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Abstract

Platforms often require users to incur sunk participation costs (fees, effort, or waiting)
before learning whether service will be delivered. We study such environments with a model
that separates actual non-delivery risk from perceived risk. When users are naive about risk,
unreliability creates scope for ex post manipulation: within a benchmark class of efficient
two-bidder mechanisms, the war-of-attrition (second-price all-pay) format maximizes deviation
revenue. When risk is common knowledge but budgets and valuations are misaligned, unreliability
instead screens participation. Higher reliability can attract deep-pocket, lower-valuation entrants
who crowd out budget-constrained high-valuation users, while intermediate unreliability can
induce their exit and may increase consumer surplus discontinuously at the exit threshold.
We do not advocate intentional unreliability; rather, we highlight a design tradeoff between
trust-enhancing reliability and screening through endogenous entry in settings with unavoidable
execution risk and limited commitment.

JEL Codes: D44, D47, D81, D82, L14
Keywords: platform reliability; non-delivery risk; sunk costs; all-pay auctions; exit-by-risk; budget
constraints

1 Introduction

In the design of digital platforms, reliability is customarily regarded as a core requirement. From
ride-sharing apps to decentralized finance (DeF1i) protocols, operators strive to minimize friction
and guarantee execution. However, many markets inherently require participants to incur sunk
costs before an allocation is determined—whether it is the gas fees in a blockchain transaction, the
waiting time for a ride that might be cancelled, the time spent in an online reservation queue that
may crash or time out, or the non-refundable bidding fees in online auctions. In these settings, the
risk of non-delivery—paying the cost but receiving nothing—is a fundamental feature of the market
structure. While typically viewed as a source of inefficiency, this paper explores the counter-intuitive
possibility that, when non-delivery risk is unavoidable and anticipated, its presence can sometimes
serve a socially beneficial function by reshaping participation and competition in sunk-cost contests.

*This work was supported by JSPS KAKENHI Grant Number JP21H04979 and JST ERATO Grant Number
JPMJER2301, Japan. Parts of this work were presented at the 2018 Spring Meeting of the Japan Economic Association
(University of Hyogo). I thank Hitoshi Matsushima, Atsushi Iwasaki, Michihiro Kandori, Daisuke Oyama, Kenjiro
Asami, Kazuyuki Higashi, Satoshi Kasamatsu, Daiki Kishishita, Satoshi Nakada, Munenori Nakasato, Shunya Noda,
and Kyohei Okumura for helpful comments. Any remaining errors are my own.
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Figure 1: The Mechanics of Risk-Based Screening. In the reliable state (a), wealthy speculators ($)
crowd out loyal fans (©). In the unreliable state (b), speculators exit (or stay out) while loyal fans
remain, thereby increasing the fans’ allocation probability.

To understand how non-delivery risk can improve consumer surplus, consider membership
programs that confer priority access to scarce future allocations (e.g., presale tickets, limited drops,
or fan-club memberships). Participants can be heterogeneous: high-valuation but budget-constrained
users (“loyal fans”) coexist with deep-pocket but lower-valuation entrants (“speculators”/resellers).
When non-delivery risk is low, speculators can profitably pay more (or wait longer) to dominate
priority, crowding out budget-constrained high-valuation users. When there is a strictly positive
chance that the sunk cost yields no allocation, aggressive spending becomes risky: if speculators
must spend more to dominate, an intermediate level of non-delivery risk can make their expected
return negative, inducing exit while leaving high-valuation users active. When delivery does occur,
competition is less severe and the probability that high-valuation users obtain the allocation increases
(Fig. 1). We refer to this mechanism as exit-by-risk: non-delivery risk acts as a screening force in
sunk-cost competition.

This example also highlights a dual nature of non-delivery risk. On one hand, if participants are
naive about non-delivery risk, platforms can exploit sunk costs to extract excessive payments without
delivering commensurate value—a mechanism reminiscent of low-trust “pay-to-bid” environments.
On the other hand, if participants are rational and aware, the threat of non-delivery can correct
market failures caused by budget constraints by deterring opportunistic deep-pocket entry. This
raises a fundamental economic question: under what conditions is a strictly positive probability of
non-delivery (q > 0) socially beneficial, and when is it purely exploitative?

Our key point is that the same sunk-cost primitive can produce opposite effects through a belief
wedge (§ — q). When § understates true risk, non-delivery risk creates a channel for manipulation
and revenue extraction. When ¢ = ¢, the same risk can become a strategic friction that reshapes
participation, potentially improving outcomes under budget—valuation mismatch.

To analyze these forces within a single framework, we propose a unified model of sunk-cost
competition: a war-of-attrition (second-price all-pay) auction with a reserve, augmented with a
non-delivery state and belief-dependent behavior. This allows us to study two regimes within one



Table 1: Roadmap: trust deficits operate through manipulation under naiveté and screening under
awareness.

Naive users (§ =0) Aware users (§ = q)
ignore non-delivery anticipate non-delivery

Channel Platform-side manipulation after bids are Exit-by-risk screens participation and com-
sunk petition

Outcome Deviation revenue (exploitability), ERUS  Consumer surplus, CS

Headline result WOA(0) attains the deviation-revenue upper CS may jump upward at the exit threshold
bound E[v] q" = q(vm)

Takeaway High-powered sunk costs are most ex- Reliability need not improve consumer sur-
ploitable under naiveté plus monotonically once entry is endogenous

reduced-form non-delivery model: a naive regime (§ = 0) representing exploitative environments in
which users ignore non-delivery risk, and an aware regime (§ = q) representing mature markets in
which risk is common knowledge.

We correspondingly focus on two outcome concepts. In the naive regime, we study the platform’s
potential for deviation revenue—revenue obtainable when a low-credibility platform can deny delivery
or inject artificial competition after bids are sunk—and we summarize it using the benchmark
objective ERUS (ezpected revenue under unlimited seller-side deviation), i.e., the expected payment
extractable from a targeted bidder when the platform can force an effectively unbeatable rival. In
the aware regime, we study consumer surplus, defined as the expected sum of bidders’ utilities
(including negative sunk payments), as a participant-side welfare proxy for how non-delivery risk
affects allocation and rent dissipation; this differs from total surplus when sunk costs are transfers
rather than deadweight losses. Because low-q equilibria can be non-unique, our aware-regime jump
comparison is stated relative to a conservative dissipative benchmark class.

Table 1 provides a roadmap for the paper by contrasting how the same primitive—sunk-cost
competition with a non-delivery state—operates through (i) a supply-side deviation channel in the
naive regime and (ii) a demand-side screening channel in the aware regime.

Here WOA(0) denotes our continuous penny-auction benchmark. The deviation-optimality
result in Section 4 is specific to this benchmark (not to all-pay auctions), while Section 5 shows how
common-knowledge risk can screen participation and generate an upward jump in CS at the exit
threshold.

Naive regime (§ = 0): exploitability and vulnerable formats. We first characterize which
sunk-cost formats are most vulnerable to manipulation when users ignore non-delivery. Among a
broad class of admissible efficient two-bidder mechanisms, we show that the WOA(0) format—our
continuous penny-auction analogue—maximizes deviation revenue by attaining the ERUS upper
bound (Theorem 4.2). We further show that deviation-optimal reserves are lower than standard
revenue-optimal reserves (Proposition 4.6 and Example 4.7), mirroring the low posted starting prices
commonly observed in fee-based competitive platforms.

The two-bidder benchmark is not only for tractability: it can be interpreted as a reduced-form
representation of a platform-managed two-player endgame, in which users perceive a close race
against a single rival. Keeping perceived rivalry small increases the marginal return to continuing
to pay sunk costs, thereby creating especially favorable conditions for deviation revenue.



Aware regime (§ = q): screening via non-delivery risk and a consumer-surplus jump.
Our main contribution concerns the aware regime and the possibility that non-delivery risk screens for
intrinsic valuation. We study environments with budget—valuation mismatch, where high-valuation
agents are liquidity constrained while deep-pocket agents have lower intrinsic valuations. In a
canonical asymmetric instance, we identify a threshold non-delivery probability above which the
deep-pocket low-valuation bidder exits in equilibrium (“exit-by-risk”) while budget-constrained
high-valuation bidders remain active (Proposition 5.2). This discontinuous change in participation
can raise consumer surplus at the exit threshold, yielding an upward jump relative to the low-q
dissipative benchmark (Proposition 5.10). We then provide a general screening result (order-statistic
form) that isolates simple summary statistics of the effective budget distribution that govern both
the exit cutoff and the surplus change (Proposition 5.14), showing that the mechanism is not an
artifact of a knife-edge calibration. Figure 3b in Section 5 illustrates this piecewise behavior.

Our screening result relates to “ordeal mechanisms” that use costly frictions (e.g., waiting time)
to induce self-selection. A distinctive feature here is that the friction is probabilistic non-delivery
risk interacting with sunk-cost competition: because payments are sunk even when delivery fails,
aggressive spending is penalized precisely on the margin where deep-pocket entrants must spend
more to dominate. Importantly, our results do not advocate intentionally sabotaging delivery.
Rather, they highlight that in environments where commitment is limited or execution cannot
be perfectly guaranteed, reliability is not a monotone “more is always better” parameter once
participation and budget constraints are endogenous.

These results offer a new perspective on platform design. While conventional wisdom suggests
minimizing all friction, our findings imply that, when non-delivery risk is unavoidable, the interaction
between sunk costs and that risk can act as a screening force that deters opportunistic arbitrage
and improves assignment under budget constraints.

The remainder of the paper proceeds as follows. Section 2 discusses related literature. Section 3
presents the model (WOA(e) with non-delivery and beliefs). Section 4 analyzes the naive regime
and characterizes formats and reserves that maximize deviation revenue. Section 5 studies the aware
regime and establishes exit-by-risk screening and the resulting consumer-surplus jump, culminating
in a general screening result. Section 6 discusses implications, limitations, and extensions.

