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Abstract

Many high-stakes matching platforms still rely on human intermediaries, resulting in inconsistent

decisions, high operating costs, and a bias toward high-probability matches. This paper replaces such

heuristics with data-driven exposure design. I develop a two-sided sequential-search model in which

the platform controls pairwise meeting propensities. I show that maximizing short-run flow surplus is

dynamically inefficient: prioritizing top pairs too early causes dynamic cannibalization, which reduces

future search options for remaining users. As an alternative objective for expanding and sustaining

the user base, I consider long-run user value, defined as the aggregate continuation value of search. I

characterize and compute the optimal exposure rule under this objective via entropic regularization

and Bregman–Dykstra projections. In a doctor–spot-job platform, counterfactual simulations that

replace current policies with the computed optimum reveal that existing rules over-penalize distance.

Welfare gains arise primarily from correcting under-exposure of viable matches and expanding users’

effective option sets, not from mere reshuffling within a fixed exposure volume.

JEL Classification Codes: D47; D83; C78; J64; C61; C63; L86.

Keywords: two-sided platforms; sequential search; market design; matching; recommendation sys-

tems; doctor–job matching.

1 Introduction

Central to the operation of online marketplaces is the exposure rule—the mechanism determining which

users are presented to potential partners and how frequently. While algorithmic recommendation is stand-

ard in many sectors, high-stakes marketplaces often rely on human intermediaries whose dependence on

tacit knowledge creates operational bottlenecks. This reliance leads to inconsistent performance and high

training costs, while a tendency to recommend only high-probability candidates concentrates exposure

on a subset of participants, alienating the broader user base and weakening the platform’s competitive

position. To address these inefficiencies, platforms are increasingly transitioning from intuition-based

heuristics to data-driven exposure design aimed at standardizing processes and retaining users. Mo-

tivated by these operational imperatives, this paper asks: How should a platform design exposure not

merely to maximize immediate match rates, but to optimize the long-run value of its user base?

∗I am grateful to Medical Principle Co. for providing the data and for their thoughtful support in helping me understand
the institutional background. I thank Yu Awaya, Michihiro Kandori, Fuhito Kojima, Kyohei Okumura, and Kosuke Uetake
for valuable comments. I also thank participants at the ERATO meeting for helpful feedback.
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I formalize this problem in a two-sided sequential-search framework ‘a la Adachi (2003), introducing

the platform’s exposure rule—governing pairwise meeting propensities—as a direct policy instrument.

The model reveals that the prevailing practice of maximizing short-run flow surplus—often the implicit

goal of human agents seeking quick commissions—is suboptimal due to dynamic cannibalization. Match-

ing the very best pairs today removes high-type agents from the pool, thinning the effective option set

for those who remain. This degradation forces users to lower their acceptance standards, ultimately re-

ducing the total welfare generated by the market. In contrast, I propose maximizing long-run user value,

defined as the aggregate of all participants’ equilibrium continuation values. This objective naturally

internalizes the market-thinning externality, aligning the algorithm with the platform’s long-term goal

of maintaining market thickness.

Empirically, I apply this framework to a doctor–spot-job matching platform. I estimate a structural

model describing the exposure decisions and the users’ acceptance decisions to recover participant pref-

erences and develop a tractable algorithm to compute the optimal exposure rule. The analysis quantifies

the inefficiencies of the current human-heavy process: the estimated optimal rule significantly outper-

forms current practices. This shift not only improves aggregate welfare but also flattens the variance in

match prospects across users, offering a rigorous solution to the operational challenges of standardization

and fairness.

Section 2 develops a sequential-search model in which, unlike the random matching of Adachi (2003),

the platform can directly shape pairwise exposure propensities through an exposure rule. For any given

rule, the model yields a system of Bellman equations that pins down the continuation values of all

participants. I provide sufficient conditions under which this system has a stationary and unique solution.

