverse-variance weighting. Several patterns are noteworthy. First, the between-spouse covariance of
labor supply Cov(/}, }}) decreases from +7.8 to +1.1 when moving from non-disabled to disabled child
households, suggesting a shift toward specialization. Second, the between-spouse childcare covariance
Cov(l;, IS is negative in both groups but less negative for disabled-child households (-43.7 vs. =71.0),
indicating reduced substitutability or increased complementarity in parental care.

Table F5 summarizes the implications of the slope moments for identifying changes in 4. Moments
with large standard errors in the data receive lower weights in estimation through the optimal weighting
matrix, so imprecise moments do not unduly influence the estimates.

An important caveat is that the empirical values of x and ¢ need not exactly match the theoretical
predictions from Section 3.3. The auxiliary regression model is deliberately simple and potentially

misspecified. Moreover, when comparing z = 0 and z = 1 households, not only A but also g;(z; : t) and

3The employment rate of fathers is lower than that reported in Del Boca et al. (2014).
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Table F1: Level Moments (L1, L2)

Variable z=0 z=1 A(z1 —z0)  Data
Value SE Value SE Value SE

L1: Childcare time E[[{] (weekly hours)
E[l¢] husband 1879 0.57 15.63 0.83 -3.16 1.01 PSID-CDS
E[Ll ] wife 18.16 045 20.78 0.78 +2.62 0.90 PSID-CDS

L2: Labor supply E[/!|[" > 0] (weekly hours, workers only)
E[[?|l}" > 0] husband 4449 0.13 4459 0.50 +0.10 0.52 SIPP

E[LY|LY > 0] wife 37.89 0.14 37.75 0.55 -0.14 0.57 SIPP
E[[?|l}" > 0] husband 3897 038 3825 0.76 -0.72 0.85 PSID
E[LY|LY > 0] wife 32.16 041 3255 0.79 +0.39 0.89 PSID
L2b: Employment rate Pr(employed) (%0)*

Pr(employedy) husband  87.0 — 826 — -4.4 — SIPP
Pr(employed,,) wife 70.0 — 652 — -4.8 — SIPP
Pr(l}’ > 0) husband 80.6 — 809 —  +0.3 — PSID
Pr(lYy > 0) wife 69.0 — 683 — -0.7 — PSID

2 SIPP: Non-employed = hours = 0 AND earnings = 0. PSID: Non-employed =
hours = 0.

F;, differ. This point is crucial and is echoed in the discussion of estimation results.

The large standard errors on certain slope moments warrant explanation. For ¢, (husband’s childcare
response to wife’s wage), the wife’s employment rate is relatively low (approximately 65-70% in PSID-
CDS). Since wages can only be computed for employed wives, the effective estimation sample is restricted
to employed-wife observations. This substantially reduces the sample size from the full PSID-CDS sample
(z = 0: approximately 4,100 household-wave observations; z = 1: approximately 450 household-wave
observations) to employed wives only.

In contrast, ¥, (wife’s childcare response to husband’s wage) has somewhat smaller standard errors
because the husband’s employment rate is higher (approximately 80-85% in PSID-CDS), yielding a larger
sample of observations with computable wages.

Standard errors are particularly large for the z = 1 (disabled child) subsample because the sample
size itself is small (approximately 450 in PSID-CDS). Adding the employment condition further reduces
estimation precision. With infinite sample size, the estimates would conform to theoretical predictions; the

observed deviations reflect finite-sample limitations inherent in studying a relatively rare population.
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Table F2: Slope Moments (S1, S2)

Variable z=0 z=1 A(z1 - z0) Data
Value SE Value SE Value SE

S1: «; = 0l /LY

kp, husband -0.0253 0.0320 +0.0821 0.0434 +0.1074 0.0539 PSID-CDS

Ky Wife -0.0146  0.0252 -0.0221 0.0451 -0.0075 0.0517 PSID-CDS

S2: ;i = 017 [Ow_; (hourly wage, x1000)