2 Related Literature

Our work contributes to several strands of research on trust, frictions, and allocation in platform-
mediated markets. A first point of contact is the growing literature on mechanisms that are not
fully credible. Akbarpour and Li (2020) highlight that auctioneers often cannot commit to rules,
creating a “trilemma” for mechanism design, and Komo et al. (2024) study shill-bidding as a
profitable deviation strategy. We complement this line by focusing on non-delivery as a distinct
deviation available to platforms. In particular, we characterize the optimal deviation revenue of an
untrustworthy seller, which effectively captures a worst-case benchmark for user trust.

This credibility problem is especially salient in pay-to-bid and other all-pay-like environments,
where participants often incur sunk costs before learning whether the platform will ultimately
honor the announced allocation. Our “naive regime” is motivated by evidence from penny auctions:
Augenblick (2016) provides empirical evidence consistent with sunk-cost fallacy, while Hinnosaar
(2016) offers a theoretical analysis and summarizes stylized institutional features such as low starting



prices and heavy reliance on bid fees; Byers et al. (2010) further discuss information asymmetries in
these environments. We formalize how such sunk costs can be exploited, but—crucially—contrast
it with an “aware regime” in which rational users correctly perceive and respond to platform risk.
Related work in computer science and Al also treats pay-to-bid platforms as data-rich algorithmic
systems: bidder behavior can be predictable from large traces (Zhang et al., 2018), and learning-based
models can forecast auction durations that govern bid-fee revenue (Wang and Yu, 2024).

Moving from behavioral motivations to screening incentives, our results in the aware regime relate
to auctions and mechanism design with budget-constrained agents. Classic auction theory shows
that budgets can overturn standard revenue and efficiency comparisons across formats (Che and
Gale, 1998), and in algorithmic mechanism design, budgets motivate alternative welfare benchmarks;
for example, Dobzinski and Paes Leme (2014) introduce liquid welfare and provide approximation
guarantees. Our contribution is orthogonal: we show that non-delivery risk can act as an endogenous
screening device when budgets and valuations are misaligned, generating discontinuous changes in
participation and consumer surplus.

This screening interpretation also connects our analysis to the literature on welfare-improving
frictions and “ordeal mechanisms” (Nichols and Zeckhauser, 1982). While ordeals typically impose
deterministic costs (e.g., waiting time) to target the needy, our model highlights a different friction:
probabilistic non-delivery risk. In competitive settings, such risk can selectively discourage wealthy
speculators while preserving participation by budget-constrained high-valuation agents, showing
how risk can succeed as a filter in environments where standard price mechanisms alone fail.

Finally, our motivating contrast between wealthy speculators and budget-constrained true fans
links the paper to market design for tickets (e.g., Bhave and Budish, 2023) and to related “fan
economy” environments modeled through all-pay-like competition (Tang et al., 2017). Unlike
solutions that rely on price caps, lotteries, or identity verification, our mechanism leverages non-
delivery risk and sunk costs to endogenously mitigate speculative entry, offering a complementary
perspective on markets plagued by bots and scalpers. Technically, our analysis builds on the
standard all-pay auction literature (Baye et al., 1996; Krishna and Morgan, 1997; Siegel, 2009) and
on optimal auction theory more broadly (Myerson, 1981; Riley and Samuelson, 1981). Whereas these
classic models assume perfect delivery, we extend the analysis to include objective and subjective
non-delivery risks, capturing the “trust deficit” inherent in modern platforms.

3 Model

3.1 Agents and types

A seller offers a single indivisible good to a set of bidders N = {1,...,n}. Bidder i has a private
value v; € [0, 0] for receiving the good and a private budget (or effort capacity) ¢; € [0, ¢] U {oo}
that limits how much she can ever pay. We write the type as t; = (v;, ¢;).

Unless stated otherwise, types are independent across bidders and identically distributed according
to a common distribution H on [0,9] x ([0,¢] U {oc}). The distribution H may allow arbitrary
correlation between v; and ¢; (budgets need not be positively correlated with willingness to pay).!

"We keep an i.i.d. baseline for the main results, which yields clean equilibrium characterizations and aligns with
standard revenue-equivalence arguments. In Section 5 we also study a stylized asymmetric instance (one deep-
pocket /low-valuation bidder versus two budget-constrained /high-valuation bidders). This can be interpreted either
literally (as bidders having different budget distributions across types, Hg and Hp) or as the conditional distribution



Utilities are quasi-linear. If bidder ¢ receives the good and pays b;, her utility is u; = v; — b;; if
she does not receive the good, u; = —b;. Bids are constrained by budgets: any feasible bid must
satisfy B; € [0, ¢;].

3.2 Mechanism family: WOA with reserve

Fix a nonnegative reserve level € > 0. A war-of-attrition (second-price all-pay) auction with reserve,
hereafter referred to as WOA (), proceeds as follows. Each bidder simultaneously submits a bid

,31' S [0, Ci].
« (Eligibility) A bidder is active if 5; > . Bidders with 5; < € are treated as not entering.

o (Allocation) If no bidder is active, no allocation occurs. Otherwise the good is allocated to an
active bidder with the highest bid (ties broken uniformly at random among tied bidders).

o (Payments) If bidder i is inactive then b; = 0. If bidder 7 is active and loses then she pays her
bid, b; = B;. If bidder ¢ is the winner then she pays the larger of the reserve and the highest
losing bid:

b; = max{e, max f;}.
JF

Reserve boundary. We adopt a strict reserve: bids at the reserve are treated as non-entry, i.e.,
bidders with ; < e are inactive. In particular, in WOA(0) bidding 0 is equivalent to abstaining (no
chance of allocation).

For ¢ =0, WOA(0) is a penny-auction analogue: a war-of-attrition (second-price all-pay) rule in
bid space.

3.3 Non-delivery risk and beliefs

We augment WOA (g) by a non-delivery state. Let ¢ € [0, 1] be the objective probability that delivery
fails or the platform overrides the advertised allocation after collecting participation costs.? Bidders
may hold a belief § € [0, 1] about this probability.

Delivery
prob. 1 —¢q
Outcome equals WOA (¢)
\ - q
Nature draws types Bidders share belief ¢ Smn}jl.tznog u;]blds
t; = (viy¢;) (naive: § = 0; aware: § = q) acti\l/e o ,78,;l> A
4

Non-delivery
prob. ¢
No allocation;
active bidders pay §;

Figure 2: Timeline of WOA (e) with non-delivery risk.

induced by an i.i.d. draw from a mixture distribution, given that the realized composition contains exactly one H-type
and two L-types.

In a queue interpretation, ¢ is the probability that service is cancelled (or capacity is reduced) after agents have
already sunk their waiting costs.



The timeline is illustrated in Figure 2: (i) bidders observe ¢ and play a Bayes—Nash equilibrium
of the perceived game, (ii) the non-delivery state realizes with probability q.

In the non-delivery state, no allocation occurs and all active bidders pay their bid: b; = §; if
Bi > ¢, and b; = 0 otherwise. In the delivery state (probability 1 — ¢), the outcome coincides with
WOA(e).

Timing and interpretation. The delivery/non-delivery state is realized after bids are submitted
but before the WOA () allocation and (delivery-state) payment rule is executed. Thus bids can be
interpreted as up-front sunk participation costs: when non-delivery occurs, the platform keeps these
sunk costs and cancels without allocating or refunding. In particular, there is no winner in the
non-delivery state, so no second-highest-bid payment is computed in that state. This timing is a
stylized reduced form of queue/attrition environments, and it is the timing underlying the screening
calculations in Section 5.
We focus on two information regimes:

o Naive regime: § = 0 (bidders ignore non-delivery risk).

o Aware regime: § = ¢ (non-delivery risk is common knowledge).

3.4 Unlimited manipulation and the benchmark ERUS

In the naive regime, a platform that can insert artificial competition and/or deny delivery can
guarantee that a targeted bidder never wins, extracting from her the payment she would make when
facing an “unbeatable” opponent. We summarize this manipulation revenue by a scalar objective.

Throughout Section 4 we restrict attention to n = 2 and ignore budgets (set ¢; = 00). Let v
denote the top of the value support. Given a mechanism M with allocation/payment rules (y,b)
and an equilibrium bidding function 3(-) in the perceived game (§ = 0), define the expected revenue
under unlimited seller-side deviation from bidder 1 as

ERUS<M) = E, [51(5(01), 6(6))}7 (1)

where §(v) represents the bid of an opponent with the highest possible valuation. Intuitively, this
metric captures the expected payment collected from bidder 1 when the seller makes the opponent
effectively “maximal”.

4 Naive Regime (§ = 0): Vulnerable Formats and Deviation Incen-
tives

This section studies the supply-side channel of a trust deficit in sunk-cost competition. When
participants behave as if delivery were guaranteed (¢ = 0), a low-reliability platform that can deviate
from the advertised outcome (after bids are sunk) has incentives to choose formats that collect
payments even from losers. We summarize the resulting revenue opportunity by the benchmark
objective ERUS(M) in (1) and refer to it as deviation revenue.

To keep the comparison sharp, throughout this section we impose three simplifying assumptions:
(i) n = 2 bidders, (ii) no binding budgets (set ¢; = ¢z = 00), and (iii) an unrestricted ability to



deviate in the sense of (1). These assumptions are a benchmark rather than a claim about any
particular market. In Appendix B we add a simple robustness extension showing that our mechanism
ranking is unchanged when deviation is probabilistic or costly. Values are normalized to v; € [0, 1]
with common CDF F and density f (continuous and positive on (0, 1)).

Our baseline analyzes n = 2 to keep the equilibrium characterization and the reserve comparison
transparent. This restriction is also economically natural in the manipulation scenarios we have in
mind. In many sunk-cost platforms (including pay-to-bid environments), users do not condition
their continuation decision on the full set of active participants; instead, they respond to perceived
effective rivalry (e.g., “am I racing against one remaining bidder?”).

