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Abstract

Many high-stakes matching platforms still rely on human intermediaries, resulting in inconsistent
decisions, high operating costs, and a bias toward high-probability matches. This paper replaces such
heuristics with data-driven exposure design. 1 develop a two-sided sequential-search model in which
the platform controls pairwise meeting propensities. I show that maximizing short-run flow surplus is
dynamically inefficient: prioritizing top pairs too early causes dynamic cannibalization, which reduces
future search options for remaining users. As an alternative objective for expanding and sustaining
the user base, I consider long-run user value, defined as the aggregate continuation value of search. I
characterize and compute the optimal exposure rule under this objective via entropic regularization
and Bregman—Dykstra projections. In a doctor—spot-job platform, counterfactual simulations that
replace current policies with the computed optimum reveal that existing rules over-penalize distance.
Welfare gains arise primarily from correcting under-exposure of viable matches and expanding users’

effective option sets, not from mere reshuffling within a fixed exposure volume.

JEL Classification Codes: D47; D83; C78; J64; C61; C63; L86.

Keywords: two-sided platforms; sequential search; market design; matching; recommendation sys-

tems; doctor—job matching.

1 Introduction

Central to the operation of online marketplaces is the exposure rule—the mechanism determining which
users are presented to potential partners and how frequently. While algorithmic recommendation is stand-
ard in many sectors, high-stakes marketplaces often rely on human intermediaries whose dependence on
tacit knowledge creates operational bottlenecks. This reliance leads to inconsistent performance and high
training costs, while a tendency to recommend only high-probability candidates concentrates exposure
on a subset of participants, alienating the broader user base and weakening the platform’s competitive
position. To address these inefficiencies, platforms are increasingly transitioning from intuition-based
heuristics to data-driven ezposure design aimed at standardizing processes and retaining users. Mo-
tivated by these operational imperatives, this paper asks: How should a platform design exposure not

merely to maximize immediate match rates, but to optimize the long-run value of its user base?
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I formalize this problem in a two-sided sequential-search framework ‘a la Adachi (2003), introducing
the platform’s exposure rule—governing pairwise meeting propensities—as a direct policy instrument.
The model reveals that the prevailing practice of maximizing short-run flow surplus—often the implicit
goal of human agents seeking quick commissions—is suboptimal due to dynamic cannibalization. Match-
ing the very best pairs today removes high-type agents from the pool, thinning the effective option set
for those who remain. This degradation forces users to lower their acceptance standards, ultimately re-
ducing the total welfare generated by the market. In contrast, I propose maximizing long-run user value,
defined as the aggregate of all participants’ equilibrium continuation values. This objective naturally
internalizes the market-thinning externality, aligning the algorithm with the platform’s long-term goal
of maintaining market thickness.

Empirically, I apply this framework to a doctor—-spot-job matching platform. I estimate a structural
model describing the exposure decisions and the users’ acceptance decisions to recover participant pref-
erences and develop a tractable algorithm to compute the optimal exposure rule. The analysis quantifies
the inefficiencies of the current human-heavy process: the estimated optimal rule significantly outper-
forms current practices. This shift not only improves aggregate welfare but also flattens the variance in
match prospects across users, offering a rigorous solution to the operational challenges of standardization
and fairness.

Section 2 develops a sequential-search model in which, unlike the random matching of Adachi (2003),
the platform can directly shape pairwise exposure propensities through an exposure rule. For any given
rule, the model yields a system of Bellman equations that pins down the continuation values of all
participants. I provide sufficient conditions under which this system has a stationary and unique solution.
I also show, in a parametric example tailored to my empirical setting, that these conditions are plausibly
satisfied in large markets.

Section 3 formalizes the cannibalization effect, poses the user—value maximization problem, and
develops a tractable algorithm. I define long-run user value as the sum of participants’ continuation
values on the platform. Using this definition, I show that maximizing flow match surplus generally does
not maximize user value. I solve the platform’s problem of maximizing the user value via a regularization
problem and taking its zero-temperature limit. The regularized problem admits a unique solution, and
its zero—temperature limit solves the original problem. Furthermore, when the original problem has
multiple solutions, the limit selects one according to a platform—chosen criterion such as equality across
users or proximity to observed patterns. I then present a practical algorithm that implements the zero-
temperature limit via annealing, while nesting the equilibrium computations required by the model. At
each temperature level, the algorithm (i) solves for the continuation values as the fixed point induced
by the current exposure rule and (ii) updates the exposure intensity by running Bregman—Dykstra KL
projections to enforce the feasibility constraints that define the exposure rule (Benamou et al., 2014) .

Section 4 applies the algorithm to a doctor—spot-task platform. In the first half, I build a structural
model of the platform. The data cover one month with 2,446 posts and 1,132 doctors. For each doc-
tor—post pair, I observe the occurrence of an exposure and both sides’ acceptance decisions. The market
operates two exposure rules: (i) a self-search rule, under which doctors browse the website to find coun-
terparts; and (ii) an agency-recommendation rule, under which agencies acting for medical institutions
recommend doctors. I parameterize both exposure rules and the acceptance decisions, and estimate

the model by maximizing a likelihood subject to a non-linear equilibrium constraint. The estimates



reveal a substantial gap between preferences implicit in exposure and those governing acceptance. On
the doctor side, conditional on being exposed to a selected post, acceptance is only weakly sensitive to
post attributes; by contrast, the post side’s acceptance remains selective even after exposure. At the
individual variable level, the model captures disutility from distance: a 10% salary increase compensates
for roughly a 5% decrease in distance for doctors and a 8% increase for posts at the exposure stage.
Based on the estimates, I compute the user—value—maximizing exposure rule and evaluate its im-
plications. In the optimal exposure rule, the distance penalty largely disappears: exposure is nearly
distance—neutral, in contrast to the baseline’s clear decline with distance. As a metric of continuation
values, I use the log—salary offset—the change in log salary that would offset the removal of continu-
ation values from utility. In this measure, at the median, the salary offsets for doctors shifts from an
85% reduction to a 99% reduction, while for posts it rises from a 5% increase to a 23% increase. In
other words, the computed exposure rule improves the user value on both sides relative to the realized
platform. To diagnose where user value gain comes from, I also solve an exposure design problem in
which each doctor’s expected number of exposures is fixed to at its observed level. At that fixed scale,
the optimal exposure does not exceed the realized market’s user value. The reason is mechanical: in the
realized market, exposure is chosen endogenously with respect to continuation values, so only sufficiently
high—utility pairs are shown, which boosts user value even without explicitly optimizing the exposure
rule. The broader lesson is that the number of exposures is first-order—expanding how many options
users see generates the largest gains—while reweighting exposure delivers additional, but secondary,

improvements once scale is held fixed.

Literature. This paper is closely related to the literature on sequential search in two-sided match-
ing platforms. Adachi (2003) develops the canonical model and provides a microfoundation for the
Gale—Shapley deferred-acceptance algorithm (Gale and Shapley, 1962): in the limit of vanishing search
frictions, the equilibrium of two-sided sequential search converges to the Gale—Shapley outcome. The
framework has been applied empirically; for example, Hitsch, Hortagsu and Ariely (2010) study a dat-
ing platform, estimate participants’ preferences using the Adachi (2003) model, and simulate market
outcomes. An alternative equilibrium concept is the stable outcome of Shapley and Shubik (1971) for
transferable-utility matching; Chen, Hsieh and Lin (2023) use this notion to construct a new recommend-
ation algorithm improving matching quality in a dating service. However, these studies do not directly
take the platform’s objective as the object of optimization and thus provide limited validation from the
platform’s perspective. This paper fills that gap by explicitly formulating the platform’s objective and
proposing a tractable algorithm to solve for the exposure rule that maximizes it.

A growing literature in marketing, operations, and market design studies recommendation and dir-
ected search on multi-sided platforms with explicit platform-level objectives beyond myopic clicks. On
the theory side, Immorlica et al. (2023) analyze platform-guided two-sided sequential search where the
platform designs who meets whom and agents best respond in a stationary equilibrium, highlighting how
congestion and cannibalization shape optimal design. Unlike this largely theory- and algorithm-focused
line, our approach is built for empirical implementation in an economic structural model: we estimate
primitives from data and use the estimated environment to compute and evaluate value-maximizing
exposure rules.

On the systems and deployment side, Wang, Tao and Zhang (2025) develop a multi-objective hier-



archical recommender for multi-sided marketplaces and document large-scale field deployment with sig-
nificant gains in conversion, retention, and gross bookings. Shi (2025) show that accounting for mar-
ketplace feedbacks—such as endogenous prices—can be essential for optimal recommendation, while
Shi (2023) connect stability notions in assignment games to implementable low-communication match-
ing/recommendation procedures. Relatedly, Manshadi et al. (2025) study online algorithms for matching
platforms with multi-channel traffic, emphasizing implementable policy design under operational con-
straints. Relative to these strands, my contribution is to make the platform’s dynamic objective explicit: I
formalize user value as the sum of equilibrium continuation values, quantify the wedge between user-value
gradients and flow match surplus, and compute exposure propensities that maximize user value—thereby

internalizing cannibalization in the optimization itself.

2 Model and Preliminary Results

I describe an online two-sided matching platform: following the empirical context discussed in Section 4,
I consider a matching between doctors and spot job posts. Let I denote the set of active doctors, indexed
by i € I, and let J denote the set of spot posts, indexed by j € J. At registration, the platform observes
some covariates, but from the viewpoint of the other side each agent still has a latent “type” that is not
initially observed. Because of this information friction, observed matches need not coincide with static
equilibrium notions such as the stable outcome of Shapley and Shubik (1971).

I model the agent behavior as a two-sided sequential-search model like Adachi (2003). In this envir-
onment, private information is revealed upon “meeting,” which can take several forms in practice such
as direct messages or physical interview. After a meeting, the two parties decide whether to accept one
another; a match forms only if both accept. If either side rejects, they separate and continue searching
in the next period. A post typically takes from a few hours to several days, so it is natural that a doctor
who matches with a post does not exit the platform unlike in the marriage market. Instead, the doctor
soon returns and continues searching. On the post side, once a match with a doctor occurs, the post
is permanently removed from the platform. But I assume a stationary environment in which similar
posts are continuously supplied by similar institutions. This environment assures that the distribution
of existing agent types is time-invariant.

I describe the model components in the following subsections. First, the individual decision prob-
lem: after a meeting and type revelation, each side either accepts the current counterparty or declines
and continues searching. For this component, I mostly follow the formulation in Adachi (2003), with
specifications tailored to my empirical application (Section 2.1). Second, the exposure rule: rather than
assuming random encounters as in Adachi (2003), I allow the platform to design how agents are brought
into meeting to pursue a platform objective. I also build a new system determining the continuation

value of the agents in this platform (Section 2.2).

2.1 Agents’ Decision Problem

I describe how agents on the platform act when meetings occur. Let aiD and af denote the continuation
values for doctor ¢ and post j who remain unmatched at the end of a period and continue searching. In

this section they are taken as given; later they are determined as a model’s solution.



Let U;; denote the matching utility of doctor i from matching with post j after j’s private type
is revealed. Because doctor i returns to the platform soon after completing the task at j, this utility

decomposes into a one-time component, U;;, and a discounted continuation value: U;; = U;;+ (1 — K)aP

i
where 1—k captures the discount rate caused by the blank time spent on the post j.! The model primitive
which is parameterized in my empirical application, is the one-time matching utility ﬁij, not U;;. Let
V;i denote the matching utility of post j from matching with doctor i after i’s type is revealed. Since
acceptance removes the post from the platform permanently, there is no continuation term on the post
side; the model primitive is Vj; itself.