Ynw husband  +0.060  0.031 -0.013  0.036 -0.073  0.048 PSID-CDS
Wn wife +0.013  0.011  +0.034 0.024 +0.020 0.026 PSID-CDS
Table F3: Wage Moments (W1, W2) — Employed Couples Only

Variable z=0 z=1 A(z1 — z0) Data

Value SE Value SE  Value SE
W1: Mean log wage E|[In(w;)]
E[In(wy)] husband 2.963 0.008 2.983 0.022 +0.020 0.023 SIPP + PSID
E[In(w,, )] wife 2.739 0.008 2.779 0.025 +0.040 0.026 SIPP + PSID
W2: Variance of log wage Var[In(w;)]
Var[In(wy)] husband 0.356 0.007 0.353 0.025 -0.003 0.026 SIPP + PSID
Var[In(w,, )] wife 0.382 0.008 0.384 0.023 +0.002 0.024 SIPP + PSID

Sample: Employed couples only (both husband and wife have hours > 0), hourly

wage $1-$100.

G Detailed Model Fit Tables

This appendix presents detailed comparisons of data and simulated moments. Table G1 shows the basic

moments, Table G2 shows the behavioral slopes («, ), Table G3 shows the standard deviations, Table G4

shows the covariances, and Table G5 shows the wage moments. Table G6 summarizes the overall fit. The

fit quality is assessed using the standardized difference, defined as (Data — Sim)/SE(Data): & for excellent
fit (|Std. Diff] < 2), O for good fit (2 < |Std. Diff| < 5), and A for moderate fit (|Std. Diff| > 5).
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Table F4: Covariance Matrix Moments

Variable z=0 z=1 A(z1 - z0) Data

Value SE  Value SE  Value SE
Section A: Variance Var(X)*
Var(/}"') husband labor 148.2 59 166.7 140 +18.5 15.2 SIPP + PSID
Var(1))) wife labor 126.0 42 156.0 11.7 +30.0 124 SIPP + PSID
Var(In wy) husband log wage 0.356 0.007 0.353 0.023 -0.003 0.024 SIPP + PSID
Var(In w,, ) wife log wage 0.382 0.008 0.384 0.024 +0.002 0.025 SIPP + PSID
Var(l;l’ ) husband childcare® 266.4 132 241.0 243 -25.5 27.6 PSID
Var(I$) wife childcare® 191.3 10.7 2323 205 +41.1 23.1 PSID
Section B: Within-person covariance Cov(X,Y)
Cov(}¥, In wy,) husband -046 0.12 -0.18 041 +0.28 043 SIPP + PSID
Cov(l}Y, Inw,,) wife 042 0.11 049 035 +0.07 037 SIPP +PSID
Cov(/, [}") husband 3.6 10.1  -134 16.7 9.8 195 PSID
Cov(lS, IV) wife -6.2 7.5  +09 122 +7.1 143 PSID
Section C: Between-spouse covariance Cov(X}, Y,,)
Cov([}", 1}) labor +7.8 25 +1.1 6.6 —-6.7 7.1 SIPP + PSID
Cov(Inwy, Inw,,) log wage 0.136  0.006 0.092 0.016 -0.044 0.017 SIPP + PSID
Cov(/}’, Inwy,) 0.02 0.10 048 033 +046 0.34 SIPP + PSID
Cov(})Y, Inwy,) -0.27 0.11 -0.83 033 -0.56 0.35 SIPP+PSID
Cov(l¢, I€) childcare® -71.0 69 -43.7 126 +27.3 144 PSID

4 Labor variance/covariance: employed couples only (both husband_hours > 0 and wife_hours

> 0).

b Childcare variance/covariance: all sample (non-missing childcare hours).