When a platform can manipulate perceived competition (e.g., by injecting artificial activity),
revenue extraction is often maximized by sustaining a two-player endgame. Keeping perceived
rivalry small raises the perceived marginal return to continuing—each additional sunk payment has a
higher chance of winning—thereby sustaining aggressive bidding and rent dissipation. We therefore
view the n = 2 benchmark as a reduced-form representation of a platform-managed endgame and
as a transparent worst-case benchmark for exploitability. A full analysis of the platform’s optimal
information policy over the number of remaining rivals is beyond the scope of this paper.

4.1 A benchmark mechanism class

We restrict attention to full-allocation efficient single-item auctions with a minimal “no-overcharging”
payment discipline.

Definition 4.1 (Admissible efficient auctions). A two-bidder mechanism M = (y,b) is an admissible
efficient auction if:

1. (Full allocation & efficiency) In any realized bid profile, the good is always allocated, and it
is allocated to the bidder with the higher bid (ties broken arbitrarily).

2. (No overcharging losers) In any realized bid profile, the winner pays at least as much as the
loser.

3. (Normalization) The lowest-value type makes zero expected payment in equilibrium.

Condition (1) fixes the allocation rule (no withholding upon delivery), so our format comparison
holds allocation fixed. Condition (2) rules out mechanisms that penalize losing relative to winning,
which could mechanically inflate ERUS but are atypical in implemented auction and platform formats.
Condition (3) is the standard boundary condition needed for revenue-equivalence comparisons across
efficient auctions. This definition is designed to isolate payment exposure (especially to losers) while
holding allocation fixed, so that format comparisons speak directly to exploitability under sunk
costs.

In what follows, when we evaluate ERUS(M) we focus on symmetric Bayes—Nash equilibria
with strictly increasing bidding functions (the standard case under i.i.d. private values), so that the
induced allocation rule is also efficient in values and the payment identity applies.

4.2 The war-of-attrition format WOA(0) maximizes deviation revenue

Having fixed the benchmark mechanism class, we can now ask which format is most exploitable
when the platform can deviate after bids are sunk. The next theorem provides a sharp answer:



among admissible efficient auctions, the war-of-attrition (second-price all-pay) format WOA(0)—a
penny-auction analogue with a zero reserve—maximizes deviation revenue ERUS.

Theorem 4.2 (War-of-attrition (second-price all-pay) maximizes ERUS in the full-allocation bench-
mark). Among admissible efficient auctions (Definition 4.1), evaluated at a symmetric equilibrium
with a strictly increasing bidding function, the war-of-attrition (second-price all-pay) format WOA(0)
mazimizes ERUS. Moreover,

ERUS(WOA(0)) = E[v].

Intuition. Under any efficient two-bidder auction satisfying the normalization in Definition 4.1,
revenue equivalence pins down the expected payment of the top type to be E[v]. The “no overcharging
losers” condition then implies that the payment extracted from a targeted loser under deviation
cannot exceed E[v]. The WOA(0) format attains this upper bound because it equalizes winner and
loser payments pointwise, so extracting from the targeted loser is as profitable as extracting from
the (effective) winner.

We first establish Lemma 4.3, which pins down the expected payment of the highest type via
revenue equivalence. We then use it to bound ERUS for any admissible efficient auction and show
that WOA(0) attains the bound, completing the proof of Theorem 4.2.

Lemma 4.3 (Payment identity at the top type). Consider any two-bidder mechanism M with
independent private values vi,vy ~ F on [0,1], risk-neutral bidders, and a symmetric equilibrium in
which (i) bidding is strictly increasing in value and the object is always allocated to the higher bid,
and (ii) the lowest type obtains zero expected utility (equivalently, makes zero expected payment).
Then the expected payment of a bidder with value 1 equals E[v].

Proof. See Appendix A.2. O

Sketch of proof. Fix any admissible efficient auction M (Definition 4.1) and a symmetric equilibrium
with a strictly increasing bidding function.

Step 1 (revenue equivalence at the top type). By Lemma 4.3, the expected equilibrium payment
of a bidder with value 1 equals E[v].

Step 2 (upper bound). Under unlimited manipulation, the seller can ensure bidder 1 never wins
by making the opponent effectively maximal. Let By(v1) denote the (honest-play) equilibrium
payment of the top type when the opponent has value v;. The “no overcharging losers” condition
in Definition 4.1(2) implies pointwise b1 (5(v1), (1)) < Ba(v1), and taking expectations yields
ERUS(M) < E,, [B2(v1)] = E[v].

Step 3 (tightness for WOA(0)). In WOA(0) with two bidders, winner and loser payments
coincide in every realized profile (both equal the losing bid). Hence the bound in Step 2 binds, and
ERUS(WOA(0)) = EJv].

See Appendix A.1 for the full proof. O

A robustness note: probabilistic or costly cancellation. Our benchmark objective ERUS(M )
in (1) treats deviation (non-delivery) as unrestricted. Appendix B shows that the mechanism ranking
in Theorem 4.2 is unchanged when deviation is limited. Specifically, suppose the platform can
cancel with probability A € [0, 1] chosen ex ante and incurs a cost k()), while bidders remain naive
about cancellation. Let R(M) denote the platform’s expected revenue in the delivery state under



honest play of the advertised mechanism M. Then the platform’s total expected payoff equals
(1=XN)R(M)+ X-ERUS(M) — k(\). Since R(M) is the same across admissible efficient auctions by
revenue equivalence, the mechanism ranking for any fixed A and cost function k is governed by the
cancellation-state term. Accordingly, the platform’s net payoff from cancellation states equals

A-ERUS(M) — k(\), 2)

and maximizing the cancellation incentive over mechanisms is equivalent to maximizing ERUS(M).
Hence WOA(0) remains optimal.

4.3 Deviation-optimal reserves are low

Theorem 4.2 compares formats within the full-allocation benchmark class in Definition 4.1. We now
expand the design space by allowing the platform to impose a reserve € > 0, which introduces a
no-sale region (and hence falls outside the full-allocation restriction). This additional margin can
increase ERUS—sometimes above E[v]—at the cost of reduced allocative efficiency upon delivery,
and therefore does not contradict Theorem 4.2.

To analyze reserve choices within the {WOA(e)} family, we use the following equilibrium
characterization.

Lemma 4.4 (Symmetric equilibrium in WOA(¢)). Consider WOA(e) with two bidders, values
v~ F on[0,1] with density f >0 on (0,1), and risk-neutral utilities. Define the cutoff v* € [0,1] by

vV F(v") =e. (3)

There exists a symmetric equilibrium in which types v < v* bid f(v) = 0, and types v > v* bid

v tf(t)

,3(’[))26—1— - l—F(t)

dt. (4)

Proof. See Appendix A.3. O

Lemma 4.4 reduces the reserve-choice problem within the {WOA(e)} family to the one-
dimensional cutoff v* (equivalently, €), which we exploit below.

Let rgr denote the standard revenue-maximizing reserve (equivalently, cutoff type) in a symmetric
truthful efficient auction (Myerson—Riley—Samuelson). To compare reserves on the same scale as
our WOA (e) parameterization, we map this cutoff into the corresponding bid-threshold parameter

€ER = TERF(TER)- (5)
Let egrus maximize ERUS(WOA (¢)).

Definition 4.5 (Strictly monotone distributions). A distribution F with density f on [0, 1] is
strictly monotone if the function

g9(v) =1—=F(v) = 2vf(v)

is strictly decreasing on [0, 1].
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Proposition 4.6 (ERUS-optimal reserve is lower). If F' is strictly monotone, then egrus < €ER-

Intuitively, standard revenue maximization balances (i) extracting more from high types and (ii)
losing trade when the reserve binds. Under the deviation objective ERUS, the platform monetizes
losing payments (sunk costs) as well, which tilts the optimum toward admitting more types and
hence toward a lower reserve.

Proof. See Appendix A.4. O

Example 4.7 (Uniform illustration). Suppose v ~ Unif[0,1]. Within the class {WOA(e) : € € [0,1]},

1/9. By contrast, the standard (reliability-aware) revenue-optimal cutoff under v ~ Unif[0, 1] is
rgr = 1/2. On the WOA(e) scale, this corresponds to egr = rgrF(rgr) = (1/2) - (1/2) = 1/4.
Thus e* = 1/9 < 1/4 = egR, consistent with Proposition 4.6.

Documented implementations of pay-to-bid (“penny”) auctions often feature very low posted
starting prices, frequently zero, and derive an important share of revenue from non-refundable bid
fees rather than the final winning price (Hinnosaar, 2016; Augenblick, 2016). Proposition 4.6 mirrors
this structural feature: when the operator places weight on deviation revenue—revenue generated
purely through sunk-cost payments in a non-delivery state—the optimal reserve is pushed toward its
minimum. Importantly, low reserves are not diagnostic of deception: legitimate fee-based platforms
may also choose zero reserves. Rather, our result explains why low-reliability incentives distort
reserve choices downward relative to the standard revenue-optimal benchmark.

5 Awareness, Screening, and Consumer Surplus

Section 4 studied the naive regime (¢ = 0), where a trust deficit opens a supply-side deviation
channel. In particular, within the full-allocation benchmark class, Theorem 4.2 shows that WOA(0)
is an extreme point: it maximizes deviation revenue from sunk bid fees. We emphasize that this is
a vulnerability diagnosis rather than an endorsement of penny auctions.

We now turn to the aware regime (§ = ¢) and hold the sunk-cost competitive environment fixed.
When non-delivery occurs with probability ¢, the continuation value of winning is scaled by (1 — q),
while sunk payments remain sunk. This wedge can change the set of active participants: in our
asymmetric configuration (one deep-pocket/low-valuation bidder versus budget-constrained/high-
valuation bidders), sufficiently high ¢ induces an exit-by-risk of the deep-pocket bidder, which relaxes
competitive pressure on the constrained high-valuation bidders. Because WOA(0) is a high-powered
sunk-cost format, it can make this screening margin particularly salient: informally, the same
property that makes it maximally exploitable under naiveté can make it a strong screening device
under awareness.