D
[

Doctor ¢ accepts j iff U;; > o, and post j accepts ¢ iff Vj; > af . Equivalently, with acceptance

indicators afj and afi,
ap; = Uy 2l = YUy 2 v’} aj; =1V 2 o)} (1)

Here, I implicitly assume a non-transferable-utility environment: matched pairs do not make side pay-
ments, and there is no ex post bargaining over contract terms.

For the empirical application below and the more concise expression, I assume that private types enter
additively and are independently and identically distributed. Let U3* and V2 denote the deterministic

components, and let 55 and sﬁ denote the idiosyncratic private types.

Assumption 1. (Additive and i.i.d. types) For alli € I$and$j € J,

7. _ grdet D __ yydet P
Uiy = U5 + €35, Vie= V5™ +ej

where 55 and aﬁ are i.i.d. draws from a common distribution F, independent across pairs and across

sides.

2.2 Exposure and Continuation Value

The platform facilitates matching via a spot exposure rule that determines which posts are shown to each
doctor. Exposure is reciprocal: a post is exposed to a doctor if and only if the platform shows that post
to the doctor.

I model this process using an exposure intensity matrix p € [0, 1]1 *J Time is organized into sequences
of J periods. At the start of a sequence, each doctor ¢ draws a random permutation of posts, o;. In period
t, for the candidate post j = o;(t), the platform triggers an exposure with probability y;;. The resulting
spot exposure sets Ri’f’t and Rf , contain the counterpart ({j} and {i} respectively) if the exposure is

triggered, and are empty otherwise. Formally, Definition 1 specifies the spot exposure set of i and j.

Definition 1 (Exposure sets induced by exposure intensity p). Fiz u = (uij)ierjes € [0,1)7%7. In
each J-period sequence, every doctor i draws a permutation o; of J posts (independently across i), and

in each period t € {1,...,J} draws an exposure indicator

X+ ~ Bernoulli (m,gi(t))7

1When & = 1, the doctor’s decision comes to whether to accept the post and exit from the market forever or to continue
searching. This case corresponds to the marriage market analyzed in Adachi (2003); Hitsch, Hortagsu and Ariely (2010);
Chen, Hsieh and Lin (2023).



independently across i and t conditional on (0;);. The spot exposure sets are

- {o:(t)}, f Xir =1, 5 . .
R, = R :={iel:0i(t)=j, X;y=1}.

03 Zf Xi,t = Ov

Doctor side I consider doctor i’s dynamic decision in this platform. The flow utility obtained by
remaining unmatch is normalized to 0. Under the assumption of additive separability (Assumption 1),
following Adachi (2003), this dynamic decision problem is summarized by the following Bellman equation:

where p € (0,1) is the discount factor and aft and af . are continuation values at ¢,

I{Rz t = (Z)} O‘f?t-s-l

a?t:p B dF(E,O’,T)
0,7 + Zl{j € R, {aft + 1{Vdet —1—5 > aj Pa max{Udet — kol + 51], O}}

Jj=1

The probability that a post j is exposed at period t is simply “#.> Then, the Bellman equation is

transformed into the following:

J
ap) Zﬂ” zt+1+02u” ijts

where

’L]’

mt = 0% :+ / {V%et + sﬁ > aft} maX{Ufjet — fia?t 0}dF(e). (2)

Post side I consider post j’s dynamic decision. Again the flow utility of remaining unmatch is nor-
malized to 0. Remark that the exposure set of post at period ¢ is not always a singleton set. Let
u; (S;af’

post side is written as follows:

aﬁt:p/EUT[ l0=RE Yo+ Y 1{s = B0, (S:0f,,0P)

Se2l

s O aP) denote the utility obtained when the exposure set is S € 2/. The Bellman equation of

dF'(e,o,T).

Instead of specifying wu;(.S; ozj .,aP), I put an assumption on the relative size of both sides to avoid
the happenings of such multiple meeting. A necessary condition for S to be a non-singleton set is that
o (t) = o (t) for at least one pair of i and #'. T call this incidence by overlap. Then, the probability of

no overlap in a sequence, i.e. in J periods, is directly calculated as:

-1
k
Pr ; = Pr(no overlap) = 1—=).
1 ka( J)

By analyzing asymptotic behavior of this probability, I obtain the condition for no overlap in the large

2Pr(j € RP,) = Pr(oi(t) = j, Xi = 1) = Pr(oi(t) = ) Pr(Xiq = 1] 04(t) = J) = Lpuis.



market.
Assumption 2. I = o(\/J)
Proposition 1. Under Assumption 2, Pr ; — 1 as J — oo.

Proof. See Appendix A.1. O

Hence, under Assumption 2, when J is sufficiently large, the Bellman equation of post j is analogously

as in the case of the doctor’s Bellman equation: note that the probability of doctor 4 is exposed to post

_ . o NSt . i I-1
j at a period t is ”7” (%) where the adjustment term (%) captures the event that no other

doctors are never exposed to j at the period?,

I pi (J—1 I-1 T\t L u
P _ ij — P — iJ 11 P
Qi =p (1 - ; 7 <J> ) Ajip1 TP <J> ; TWijzh
where

)

WE = al, + / 1{08 + D > ral, } max{Vy; — ol + 5, 0}dF (2). 3)
€

Stationary solution Under Assumption 1 and 2, when the number of posts is sufficiently large, the

system determining the continuation values of doctors and posts under the spot exposure rule induced by

2y

an exposure intensity is as follows: where W2 and W are defined as in (2) and (3), and 7 = (Z5

D _ Joopiy D J o pijyirD
oy =p (1 == ) Qi T 022 T Wik

(4)

P _ I pij P I pijyP
Q= p (1 =i 7') Qi1 + 0T D iy F Wi

Hereafter, I use a to denote the vector of continuation values stacking the values of both sides. Note
that period t only exists in «a’s subscript in the above system. This implies that, for some map g, I
can write ayy1 = g(a) for all ¢ = 1,--- | J. Then, because another J periods begins after one sequence
of J periods, a1 = g(ay) = g(g(as_1)) = g’ (a1) where g7 denotes the J-fold composition of g. This
argument can be applied to all t: for all the t, a; = g7 (ay). This statement implies that the continuation
values are periodic solution, or the stationary solution as a special case, of the system.

Theorem 1 establishes that the system g has a unique stationary solution under suitable regularity
conditions. The result follows from a Lipschitz bound for g derived in Lemma 1 in Appendix A.2. In
Example 1 in Appendix B, I show a specific sufficient condition for this result when the private types ¢
follow a unit-scale type I extreme value distribution, which is assumed in the later empirical application.
Furthermore, I show how easily the sufficient condition for the contraction mapping is satisfied in the

case of the extreme value distribution, particularly when J and I are large.

Theorem 1 (Stationary uniqueness via contraction). Assume the conditions of Lemma 1 and let R and

qg") be as defined there. If qgg) < 1, then:
1. (Existence & Uniqueness) There exists a unique stationary solution o* € Br to the system o* =
g(a*).

g -1
3You can find that > “}’ X (%)
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2. (Global convergence) For any initial '%) € B, the iteration a*T1) = g(a®) converges to a* at

a linear rate bounded by (qg”))k under the sup norm.

3. (No nonstationary cycles) If g*(a) = a for some k > 1, then necessarily a = o*. In particular,

no nontrivial periodic orbits exist.

Proof. By Lemma 1, g is a contraction on the complete metric space (Bg, || - ||oo) with modulus qgf) <1

Banach’s fixed point theorem yields (1) and (2). For (3), if g¥(a) = o then
K)\ Kk *
lor = 0 llso = llg" () = 9" (@) lloe < (4”)" v = 0" o,

hence o = o*. O

The stationary version of the system (4) is written as follows:

J i -
aP = e Dr i [ 1{Vie + el > ol Y max{U%" — ko + ), 0}dF(e),

()

of = % Zle “}j fg 1 {Uidjet + 55 > ma?} max{V}; — af + sﬁ,O}dF(s).

The solution of system (5) is interpreted as an equilibrium of the two-sided sequential search model
(Adachi, 2003; Hitsch, Hortagsu and Ariely, 2010). In other words, doctors decide whether to accept
or reject the exposed post based on their continuation values, thereby creating match opportunities for
the post side, which likewise decides based on its continuation values (and vice versa). Furthermore,
as shown in Theorem 1, this equilibrium is unique under suitable regularity conditions, which paves
the way for the empirical application. Hereafter, I only consider the system (5), which is expressed as
a = g(a, ). Tuse aP(u) and o (1) to denote the stationary solution of the system.

In this stationary environment the distribution of doctors and posts is constant. What changes by
different exposure rule is the effective options faced by those who remain unmatched. An exposure rule
that rushes the “best pairs” together skims off the mutually attractive encounters as soon as they arrive.
Conditional on not having matched in the current period, an agent’s subsequent exposures become
systematically worse along two margins: (i) the counterparts she meets are, on average, less appealing
to her; and (ii) conditional on meeting, she is less appealing to them, so acceptance from the other
side is less likely. These are policy—induced shifts in the composition of meetings, not a change in the
population itself. Because continuation values are the expected gains from future exposures, these shifts
depress continuation values even though the platform is stationary in levels. This is the sense in which
the “market thins” in our model: not fewer people, but worse prospects for the agents who still need

another draw.

3 Exposure Design

I formulate the platform’s exposure-design problem where I restrict attention to exposure rules induced by
an exposure intensity; thus, the optimal exposure rule is the one induced by the optimal intensity. First,
in Section 3.1, building on the system that governs agents’ behavior on the platform, I introduce user

value, defined as the sum of continuation values, as a objective function of the platform in comparison



with aggregate flow match surplus. In Section 3.2, I present a tractable algorithm to compute the

exposure intensity that maximizes user value.

3.1 Match Surplus and User Value

I take the equilibrium continuation values as the core of the platform’s objective. This choice reflects
that platforms seek to grow and retain their user base, and participation hinges on the perceived value of
staying—naturally captured by continuation values. Yet it is not obvious which exposure rule maximizes
user value, defined as the sum of continuation values, because the platform must trade off two opposing
forces: raising contemporaneous match quality versus thinning the future options of those who remain
unmatched. Below, I make this trade-off explicit and show that the exposure rule that maximizes
aggregate flow match surplus generally differs from the rule that maximizes user value.

For a formal discussion, let B denote the budget polytope:
B= {M 0,17 1r < Do ki Sy 1§ <30 iy < cg}

In this set, the row sums > j ig and column sums ), 1;;—the expected numbers of exposures for doctor
i and for post j in a single sequence of J periods—are bounded below by I; € Ry and [ € Ry and above
by ¢; € Ry and ¢§ € Ry. For any pu € B, I define the aggregate flow match surplus, S(ut), and the user
value, U(p), by

Sn) =5 W+ 5w WE UG =5 | S aP+ Yol

i i, i J
Note that these values are per-arrival value in the sense that these values multiplied by p are contributions
to the current continuation values as shown in system (4).

Proposition 2 establishes a wedge between the platform’s aggregate flow match surplus S(u) and
the long-run user value U(p): maximizing S(p) need not maximize U(p). Moreover, at any interior
maximizer of .S, the user-value gradient is componentwise nonnegative whenever the associated adjoint
vector is nonnegative. Proposition 3 in Appendix A.5 provides a sufficient condition for this adjoint
nonnegativity under the EV1 specification, and shows that the condition becomes mild in large markets.
Taken together, these results imply that the S-optimal exposure intensity typically understates user

value: from the perspective of maximizing U, the optimal rule tends to under-expose pairs.