I also show, in a parametric example tailored to my empirical setting, that these conditions are plausibly

satisfied in large markets.

Section 3 formalizes the cannibalization effect, poses the user–value maximization problem, and

develops a tractable algorithm. I define long-run user value as the sum of participants’ continuation

values on the platform. Using this definition, I show that maximizing flow match surplus generally does

not maximize user value. I solve the platform’s problem of maximizing the user value via a regularization

problem and taking its zero–temperature limit. The regularized problem admits a unique solution, and

its zero–temperature limit solves the original problem. Furthermore, when the original problem has

multiple solutions, the limit selects one according to a platform–chosen criterion such as equality across

users or proximity to observed patterns. I then present a practical algorithm that implements the zero-

temperature limit via annealing, while nesting the equilibrium computations required by the model. At

each temperature level, the algorithm (i) solves for the continuation values as the fixed point induced

by the current exposure rule and (ii) updates the exposure intensity by running Bregman–Dykstra KL

projections to enforce the feasibility constraints that define the exposure rule (Benamou et al., 2014) .

Section 4 applies the algorithm to a doctor–spot-task platform. In the first half, I build a structural

model of the platform. The data cover one month with 2,446 posts and 1,132 doctors. For each doc-

tor–post pair, I observe the occurrence of an exposure and both sides’ acceptance decisions. The market

operates two exposure rules: (i) a self-search rule, under which doctors browse the website to find coun-

terparts; and (ii) an agency-recommendation rule, under which agencies acting for medical institutions

recommend doctors. I parameterize both exposure rules and the acceptance decisions, and estimate

the model by maximizing a likelihood subject to a non-linear equilibrium constraint. The estimates
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reveal a substantial gap between preferences implicit in exposure and those governing acceptance. On

the doctor side, conditional on being exposed to a selected post, acceptance is only weakly sensitive to

post attributes; by contrast, the post side’s acceptance remains selective even after exposure. At the

individual variable level, the model captures disutility from distance: a 10% salary increase compensates

for roughly a 5% decrease in distance for doctors and a 8% increase for posts at the exposure stage.

Based on the estimates, I compute the user–value–maximizing exposure rule and evaluate its im-

plications. In the optimal exposure rule, the distance penalty largely disappears: exposure is nearly

distance–neutral, in contrast to the baseline’s clear decline with distance. As a metric of continuation

values, I use the log–salary offset—the change in log salary that would offset the removal of continu-

ation values from utility. In this measure, at the median, the salary offsets for doctors shifts from an

85% reduction to a 99% reduction, while for posts it rises from a 5% increase to a 23% increase. In

other words, the computed exposure rule improves the user value on both sides relative to the realized

platform. To diagnose where user value gain comes from, I also solve an exposure design problem in

which each doctor’s expected number of exposures is fixed to at its observed level. At that fixed scale,

the optimal exposure does not exceed the realized market’s user value. The reason is mechanical: in the

realized market, exposure is chosen endogenously with respect to continuation values, so only sufficiently

high–utility pairs are shown, which boosts user value even without explicitly optimizing the exposure

rule. The broader lesson is that the number of exposures is first–order—expanding how many options

users see generates the largest gains—while reweighting exposure delivers additional, but secondary,

improvements once scale is held fixed.

Literature. This paper is closely related to the literature on sequential search in two-sided match-

ing platforms. Adachi (2003) develops the canonical model and provides a microfoundation for the

Gale–Shapley deferred-acceptance algorithm (Gale and Shapley, 1962): in the limit of vanishing search

frictions, the equilibrium of two-sided sequential search converges to the Gale–Shapley outcome. The

framework has been applied empirically; for example, Hitsch, Hortaçsu and Ariely (2010) study a dat-

ing platform, estimate participants’ preferences using the Adachi (2003) model, and simulate market

outcomes. An alternative equilibrium concept is the stable outcome of Shapley and Shubik (1971) for

transferable-utility matching; Chen, Hsieh and Lin (2023) use this notion to construct a new recommend-

ation algorithm improving matching quality in a dating service. However, these studies do not directly

take the platform’s objective as the object of optimization and thus provide limited validation from the

platform’s perspective. This paper fills that gap by explicitly formulating the platform’s objective and

proposing a tractable algorithm to solve for the exposure rule that maximizes it.