Table F5: Implications for A Identification

Moment A(z=1-z=0) Theory Implication for A
Kn +0.1074 (t =1.99)  0k/0A <0 A |
Ky -0.0075 (t = -0.14) 0«/dA1 <0 A7
Ynw -0.0729 (t = -1.52) 0y /oA >0 a|
Ywh +0.0204 (r =0.81) oy /oA >0 a7

Conclusion: «j, is significant at 5% level (r = 1.99), suggesting A is lower for
households with disabled children. ¥, points in the same direction but is not

significant.
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Table G1: Model Fit: Basic Moments

Moment Data  Sim Diff Std. Diff Fit
Panel A: z = 0 (Children without disabilities)

Employment (Husband) 0.870 0.872 0.002 063 ®
Employment (Wife) 0.700 0.697 -0.003 -070 ®
E[¢,,|emp] Husband 44.49 44.63 0.14 1.08 ®
E[¢,,|emp] Wife 37.89 37.88 -0.01 -0.07 ®
E[¢.] Husband 18.79 17.66  —-1.13 -198 @&
E[¢.] Wife 18.16 18.41 0.25 056 @
Panel B: z = 1 (Children with disabilities)

Employment (Husband) 0.826 0.831 0.005 038 @
Employment (Wife) 0.652 0.660  0.008 052 ®
E[¢,,|emp] Husband 4459 4450 -0.09 -0.17 @
E[¢,,|emp] Wife 3775 3726 -0.49 -0.86 ®
E[¢.] Husband 15.63 15.61 -0.02 -0.02 &
E[¢.] Wife 20.78 20.87 0.09 012 @

Notes: Std. Diff = (Data — Sim)/SE(Data). ®: |Std. Diff] < 2 (excellent),
O: 2 < |Std. Diff] < 5 (good), A: |Std. Diff| > 5 (moderate).

Table G2: Model Fit: Behavioral Slopes

Moment Data Sim Diff Std. Diff Fit

k: Caregiver Burden (labor — childcare)

kp (2=0) -0.025 -0.056 -0.031 -097 &
kw (z=0) -=0.015 -0.009  0.006 022 ®
kp (z=1) 0.082  0.074 -0.008 -0.19 ®
kw (z=1) -=0.022 -0.058 -0.036 -0.80 @
y: Childcare-Wage Complementarity (x1000)

Unw (z=0)  0.060 0.056 -0.004 -0.07 ®
Ywn (z=0)  0.013 0.039  0.026 .12 ®
Unw (z=1) -0.013 0.012  0.025 029 ®
Ywn (z=1) 0.034 0.050 0.016 031 ®

Notes: «; = 9LF /01; i i = OLF [ dw—;.

H Covariance Structure Details

This appendix provides the full details of the covariance restrictions and Cholesky parameterization

summarized in Section 6.3.1.
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Table G3: Model Fit: Standard Deviations

Moment Data Sim Diff Std. Diff Fit

SD of Labor Hours (conditional on employment)

o () Husband (z =0) 1221 21.12 8.91 36.61 A
o(ty) Wife (z = 0) 11.42 20.36 8.94 4501 A
o(fy)Husband (z = 1) 12.89 22.24 9.35 1576 A
o(ty) Wife (z = 1) 12.39 20.82 8.43 20.08 A
SD of Childcare Hours
o(f.)Husband (z =0) 16.32 16.70 0.38 090 @&
o(t.) Wife (z = 0) 13.83 13.21 -0.62 -1.50 @
o(f:) Husband (z = 1) 15.52 15.84 0.32 046 @
o(t.) Wife (z = 1) 15.24 15.98 0.74 1.07 ®
Notes: Model over-predicts variance in labor hours, a common challenge
in structural household models with corner solutions.
Table G4: Model Fit: Covariances
Moment Data Sim Diff Std. Diff Fit
Within-Person: Cov(¢., ¢,,)
Husband (z = 0) -3.6 -34.1 -30.5 -2.86 O
Wife (z = 0) -6.2 -5.6 0.7 010 ®
Husband (z = 1) -13.4 50.8 64.2 353 O
Wife (z =1) 0.9 -34.9 -35.8 =274 O
Couple: Cov({", £)
z=0 -71.0 72.1 143.1 17.65 A
z=1 -43.7 2.0 45.7 3.63 O
Couple: Cov(", £
z=0 +7.8 -=320.7 -328.5 -147.34 A
z=1 +1.1 -340.9 -342.0 -48.82 A

Notes: ®: |Std. Diff| < 2, O: 2 < |Std. Diff| < 5, A: |Std. Diff| > 5.