Proposition 2 (Flow optimum induces nonnegative user-gradient). Fiz u € B and let a(u) = (o (), o (1))
be the unique stationary solution of the fized-point system G(o,p) = o — gla, p) = 0. Let pfy,,, be an
interior mazimizer of S(u), so that V,,S(1f.,) = 0. If the associated adjoint vector w is componentwise

nonnegative, then

VUl = 0 or all (i),
where 1 = (7P, 7F) € RIT7 solves the adjoint linear system

oG
M'n = (15,17, M= %(%ﬂgow) c RUADXU+7).

Proof. See Appendix A.3. O



3.2 Exposure Design for User Value Maximization

The platform’s problem is defined as follows:

®) |max Yol + 3 o) ().

P is a constrained optimization over I x J variables subject to the nonlinear fixed-point constraints
in (4). Tt is difficult to solve—and in practice often numerically unstable—especially in large markets.
Furthermore, if there are multiple maximizers of P, I cannot set a strict rule on which one is chosen.
To avoid these issues, I reformulate P into a more tractable and numerically stable problem by
introducing an entropic regularization. The objective value of P is recovered as the zero—temperature
limit of the entropically regularized problem. Furthermore, when P has multiple maximizers, the zero-

temperature limit selects the one that is KL—closest to a baseline exposure.

3.2.1 Regularized Problem

Let € > 0 be a temperature parameter and let ¢ be a strictly positive baseline exposure that lies in the
interior of the budget polytope. An entropic regularization of P is defined as follows:
D P Hij
by |mg 3P0+ Yo -3
i j ij

)
qij

where the last term represents a KL divergence between p and ¢: and so I denote the term by KL(u|lg) =
225 Hig In Zf :

3.2.2 Zero-temperature Limit

I propose the zero-temperature limit of the solution of (P.) as a solution of the original platform problem
P. It is natural to think the solution of this regularized problem converges to the solution of the original
problem in some as € | 0. Theorem 2 formalizes this correspondence and shows how the limit solution is

selected from a possibly multiple solutions of P.

Theorem 2 (Zero-temperature limit). Fore > 0 and ¢;; € B, define the reqularized objective

@() = Up) ~ < KL(ull).  KL(ulg) = 3y .
ij K

Let p1. € argmax,cg (). Then:
(i) Every limit point u° of {pe}eio satisfies U(u®) = max,ep U(p).

(ii) Let M := argmax,epU(p). Every limit point pu° lies in M and minimizes KL on M: i.e.,

p® € argmin,epm KL(ullq). If this minimizer is unique, then p. — p°.

Proof. See Appendix A.4. O

10



3.3 Algorithm

For a fixed € > 0, problem P, is a KL-regularized optimization problem over the convex feasible set 5.4
Rather than using the standard Sinkhorn algorithm, which is tailored to simple marginal constraints,
we solve P, via the Bregman—Dykstra iterative projection method (Benamou et al., 2014). This method
generalizes Sinkhorn to an intersection of convex constraints and produces iterates that remain feasible
with respect to B.

To approximate the zero-temperature limit, we employ an annealing scheme in which the temperature
is gradually reduced, ¢ | 0. At each temperature level, we run the Bregman—Dykstra iterations to
convergence and use the resulting solution to warm-start the next temperature. Pseudocode is provided

in Algorithm 1.

4 Empirical Application

I apply the model to a doctor-spot post matching platform and compute the optimal exposure rule.
In Section 4.1, I introduce the background information of this platform and show a set of descriptive
statistics to gauge the whole picture. In Section 4.2, I specify the data generating process and how to
parametrize the model primitives to identify the model. In Section 4.3, I show the estimation results and
gives some insights into the agent’s decisions in this platform. Lastly, in Section 4.4, I apply Algorithm 1

to this situation and compare the results to the other exposure rules.

4.1 Institutional Background and Data

The empirical setting is a two-sided platform that matches doctors to short-term “spot” posts, operated
by Medical Principle Co. in Japan. The platform is part of the firm’s broader medical-staffing business.
It serves doctors who already hold a medical license and have completed their internship—typically
physicians who maintain a full-time position at a medical institution. On the demand side, hospitals and
clinics contract with Medical Principle and list short-term openings at their facilities on the website, and
the platform intermediates applications and selection between doctors and providers.

I start by describing the detail of this platform. On the doctor side, doctors can search the website to
find suitable posts. Medical institutions do not directly search for candidates; instead, agents at Medical
Principle curate promising doctors from the platform’s user base, facilitating matches. The contents of
spot posts vary widely—e.g., overnight on-call shifts, health checkups, and ward coverage—and range
from a few hours or a single day to, in some cases, about a week. Doctors remain on the platform after
each match and—after an interval that differs across individuals—often return to take additional spot
work. By contrast, a task leaves the market once it is filled; yet many categories such as overnight duty
recur frequently as similar tasks, so the inflow into the platform is stationary.

I now describe the sequence in which a vacancy is filled on the platform. First, an “approach”
between a doctor and a post is generated either by the doctor’s web search or by a curated introduction
from Medical Principle’s agents; in the data we observe both the occurrence of an approach and its

channel. This approach corresponds with the meeting in my model. Once an approach occurs, the pair

4Equivalently, it can be viewed as an entropically regularized problem with a reference point g, subject to convex
constraints.
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Table 1. Mapping from Approach Status to Accept Indicators

Approach Status

Contract  Cancelled After Contract NotHired Approach Inquiry Handled

doctor accept 1 1 1 0 0
post accept 1 1 0 1 -
Notes: 1 = accept, 0 = reject, - = not defined.

enters an information-exchange stage in which detailed attributes and terms are disclosed—typically via
inquiries routed through Medical Principle, and occasionally supplemented by an in-person or online
interview. Given this additional information, each side decides whether to accept or decline the current
counterpart; a match is formed only under bilateral acceptance. Importantly, even when a doctor initiated
the approach through search, the doctor may later decline after learning more: for example, the workload
proves demanding, the location is less accessible, and scheduling is inconvenient. Symmetrically, post-side
declines are also common.

For each approached pair, I also observe whether each side accepted or declined the counterpart.
This is because the platform records an “approach status” for every pair—one of Contract, Cancelled
After Contract, Not Hired, Approach, or Inquiry Handled. Using this status, we define binary indicators
of doctor- and post-side acceptance as in Table 1. For example, Contract implies mutual acceptance,
whereas Not Hired indicates that only the doctor accepted the post. The mapping was constructed in
consultation with Medical Principle’s staff. This information allows me to infer the outcome of post-
approach decisions from observed statuses.

In addition to the behavioral histories, the platform records rich attributes for each participant. On
the doctor side, available fields include age, years since licensure, medical specialty, home address, and
preferred task content. On the post side, the record includes the latitude—longitude of the work site, task
content, desired doctor specialty, working hours, and compensation. For task content, providers select
from predefined pull-down categories but may also supply free-text descriptions; further details are often
revealed through direct inquiries. In our model, such information beyond the observed covariates affects

payoffs and is treated as private information realized at the time of a meeting.

Descriptive Statistics 1 fix the sets of doctors I and posts J as follows: I consists of doctors who are
exposed to at least one approach in December 2024, and J consists of posts that are exposed to at least
one approach in the same month. This restriction is necessary because many doctors and posts are idle;
I therefore focus on the participants that conduct some form of active decision. Furthermore, I restrict
the posts open in Kanto region in Japan.

Table 2 summarizes the descriptive stats about the market size and acceptance patterns. The Decem-
ber market comprises 2,446 posts and 1,132 doctors with 3,898 observed approaches, yielding 1,358 agreed
contracts (overall agreement rate: 34.8%). Approaches are sparse on the post side and more dispersed
across doctors, suggesting a long right tail of highly active doctors. Self-search accounts for roughly 70%
of approaches. Acceptance patterns differ sharply by exposure rule: under self-search, doctors almost
always accept (98.0%) while posts are selective (40.6%); under agency recommendations, posts almost
always accept (97.8%) but doctors are selective (30.8%). The contract rate is higher for self-search
(40.6%) than for agency (28.6%), despite the latter’s very high post acceptance.
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Table 2. Market size and acceptance patterns by exposure rule

Panel A: Market size and outcomes

Number of posts (J) 2,446
Number of doctors (1) 1,132
Number of approaches 3,898
Number of agreed contracts 1,358
Agreement rate (overall) 34.84%
Panel B: Approaches per entity
Mean SD Min Median Max
Per post 1.594 1.527 1 1 23
Per doctor 3.443 4.474 1 2 46
Panel C: Acceptance by exposure rule
Agency (A) Self-search (S)
Share of approaches 30.20% 69.80%
Doctor accepts 30.80% 97.95%
Post accepts 97.75% 40.64%
Both accept (contract) 28.58% 40.64%

Notes: Shares and rates are computed over observed approaches. The overall agreement rate equals agreed contracts
divided by approaches (1358/3898 = 34.84%).

Table 3 reports summary statistics for doctor- and post-level variables. Panel A shows doctors are
on average 42.7 years old with 16.5 years of experience. This implies that they are mature doctors
and their skills are not in severe doubt unlike early-career doctors. Panel B summarizes post side: shifts
average 10.0 hours, advertised pay averages 72.1 thousand yen, and the implied hourly wage averages 9.25
thousand yen.® The wide ranges and gaps between means and medians indicate substantial heterogeneity
in workload and compensation across posts.

In addition to the variables in Table 3, the dataset includes each doctor’s specialty and, for each
post, the desired doctor specialties. Figure F.1 shows the distribution of doctors across specialties. Most
posts specify two desired specialties—a primary and a secondary. Figure F.2 reports the number of posts
that list each specialty as the primary one. In both sides of the market, internal medicine is the most
prevalent specialty; roughly 50% of posts list internal medicine as their primary specialty. This pattern
is consistent with the nature of spot work: internal medicine is often bundled with routine services
such as general health checkups, which are well suited to short-term shifts. By contrast, specialties
that involve highly specialized tasks (e.g., cardiology) generate far fewer posts. On the supply side,
however, doctors’ registered specialties are less skewed, because physicians with specialized training can
still perform routine checkups; consequently, the distribution across doctors is more dispersed than the
distribution of posts.

Lastly, I present descriptive statistics for pairwise doctor—post variables. For each post’s primary—secondary
specialty pair, the platform specifies the set of doctor specialties that can “match” the post; this indic-
ator serves as a criterion in the agency recommendation. Figure F.3 reports the average number of posts
matched to each doctor specialty; as expected, internal medicine affords the most opportunities. Al-
though this match indicator is not a binding constraint on realized matches, it is included as a covariate

in the empirical analysis below. The mean doctor—post distance is 62.0km (median 353,km). In the

5Using the USD/JPY spot rate of 147.85 on September 12, 2025, 72.1 thousand yen ~ $488 and 9.25 thousand yen =
$62.6.
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Table 3. Descriptive statistics of doctor-level and post-level variables

Panel A: Doctor-level (N = 1,132)

Variable Mean SD Min Median Max
Age 42.7 121 27.0 40.0 79.0
Exp (yrs) 16.5 11.8  2.00 13.0 53.0
Panel B: Post-level (N = 2,446)

Variable Mean SD Min Median Max
Hours 10.0 8.66 0.500 8.50 114
Pay (x1k yen) 72.1 434  4.00 60.0 650
Wage/hr 9.25 4.18 0.833 10.0 56.8

Notes: Wage/hr = Pay/hours. All figures rounded to three significant digits.

Kanto region, where rail is the primary mode of transport, such distances correspond roughly to 30-60

minutes of travel time.