A growing literature in marketing, operations, and market design studies recommendation and dir-

ected search on multi-sided platforms with explicit platform-level objectives beyond myopic clicks. On

the theory side, Immorlica et al. (2023) analyze platform-guided two-sided sequential search where the

platform designs who meets whom and agents best respond in a stationary equilibrium, highlighting how

congestion and cannibalization shape optimal design. Unlike this largely theory- and algorithm-focused

line, our approach is built for empirical implementation in an economic structural model: we estimate

primitives from data and use the estimated environment to compute and evaluate value-maximizing

exposure rules.

On the systems and deployment side, Wang, Tao and Zhang (2025) develop a multi-objective hier-
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archical recommender for multi-sided marketplaces and document large-scale field deployment with sig-

nificant gains in conversion, retention, and gross bookings. Shi (2025) show that accounting for mar-

ketplace feedbacks—such as endogenous prices—can be essential for optimal recommendation, while

Shi (2023) connect stability notions in assignment games to implementable low-communication match-

ing/recommendation procedures. Relatedly, Manshadi et al. (2025) study online algorithms for matching

platforms with multi-channel traffic, emphasizing implementable policy design under operational con-

straints. Relative to these strands, my contribution is to make the platform’s dynamic objective explicit: I

formalize user value as the sum of equilibrium continuation values, quantify the wedge between user-value

gradients and flow match surplus, and compute exposure propensities that maximize user value—thereby

internalizing cannibalization in the optimization itself.

2 Model and Preliminary Results

I describe an online two-sided matching platform: following the empirical context discussed in Section 4,

I consider a matching between doctors and spot job posts. Let I denote the set of active doctors, indexed

by i ∈ I, and let J denote the set of spot posts, indexed by j ∈ J . At registration, the platform observes

some covariates, but from the viewpoint of the other side each agent still has a latent “type” that is not

initially observed. Because of this information friction, observed matches need not coincide with static

equilibrium notions such as the stable outcome of Shapley and Shubik (1971).

I model the agent behavior as a two-sided sequential-search model like Adachi (2003). In this envir-

onment, private information is revealed upon “meeting,” which can take several forms in practice such

as direct messages or physical interview. After a meeting, the two parties decide whether to accept one

another; a match forms only if both accept. If either side rejects, they separate and continue searching

in the next period. A post typically takes from a few hours to several days, so it is natural that a doctor

who matches with a post does not exit the platform unlike in the marriage market. Instead, the doctor

soon returns and continues searching. On the post side, once a match with a doctor occurs, the post

is permanently removed from the platform. But I assume a stationary environment in which similar

posts are continuously supplied by similar institutions. This environment assures that the distribution

of existing agent types is time-invariant.

I describe the model components in the following subsections. First, the individual decision prob-

lem: after a meeting and type revelation, each side either accepts the current counterparty or declines

and continues searching. For this component, I mostly follow the formulation in Adachi (2003), with

specifications tailored to my empirical application (Section 2.1). Second, the exposure rule: rather than

assuming random encounters as in Adachi (2003), I allow the platform to design how agents are brought

into meeting to pursue a platform objective. I also build a new system determining the continuation

value of the agents in this platform (Section 2.2).