We first characterize the exit-by-risk equilibrium and identify the threshold for the deep-pocket
bidder to drop out (Proposition 5.2). We then show that this exit can generate a discontinuous
jump in consumer surplus, relative to a dissipative benchmark in which the constrained bidders’
surplus is fully dissipated when the deep-pocket bidder remains active (Proposition 5.10 and related
results).
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5.1 A canonical asymmetric instance with parameters

We work with a canonical asymmetric instance with one deep-pocket/low-valuation bidder and
two budget-constrained /high-valuation bidders, mirroring the motivating queue story. There are
three bidders N = {1,2,3}. Bidders 1 and 2 (“budget-constrained high-valuation”) have a common
valuation vz, > 0 for the good and private budgets c1, co ~ Unif[0,1] i.i.d.> Bidder 3 (“deep-pocket
low-valuation”) has a lower valuation vy € (0,vr) and an effectively unbounded budget (c3 = 00).
All bidders observe q.

To keep the canonical instance focused on the budget-constrained screening mechanism, we
concentrate on the region vy, > 1 and vy > 1. The condition vy, > 1 makes the two-player subgame
“budget-binding” in the sense of Lemma 5.1, so that budget-constrained bidders optimally bid their
full budgets when bidder 3 exits. Meanwhile, vy > 1 ensures that at low non-delivery risk bidder 3
has a strict incentive to bid 1 and guarantee winning against budget-constrained rivals (see (6) at
g = 0). When either v;, <1 or vy < 1, equilibria can involve interior bidding and/or endogenous
participation; see Appendix C for a general “bang—bang” reduced form in the L-only subgame.

The mechanism is WOA (0) with non-delivery probability g as in Section 3. Since € = 0, every
positive bid is active. If the non-delivery state occurs (probability ¢), no allocation occurs and each
bidder pays her bid. Otherwise (probability 1 — ¢), the object is allocated to the highest bidder; the
winner pays the highest losing bid and each loser pays her own bid.

We interpret bids as waiting or effort costs: in both delivery and non-delivery states, a bidder
who “stays” up to 8; pays ;. The only difference is that in the non-delivery state nobody receives
the good.

5.2 Equilibrium structure and exit-by-risk

We first note that if only bidders 1 and 2 participate, then bidding as much as the budget allows is
optimal as long as ¢ is not too high.

Lemma 5.1 (Two-player subgame). Suppose bidder 3 bids 5 =0. If ¢ < g(vy) =1 —1/vp, then
b1 = c1 and Bs = co form a Bayes—Nash equilibrium for bidders 1 and 2.

Proof. See Appendix A.5. O

Remark. The condition ¢ < ¢(vy) = 1 — 1/vg, is non-vacuous only when vy > 1. If vy < 1, then
d(vp) <0 and the lemma does not apply for any ¢ € [0, 1].

We now ask whether bidder 3 wishes to enter. When the non-delivery probability is intermediate,
bidder 3’s expected benefit from outbidding budget-constrained rivals is outweighed by the expected
rent dissipation (loss) from paying without delivery. In this region, an equilibrium features exit of
the deep-pocket /low-valuation bidder.

Proposition 5.2 (Exit-by-risk equilibrium). Define the cutoffs

1 1
=1-— d  Gu)=1——.
q(ve) on £ 1/3 an q(vr) o

3This normalization is without loss of generality for the comparative statics we highlight: a common scaling of all
budgets and valuations rescales bids and payoffs proportionally.
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If g € [q(vr), q(vr)), then the profile
p1 = c1, B2 = c2, p3 =0

constitutes a Bayes—Nash equilibrium.

Intuition. When bidders 1 and 2 bid their budgets, bidder 3’s best response is an endpoint:
B3 € {0,1}. His expected utility from bidding 83 = 1 is

Us(1) = (1—q)(ver + ) — 1, (6)

so he exits iff Uz(1) <0, i.e., ¢ > q(vy). The constant 1/3 reflects the order statistic of two budget
draws and is not essential; see Propositions 5.5-5.6.

The interval [¢(vg), q(vr)) is nonempty whenever vy, > vy + 1/3. Economically, vz, must be
sufficiently higher than vy so that (i) budget-constrained bidders still prefer to “race” up to their
budgets, while (ii) the deep-pocket bidder prefers to opt out once the dissipation risk ¢ is large

enough.

Sketch of proof. Fix q € [q(vi),q(vL)).

Step 1. Given 3 = 0, Lemma 5.1 implies that for ¢ < g(vy), bidders 1 and 2 best respond by
p1=c1 and B2 = co.

Step 2. Given 31 = ¢; and 3 = cg, bidder 3’s expected payoff as a function of 3 € [0,1] is
strictly convex, so his best response is an endpoint 53 € {0,1}. Evaluating the endpoint payoff
Us(1) yields (6), so bidder 3 exits iff U3(1) <0 <= ¢ > q(vn).

Step 3. Combining Steps 1-2 gives the stated equilibrium for ¢ € [g(vy), q(vr)). See Appendix A.6
for the full proof. O

If instead non-delivery is very unlikely (¢ small), bidder 3 has a strong incentive to enter and
outbid budget-constrained bidders. Then the pure-strategy equilibrium from Proposition 5.2 cannot
exist.

Proposition 5.3 (No such pure equilibrium for low ¢). If ¢ € (0,q(v)), there is no Bayes—Nash
equilibrium in which B1(c1) = c¢1 and Ba(c2) = ca2 almost surely.

Proof. See Appendix A.7. O

Remark 5.4 (Low-q equilibria). For ¢ < ¢(vg), equilibria exist but may involve mixing and partial
participation. Closed-form expressions depend on the distributional assumptions.

Accordingly, our consumer-surplus comparison below uses an equilibrium-class upper bound
rather than a full characterization of low-¢ equilibria.

13



5.3 When does the consumer-surplus jump arise?

Having established when exit-by-risk occurs, we now ask when this participation shift translates
into a consumer-surplus gain.

It is a generic consequence of two ingredients: budget—valuation mismatch and differential
sensitivity to wasted sunk costs.

Figure 3a provides a simple regime map for the canonical instance, summarizing (i) when the
exit-by-risk region is nonempty (Proposition 5.2) and (ii) when our bound-based comparison delivers
a sufficient condition for an upward jump (Proposition 5.10) versus a sufficient condition under
which the same bound comparison does not certify an upward jump (Corollary 5.12). To keep the
picture focused on the budget-binding screening regime analyzed in this section, the map plots only
(va,vr) € [1,4] x [1,4]. Values below 1 are omitted because budget-constrained bids need not be
budget-binding in that range, so the canonical screening comparison becomes sensitive to additional

equilibrium cases.

1= 7
Uﬁﬁ’:};d Exit-by-risk et
: (jump not 7
el certified) .
(suff.) y’
4
7’
7
,/
3 . 2
.~ 11/9 freerrvnsrenmnmrnnneainennen, Jump at ¢* =1/3
Solid: jump-certification *«— 7/6 :
e threshold (vy = 2vy) TS
) . S~ exit-by-risk equilibrium
. S~
. ’ = RS <
y’ Dashed: exit interval 171 /9 L
2 . nonempty (v, = vy + %) 4 O Dissipative low-q upper; bound
No exit-by-risk
region
1 ! | 0 : 1
1 2 3 4 0 1/3 2/3
vy q
(a) Canonical-instance regime map. (b) Benchmark surplus jump.

Figure 3: Screening via non-delivery risk. Panel (a) plots a canonical-instance regime map over
(vg,vr) € [1,4)% (budget-binding window). The dashed boundary indicates when the exit-by-risk
interval [g(vpr), ¢(vr)) is nonempty. The solid boundary gives a conservative sufficient condition that
certifies an upward consumer-surplus jump at ¢* = g(vg): dark shading marks the certified-jump
region, while light shading marks parameter values where the exit-by-risk interval is nonempty but
the bound comparison does not certify an upward jump (it may still occur). Panel (b) plots the
consumer surplus in the exit-by-risk equilibrium (solid) together with the dissipative low-q upper
bound from Lemma 5.9 (dashed) in the benchmark calibration (v, vy) = (3,7/6). The vertical gap
at ¢* = 1/3 is the upward jump certified by the bound comparison in Proposition 5.10; consumer

surplus then declines linearly over [1/3,2/3) within the exit-by-risk region. (see Example 5.13).
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Panel (a) separates feasibility of exit-by-risk (dashed boundary) from our conservative certification
of an upward jump (solid boundary). The jump is most likely when the type distribution features
participants with high budgets but low valuations (“deep pockets”) coexisting with participants
with high valuations but tight budgets. Equivalently, budgets need not be positively correlated with
willingness to pay. Such patterns can arise from negative valuation—income correlation, heterogeneity
in liquidity constraints, or mixture populations with different tails.

Let ¢* be the smallest non-delivery probability at which high-budget/low-valuation types exit
while high-valuation budget-constrained types remain active. At ¢*, the deep-pocket type is
indifferent between entering and exiting, so her contribution to consumer surplus is (approximately)
continuous. A positive jump can therefore be driven by an increase in the budget-constrained
types’ equilibrium utilities when the deep-pocket type exits. In the canonical instance, a sufficient
condition is that consumer surplus in the exit region at ¢* exceeds an upper bound on consumer
surplus below ¢*.

We make this logic explicit in the benchmark calibration in Proposition 5.10. Propositions 5.5
and 5.6 show that the key constants in the exit cutoff and in the exit-region consumer-surplus
formula are not artifacts of a particular calibration: they generalize in simple ways to (i) more
budget-constrained high-valuation bidders and (ii) other budget distributions.

Proposition 5.5 (More budget-constrained high-valuation bidders (K-generalization)). Consider
the variant with K > 2 budget-constrained high-valuation bidders with i.i.d. budgets Unif[0, 1] who
bid their budgets in the subgame where the deep-pocket bidder exits. Then for any bid B € [0, 1], the
deep-pocket bidder’s expected utility against these rivals is

Uin(8) = (1= @) (v 8% + 7857 = 5.

which is strictly convex on [0,1]. In particular, his expected utility from bidding 1 is
Un(1) = (1-q)(vmr + &) — 1.

so his best response is an endpoint B € {0,1}. Hence the exit threshold generalizes to

1
o+ 1/(K+1)

QK(UH) =1

In particular, the constant 1/3 in (6) corresponds to K = 2 and arises from an order statistic rather
than from a knife-edge calibration.