4.2 Empirical Strategy

The platform implements two exposure rules: self-search exposure (S) and agency-recommendation ex-
posure (A). They are specified formally later. I observe the exposure sets generated by each rule; let
k € {S, A} index the rule and the exposure sets are denoted by C’E)i € 27 for doctors. These sets are dis-
joint: for any pair (i, j), the data specify at most one rule under which 7 and j are exposed to each other.
Define inclusion indicators for the exposure sets as follows: for each pair (4, j), ckD,m =1{je C,f,’i }. Note
that the exposure set of post is automatically determined by these doctor side exposure sets. For the
meeting pairs, I also observe the acceptance decisions of both sides. Remember that these are denoted
by a{?j and aﬁi. When a pair (4,7) does not meet, these indicators take a null value ¢. In short, an
“outcome variable” of one data point (i, ) is yi; = (al;, al;, (Cg,i,j’ cﬁ”i)j)).

In the data-generating process, y;; is produced over J periods of spot-exposure rules corresponding to
the two rules and agents’ decisions after each meeting. A spot exposure rule, k € {A, S} is an exposure
rule whose pairwise exposure intensity is denoted by ufj. At each period t, the random permutation,

Uf , determines a possible counterpart and, the counterpart is drawn from a Bernoulli distrbituon with

parameter ufj, there is an exposure between j and j. The two spot exposure rules function independently,
and the exposure label for a pair is determined by whichever rule triggers exposure first. If both of the

spot exposure rules draw the same counterpart at the same period, I assume that S is prioritized.

4.2.1 Parametrization

I parametrize the preference structure of the agents in this platform and specify the acceptance indicators.
For each doctor—post pair (4, j), let X;; denote observable characteristics which are known to the platform
operator, all agents, and the researcher. X;; form the deterministic component of the (one-time) matching

utilities, U%* and V2!, as follows:

= de D D P P
Uit = X{;87 + Z{;6°, Vi = X};87 + 24367,
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where Z;; is a set of polynomials of X;; which captures the non-linear terms in the preferences. For now,

I fix the continuation values o’ and a . Then, under Assumption 1, the acceptance indicators aDj and

ai ;» which are defined in (1), is specified as follows: for each meeting pair (i, j),

) pD 1 D D D e v aP /P P P
b _ L if X[,B% + Z;07 + ;5 > kay 1 i X585 + Zj;60 + 655 > o
i,j

0 otherwise 0 otherwise

I use Oprer = (ﬂD Br, 6P, 6f ) to denote the set of preference parameters. The doctor-side private type

EDJ is i.i.d. across pairs with distribution H?, and the post-side private type 5 ; 1s i.i.d. across pairs with

distribution H”. We assume that H” and HY are logistic distributions with scale parameters ¢(© and

¢P, respectively. The acceptance probabilities for the two sides, denoted Pg and Pﬁ , are given by:

1 P _ P
=1) = kaP X[ pD+Z] 6D\’ Pj; = Pr(aj; =1) =
1+ exp ( gD )

1

P__x P+Z/ §P °
Ut onp (LR LT

D _ D
P’L] =Pr (aiJ

Remember that there are two exposure rules. Below, I formally specify how these rules operate. For

now, I fix the continuation values o)’ and af .

Self-search exposure. This exposure rule functions by repeating a J-period sequence. The spot-

exposure sets for doctor ¢ and post j are defined as follows:

RE., ={jed|of(t)=jX,BP + 2;8° + 55, > kaP + 55y}

Rg,j,t ={iel|ol(t) =1 X[;,8° + Zj; 5% —l—vm > Kaj "H)zato}

where the difference between 6° and §°, which appears in doctor’s preference, captures a kind of mis-

perception: after meeting the doctor’s preference might be altered. o

is a random permutation of
{a,...,J}. (@ Uit f}to) are idiosyncratic errors in the perceived utility that are not accounted for by
the deterministic components. The distribution of them is denoted H®. I assume that H® is a type-
I extreme-value distribution with scale parameter ¢°. Hence, the pairwise exposure intensity ufj is

specified as follows:
1

D_(x' 804z 55)
1+exp(mz ( “Cﬂs R )>

S _
Hiz =

Agency recommendation exposure. This exposure rule functions by repeating a J-period. The

spot-exposure sets for doctor ¢ and post j are defined as follows:

RR, ,={ieT|oft) =4, X;B + fl;04 + 58, > of + 5}

Ri,j,t ={iel|of(t) =1 Xz{jﬂp + f] 5A Jrv”t > aj +U”t0}

where the difference between 67 and 64, which appears in the preference of post, captures a kind
of misperception about the utility achieved by the post—relative to the true deterministic matching

utility—when evaluating a match between i and j from the perspective of the mating agents. o is a

15



random permutation of {1,...,J}. Which is drawn independently from o (f}f}w 6£t0) are independent
idiosyncratic errors in perceived utility that are not captured by the deterministic components. Their
distribution is denoted by H#4. T assume that H? is a type-I extreme-value distribution with scale

parameter (4. Hence, the pairwise exposure intensity u% is specified as follows:

1
(af’—(xgjﬂp-i-zgjéf‘)) -
cA

A _
Hiz =

1+ exp

I denote by Oexpo = (6°,54) the tuple of additional parameters governing the misperception terms
in the two exposure rules. Let T' = (¢P,¢F,¢%,¢4) collect the scale parameters of all the idiosyncratic
error terms. The full parameter vector to be estimated is 6 = (Opref, fexpo, L', £, p). When I emphasize
the pairwise exposure intensities are dependent on the parameters and the continuation values, I use

ufj (0;aP) and uf‘j (6;af). For the same purpose, I also use P (6;a) and P[(6; ).

4.2.2 Likelihood Function and Constraints

I can calculate the probability of an observation y;; by
D P | D D D D
Pr(ys;) = Pr(ai,jv ajil €5 CA,i,j) 'Pr(CS,i,jv CA,i,j) .

The first term follows from the distribution of private types due to Definition 1 under Assumption 1.
For the second term, the probabilities of the exposure-indicator pair (cg i’j,cﬁm) can be written as
functions of the pairwise exposure intensities ° and p“. Given «, this decomposition yields the log-
likelihood function to maximize which is denoted by LL(6; ) = >, In L (0; ys5, ) where the detail form
of L (6;yi;,) is defined in Appendix C.

I specify the Bellman equation that determines agents’ continuation values when the two exposure
rules operate simultaneously. These equations impose nonlinear constraints on «, and I maximize the
log-likelihood subject to them. Proposition 4 in Appendix A.6 summarizes the steady system for the
Bellman equation. Note that, in comparison to the system (4), the current pairwise exposure intensity,

1, depends on the continuation values.5

4.2.3 Identification and Estimation Procedure

I adopt NFXP algorithm to estimate the model (Rust, 1987). In other words, I repeat (i) solving the
fixed point of the system (11) and (ii) update the parameters to maximize the log-likelihood function
given the continuation values.

It is widely acknowledged that the discount factor is under-identified in a dynamic model (Magnac
and Thesmar, 2002). In this estimation, I fix the discount factor at p = 0.99. The market has about
2,400 posts per month—roughly 80 per day—and the average shift length is 10 hours (approximately a
full day’s work). Accordingly, I set k ~ 1 — p8° ~ 0.552 ~ 0.55.

I introduce normalizations to the scale parameters of the distribution of private types: ¢ =1 and

¢P = 1. This is because, for any value of (¥ and (¥, the system (11) and the terms in the system is not

6] examine whether the system exhibits a contraction-mapping property analogous to Theorem 1. Appendix A.7
describes sufficient conditions under which the system (11) is a contraction and admits a unique stationary equilibrium. In
particular, when J is sufficiently large, these conditions are likely to hold.
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Table 4. Equivalence change in other covariates to a 10% increase in salary

Side Variable Equiv. (raw) SE z P % (distance) SE % (distance)
Panel A: Self-search Exposure

Doctor In Distance (km) —0.0553 0.0114 —4.8519 0.0000 —5.3762 1.0777
Doctor  Age 1.1880 0.4185 2.8390  0.0045

Doctor  Exp (yrs) 2.1914 1.2618 1.7368  0.0824

Doctor Hours —2.1470 0.5345 —4.0168 0.0001

Panel B: Agency-recommendation Exposure

Post In Distance (km) 0.0773 0.0167 4.6342  0.0000 8.0352 1.8018
Post Age 1.3317 0.5685 2.3427  0.0191
Post Exp (yrs) —1.7535 0.9632 —1.8206  0.0687
Post Hours —1.0499 0.1591 —6.6004  0.0000

Panel C: Acceptance (Doctor)

Doctor In Distance (km) 0.0117 0.1274 0.0919 0.9268 1.1776 12.8878
Doctor  Age 0.0083 0.0900 0.0922 0.9266
Doctor  Exp (yrs) —0.0117 0.1271  —0.0922  0.9266
Doctor  Hours —0.0167 0.1798 —0.0927  0.9262

Panel D: Acceptance (Post)

Post In Distance (km) 0.9618 0.6803 1.4138 0.1574 161.6455 178.0054
Post Age 0.7883 0.1218 6.4722  0.0000
Post Exp (yrs) —1.6555 0.3444 —4.8074  0.0000
Post Hours —2.4955 0.4897 —5.0954 0.0000

Notes: Entries report, for each covariate, the change in raw units that yields the same change in the
matching utility term as a 10% increase in salary. SEs use the fixed-a. The percent column is only defined
for In Distance (km).

altered by scaling the parameters, 0pref and foxpo, and the scale parameters of error terms, ¢ S and ¢4,
with ¢ and ¢¥. Under the normalizations, all the remaining parameters are identified; in particular, the
scale parameters of error terms, ¢° and (4, are identified as the coefficient attached with the continuation

values in 4 and p”. Hence, the parameters to estimate is re-defined as 6 = (fpyef, fexpo, ¢, ().

4.3 Estimation Results

Table 4 quantifies the trade-off between salary and other attributes. Specifically, it reports the change

in covariate z that yields the same utility gain as a 10% salary increase:

Oz

ﬁsal + 5sa1
, = Dl sl o011y 22
g BL + 0y g( ) Ogal

where coefficients are scaled by their empirical standard deviations (o, 0s,1). This ratio is invariant to
the scale of latent errors. Standard errors are derived using the delta method.” For log distance, the
values are converted to percentage changes for interpretability.

On the exposure margin, both rules continue to show economically meaningful relationships with the
covariates. In self-search (Panel A), a 10% salary increase is equivalent to about a 5.38% reduction in
distance, indicating doctors’ clear preference for nearby posts. Agency recommendation (Panel B) goes
the other way: a 10% salary increase corresponds to roughly an 8.04% increase in distance, consistent
with the agency casting a geographic distance. Beyond distance, the agency places positive weight on
doctor experience—a 10% salary increase trades off against about 1.75 fewer years of experience on the
doctor side. By contrast, age is negatively valued on the post side: an increase of about 1.33 years is
equivalent to a 10% salary increase in the post’s matching utility.

At the acceptance margin, doctor acceptance (Panel C) remains essentially flat with respect to these

7See Appendix D for details. Given the large parameter space, I approximate the inverse Hessian using Hessian-vector
products.
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Figure 1. Monetary Measures of Continuation Values

Notes: The figure displays histograms of A Inw computed from the estimated continuation values and the salary
slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars indicate that a
salary cut (raise) in (el Aw| — 1) x 100 percent would leave the probabilities of accept and exposure unchanged if
the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from « to A lnw.

covariates once exposure has occurred. Post acceptance (Panel D) remains responsive, with the same
qualitative signs as in Panel B: a 10% salary increase is comparable to about 0.79 in age, —1.66 years
of doctor experience, and —2.50 hours, indicating stronger sorting on the post side at the final decision
stage. The distance effect on the post side is large in magnitude (about +161.6%) but imprecise and
should therefore be interpreted cautiously; a natural interpretation is that, because the agency and
doctors already select nearby matches at the exposure stage, posts care less about a candidate’s distance
conditional on meeting. These patterns also hold when I examine the dummy variables that capture
whether a doctor’s desired job type matches the job description specified by the post side as shown in
Table F.1.