H.1 Zero Restrictions

I allow within-person correlations and cross-spouse same-type correlations:
* Within-person: Cov*(up, n), Cov*(up, &), Covi(ny, ¢) for the husband; Cov®(uy,, ny), Cov: (i, &),
Cov*(ny, &) for the wife.
* Cross-spouse same-type: Cov*(up, uy), Cov:(mu, ny), Covi(Lp, &y).
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Table GS: Model Fit: Wage Moments

Moment Data Sim Diff Std. Diff Fit
Mean Log Wage: E[Inw]

Husband (z = 0) 2963 3.063 0.099 13.07 &
Husband (z = 1) 2983 3.142  0.158 693 A
Wife (z = 0) 2739 2.820  0.081 993 A
Wife (z = 1) 2779 2.842  0.063 265 O
Variance Log Wage: Var[ln w]

Husband (z = 0) 0.356 0452  0.096 1227 A
Husband (z = 1) 0.353 0456  0.101 459 O
Wife (z = 0) 0.382 0.382  0.000 0.00 ®
Wife (z =1) 0.384 0.451 0.067 281 O
Cov(Labor Hours, Log Wage)

Cov(fy,,, Inw) Husband (z =0) -0.46  4.73 5.19 4290 A
Cov(f,,, Inw) Husband (z = 1) -0.18 5.93 6.11 1639 A
Cov(¢y,, Inw) Wife (z = 0) 042 229 1.87 1699 A
Cov(¢,,, Inw) Wife (z = 1) 0.49 297 2.49 734 A
Cross-Spousal Wage Covariances

Cov(Inw”, Inw") (z = 0) 0.136  0.106 -0.030 -4.63 O
Cov(Inw”, Inw") (z = 1) 0.092 0.158  0.066 379 O
Cov(£h, Inw") (z = 0) 0.02 -0.22 -0.24 -238 O
Cov(£!, Inw") (z = 1) 0.48 1.46 0.98 271 O
Cov(£¥, Inwh) (z = 0) -0.27 -141 -1.14 -11.81 &
Cov(£¥, Inwh) (z = 1) -0.83 -0.30 0.53 1.57 &

Notes: Wage equation: Inw; = vo + v - age + v» - age® + v3 - edu + &;.
@®: |Std. Diff] < 2, O: 2 < |Std. Dift] < 5, A: |Std. Dift] > 5.

All other cross-spouse correlations are restricted to zero

Cov(up, 11w) = Covi(npn, pw) = Cov:(n, &w) = Covi(mn, &) = Covi(uw, &n) = Covi(m, &n) = 0.

H.2 Cholesky Parameterization

Let

e =Varz( wnd pumd ol ol und .l

q,". 4,

Z I I I _%YI _VvI _
Z1,4_22,3_21,6_22,6_23,5_24,5_0'
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A
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where the ordering is (un, 75, tw, Tw» ns &w)- The zero restrictions (35) translate into

U“U,

(35)

(36)

(37)



Table G6: Summary of Moment Fit

Category @(d<2) O@R<ldl<5 a((d =5 ‘ Total
Basic Moments (z = 0) 6 0 0 6
Basic Moments (z = 1) 6 0 0 6
k (Caregiver Burden) 4 0 0 4
¥ (Childcare—Wage) 4 0 0 4
Standard Deviations 4 0 4 8
Covariances 1 4 3 8
Wage Moments 2 7 9 18
Total 27 11 16 54

d = (Data — Sim)/SE(Data). Per-moment weights: levels 10, ¥ 50 (x1.5
for Kflzl), W 40 (x1.5 for ¥y, ), SD 0.25, Cov 0.1, Wage 0.2. These block-
level scale weights are applied on top of inverse-variance normalization so
that each moment block contributes approximately equally to the objective
function. Resulting block contributions: first moments and slopes 254, SD
329, Cov 408, Wage 432 (total = 1,423).