Proof. See Appendix A.8. O

Proposition 5.6 (Robustness to the budget distribution (moment form)). Suppose bidders 1 and
2 have i.i.d. budgets c1,co ~ G on [0,1] and (for the relevant q range) bid 5; = ¢; whenever they
participate. Then in the exit-by-risk region consumer surplus becomes

CS(q) = (1 = q)vr — (- Eler + ca] + (1 - g) - 2E[min{er, 5}]),

which is affine in q and depends on G only through the moments Elc; + co| and E[min{ci, co}].
Hence the jump mechanism does not rely on uniform budgets; uniformity is used only to obtain
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closed forms for the cutoffs and the illustration.

Proof. See Appendix A.9. O

5.4 Consumer surplus and a jump at the exit threshold

Let CS(q) denote expected consumer surplus, defined as the expected sum of bidders’ utilities (hence
net of payments, and including negative sunk payments), as a function of g.
In the exit-by-risk region ¢ € [q(vy),q(vr)), only bidders 1 and 2 participate and bid their

budgets. Conditional on a realized budget profile (¢, ¢2),

e in the non-delivery state, the total payment is ¢; + co;
o in the delivery state, the winner receives value vy, and the total payment is 2 min{c, co}.

Taking expectations over ¢1,ca ~ Unif|0, 1] yields a simple affine expression:

CS(q) = (1= q)vr — (q-Eler + o] + (1 — ¢) - 2E[min{er, cr}])

=(-quvr — (3+3%4),  a<lavn),a(vr)). (7)

In particular, within the exit-by-risk region, consumer surplus is strictly decreasing in q.

What matters for non-monotonicity is that the identity of active bidders can change discontinu-
ously at ¢ = gq(vy). As g crosses this threshold from below, the deep-pocket /low-valuation bidder
exits, so the good is allocated (when delivered) to a high-valuation bidder, and the deep-pocket
bidder’s sunk payments disappear. This can generate an upward jump in consumer surplus.

Because equilibria need not be unique for ¢ < ¢*, we study whether this participation shift
yields an upward discontinuity at ¢* = g(vy) using an equilibrium-class upper bound, rather than
claiming a universal consumer-surplus ordering across all low-q equilibria.

Remark 5.7 (Where can dissipative low-¢ equilibria matter?). In the uniform-budget canonical
instance, the exit-by-risk equilibrium from Proposition 5.2 has bidder 3 inactive and bidders 1 and 2
playing the two-player subgame. For any ¢ < ¢(vr), a budget-constrained type with budget ¢ > 0
obtains strictly positive expected utility when bidding S = ¢ against an opponent who bids her
budget:

ur(c) = (1 —¢q) (c(vL 1)+ %02) —ge=c((1 - q)ur — 1) + 5%¢* > 0,

where the last inequality uses ¢ < ¢(vy) = 1—1/vr. Hence the exit-by-risk equilibrium is necessarily
non-dissipative. The dissipative benchmark introduced below is therefore meant to capture an
extreme low-risk regime ¢ < ¢* in which bidder 3 remains active and competitive pressure can in
principle drive the constrained bidders’ surplus close to zero. We do not attempt to characterize
equilibrium selection for each ¢ < ¢*.

To obtain a clean low-¢ benchmark without solving the full equilibrium correspondence, we
introduce a conservative dissipative class.

Definition 5.8 (Dissipative low-q equilibria). Fix ¢ < ¢*. We call a Bayes—Nash equilibrium
dissipative if bidders 1 and 2 obtain zero expected utility. This is a conservative benchmark
capturing the extreme case of full rent dissipation by the constrained bidders when bidder 3 remains
active.
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Lemma 5.9 (Low-q upper bound in dissipative equilibria). Fiz any parameters (vp,vg) and any
q < ¢*. In any dissipative equilibrium (Definition 5.8), consumer surplus satisfies

CS(q) < (1 —q)vn.

Intuitively, dissipative means the constrained bidders contribute no utility, so consumer surplus
can be bounded by the deep-pocket bidder’s delivery value, at most (1 — q)vy.
For convenience, define the dissipative benchmark upper bound by

@diss(q) = (1 —q)vg.

—=diss

Lemma 5.9 shows that CS(q) < CS 7 (¢) in any dissipative equilibrium.
Proof. See Appendix A.10. O

Proposition 5.10 (A sufficient condition for an upward consumer-surplus jump). Suppose vy > 2/3
so that ¢* = q(vg) € (0,1). In the canonical instance with c1,co ~ Unif[0,1], if

vy, > QUH, (8)

then the exit-by-risk equilibrium at q = q* delivers consumer surplus strictly above the low-q upper
bound from Lemma 5.9. More precisely, in the exit-by-risk equilibrium at q*,

v, — 20y

CS(Q)_(l_Q)UH > m

> 0,

—=diss

and therefore CS(q*) > CS™ 7 (¢*). In particular, for any sequence of dissipative equilibria for q¢ < ¢*,
we have CS(g*) > limsup 4.« CS(q).

Proof. See Appendix A.11. O

Remark 5.11 (A slackened low-¢ upper bound). Let CS(q) denote consumer surplus in any
equilibrium at ¢ < ¢*, and define the aggregate utility of the constrained bidders by R(q) =
Ui(q) + Ua(q). Since bidder 3 obtains value only upon delivery and payments are nonnegative in
every state, we always have Us(q) < (1 — ¢)vg. Hence, in any equilibrium,

CS(¢q) = R(q) + Us(q) < (1 —q)vu + R(q)-

Consequently, Proposition 5.10 implies an upward jump at ¢* for any sequence of low-g equilibria
satisfying

) vr, — 2vg
limsup R(q) < ——.
atq* @ v +1/3

Corollary 5.12 (A sufficient condition for no upward jump in our comparison). In the canonical
instance with c1,co ~ Unif|0, 1], if vy, < 2up then

CS(q") < (1 —q")vm in the exit-by-risk equilibrium at ¢* = q(vy).
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Consequently, the exit-by-risk equilibrium at q¢* cannot yield consumer surplus strictly above the
low-q upper bound from Lemma 5.9; in particular, the bound-based argument for an upward jump

fails.
Proof. See Appendix A.12. O

Example 5.13 (Benchmark calibration). Take (vr,vy) = (3,7/6). Then ¢* = q(vg) = 1/3 and
the exit-by-risk region is [1/3,2/3). In that region, (7) yields CS(q) = % - 1—30q, so CS(1/3) =11/9.
Moreover, vy, > 2vy holds, and the bound from Lemma 5.9 implies lim supgy4 /3 CS(q) < (1-1/3)vg =
7/9 for dissipative low-q equilibria. Thus consumer surplus jumps upward by at least 4/9 at ¢ = 1/3
relative to the dissipative low-q benchmark.

5.5 A general screening result (order-statistic form)

The preceding results can be summarized in a compact “general result” that isolates the few statistics
that drive both the exit cutoff and the consumer-surplus jump. We emphasize that this result is a
conditional summary: it does not attempt to characterize equilibria for arbitrary budget primitives,
but shows that whenever an exit-by-risk region with budget-bidding exists, the relevant payoff
objects depend on the (induced) budget distribution only through simple order-statistic moments.

Budget constraints can affect not only bids but also participation: some high-valuation bidders
may optimally abstain and bid 0. Accordingly, in Proposition 5.14 we interpret G as the distribution
of effective bids in the L-subgame, allowing an atom at 0 as a reduced-form representation of
non-participation.

Appendix C records a general payoff expression for the L-only subgame and gives a simple
sufficient condition under which best responses are bang—bang (bid either 0 or the full budget).
Under our strict reserve convention (Section 3), bidding 0 is true non-entry and yields zero payoff.
For active positive-budget L-types in continuous bid spaces, the symmetric L-subgame therefore
places no atom at 0 when the all-zero event has positive probability (Remark C.2). In particular,
for K =2 and ¢ < q(vr) (Lemma 5.1), all L-types bid their budgets.

Proposition 5.14 (Screening via non-delivery risk: an order-statistic summary). Consider WOA(0)
in the aware regime § = q. Suppose there are K > 2 “high-valuation” bidders (the L-group) with
common valuation vy, and i.i.d. budgets c1,...,cx ~ G supported on [0,1] (allowing an atom at
0), and one “deep-pocket” bidder H with value vy and an unbounded budget. Assume there is a
g-interval I on which (i) when H bids 0, the L-bidders form a Bayes—Nash equilibrium by bidding
their budgets, B; = ¢;, and (i) against budget-bidding rivals, bidder H'’s best response is an endpoint
By € {O, 1}.

Let C(qy < -+ < Cgy denote the order statistics of (c1,...,ck) and define the three summary
statistics
K
Hsum = E[Z Ci], pmax = E[C(r)], figap = E[C(iy — Cli—1))-
i=1

Here pmax captures the typical strongest budget the deep-pocket bidder must beat (and hence the
expected payment upon delivery), while figa, captures the expected winning margin that governs
second-price/all-pay dissipation. The term pgum summarizes the expected sunk payments in the
non-delivery state.
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(i) (Exit cutoff). Bidder H’s expected utility from bidding 1 against budget-bidding L-bidders is

Un(1) = (1-q) (UH - Mmax) -9

If v > pmax and q¢ > q* where
" VH — Mmax

1+UH_Mmax,

q

then Ug (1) < 0, and under the endpoint-best-response property H exits (bids 0). Hence an
exit-by-risk equilibrium exists for all q € [q*,I).

(ii) (Consumer surplus in the exit equilibrium). In the exit-by-risk equilibrium, exrpected
consumer surplus is affine in q and admits the order-statistic form

CSexit(Q) = (1 - Q)UL — Msum + (1 - Q)Mgap-

(iii) (A jump condition relative to dissipative low-q equilibria). Fir q < q* and consider any
dissipative equilibrium in the sense of Definition 5.8. Then CS(q) < (1 — q)vy. Consequently,
consumer surplus jumps upward at ¢ = ¢* (relative to the dissipative upper bound) whenever

CSexit(q*) > (1 - q*)UH — v, — Vg + Ugap > Nsum(l +vg — ,U/max)‘

If the inequality fails (weakly), then CSexit(q*) does not exceed the dissipative bound, so the
bound-based argument for an upward jump cannot be invoked.