Continuation values. I evaluate the continuation values in this platform. For this purpose, I need the
“true” preference structure of both sides. Considering the above estimates, it is natural to assume that
doctors’ preferences are identified from the self-search exposure decisions, whereas post-side preferences
are identified from the acceptance decisions. Hence, I use the exposure model estimates (87, §°) for
doctor side and the acceptance model estimates (37, 6) for post side for below analysis.

I measure continuation values in monetary units using salary offsets, which is denoted by Alnw.
Specifically, I compute the change in log salary that equalizes the propensity of self-search exposure or

post acceptance between the baseline with the estimated o and the counterfactual with o = 0. Let 5+ 6
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denote the composite coefficient on Inw. In other words,

K

Doctor: —rkaf +(B+6)hw = (B+6)(lnw+Ahw) = Alhw = —6+6af)7
1
Post: foszr(BJré)lnw = B+ (nw+Ahw) = Ahw = —ﬁ+6o¢f.

Note that 5+ d > 0 on the doctor side, whereas 5+ § < 0 on the post side: doctors prefer higher wages
while posts disprefer them. Consequently, the computed salary offsets should be negative for doctors
and positive for posts.?

Figure 1 expresses each side’s distribution of log salary offsets. The distributions suggest that doctors
hold the stronger position in this market: doctor offsets are typically more largely negative (median
—1.893, i.e., about an 85% decrease), whereas post offsets are modestly positive (median 0.05, i.e., about
a 5% increase), indicating greater selectivity on the doctor side. This pattern is natural given the spot
nature of the platform—medical institutions cannot afford to wait. The doctor-side distribution also
exhibits greater variance, implying unequal treatment across doctors: more attractive doctors can be
highly selective. By contrast, most posts have log salary offsets at or near zero, reflecting that many

posts receive few exposures over the sequence.

4.4 Optimal Exposure Rule

I compute optimal exposure rules by solving P (Section 3) subject to the constraint that each doctor

receives exactly 40 exposures in expectation (¢ = Il = 40 for all 7). This target reflects platform

i
guidelines designed to balance match opportunities against cognitive overload; no analogous restriction
is imposed on posts.?

The algorithm proceeds by alternating between solving the value fixed point and projecting the
kernel K = g ® exp(VU/¢) onto the budget set. Because the feasible set involves only row equalities
> jMij = 40) and box constraints, the Bregman—Dykstra projection simplifies to efficient alternating
row scaling and clipping. I initialize the baseline ¢ as a row-normalized softmax of deterministic utilities

and use a temperature € = 0.03 with damping # = 0.3. Convergence tolerances are set tightly at 108

for the fixed point and 10~ for the projector.

Optimal exposure. Figure 2 reports log salary offsets of continuation values under the optimal ex-
posure rule. The distributions again indicate that doctors hold the stronger position: doctor offsets are
typically more negative (median —5.127, i.e., about a 99% decrease), whereas post offsets are modestly
positive (median 0.208, i.e., about a 23% increase). Relative to the realized market in Figure 1, both
sides become more selective under the current rule—the medians move farther from zero in magnitude.

Moreover, the variance on the post side rises substantially (from 0.02 on the actual platform to 0.13

8To interpret the salary offsets, it helps to see how continuation values enter decisions. Focus on doctors; the same logic
applies to posts. A higher continuation value oclp > 0 makes a doctor more selective—he is willing to wait longer for better
opportunities. If I remove this continuation value by setting a? = 0, he searches more aggressively and is exposed to more
posts. To keep his exposure propensity at the observed level, the salary must be reduced; the salary offset is exactly this
required reduction. Specifically, salary must be adjusted by (eA Inw _ 1) x 100 percentage points. Larger absolute offsets
correspond to higher continuation values—that is, a platform the doctor finds more valuable.

9To implement this at the platform scale (I = 1,132, J = 2,446), I avoid the prohibitive memory cost of a dense Jacobian
by exploiting the matrix’s block structure. Specifically, I apply a Schur—complement reduction to form a smaller linear
system for the adjoint vector, which is then solved using an iterative Krylov method (details in Appendix E).
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Figure 2. Monetary Measures of Continuation Values under Optimal Exposure Rule

Notes: The figure displays histograms of Alnw computed from the computed continuation values and the
estimated salary slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars
indicate that a salary cut (raise) in (el Aw|—1) x 100 percent would leave the probabilities of accept and exposure
unchanged if the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from
o to Alnw.

under the optimal rule), reflecting a wider dispersion: many posts are exposed to more doctors under
this exposure rule and at the same time the inequality among posts grows.

In Table F.2, T regress log salary offsets on post- and doctor-side covariates, using Alnw for posts
and —Alnw for doctors so that positive coefficients indicate larger absolute offsets. On the post side,
the on-call indicator is the dominant correlate, with a large positive association, while longer scheduled
hours are negatively related. Among content features, many covariates load negatively on the offset, with
the house-call indicator an exception that loads positively. On the doctor side, demographic variables
contribute little on average, whereas practice-content indicators are more informative: preferences aligned
with outpatient care, inpatient ward care, and endoscopy are the top three associated with larger absolute
offsets. Overall, value concentrates on specific post attributes (especially on-call duties) and on doctors

whose revealed content preferences align with those high-value posts.

Comparison with actual exposure rule. To compare the baseline exposure i with the optimal
exposure u*, I run two complementary regressions. First, for each doctor i, I form the py—weighted

average of a post attribute xf ,zk

(1) =2, pijay , and regress it on doctor covariates x} in pooled OLS
across doctors: ¥ (u) = Bo(u) + P T B(1) + ;. T estimate this twice—once with 4 = i and once with
u = p*—and report E, b*, and their difference A = b* — b with a Wald test for Hy : A = 0. Second,
because distance is pair specific, I regress p;; on In(distance;;) at the pair level. I report basis points per
+10% increase in distance, computed as ¢ X In(1.1) x 10,000, where ¢ is the log-distance coefficient. For

each exposure rule (ft and p*) I report the slope and, using a standard Wald test, the difference between
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Table 5. How the exposure design changes doctor—post attribute relations

Panel A: Doctor/Post-only attributes b b* A=b"—b SE(A) z P

Hours Age —0.011 0.008 0.019 0.008 2.308 0.021
Hours Experience —0.002 —0.002 0.000 0.008 0.056  0.956
Log salary  Age 0.000 —0.001 —0.001 0.000 —1.735 0.083
Log salary = Experience —0.001 0.001 0.001 0.000 3.340  0.001

Panel B: Distance effects

Distance (bps per +10%) —3.612 0.163 3.776 0.001 3544.882  0.000

Notes: Panel A reports OLS coefficients linking (doctor attributes) to (post-side attribute weighted
averages) under the baseline exposure ¢ and the optimized exposure ¢*, with A = b* — b and a Wald
test for Hp : A = 0. Panel B reports semi-elasticities of exposure with respect to distance in two units:
basis points (bps) per +10% increase in distance.

Log Salary Offsets
(negative = decrease salary; positive = increase salary)
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Figure 3. Monetary Measures of Continuation Values under Optimal Exposure Rule with Same #
Exposures

Notes: The figure displays histograms of Alnw computed from the computed continuation values and the
estimated salary slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars
indicate that a salary cut (raise) in (el Aw|—1) x 100 percent would leave the probabilities of accept and exposure
unchanged if the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from
o to Alnw.

the two slopes with its standard error and p-value.

Table 5 summarizes the comparisons. Panel A is about the side-specific attributes and Panel B is
about the pair-specific attribute. Two shifts in Panel A are noteworthy. First, the Hours—Age slope
flips sign: under the baseline, older doctors are weakly tilted toward posts with fewer hours, whereas
under the optimized rule they are tilted toward posts with more hours. Second, the Log-salary—Age slope
becomes more negative, indicating a mild reweighting away from the very highest-salary posts for older
doctors. The Log-salary-Experience slope turns positive, pointing to more experienced doctors being
steered toward higher-wage posts under the optimized exposure. Panel B shows a change in the distance
semi-elasticity. In the baseline, exposure falls with distance: about —3.61 bps per +10% distance. Under
the optimized rule the slope is essentially flat to slightly positive: about +0.16 bps per +10%. In other
words, the optimal design largely removes the baseline penalty on distance, making exposure far more

distance-neutral.
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Source of user value. I investigate the sources of user value generated under the optimal exposure.
To that end, I compute an alternative rule that fixes each doctor’s expected number of exposures at its
estimated level. Specifically, using the estimates, I obtain ji;; for all doctor-post pairs and define, for
each doctor 7, the estimated expected number of exposures in a sequence as & = Y, j fii;. I then set the
budget polytope to

B={uelo ) ¥y =& Vi,

and solve the resulting optimal exposure problem P.

The distribution of log salary offsets under this rule is shown in Figure 3. The medians on both sides
are smaller in magnitude than in the realized market (Figure 1): on the doctor side, the median implies
only a 26% salary reduction (85% in the actual market), and on the post side, the median implies about
a 1% salary increase (5% in the actual marker). This pattern indicates that the primary source of user-
value gains under the optimal exposure design with 40 exposures per doctor is the scale of exposures. In
simulations, the median log salary offsets on both sides remain below their realized-market levels unless
I raise each doctor’s expected exposures to about seven times the realized level—that is, set & to 7x its

empirical value.

5 Discussion

In the empirical specification, acceptance decisions do not admit additional unobserved selection induced
by the exposure stage: i.e., no latent shock carried from exposure into acceptance beyond observed cov-
ariates. This exclusion greatly simplifies the likelihood—exposure can be treated as predetermined when
forming the acceptance component—ryet it is plausibly too strong. A richer model could (i) introduce
pair- or side-specific random effects shared across exposure and acceptance, (ii) use a control-function
or copula link between the two stages, or (iii) leverage timing and quasi-random variation in expos-
ure intensity to identify selection at acceptance. Each approach preserves the fixed-point structure for
continuation values but requires either simulation-based likelihood or composite likelihood to remain
tractable.

Our analysis targets a stationary environment. Practical recommendation policies, however, operate
under nonstationary demand and seasonality. Extending the algorithm proposed here to such environ-
ment is therefore a promising direction, building on the growing literature on online matching and re-
commendation with operational frictions such as ranked-list presentation and limited attention/patience
(Brubach et al., 2025), as well as multi-channel traffic that partially bypasses platform recommendations
(Manshadi et al., 2025). Incorporating additional platform constraints—for instance, explicit fairness or
service-rate objectives—is also feasible and would connect naturally to recent algorithmic formulations

of fairness in online matching markets (Ma, Xu and Xu, 2023).
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A Omitted proofs

A.1 When does prob of no overlap go to 0?7

Let
I-1 2
Pr.; = Pr(no overlap) = H(l - —), 1<I1<J,
k=0 J

denote the probability that I agents, each independently selecting one of J goods, make distinct choices.

2 3
General expansion (valid for all / < .J). Usinglog(l-y)=-y—-4% -4 —... (0<y<1),
_I(I-1) (I-1)I(2I-1) It
logPLJ = — 27 — 1272 + RI,J, ‘R[’,] < DY (6)

Square—root barrier. Set I = I(J) and let J — cc.

(i) Sub-critical regime. If I = o(v/J) (equivalently I2/.J — 0), every term in (6) vanishes, hence
PLJ =1- 0(1).

The no—overlap event occurs with probability tending to 1.

(ii) Critical window. If I ~ ¢v/J with constant ¢ > 0, then

2

IOgPLJ — —5, PLJ — 6762/2 S (0,1)
The probability converges to a non—degenerate limit.