Let ¢/ fori = 1,..., 15 denote the free parameters. The restricted upper-triangular Cholesky factor is
exp(cy) cs 3 0 ¢ 0
Z Z
0 exp(cl) I c: s 0
S exp(ci) 6 7
: 0 0 exp(cd) cs Ul ct
ristricted = P 8 ? 3’5 1 ? (38)
0 0 0 exp(cy) U‘LS iy
0 0 0 0 exp(ci;) iy
0 0 0 0 0 exp(c|s)
where 5
ot :_cécj csc5es/exp(cs) o é 3+ ¢ Uss
3s explc) M expl(ely)

The constraint ZZ = 0 is satisfied by U4 = 0; ZZ = 0 and ZZ = 0by U6 = Use = 0. The constraint

= 0 requires U1 2U13 + UppUyz = 0, yielding U23 = —c /exp(cz) The constraint Z = 0 requires
U1,3 Ui5+Ux3Ur5+Us3U35 = 0, yielding U3T,5' Finally, 215 = Orequires Up4Us 5+ U3,4U3,5 + U4,4U4,5 =0,
yielding U f
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H.3 Transformation to Preference Parameters

The vector (qi, . . ., g¢) is drawn from N((¢%, 0, 0), ). The preference and wage shock parameters are
B exp(q1) _ exp(q2)
,Uh - ’ nh - ) (39)
1 +exp(q1) + exp(q2) 1 +exp(q1) + exp(q2)
B exp(q3) _ exp(q4)
I*LW - s nW - ’ (40)
1 +exp(q3) + exp(q4) 1 +exp(q3) + exp(q4)
&h = gs, &w = ge- (41)

I Descriptive Statistics

This section presents descriptive statistics from the SIPP and PSID-CDS data used for estimation. The

key variables include parental time allocation, labor supply, and earnings, stratified by child disability

status.

Table I1 reports descriptive statistics from the pooled SIPP 2004 and 2008 samples. The sample
includes 12,338 households, of which 989 have a disabled child. Parents of disabled children are slightly

older on average, and their children are also older. Both husbands and wives in households with disabled

children work fewer hours than their counterparts in households without disabled children, though earnings

conditional on employment are comparable across the two groups.

Table I1: Descriptive Statistics: SIPP 2004 + 2008

Variable Disabled Non-Disabled Difference N
Husband’s age 47.54 43.70 +3.84 12,338
Wife’s age 44.94 41.35 +3.59 12,338
Child’s age 11.61 9.33 +2.29 12,338
Husband’s work hours (weekly) 30.99 31.65 -0.65 12,338
Wife’s work hours (weekly) 21.13 23.12 -1.98 12,338
Husband’s earnings (monthly) 4470.49 4431.37 +39.12 8,294
Wife’s earnings (monthly) 3112.88 3071.80 +41.08 6,978
Husband’s non-labor income (weekly) 78.27 61.41 +16.86 12,338
Wife’s non-labor income (weekly) 56.86 32.07 +24.79 12,338
Father’s time with child (weekly) 13.70 15.47 -1.77 859
N (households) 989 11,349 12,338

Table 12 presents parallel statistics from the PSID-CDS 2007 and 2014 waves. The PSID-CDS sample
is smaller (2,094 households, with 519 having a disabled child) but provides higher-quality childcare time

measures for both parents. A notable pattern emerges: mothers spend more time with disabled children
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(+2.62 hours weekly), while fathers spend less time (-3.16 hours weekly), suggesting asymmetric responses
to child disability within the household.

Data Requirements. Note that wages must be constructed, which requires conditioning on the exogenous
variables. Therefore, households that lack information on each spouse’s age, each spouse’s education level,
non-labor income, or the child’s age are dropped from the sample.