Specializing to K = 2 and G = Unif|0, 1] recovers pisum = 1, ftmax = 2/3, and pgap = 1/3,
matching the canonical cutoffs and the linear surplus formula above.
Proof. See Appendix A.13.

6 Discussion

6.1 Two Channels of Trust Deficits

This paper highlights a tension in markets where participants incur sunk costs before allocation and
delivery is imperfect. In the naive regime (¢ = 0), a trust deficit creates a supply-side deviation
channel: formats that collect sunk fees from many participants become particularly vulnerable when
users underestimate non-delivery risk. In the aware regime (¢ = ¢), the same primitive can generate
a demand-side screening channel: when budgets and valuations are misaligned, non-delivery risk
changes who enters and can improve assignment. Importantly, our analysis is not a prescription
to introduce arbitrary non-delivery risk. Instead, it clarifies (i) when non-delivery risk is harmful
because it opens a deviation channel, and (ii) when “effective frictions” can improve assignment by
inducing self-selection among heterogeneous participants.

6.2 Design and Policy Implications

Section 4 suggests a diagnostic for platform fragility. When fees are largely sunk and reserve prices
are pushed down, perceived competition can be sustained even when the platform cannot credibly
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commit to delivery. This points to consumer-protection levers that target the deviation channel,
especially when users systematically underweight non-delivery risk. Examples include:

o Verifiable reliability disclosure: publish and audit non-delivery/cancellation rates and
complaint-resolution statistics.

¢ Commitment devices: escrow, chargeback-compatible payment rails, or refund rules contin-
gent on delivery.

e Design choices that reduce post-bid deviation: limiting discretionary cancellation and
clarifying verification criteria ex ante.

Section 5 offers a complementary lesson for legitimate allocation problems with budget con-
straints. When wealthy but low-valuation agents crowd out budget-constrained high-valuation
agents, screening can be valuable. Crucially, the screening logic does not require opaque non-delivery:
the same self-selection force can be implemented with transparent and enforceable frictions, so that
“screening” need not come at the expense of trust.

The right choice depends on what correlates least with budgets and most with the designer’s
notion of “commitment” or “intrinsic valuation.” Examples include:

o Refundable deposits / liquidity locks: participants post a deposit that is returned upon
delivery; the opportunity cost of locked funds can deter low-valuation arbitrage.

e Non-transferability and anti-resale design: identity checks at redemption, non-transferable
access tokens, or mechanisms that reduce secondary-market profits.

e Ordeal mechanisms that are publicly specified: waiting times or queues with transparent
rules (rather than hidden non-delivery risk), possibly combined with verification.

o Proof-of-personhood / anti-bot frictions: rate limits, verification steps, or KYC-type
checks that disproportionately burden automated/speculative entry.

The key design question is which friction screens opportunistic participation without deterring
high-valuation users who may be budget constrained, and how the platform can implement that
friction while maintaining credible delivery commitments.

6.3 Empirical Predictions

Our theory yields several testable implications. First, in environments with weak trust and user
naiveté, fee-driven formats should feature very low posted prices and revenue concentrated in sunk
fees, alongside heightened sensitivity to perceived rivalry (e.g., platform UT features that emphasize
a small number of “remaining” rivals). Second, in settings with budget—valuation mismatch, changes
in perceived non-delivery risk should induce composition shifts in participation: a sufficiently high
non-delivery probability (or a transparent substitute friction) can trigger exit by deep-pocket,
low-valuation agents, leading to a discrete increase in the winning prospects of high-valuation agents
conditional on delivery. Third, the two-channel perspective predicts a potentially non-monotone
relationship between measured non-delivery risk and consumer outcomes across market maturity:
reducing non-delivery risk is unambiguously beneficial when it closes the belief wedge, but can
remove a screening force when the main distortion is budget-driven misallocation.
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6.4 Limitations and Extensions

Our aware-regime analysis relies on a stylized form of budget—valuation mismatch, and the exit-
by-risk mechanism may not arise when budgets and valuations are positively correlated. On the
strategic side, we take beliefs as exogenous (¢ € {0,¢}) and model the two-player endgame in
Section 4 in reduced form. Natural extensions include learning about non-delivery risk, costly or
bounded manipulation, richer bidder populations, and welfare benchmarks that incorporate platform
surplus.

A further limitation is equilibrium multiplicity outside the exit-by-risk region. For low non-
delivery risk (small ¢), entry incentives can sustain multiple participation patterns (including mixing
or partial participation), and we do not characterize the full set of low-q equilibria or provide a
general selection theory. Accordingly, our “jump” and non-monotone comparative-static claims in
non-delivery risk are stated relative to a conservative benchmark class of low-¢q outcomes that isolates
rent dissipation and the screening force; different equilibrium selection in practice could change
the magnitude—and potentially the sign—of the welfare comparisons. Developing equilibrium-
selection foundations (e.g., via learning, dynamics, perturbations, or institutional rules that pin
down participation) is an important direction for future work.

Our welfare comparisons focus on consumer surplus (the sum of bidders’ utilities), treating
sunk payments as losses to participants. In applications, these sunk costs may be transfers (e.g.,
membership fees) or real resource costs (e.g., time spent waiting), so mapping our results to total
surplus requires application-specific accounting. A unified treatment of transfers versus deadweight
frictions—and the resulting design implications for non-delivery risk and screening—is another
important direction for future work.

6.5 Broader Applicability

Beyond auctions, the insight that “risk screens for valuation” applies to decentralized systems and
queueing mechanisms. In blockchain protocols, for instance, the cost associated with potential
transaction failure functions as a sunk cost that prioritizes urgent transactions. In public service
allocation, “ordeal” mechanisms such as waiting times can improve targeting by inducing self-
selection among recipients. More broadly, our framework provides a lens to analyze how non-delivery
risk, explicit screening frictions, and equilibrium selection jointly shape allocative efficiency in
modern digital ecosystems.
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A Proofs omitted from the main text

A.1 Proof of Theorem 4.2

Proof. Let M be any admissible efficient auction (Definition 4.1) with equilibrium bidding function
B().

Step 1: an upper bound from revenue equivalence. Fix bidder 2’s value at the top type
ve = 1. Under the symmetric equilibrium with a strictly increasing bidding function, the top type
bids highest, so bidder 2 wins the good for every realization of v; (ties have probability zero). Let
Bs(v1) denote bidder 2’s equilibrium payment in this event.
By Lemma 4.3,
By, [B2(v1)] = E[v]. (9)

Step 2: bound deviation revenue by the highest type’s payment. Under unlimited
manipulation, the seller can ensure bidder 1 never wins by making the opponent effectively “maximal.”
By definition,

ERUS(M) = Ey, [b1(B8(v1), B(1))].
In every realized bid profile in which bidder 2 is maximal and thus wins, the “no overcharging losers”
condition in Definition 4.1(2) implies

b1(B(v1), B(1)) < ba(B(v1), B(1)) = Ba(v1).

Taking expectations over v; and applying (9) yields

ERUS(M) < Ey, [Bs(v1)] = E[v].

Step 3: the bound is tight for the war-of-attrition (penny-auction analogue) format.
Under WOA(0) with two bidders, the winner pays the losing bid and the loser pays her own bid.
Hence in every realized profile, the winner and loser make the same payment (equal to the losing
bid). Therefore, when bidder 2 is maximal, bidder 1’s payment equals bidder 2’s payment pointwise:

b MO (30, 5(1) = b MO (B(00), 5(1)).

Consequently,
ERUS(WOA(0)) = E,, [by “** (8(v1), B(1))]

Applying Lemma 4.3 to WOA(0) (which is efficient and satisfies the boundary condition) gives
ERUS(WOA(0)) = E[v], and the upper bound is attained.

Combining Steps 1-3 shows that WOA(0) maximizes ERUS among admissible efficient auctions
and achieves E[v]. O

A.2 Proof of Lemma 4.3

Proof. Under the assumption that the equilibrium bidding function is strictly increasing (and
continuity of F'), bids are strictly ordered by values, so a bidder with value v wins if and only if
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the opponent’s value is below v (ties occur with probability zero). Hence the allocation probability
is x(v) = F(v). The standard envelope/payment-identity argument implies U’ (v) = x(v) = F(v)
and, with U(0) = 0, U(v) = [, F(t)dt. Expected payment is therefore p(v) = vz(v) — U(v) =
vF(v) — [y F(t)dt. Evaluating at v =1 gives p(1) =1 — fol F(t)dt = fol(l — F(t)dt =E[p]. O

A.3 Proof of Lemma 4.4

Proof. We outline the standard derivation (war-of-attrition / second-price all-pay with a reserve).
Fix an increasing opponent strategy () and consider a type v who submits a bid b > e. Let V
denote the opponent’s value and B = 3(V') her bid. Conditional on B < b, bidder 1 wins, receives
value v, and pays max{e, B} (the larger of the reserve and the highest losing bid). Conditional on
B > b, bidder 1 loses and pays her own bid b.
Thus expected utility from bid b > ¢ is

U(v,b) =P(B <b)-v — Elmax{e, B} - 1{B <b}] — b-P(B > b).

(In ties we can assign either bidder as winner; this does not affect the argument under continuous
types.)

A note on the reserve term. For bids b > ¢, the difference between the expression above and
the “WOA(0)-style” formula that replaces max{e, B} by B is a constant in v and b (it depends only
on the opponent’s bid distribution). Therefore the envelope condition and the differential equation
characterization below are unchanged.

Let G be the CDF of bids induced by 3(-). Since 3 is increasing, G(b) = F(371(b)) and B < b
is equivalent to V < 371(b).