(iii) Super-critical regime. If v.J < I < o(.J), the leading term —% — —00, SO
PLJ — 0,

making collisions virtually certain. (When I is a fixed fraction of J, the same exponential decay

was obtained earlier.)
Summary. The necessary and sufficient condition for

Pr(no overlap) —— 1
J—o0

is
2
I=0oVJ) < 17 —0

J—o0

The scale I =< /J constitutes a sharp square-root threshold separating regimes of almost-sure uniqueness

from almost-sure collisions.

A.2 Proof of Theorem 1

Lemma 1 (Lipschitz bound (Bernoulli exposure)). Let g = (g?,g") be the time-homogeneous map

induced by the stationary version of (4) under the Bernoulli exposure rule: each doctor i draws a per-
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mutation o; of J posts at the beginning of each sequence, and in period t an erposure between i and

j = 04(t) occurs with probability p;;, independently across i and t conditional on (0;);. Let WP WT be

defined by (2)—(3).

Assume:

1. Deterministic parts are bounded: \Ufjet| <U, [V3et ] <V, and E[|eP ], E[le”|] < oo.

2. Type shocks are independent and admit bounded densities: P 1L e, sup, fp(x) < fp, sup, fr(y) <
fp.

3. Define the exposure-mass bounds

1 1 I-1
AP o= max = Z ijs AE = Hl}aXT 7 Z Hijs where T := (%) .
jeJ iel
Set
Y= U+ E[P)], Cp:=V+E[]), CF :=max{~2 C% P Cp}.

Fiz R > ipp ™) and write By := {a:||a]le < R}.
Then g(Bgr) C Bgr and, for all o, € Bpg,
lg(@) = 9@l < a5 o~ o]l
with
a) = p max{ L, [1+ o (R+CP)], A1+ 5 o (R+Cp)] }.
In particular, if qg) < 1, the stationary system a = g(«) admits a unique fized point in Bg.

Proof. Throughout write a = a”, b=af, o’ = ', b = af’, and note |al, |da’[,|0],|0'| < R on Bg.

Prelim: Bernoulli exposure implies weights ;;/J. Under the Bernoulli exposure rule,

.5 . ) 1
Pr(] € th) =Pr(o;(t) =) Pr(X; =1 0s(t) =j) = juij,
where X;; ~ Bernoulli(y; »,()). Under Assumption 2 (large market), the post-side overlap adjustment
yields Pr(i € Rﬁt) ~ 7 pi;/J with 7 = ((J — 1)/J)!~1. Therefore, suppressing ¢, the stationary form of

(4) can be written as

7

aP = paP + pz 'u—}J IE[l{VjC}et +eP > b} max{Ufjet — ka+¢P,0}],
J

=: WD (a,b)

J

af = pal + pTZ M—}J E[1{US" + &P > ra} max{V® — b+, 0}].

=: WP(a,b)

Equivalently, (1 — p)a = g(a) where gP(a) := P %WD(CL, b) and §]P(oz) =pTy, B Wp(a7 b). The

Lipschitz properties of g and ¢ coincide, so it is enough to work with W.
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Step 1: Lipschitz bounds for WD,WP. By independence,
WP (a,b) = Elmax{U% — ka4 £P,0}] - Pr(VI + & > p),

WP (a,b) = Pr(U% + &P > ka) - Elmax{V — b+ 0}].

(own-argument). The maps a — max{U%* — ka + &P, 0} and b — max{VI* — b+ P 0} are k- and

1-Lipschitz, respectively. Multiplying by probabilities in [0, 1] preserves Lipschitz moduli, hence
WP(a,b) — WP, b)| <|a—d|,  |[WF(a,b)—WF(a,t)| <|b—V|

(cross—argument). Let Fp be the CDF of Vet + ¥ and Fp that of Udet + &P Since Fp, Fp are
fp, fp-Lipschitz,
|Pr(Vat 4 &P > p) — Pr(VI + P S 0)| < fp b - V|,

|Pr(U% + &P > ka) — Pr(U% + P > ka')| < k fp |a —d|.
Moreover, for |al,|b] < R,
Emax{U%" — ka + e”,0}] < E[|U%* + || + kla| < CW + R< R+ CW,
E[max{V — b+ 7 0}] <E[VI + P+ b/ <Cp+ R< R+ Cp.
Therefore
WP (a,b) = WP (a,b)| < (R+CU) folb—b|, WP (a,b) — WP (d',b)| < k(R+Cp) fpla—d.

Step 2: Lipschitz bound for g. Using Step 1,

|D(_D/< Hij (' D D1 Fo(R+CW P _ Py

9; (@) — g; (a)|_PZJ lai” — o '| + fr(R+Cp7) [lo” — o |

J

<p(S Y[+ Fp(R+ CF)] o= o

Taking sup over i yields
lg” (@) = g (&) loo < PV [1+ FP(R+CHN] fla — [l

Similarly,
lg” (@) = 9" (@ )loe < PYmax [L+ 5 fD(R+ CP)] llor = o[l

Combining gives the stated qg).

Step 3: g(Br) € Bgr. From the rearranged form (Prelim),

D i rdet D Hig (®)
9P (@] < 32 (U™ — a-+,0}] < p(zjjj) (R+CE),
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P Hig de P Hij
9! (a)|§p72i:7JE[max{V t_bte ,0}]§p<72 JJ)(R+CP).

K3
Hence

lg(@llse < pmax{7Ru(R+C5), max(R+Cp)} < p(R+C7).

By the choice R > £ C’iﬁ) we have p(R + Ciﬁ) < R, thus g(Bgr) C Bg. O
1-p

A.3 Proof of Proposition 2

Step 0: Adjoint representation of V,U(n). Let Up) == Soial(p) + 32, af () so that U(u) =
ﬁ(u)/p. By the implicit function theorem applied to G(a, p) = 0,
Y da N oG oG

= Mizi .
o o 0, e (O )

Hence % = —M_1% and
i i

U _ g, 2 - .
Opii Opi oy

Define the adjoint vector 7 = (7, 7%) by

to obtain N
ou - 0G
=—-7

Opi a Opij”

Step 1: Computing 0G/0pu;; (holding « fixed). Since G = o — g, we have 0G/0u;; = — 0g/0ij.

Under the Bernoulli exposure rule (Definition 1), the stationary mapping ¢ has the form

g7 (o, 1) :pa?+§Zun’(W§/ —a?), g (a,p) :Paf+p772“i’j(wﬁ} —aj),

J 4
o et 9 _piup D 997 _pT.p  p
ﬁij:j(Wij—%)a %27( i —ag)s

and all other components are zero. Therefore,

U dg p
e ! il | "P(WE —aP) +ral (Wh —al) |-
Dividing by p yields
1
ViU = < | 7P (W5 =aP) + 7=l (Wh —al) |- (7)

Step 2: Wedge with the flow objective and the nonnegativity at ;. For an interior maxim-
izer pf ., of S(u) we have V,,S(1f4,,) = 0. Substituting this first-order condition into (7) and rearranging
gives

Vol (ion )is = | 72 (o) (W5 = aP) + 775 (i) (WE — 0T |.

~f =
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If m(pfow) = 0 componentwise, then the bracketed term is weakly nonnegative for all (i,j), hence

V.U (0w )ij = 0 for all (4, j), which proves Proposition 2. O

A.4 Proof of Theorem 2

For any p* € argmax U, optimality of u. gives

U(pe) —eKL(pellq) > U(p*) — e KL(p*[g).

Thus U(pe) > U(p*) — e KL(p*|lq), so U(ue) — max,, U(u). By compactness of B, any limit point u°
satisfies U(u®) = max,, U(u), proving (i).
For (ii), for any p € M the same inequality rearranges to

)y Ule) UG,

KL(pellg) < KL(llq .

Since U(pe) — U(u) for all p € M, the last term vanishes in the limit. By lower semicontinuity of KL,
KL(u°(lg) < liminfe o KL(pe|lq) < KL(ullq) for all p € M, so u° is a KL minimizer on M. Uniqueness

of this minimizer implies full convergence.

A.5 Sufficient condition for non-negative adjoint vector

Proposition 3 (EV1 case). Assume Lemma 1’s conditions, and in addition: P e¥ are independent

Type I extreme value (unit scale); ﬁfjet, Vet € [0,1]; p € B with row/column, budgets. Let

Co:=1 w2 2 . ) L P CO (-1 I—1
0:=141/% +7% (v: Euler’s constant), R:= ?p = = (452 .

Let M := 0,G(a, 1) at the fized point and define T = (7P, 7F) by M Tw = (17,15)7. If

P _ P
1—p > Jeli(R—l—Co) and 1—p > JeT(R+CO)’ (8)

then w > 0 componentwise. A single sufficient condition is

1—p > peiomax{li,T}(lﬁ—(l_pp)J), 9)

and a coarse, easy-to-check form is

pCo
J > —— max{k, 7}. 10
Sy mate ) (10)
: . - N (1-a) -BT
Proof. Write the adjoint system as the Z—matrix linear system L(:p) = (1"]) with L = ( ) ,
-D 1-c
where (1 — a) := diag(1 — 9g/ /da;), (1 — ¢) := diag(1 — 8g] /0b;), Bj; := — g} /da; > 0, D;; =

—dgP /0b; > 0. Row—wise strict diagonal dominance implies L is a nonsingular M—matrix, hence L= > 0
and m = L7!'1 > 0. Under EV1 and bounded supports, the cross sums satisfy Zj Bj; < £ k(R + Co)

and 7, Dyj < £~ 7 (R + Cp), while 1 —a;,1 —¢; > 1 — p; this yields (8), and the relaxations (9)-(10)
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follow by upper-bounding. O

A.6 Bellman Equations for Non-linear Constraints fro MLE

Proposition 4. Let ji;; := ufj + uiAj — ,ufj,uf;. Under Assumption 2, when the market is sufficiently

large, the stationary continuation values solve the following system for all i and j,

~ D P ’ D ’ D D
D_ _p x~J  Bs(0elef) npop Py D X[, 8P +2/,67 —ral
aj S D ———F—Pj; (9, ; ) ("In{1+exp b ,

G X! 8P +7] 67 —al
af = 5 £L, 25D pp (0P) 7 (14 exp (X2 ).

(11)

Lemma 2. Fiz (i,7) and a period with subperiodst =1,...,J. For each rule k € {S, A} let Rl?,i,t cJ
be the realized spot—exposure set at t. Under the fastest—first policy with tie to S, define the realized
doctor-side set at t by

1{j€RDﬁrbt} {]ERSzt AJ%URAzu}—’_l{jGRQ,i,t /\.]¢ Uégz,u} (*)

u<t u<t

Then

J
Z [1{j € RD ﬁm}] = ij + Lf} — ijLf}.
=1

Proof. By construction, >, 1{j € RD ﬁm} € {0,1} and

M"\

1{] c RD ﬁrst} _ 1{] c URQi,t or ] c URQ’M }
t t

t=1
Taking expectations and using independence across rules,

B> 1{j e k™| =pr(je | JRE.,) +Pr(je URR.,) ~Pr(j e URE.) Pr(ic URS.)
t t t

t

_ S A S A
= Ly + Lij — bijlij-

Proof of Proposition 4. Fix doctor i and consider the one-period Bellman equation with J subperiods:
ol = 1{@ RDﬁrst}a +Z {a +1{j GRDﬁrSt} 1{‘/}%et+€P>O[§D} maX{Ufjet_ﬁaiE)+€D70}}}7
j=1

where stationarity allows us to omit time subscripts on primitives. Averaging over subperiods, Lemma 2

yields

- J J

1] 1 TS 1 ~

E[1{j € RD ﬁmt}] = ij, jz [1{0 = RDﬁ 1] = jZL
t=1 =

”M“

Assuming independent Gumbel shocks e, e with scales (P, (P, and writing Uidjet = X{jﬁD + Z{j(SD
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and Vi = X[, 8”7 + Z],67, we have
PJ‘Iz(H; af) = Plf(Vj(iet +ef > af% E[max{ﬁfjet — kal + ED,O}] =¢” ln(l + e(U?Jet_m?)KD).
Substituting and moving the “no-exposure” term to the left gives

J ~
(1- Z Lig Py ¢D ln(l + e(X;m%Z;jéD—m?)/cD)’

which is the first line of (11).