All time variables are in weekly hours (7" = 112, as in Section 3.1). Non-labor income is converted
from annual to weekly (leje]gk = Yylgf;r/ 52), and Child SSI is set at $625/month (~$156/week, using four

weeks per month).#

Table 12: Descriptive Statistics: PSID-CDS 2007 + 2014

Variable Disabled Non-Disabled Difference N

Husband’s age 45.14 46.73 -1.59 1,805
Wife’s age 42.92 44.68 -1.76 1,805
Child’s age 12.48 10.72 +1.76 2,074
Husband’s education (years) 13.01 13.06 -0.05 1,750
Wife’s education (years) 13.36 13.39 -0.03 1,774
Husband’s work hours (weekly) 30.95 31.40 -0.44 1,805
Wife’s work hours (weekly) 22.23 22.18 +0.05 1,805
Husband’s earnings (monthly) 3965.27 4158.97 -193.70 1,389
Wife’s earnings (monthly) 2723.18 2737.16 +13.98 1,218
Husband’s non-labor income (weekly) 62.25 66.20 -3.95 1,805
Wife’s non-labor income (weekly) 54.65 53.73 +0.93 1,805
Mother’s time with child (weekly) 20.78 18.16 +2.62 1,224
Father’s time with child (weekly) 15.63 18.79 -3.16 1,224
N (households) 519 1,575 2,094

J Missing Data in PSID-CDS Time Diary

I examined the pattern of missing time-diary data in the PSID-CDS following the approach of Keane and
Wasi (2013). The analysis indicates that the time-diary observations are missing at random with respect
to observable household characteristics, suggesting no systematic selection into non-response. However,
selection on unobservable characteristics—such as parents with stronger childcare preferences being more

likely to respond—cannot be tested directly. Reassuringly, when the same specification is estimated on

4This approximation of the Child SST amount is used as the benchmark in the estimation. In principle, the amount could be
made more flexible by incorporating institutional details such as the household’s state of residence and income level. However,
the estimation results are virtually unchanged under such variations.
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different subsamples, the coefficient estimates remain similar, indicating that the data sources are close in

terms of the underlying distributions.

K Disability Variable Correspondence

Table K1 documents the correspondence between disability variables across the SIPP and PSID-CDS

datasets.

Table K1: Correspondence of Disability Variables between SIPP and PSID-CDS

Category SIPP PSID 2007 PSID 2014 Status
Panel A: Variables Used in Both Datasets

Developmental Delay EDDELAY Q31A4M, Q31A9B P14AI10N v
Special Education ESPECED Q31B17,Q31B17A  P14B20 v
Learning Disability ELERNDIS Q31A4H P14A10I v
Mental Retardation EKMR Q31A4H, Q31A9C  P14A10I v
Developmental Disability EKDEVDIS Q31A4M P14A10N v
ADHD/Hyperactivity EADHD Q31A40 P14A10P v
Speech Disorder EKSPECHD Q31A4E P14A10F v
Emotional Disturbance EKSOCIAL Q31A41 P14A10] v
Orthopedic Impairment EARMLEG Q31A4L P14A10M v
Panel B: Variables Used in SIPP Only

Run/Play Limitation ERUNPLAY — — SIPP only
Sports Limitation ESPORTS — — SIPP only
School Work Limitation =~ ESKOOLWK — — SIPP only
Panel C: Variables Used in PSID Only

Autism — Q31A4N P14A100  PSID only
Panel D: Variables Excluded from Both Datasets

Vision Problems — Q31A4G P14A10H  Excluded
Hearing Problems — Q31A4F P14A10G  Excluded
Asthma — Q31A4B P14A10B  Excluded
Diabetes — Q31A4C P14A10D  Excluded
Allergies — Q31A4P P14A10Q  Excluded

Notes: Panel A shows disability categories used in both SIPP and PSID-
CDS. Panel B shows SIPP-specific physical limitation variables. Panel
C shows PSID-specific conditions (autism only, as emotional disturbance
now has SIPP correspondence via EKSOCIAL). Panel D shows excluded
conditions.
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