A standard envelope argument (equivalently, indifference of types along the support under
monotone strategies) implies that in a symmetric equilibrium, the equilibrium utility U(v) =
U(v, B(v)) satisfies

U'(v) =PV <v) = F(v), (10)

with boundary condition U(v*) = 0 at the cutoff type who is indifferent between entering (b = ™)
and not entering (b = 0). Solving (10) gives

Uv) = / F(t)dt for v > v*.
On the other hand, substituting b = 5(v) into the payoff formula and using symmetry yields
Uv) = F(v) - v — / B(t)dF(t) — B(v)-(1=F(v)) — C, C=E|(e—B)-1{B < £}].
0

The constant C' does not depend on v. Differentiating both sides w.r.t. v and using U’(v) = F(v)
gives a first-order linear differential equation for (:

F(v) = F(v) +vf(v) = Bv) f(v) = B'(v)(1 = F(v)) + B(v) f(v),
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where the —3(v) f(v) and +8(v) f(v) terms cancel, yielding

oy vf(w)
5 ('U) F('U)
Integrating from v* to v and using B(v*) = ¢ yields (4).

Finally, cutoff indifference U (v*) = 0 implies v*F(v*) — ¢ = 0, which is (3). O

A.4 Proof of Proposition 4.6
We compare the ERUS-optimal cutoff v* with the standard revenue-optimal cutoff.

Lemma A.1 (ERUS-optimal cutoff condition). Suppose F' is strictly monotone (Definition 4.5).
The cutoff v* that mazimizes ERUS(WOA(¢)) is uniquely characterized by

1—F(v*) =20v"f(v%). (11)

Proof. By Lemma 4.4, the equilibrium in WOA (e) is parameterized by the cutoff v* via ¢ = v*F(v*).
Under unlimited manipulation, bidder 1 pays her bid whenever she enters, so

ERUS(WOA (e / B(v) dF (v

Using (4) and Fubini’s theorem,

ERUS — /1 <s~|— / 1t_f;f)(t)dt> dF (v)
_ - F(v*))eJr/Ui (/ 1t_f§j)(t)dt> () dv
=(1-F@"))e+ /vl E(ﬁ%(l — F(t))dt
— (1= F"))e + /1 LE(8) dt.

Substituting e = v*F(v*) gives

ERUS(v) = (1 — F(v"))o*F(v*) + /1 Lf (1) dt

Differentiating w.r.t. v* yields

%ERUS =F(w")(1—-F(")) - 20"F(v") f(v*) = F(v*)(l — F(v*) — 2v*f(v*)>.

For any interior cutoff v* € (0,1) we have F(v*) > 0, so the first-order condition is

1 - F(v") = 20" f(v"),

which is exactly (11).
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Strict monotonicity of g(v) = 1 — F(v) — 2vf(v) implies g crosses zero at most once, so the
solution is unique. ]

Proof of Proposition 4.6. Let vgrys solve the ERUS-optimal cutoff condition (11), i.e.,

g(vgrus) = 1 — F(vgrus) — 2verus f(veErUs) = 0.

Let rgr denote the standard revenue-optimal reserve (cutoff) in a truthful efficient auction, which
solves the Myerson condition

1-— F(TER) = rERfO"ER)- (12)

Evaluate g at rggr:

g(rer) =1 — F(rgr) — 2rgrf(rEr) = "Erf(rER) — 2rERf(TER) = —TERS(TER) < 0.

Under strict monotonicity (Definition 4.5), g is strictly decreasing and hence crosses zero at most
once. Since g(vgryus) = 0 and g(rgr) < 0, it follows that vgryus < rEgr.

Finally, in WOA(g) the reserve parameter equals the bid threshold and satisfies e = vF'(v) at
the cutoff type v (equation (3)). Therefore

eERUS = VERUSF (VERUS) and €ER = TERF(TER)

(cf. (5) in the main text). Since vF'(v) is increasing on [0, 1], vgrus < TR implies egrus < €gr. O

A.5 Proof of Lemma 5.1

Proof. Fix bidder 3’s bid 3 = 0 and a non-delivery probability ¢ < q(vz) = 1 — 1/vr. Consider
bidder 1 with budget ¢; and value vy, facing bidder 2 who bids 33 = ¢o with ¢o ~ Unif|0, 1].

If bidder 1 bids 1 € [0, c1], then in the delivery state she wins iff co < 1. In that event she
obtains value vy, and pays c2 (the highest losing bid). If she loses in the delivery state, she pays her
own bid S1. In the non-delivery state she also pays 1.

Thus her expected payoff is

Ur(B1) = (1—q) </0ﬁ1(UL —c2)dea — P /ﬁl dCz) — g5

52
=(1-q) <UL/81 — ?1 — fi(1 - /31)> —qp1

=198 4 (- g~ 1)1

The derivative is U] (f1) = (1 — )1 + (1 — q)vr, — 1. Under ¢ < 1 —1/vy, we have (1 —q)vr, —1 > 0,
hence Ui (1) > 0 for all 51 € [0, 1]. Therefore U; is increasing on [0, ¢1] and bidder 1’s best response
is 61 = ¢1. By symmetry, bidder 2’s best response is 52 = ca. O

A.6 Proof of Proposition 5.2

Proof. Fix q € [q(vn),q(vL)).
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Step 1: bidders 1 and 2 best respond given g3 = 0. By Lemma 5.1, if bidder 3 bids 83 =0
and ¢ < ¢(vr), then 51 = ¢; and P2 = ¢y are mutual best responses for bidders 1 and 2.

Step 2: bidder 3 best responds given (51 = ¢; and (2 = co. Now suppose bidders 1 and 2
bid 51 = ¢1 and (B2 = co with ¢1, ca ~ Unif|0, 1] independent, and consider bidder 3 with value vg.
Since opponents never bid above 1, bidding above 1 is weakly dominated for bidder 3 (it weakly
increases delivery-state winning probability but strictly increases the non-delivery payment), so
restrict attention to 83 € [0, 1].

If bidder 3 bids 83 € [0,1], then in the delivery state he wins iff ¢; < 83 and ¢o < f3, which
occurs with probability 32. Thus his expected value term is (1 — ¢) vy 33.

In the delivery state, conditional on winning, he pays the highest losing bid M = max{cy, ca}.
Since M has density 2z on [0, 1] under i.i.d. uniforms, his expected payment from winning equals

B3 2(1 —
(1 —q)/ x - 2xdr = Mﬁg’
0 3
If he loses in the delivery state (probability (1 — ¢)(1 — 33)), he pays his own bid B3. In the
non-delivery state (probability ¢), he also pays 3. Therefore his expected payoff is
2(1-9q)

Us(3a) = (1= q) v} — (225283 + (1= )1 = ) + a5

=(1-q) (;Bg + UH5§> — Bs.

The second derivative is U¥ (83) = 2(1 — q)(83 + vg) > 0, so Us is strictly convex on [0,1]. Hence
the maximum of Us over [0, 1] is attained at an endpoint: either 3 = 0 or 83 = 1. Since U3(0) = 0,
bidder 3’s best response is #3 = 0 iff U3(1) < 0. By (6), this holds iff ¢ > ¢(vg), which is true by
assumption. Therefore bidder 3’s best response is 83 = 0.

Step 3: conclude equilibrium. Steps 1 and 2 show that the strategy profile stated in Proposi-
tion 5.2 is a Bayes—Nash equilibrium for ¢ € [g(vg), q(vr)). O

A.7 Proof of Proposition 5.3

Proof. Suppose, toward a contradiction, that ¢ € (0, ¢(vg)) and there exists a Bayes—Nash equilib-
rium with 81(c1) = ¢; and Ba(c2) = c2 almost surely.

Step 2 in the proof of Proposition 5.2 derives bidder 3’s payoff Us(/33) against opponents who
bid their budgets, and shows that Us is strictly convex on [0, 1]. Therefore any best response of
bidder 3 lies in {0, 1}. Since Us(0) = 0 and

1
Us(1) = (1 —q) (UH—|-3> -1>0 for ¢ < q(vm),
bidder 3’s unique best response is to bid 3 = 1.

Given f33 = 1, consider bidder i € {1,2} with any budget type ¢; > 0. If she follows 5;(¢;) = ¢,
she never wins (ties have probability zero) and pays ¢; in both delivery and non-delivery states,
yielding expected utility —¢;. By deviating to bid 0, she still never wins but pays 0 in all states,
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yielding utility 0 > —¢;. Thus 5;(¢;) = ¢; is not a best response for any ¢; > 0, contradicting the
hypothesized equilibrium. ]

A.8 Proof of Proposition 5.5

Proof. Consider K > 2 budget-constrained bidders with i.i.d. budgets ci, ..., cx ~ Unif[0, 1] who
bid ; = ¢;, and a deep-pocket bidder H with value vy and bid § € [0, 1].

Let M = max{cy,...,cx}. Then P(M < ) = 8K and M has density Kz%~! on [0, 1]. In the
delivery state, bidder H wins iff M < ; in that event he receives value vy and pays M. Hence
expected value from delivery is (1 — q)vy % and expected winning payment is

B K(1—
(1-qE[M-1{M < 5} =(1- q)/ - KaB Vde = uﬁKH.
0 K+1
If bidder H loses in delivery, he pays his bid 3; if non-delivery occurs, he also pays 8. Therefore his
expected utility is

Un(9) = (1 - e — (S5 4 (1 )1 - 5)5 + 45

1 5K+1> _ 5.

:(1_Q) (UH/BK‘FM

The second derivative satisfies
U(8) = (1—q) (o K (I~ 1)F5 2 4 KF<) = (1= q) KA (o (K ~1)+5) >0 for 5 € [0,1],

so Up is convex on [0, 1] and the maximizer over [0, 1] is attained at an endpoint 8 € {0,1}. In
particular,

Un(1) = (=) (vn + 2 ) ~ 1.

which yields the exit threshold in Proposition 5.5. O

A.9 Proof of Proposition 5.6

Proof. Fix any budget distribution G on [0, 1] and suppose bidders 1 and 2 bid their budgets, §; = ¢;,
while bidder 3 bids 0. In the non-delivery state (probability ¢), no allocation occurs and total
surplus equals minus total sunk costs, i.e., —(c1 + ¢2). In the delivery state (probability 1 — ¢q), the
good is allocated to the higher-budget bidder, who receives value v;. The winner pays the losing
bid and the loser pays her own bid, so the total payment equals 2min{cy, co}. Hence delivery-state
surplus equals vy, — 2min{cy, co}.