For the post side, the analogous Bellman equation and the large-market collision correction 7 imply

J —~
1 . D rs 1]
SSE[ie Ry = T
t=1

Using
PR(0;al) :=Pr(UL" + P > kal), E[ max{V}j* — ol +¢”,0}] = ¢” ln(l + e(‘/ﬁCt*af)/CP),
the same rearrangement yields the second line of (11). O

A.7 Contraction Property

Theorem 3. Consider the stationary system (11) with

X180 + 7! 6P — kaP X!1.BP + 7167 —al
;= L it 7LS L‘;}, Pg(@;aiD) = 0( Y C% ! ), Pﬁ(@;af) = 0( t C;j J ),
b b X’.jﬁD+Z§j5D—;mP P P X;J[3P+Z’ 5P—af 1
BaP)i=Plog(lre &) wf@)) = Clog(lreT ), o) = 1
Assume:

(A1) Bounded indices. There exist Mp, Mp > 0 such that |X[;8" + Z[;6°| < Mp and |X];B" +
Z};6%) < Mp for all (i, ).

(A2) Scales. (P, ¢F >0, k€ (0,1], p€(0,1).

(A3) Exposure sensitivity. The union exposure 1;;(0; o P,af) is (globally) Lipschitz in its arguments
with
) )
|aaiD/[/\ij| S LT» ’aafz\i” LJ fOT’ all (27])7

for some constants L(D) L( ) > 0 that do not depend on I, J.

For R > 0 define Bg := {a : ||a|lcc < R} and

b Mp+rlal » Mp+]
Bp(R) := sup ¢ log(l +e <P ), Bp(R) := sup (¢ log(l +e <P ),
la|<R |b|<R
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and the exposure masses
P T ~
AP o= E Tij, Vinax = mjaxj E Lij-
' i

Then the map g = (g, g*) given by the right-hand side of (11) satisfies:

(i) Self-mapping. If R obeys

then g(Br) C Bg.

(ii) Lipschitz bound. For all o,/ € Bpg,
lg(@) = g(@)lloo < qrllo— /[ co,

with
0 )]

an = max { o[ R0 LP + Bo(R)(F
(D) (P

Pt + BB (B + Bt £axL<D))] 3

1

where the component-wise global Lipschitz moduli satisfy

(iii) Contraction and uniqueness. If qp < 1, then g is a contraction on Br and the stationary

system (11) admits a unique fized point o* € Bpg.

Proof. (i) Using 2;; € [0, 1] and %ZJ Tij <R

1
‘g’L ( S 7}2“] |S\u<p L/f ) = TVmaXBD(R)v

and similarly |gF" ()] < Tp P« Bp(R), which yields ().
(ii) Write gP = ﬂ > %F (a;,bj) with

By the product rule and the bounds in the statement,

R R L)
0.F5 | < |0atis| 1Pf; 01| + [53] |Pf] |0avi| < 5 (R)+ Ly,
<Li?/g = <Ly
D P D P D LY (P)
| FL | < |0oti;| [P0l + [55] |06 ] 107] < f] Bp(R)+ Ly’ Bp(R).
N—— N~ N——
<Py S
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Summing over j and using % > ilij < b gives

p ) P
l9P(2) = 9P (@)] < 5 |9 Y + Bo(R)(H5 + 5 4920 ) |l = ol

The post side follows symmetrically with

Ffi(a,b) :=1i;(a,b) P (a) ¥]5(b),

ij

and the column mass bound Z 37, 7;; < vk, plus [0, PF| < LEDD). Taking the max of the two sides

yields the stated gg. (iil) is an application of Banach’s fixed-point theorem. O]

Corollary (logistic S/A rules). If each rule is logistic in its “own” side,

b s D P A_ P
S = la<X5j6 207 Ko ) = la(Xéjﬂ + 20 o)
1) J CS ) 1] Ni CA s

then, using o’(x) < 1/4 and the product formula for 7,

i < = o< !

D 4CS ’

— 44—A’

so Assumption (A3) holds with the same 1/.J scaling as in the multinomial case.

B Example of EV type I distribution

Example 1 (Type I extreme value shocks). Assume the conditions of Lemma 1 under the Bernoulli

exposure rule. In addition, suppose P e are independent Type I extreme value shocks (unit scale), and

Udet vdet ¢ [0,1] for all (i,j). Let

ij Vg

7'r2

my = Efle]] = /& +72 (v FEuler’s constant), Co = 1+ my,

so that C’Ef) < Cy and Cp < Cy for all k € (0,1]. Moreover, the unit-scale Type I extreme value density
satisfies sup, f(x) =1/e.

Define
5 1 P 1 J—1 =t
Ymax ‘— mianZN’ija Ymax = mjaXTjZMij’ T (T) ’
jeJ i€l
Take
p
R = m Co maX{Vgaxa 7£ax}'

Then the Lipschitz modulus in Lemma 1 satisfies the bound

. C
qE{) < P max{’ygax, ’ygax} |:]. + ?O <1 + ﬁ max{vgaxv'yriax}>:| .

In particular, a simple sufficient condition for q%'f) <1is

C
P Max{ Vi Vi } [1 += (1 + ﬁ max{Ymax, vﬁax}ﬂ < 1L
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This sufficient condition is easy to satisfy in large markets. First, the doctor-side exposure mass y2, .
is at most 1 and is often much smaller when each doctor is shown only a small fraction of posts on
average. Second, the post-side term L. is multiplied by 7 = ((J —1)/J)!1 = exp(—(I — 1)/J), which

decays rapidly when I is large relative to J, making the post-side contribution negligible. Thus, even for

fairly high p, moderate J together with large I typically implies qg) < 1.

C Likelihood Function

Proposition 5 summarizes the expressions for the three mutually exclusive cases: (1,0), (0,1), and (0, 0).

Proposition 5.

J—1
Pr ((ngycgz]) (1 O)) _/“LZj (1_ 2.7 Ug)

J+1
Pr (e = 0.) =y (1= S5 s )
Pr ((Cg,i7]‘70£,i,j) = (070)) =(1- ij)(l - /Jf})~
Proof. Take (cg i cg’i, j) = (1,0) as an example. The probability of this case is computed as follows:
Pr((cgi,jv Cg,i,j) = (17 O))

J J
= Z Z Pr (Uf(tl) =7 UZA(Q) :j> X Pr ((Cg,i,jﬁcg,i,j) = (1,0) | UZS( t1) =j,o (t2) J)

t1=11t2=1
J J 1
=> T[ {t1 <t} Pr(Berfi(t1) = 1) + 1{t1 > t2} Pr (Ber}; (t1) = 1,7/ (t2) # j)]
ti=1ts=1
1 J tl 1
:72 > Pr(Berj(t1) = 1,Ber}(t2) Z Pr (Berj(t1) = 1)
t1=1 Lta=1 to=t1
1 J t1—1 J
- P ILTEEITD S
t1=1 Lta=1 ta=t1
1 J
== St =0 — ) + (J =t + 1)
t1=1
1 J
A
-2 Z [JLZJ (ty — 1)%%]
t1=1

Note that we use the independence of the two random permutations and the two multinomial distribu-

tions. The similar calculation yields the result. O
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Given the continuation values, «, the likelihood of one data point is constructed as

L(0;y:5,0) = (PR (6;aP))"™ (1= P2(6;al))' ™" x (PL(6;al))™" (1= PE(6;al)) "

i %

J—1 1{(cB, ;R . )=(1,0)}
< (n@ap) (1= 2 i)
D D
J+1 1{(65,7‘,,_7‘1CA,7‘,,_7‘):(O11)}
% (“3‘(9;0‘53)< - Nufj(ﬂ;a?)»
1 (CDi j7CD,i‘j):(070)
X (1= i (050P)) (1 = i (050 ) 1 F o R =00

D Detail of Estimation

Let £,,() be the (negative) average log-likelihood (so we minimize £, ), and let 6 be a local minimizer. The
observed information (for MLE under correct specification) is H,,(8) := V2, (6); the usual covariance
estimator is \//aE(QA) ~ H,(0)"!. In practice p := dim(6) can be large and we only need variances or
covariances for a few components or a smooth scalar functional ¢g(#). This section shows how to compute
selected columns of H~! without forming H, using Hessian—vector products (HVPs) and a linear solver

(conjugate gradient, CG).

Lemma 3. Let H € RP*P be invertible and e; the i-th canonical basis vector. The unique solution x to

the linear system Hx = e; equals the i-th column of H™1.

Proof. By definition H'e; is the i-th column of H~! and satisfies H(H 'e;) = e;. By uniqueness of

solutions for invertible H, x = H le;. O]

Corollary. For any index set S C {1,...,p}, solving Hz = e, for all s € S returns the submatrix H;}g

via column extraction.

Thus, to obtain a 2 x 2 covariance block for (6;,6;), one solves Hz = e, and Hz = e; and reads off

D.1 Hessian—vector products and CG

Forming H explicitly is O(p?) memory and O(p?) time. Instead, we use an oracle for HVPs
v — Hvo = V,0)v,

and apply a Krylov solver (e.g. conjugate gradient) to each right-hand side e;. Modern autodiff frame-

works provide HVPs at the cost of a few reverse/forward passes (Pearlmutter’s trick):
Hv = d[VL,(0)],_sMv].
When H is positive definite, CG converges rapidly; for numerical stability one can solve

(H+ M)z =e;, (A>0),
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which returns (H + M)~ !-columns, a Tikhonov-regularized approximation to H 1. Small \ yields neg-

ligible bias and improved conditioning. Preconditioning further accelerates convergence but is optional.

D.2 Delta method with selected blocks

Let g : RP — R be differentiable, and suppose g depends only on a small subset S of parameters. By the
delta method,
Var(g(0)) ~ Vg(0)" H(O) ™ Vg(0).

If Vg(é) has support in S, then only HS*},; is needed:

Var(g(0)) ~ (Vsg(0))' HzkVsg(h).

Hence it suffices to solve Hz = e, for s € S, stack the resulting columns into C' = [H~!

eS]SESv and
compute Var(g) &~ (Vgg)TC Vgg. This yields standard errors and z-scores for g(d) without ever mater-

ializing the full H or its inverse.

D.3 Extensions: sandwich and quasi-ML

S0 Var(é) ~ H~!. For misspecification or dependent data, the robust (sandwich) variance is
Var(d) ~ H'SH™'.

The same column-solve idea applies: one can obtain H ~'u for any vector u by solving Hxr = u with
CG+HVP. Thus, products like H~'SH~! with a vector can be built without forming any large dense

matrices. 10

D.4 Profile likelihood / NFXP remark

In nested fixed-point (NFXP) settings, a nuisance object a(f) is defined implicitly by a contraction
mapping. If the outer objective uses the profile criterion ¢, (6, a(f)), then the observed profile Hessian
w.r.t. 8 plays the role of H (é) above. In practice one often treats a numerically converged & as fixed
(“K-step” M-estimation), and computes H as the #-Hessian of ¢,(0;¢&). Under standard regularity
(contraction, inner-loop convergence, and smoothness), this differs from the exact profile Hessian by

0p(1), so the same HVP+CG method consistently recovers the needed inverse blocks.