Taking expectations yields

CS(q) = (1 —¢)E[vr — 2min{ey, o} + ¢E[—(c1 + ¢2)]
=(1-q)vr — (qIE[q + o] + (1 — q) - 2E[min{¢q, 02}]).
which is the expression stated in Proposition 5.6. 0
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A.10 Proof of Lemma 5.9

Proof. If bidders 1 and 2 obtain zero expected utility, total consumer surplus equals bidder 3’s
expected utility. Let w € {0,1} denote the non-delivery state, with Pr(w = 1) = ¢q. Bidder 3 obtains
value only when delivery occurs (w = 0), and even then his winning probability is at most one.
Moreover, payments are nonnegative in every state. Therefore bidder 3’s expected utility is bounded
by

Us < E[1{w =0} -vy] = (1 — q)vgy,

which implies the same bound for CS(q). O

A.11 Proof of Proposition 5.10

Proof. At ¢ = q(vy), the exit-by-risk equilibrium is feasible by Proposition 5.2, and consumer
surplus in that region is given by (7). Evaluating (7) at ¢ = ¢* and using 1 — ¢* = 1/(vyg + 1/3)
yields

v +1/3 1

v +1/3

By Lemma 5.9, any dissipative equilibrium for ¢ < ¢* satisfies lim sup;,+» CS(q) < (1 — ¢*)vy =

CS(g") = (1= q")vr — (3 +3¢7) =

va”l/:&. Subtracting gives

% « ’UL—QUH
— (1 — _ = =
C8(¢") — (1 =q")vm = /3’

which is strictly positive iff (8) holds. O

A.12 Proof of Corollary 5.12

Proof. Proposition 5.10 shows that CS(¢*) — (1 — ¢*)vyg = Z’;Ifl”/fé If v;, < 2vpy, this expression is

non-positive, yielding the stated inequality. O

A.13 Proof of Proposition 5.14

Proof. We prove each part of the proposition.

Part (i): Exit cutoff. Fix ¢ € I and suppose the L-bidders bid their budgets, i.e., §; = ¢; for
i€ {1,...,K}. Consider bidder H’s payoff from bidding 1. Because all budgets lie in [0, 1], bidding
above 1 is weakly dominated and bidding 1 guarantees that H is the (unique) highest bidder among
all participants in the delivery state. Let Cxy = max{c,...,cx} denote the largest budget among
the L-bidders.

If delivery occurs (probability 1 — ¢), bidder H receives value vy and pays the highest losing
bid, which equals C(x) because the L-bidders bid their budgets. Thus his delivery-state payoft is
vy — C(). If non-delivery occurs (probability ¢), no allocation occurs and every bidder pays her
own bid; in particular bidder H pays 1 and receives no value. Therefore

Ua(1) = (1 - q)E[vg — Ciry)) —a-1= (1= q)(vH — pmax) — 4,
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where pimax = E[C(x]. If vg > fimax, the equation Uy (1) = 0 has a unique solution

% UVH — Mmax

= € (0,1).
14+ v — fmax ( )

Since Up(0) = 0 and (by assumption (ii)) bidder H’s best response against budget-bidding rivals is
an endpoint Sy € {0,1}, we conclude that for any ¢ > ¢* we have Uy (1) < 0 and hence H exits
(bids 0). Combining this with assumption (i) (budget-bidding by the L-bidders is an equilibrium
when H bids 0) implies that an exit-by-risk equilibrium exists for all ¢ € I with ¢ > ¢*.

Part (ii): Consumer surplus in the exit equilibrium. Consider the exit-by-risk equilibrium
in which H bids 0 and each L-bidder bids 3; = ¢;. Let C(l) <. < C( K) denote the order statistics
of (¢1,...,¢K).

In the non-delivery state (probability ¢), no allocation occurs and each bidder pays her bid.
Hence total surplus equals minus total payments, i.e.,

K
CS=- Z C;.
i=1

In the delivery state (probability 1 — g), the highest-budget bidder (with budget C ) receives
value vr. The winner pays the highest losing bid C(x_1) and each of the K — 1 losers pays her own
bid. Thus total payment in delivery equals

K-1 K
Cuc-n+ > Coy=> & = Cuey + Clc,
j=1 i=1
so delivery-state consumer surplus is
K K
v, — (ch — C(K) + C(K—l)) :UL_ZCi+(C(K)_C(K—1)>~
=1 =1

Taking expectations and using the definitions fisum = E[> 5 ¢;] and pgap = E[C (k) — Cx—1)] gives
CSexit(Q) - (1 - Q) ('UL — Msum + Hgap) + Q(_:usum) = (1 - Q)UL — Usum + (1 - Q)Mgap~

Part (iii): Jump condition relative to dissipative low-¢ equilibria. Fix any ¢ < ¢* and
consider a dissipative equilibrium in the sense of Definition 5.8. Lemma 5.9 implies the upper bound
CS(q) < (1 = q)vn.

Next, evaluate the exit-equilibrium surplus at ¢ = ¢*. Since ¢* = %, we have
1
l—gt=— 13
14+ vy — pmax ( )
Therefore, using Part (ii),
* * k 1
CSexit(q ) > (1 —q )UH < (1 —q )('UL — Vg +,UJgap) > fsum <= VUL — VH + Ugap > Hsum W
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and substituting (13) yields

Csexit(q*) > (1 - q*)vH <<~ v —VH + Hgap > ,usum(1 +vg — Mmax),

which is the stated condition. If the inequality fails weakly, then CSeyxit(¢*) < (1 — ¢*)vg, so the
exit equilibrium does not exceed the dissipative upper bound at the cutoff. ]

B A robustness extension for Section 4

This short appendix note shows that the mechanism ranking in Theorem 4.2 is unchanged when
seller-side cancellation is probabilistic or costly.

Proposition B.1 (Probabilistic or costly cancellation). Fiz a benchmark mechanism M and suppose
bidders remain naive about cancellation (they bid as in the perceived game with ¢ = 0). After bids
are submitted, the platform can cancel the auction (trigger non-delivery) with probability A € [0, 1],
chosen ex ante, and incurs a cost k(). Conditional on cancellation, the platform can implement the
benchmark manipulation from (1). Let R(M) denote the platform’s expected revenue in the delivery
state under honest play of the advertised mechanism M. Then the platform’s total expected payoff
equals (1 — \)R(M) + X - ERUS(M) — k(). Since R(M) is the same across admissible efficient
auctions by revenue equivalence, the mechanism ranking for any fixed X and any cost function k
is governed by ERUS(M). Accordingly, holding fized the delivery-state revenue, the platform’s net
payoff from cancellation states equals

A-ERUS(M) — k(\).

Hence WOA(0) remains optimal among admissible efficient auctions.

Proof. Because bidders ignore cancellation, the equilibrium bidding function in the advertised
mechanism M is independent of A. Conditional on cancellation, the payment collected from the
targeted bidder coincides with the payment in (1); thus expected cancellation revenue is \AERUS(M).
Subtracting the cost k() yields the stated expression. For any fixed A, the term —k()\) does not
depend on the mechanism, so the mechanism ranking is determined by ERUS(M). The final claim
follows from Theorem 4.2. O

C Supplementary results: endogenous participation in the L-
subgame

This appendix note formalizes a convenient reduced form for the “L-only” subgame (when the
deep-pocket bidder exits). In many sunk-cost contests, a high-value bidder with a very small budget
may prefer to abstain (bid zero) rather than incur a payment that is likely to be wasted. Our main
text abstracts from the population-to-participant selection map by treating the induced distribution
of effective bids among active L-bidders as primitive. The results below justify this practice by
providing a general payoff expression and a simple sufficient condition for bang—bang best responses
(bid either 0 or the full budget).

We follow Section 3 in adopting a strict reserve rule: bids at the reserve are treated as non-entry.
In particular, in WOA(0) bidding 0 is inactive, yields zero payoff, and cannot win.
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Lemma C.1 (Bang-bang best responses under convexity). Fiz K > 2 and consider the L-subgame
in WOA(0) under the aware regime § = q. Fix a CDF F on [0,1] that describes the distribution
of a rival’s active bid and satisfies F'(0) = 0. For a bidder with value vy, and budget c, define for
b € [0,c] the interim payoff

u(b) = b+ (1 q) (v FB) ' + /0 bF(a:)K_l d). (14)

If the function b — F(b)5~1 is convex on [0,1], then u(-) is convex on [0,1]. Consequently, for
every budget type c, there exists an optimal bid in {0, c}.

Proof. Let h(b) = F(b)X~1. By assumption, h is convex and nondecreasing on [0, 1] (since F is
a CDF). The map b — fé) h(z) dx is therefore convex as well. Equation (14) shows that u(b) is
the sum of a linear function (—b) and a positive multiple of convex functions, hence u is convex.
Maximizing a convex function over a compact interval [0, ¢] attains its maximum at an endpoint, so
an optimal bid exists in {0, c}. O

Remark C.2 (Scope of the no-atom-at-0 claim). The restriction F'(0) = 0 in Lemma C.1 is intended
for active positive-budget L-types in the symmetric L-subgame under the strict-reserve convention.
If such types placed an atom at 0 and the all-zero event had positive probability, then deviating
from 0 to a sufficiently small active bid b > 0 would win on that event while paying an arbitrarily
small expected cost. Hence, in continuous bid spaces, no equilibrium of that L-subgame can assign
positive mass at 0 to active positive-budget types when the all-zero event has positive probability.
This is not a global prohibition on every player bidding 0 in the full game; in particular, it does not
rule out bidder 3’s pure exit (3 = 0) in Proposition 5.2.
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