D.5 Algorithmic summary

1. Compute 6 and fix the nuisance & if applicable (profile or K-step).

10For example, to extract a 2 X 2 block of H 1SH~1, compute ¢; = H le; and c; = H_lej, then assemble

[ei, c51T Sles, ¢5]-
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2. Implement an HVP oracle v — Hv for H = Vggfn(é; &).

3. For indices S of interest, solve (H + AI)x = e; by CG, using only HVPs. Stack the solutions as

columns to obtain an approximation to H _Sl.

4. Read off Hg}g, apply the delta method to any ¢g(6) whose gradient is supported on S.

E Solve Adjoint Equation

In each outer iteration of the optimization, the adjoint vector 7 solves

MT']T:]., M = A B ER(I+J)X(I+J).
C D

In our model, thanks to the fixed-point Jacobian structure:
e AcR™ and D € R7*/ are diagonal (with positive entries),
e Bc R and C € R/*! are dense but their products can be formed in O(I.J).

This is ideal for avoiding an O((I+J)?) dense solve of M " by using Schur complements to reduce the

system to dimension min{I, J}.

E.1 Solving on the P-side (size .J)

T
Write m = b and

P

AT CT ™D 1[

BT D—r Tp 1]

From the first block: mp = (AT)~*(1; — CT7p). Substituting into the second block gives

(.D—r - BT(AT)_lcT) TP = ]_J - BT(AT)_I:[[.

SE

Hence
mp = <SE)‘1(1J - BT<AT>‘111)7 mp=(AT) (1, = CT7p).
Here A is diagonal, so (AT)~! = diag(1/diag(A)) is trivial. Sp =D — BTA7IC" is J x J, soif J < T

this is much cheaper than a full (I+J)-system.

E.2 Solving on the D-side (size I)
Similarly, from the second block: 7p = (DT)~!(1; — BTnp). Substitute into the first block:

(AT—CcT(D")'BT) mp = 1, -CT(DT) 'y,

Sh
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D = (55)71(1[ - CT(DT)711J>, Tp = (DT)il(l‘] - BT’/TD).

Again D is diagonal = (D")~! is trivial; this is preferable if I < J.

Complexity and Memory
e Dense direct solve: O((I + J)3) time, O((I + J)?) memory.
e Schur complement: building costs about O(IJ min{I, J}); solve costs O(min{I, J}3).
e Diagonal blocks A, D make inverses O(I + J).

Because I # J in practice, picking the smaller side gives a substantial speedup.

E.3 Iterative Solvers: GMRES

MT is generally non-symmetric and not SPD, so the conjugate gradient method is unsuitable, but
GMRES works well. Use a block-Jacobi preconditioner P ~ diag(A, D) and implement only mat-
rix—vector products in O(I.J):

Tp Azp +CT’IP Ail?"D
matvec: x = — , prec: r —
rp BT{ED + Dzxp D™ 'rp

Pseudo-code Snippet For the P-side (J x J) solve:

Input: A = diag(a), D = diag(d), B € R"™*/, ¢ e R,
Step 1: BA «— A~ ! scales columns of B (BA = A™'B).
Step 2: T+ BATCT e R/*/.

Step 3: Sp«+ D —T.

Step 4: 7+ 17— BTA 11,

Step 5: mp < (Sp) " lr (& Spap =1).

Step 6: mp < A7 (1, — OTTFP).

F Additional Figures

As a model-fit check, I compare the distributions of the observed numbers of exposures for doctors and
posts with the corresponding model-implied expected numbers computed from the estimates. Figure F.4
presents side—by—side histograms: Panel A for doctors and Panel B for posts. The model reproduces the
modal mass of the observed distributions well. In terms of means, the doctor—side expectation is 3.142
versus an observed mean of 3.138, and the post—side expectation is 1.454 versus an observed mean of

1.452.
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ALGORITHM 1: Nested Fixed-Point Bregman—Dykstra Annealing

Input: baseline ¢ € (0,00)"*7, initial (%) € B, bounds (I",c") € RL, (I°,¢°) € R, initial
temperature gy > 0, cooling v € (0, 1), tolerances 7p, TkKT, damping 6 € (0, 1]

Output: p*

t < 0;

€ < €05

repeat

Value step: solve G(a?, () = 0 for o) (warm start);

Adjoint: form M® = 9,G(a®, ) and solve

M(t)Tﬂ'(t) = (1], 1J)T.

i

Gradient: compute VU®:

@ _ P| DD D,(t) - \'Y P@#) P P
VU, =S w0 (W = e )+<Tl) m (Wi —ai )

Kernel: K « q® exp(VU® /e);

BD init: X « K); initialize KL-Dykstra shadow variables
ZP% e 1, ZNS 1, Z72 1, 2951, Z92 1 (all I x J);

repeat

// Bregman--Dykstra loop (KL projections over constraint sets)

(Boz) Y + X ® ZP%%; P «+ clip(Y, 0, 1) elementwise; ZP%* + ZP* & (Y © P); X + P;
(Row cap) Y <+ X ® Z"<; for each i: let s; = >_;Yij and f; = min{1, ¢f/s;}, set
Py =B:Yij; 2=+ Z"= o (Y 0 P); X «+ P;

(Row floor) Y < X ® Z™Z; for each i: s; = Zj Yi;, Bi = max{1, 17 /s;}, P;j = B:Yij;
ZrZ 7" o (Y 0 P); X « P;

(Col cap) Y < X © Z*=; for each j: t; = 3, Yij, v; = min{1, ¢§/t;}, Pij = v;Yij;
795+ 7950 (Y 0 P); X < P;

(Col floor) Y < X @ Z=; for each j: t; = 3, Yij, v; = max{1, IS/t;}, Pij = ~;Yij;
792+ 792 o (Y 0 P); X «+ P;

(Stopping) bd_res « || X — XHl with X previous-X; break if bd_res < Tpp;

until converged;

Set update: a1 «— X;

Damping: Y « (1 —6) u® + 9 at+;

Residuals: respp := ||u+D) — Dpp(K®)|1;  stationarity (KKT) surrogate:

TESKKT 1= Max ‘ VU —eln(u™ fq:;) = N —nj — & |,
where dual surrogates are read from the shadows:
77, < 7T, 2> AN AT ox
Noi= e (ZPS 202, myim —el (295 257), &= —el 25,

with Z;"® (resp. Z;") the row (resp. column) geometric means of the corresponding Z (or
any consistent aggregation);
if respp < 7rp and resxkT < TkkT then
€4+ vE; // anneal toward 0
end
t—t+1;
until € < ey or (final residuals below tolerance);
return p* = u® (at final ¢);
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Table F.1. Equivalence change in other covariates to a 10% increase in salary

Side Variable Equiv. (raw) SE z p

Panel A: Self-search Exposure (Doctor)

Doctor Outpatient care 0.0715 0.0181 3.9584 0.0001
Doctor Home-visit medical care 0.0403 0.0130 3.1041 0.0019
Doctor  Inpatient ward care 0.0309 0.0065 4.7756 0.0000
Doctor  Dialysis 0.0094 0.0020 4.6866  0.0000
Doctor  Health checkup 0.0417 0.0103 4.0601 0.0000
Doctor  Endoscopic surgery 0.0122 0.0027 4.4275 0.0000
Doctor  Surgery —0.0298 0.0248 —1.2020 0.2294
Doctor  House calls 0.1540 0.2549 0.6042  0.5457
Doctor  Image interpretation (radiology) 0.0115 0.0028 4.1060  0.0000
Doctor  Self-pay care 0.0148 0.0033 4.5386  0.0000
Panel B: Agency-recommendation Exposure (Post)

Post Outpatient care —0.1454 0.0559 —2.6007 0.0093
Post Home-visit medical care 0.1075 0.0806 1.3328 0.1826
Post Inpatient ward care —0.0512 0.0118 —4.3296  0.0000
Post Dialysis —0.0127 0.0026 —4.8369  0.0000
Post Health checkup —0.1145 0.0587 —1.9497  0.0512
Post Endoscopic surgery —0.0152 0.0032 —4.7186 0.0000
Post Surgery 0.1996 0.3953 0.5048  0.6137
Post House calls —0.0480 0.0194 —2.4738  0.0134
Post Image interpretation (radiology) —0.1210 0.1422 —0.8504  0.3951
Post Self-pay care —0.0163 0.0032 —5.0418  0.0000
Panel C: Acceptance (Doctor)

Doctor Outpatient care —0.0133 0.1447 —0.0919 0.9268
Doctor Home-visit medical care 0.0015 0.0167 0.0921 0.9266
Doctor  Inpatient ward care —0.0026 0.0278 —0.0922  0.9265
Doctor  Dialysis —0.0030 0.0324 —0.0922  0.9266
Doctor  Health checkup 0.0017 0.0182 0.0922 0.9266
Doctor  Endoscopic surgery —0.0017 0.0183 —0.0922 0.9266
Doctor  Surgery —0.0123 0.1344 —0.0912  0.9274
Doctor  House calls —0.0030 0.0327 —0.0921  0.9266
Doctor  Image interpretation (radiology) 0.0021 0.0231 0.0922  0.9266
Doctor  Self-pay care —0.0261 0.2898 —0.0899  0.9284

Panel D: Acceptance (Post)

Post Outpatient care 0.5007 0.3015 1.6608  0.0968
Post Home-visit medical care 0.0491 0.0079 6.2349 0.0000
Post Inpatient ward care 17.2355 368.8461 0.0467  0.9627
Post Dialysis —7.7758 96.3487 —0.0807  0.9357
Post Health checkup 0.0885 0.0164 5.3911  0.0000
Post Endoscopic surgery —0.1385 0.0363 —3.8215 0.0001
Post Surgery 2.2045 8.7175 0.2529 0.8004
Post House calls 0.1336 0.0347 3.8524  0.0001
Post Image interpretation (radiology) 0.2567 0.1213 2.1166  0.0343
Post Self-pay care 0.0262 0.0038 6.8816  0.0000

Notes: Entries report, for each covariate, the change in raw units that yields the same change
in the matching utility term as a 10% increase in salary. Standard errors use the fixed-a outer
likelihood with observed information, and are mapped to the reported statistics via the delta
method.
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Table F.2. Determinants of salary offsets

Post Doctor
On call 0.0422*** —
(0.0061)
Hours —0.0036™*" —
(0.0002)
Age — ~0.0109*
(0.0053)
Experience 0.0424***
(0.0054)
Service/feature indicators
Outpatient care —0.0235™** 0.3849™**
(0.0035) (0.0482)
Inpatient ward care —0.0207*** 0.4677***
(0.0053) (0.0506)
Health checkup —0.0357"** 0.2200™**
(0.0051) (0.0445)
Radiology reading 0.0154 0.1221
(0.0140) (0.0811)
Home-visit medical care —0.0609™** 0.0293
(0.0071) (0.0563)
House calls 0.0207* 0.0105
(0.0096) (0.0669)
Endoscopic surgery —0.0208"* 0.4667***
(0.0080) (0.0756)
Dialysis —0.0532*** 0.2306™**
(0.0102) (0.0588)
Surgery —0.0369 —0.0734
(0.0389) (0.0869)
Self-pay care —0.0540*** 0.2606***
(0.0074) (0.0552)
Industrial physician 0.0000 —0.0765
(0.0000) (0.0661)

Notes: Entries are OLS coefficients for salary offsets on post-
/doctor-side attributes; standard errors in parentheses. Stars:
***p < 0.001, **p < 0.01, *p < 0.05. “—” indicates the
covariate is not included on that side.
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