2.1 Agents’ Decision Problem

I describe how agents on the platform act when meetings occur. Let αDi and αPj denote the continuation

values for doctor i and post j who remain unmatched at the end of a period and continue searching. In

this section they are taken as given; later they are determined as a model’s solution.
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Let Uij denote the matching utility of doctor i from matching with post j after j’s private type

is revealed. Because doctor i returns to the platform soon after completing the task at j, this utility

decomposes into a one-time component, Ũij , and a discounted continuation value: Uij ≡ Ũij+(1−κ)αDi ,
where 1−κ captures the discount rate caused by the blank time spent on the post j.1 The model primitive

which is parameterized in my empirical application, is the one-time matching utility Ũij , not Uij . Let

Vji denote the matching utility of post j from matching with doctor i after i’s type is revealed. Since

acceptance removes the post from the platform permanently, there is no continuation term on the post

side; the model primitive is Vji itself.

Doctor i accepts j iff Uij ≥ αDi , and post j accepts i iff Vji ≥ αPj . Equivalently, with acceptance

indicators aDi,j and a
P
j,i,

aDi,j ≡ 1{Uij ≥ αDi } = 1{Ũij ≥ καDi }, aPj,i ≡ 1{Vji ≥ αPj }. (1)

Here, I implicitly assume a non-transferable-utility environment: matched pairs do not make side pay-

ments, and there is no ex post bargaining over contract terms.

For the empirical application below and the more concise expression, I assume that private types enter

additively and are independently and identically distributed. Let Ũdet
ij and V det

ji denote the deterministic

components, and let εDij and εPji denote the idiosyncratic private types.

Assumption 1. (Additive and i.i.d. types) For all i ∈ I$and$j ∈ J ,

Ũij = Ũdet
ij + εDij , Vji = V det

ji + εPji,

where εDij and εPji are i.i.d. draws from a common distribution F , independent across pairs and across

sides.

2.2 Exposure and Continuation Value

The platform facilitates matching via a spot exposure rule that determines which posts are shown to each

doctor. Exposure is reciprocal: a post is exposed to a doctor if and only if the platform shows that post

to the doctor.

I model this process using an exposure intensity matrix µ ∈ [0, 1]I×J . Time is organized into sequences

of J periods. At the start of a sequence, each doctor i draws a random permutation of posts, σi. In period

t, for the candidate post j = σi(t), the platform triggers an exposure with probability µij . The resulting

spot exposure sets R̃Di,t and R̃Pj,t contain the counterpart ({j} and {i} respectively) if the exposure is

triggered, and are empty otherwise. Formally, Definition 1 specifies the spot exposure set of i and j.

Definition 1 (Exposure sets induced by exposure intensity µ). Fix µ = (µij)i∈I,j∈J ∈ [0, 1]I×J . In

each J-period sequence, every doctor i draws a permutation σi of J posts (independently across i), and

in each period t ∈ {1, . . . , J} draws an exposure indicator

Xi,t ∼ Bernoulli
(
µi,σi(t)

)
,

1When κ = 1, the doctor’s decision comes to whether to accept the post and exit from the market forever or to continue
searching. This case corresponds to the marriage market analyzed in Adachi (2003); Hitsch, Hortaçsu and Ariely (2010);
Chen, Hsieh and Lin (2023).
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independently across i and t conditional on (σi)i. The spot exposure sets are

R̃Di,t :=

{σi(t)}, if Xi,t = 1,

∅, if Xi,t = 0,
R̃Pj,t := { i ∈ I : σi(t) = j, Xi,t = 1 }.

Doctor side I consider doctor i’s dynamic decision in this platform. The flow utility obtained by

remaining unmatch is normalized to 0. Under the assumption of additive separability (Assumption 1),

following Adachi (2003), this dynamic decision problem is summarized by the following Bellman equation:

where ρ ∈ (0, 1) is the discount factor and αDi,t and α
P
j,t are continuation values at t,

αDi,t = ρ

∫
ε,σ,τ


1{R̃Di,t = ∅}αDi,t+1

+

J∑
j=1

1{j ∈ R̃Di,t}
{
αDi,t + 1{V det

ji + εPji > αPj,t} max{Ũdet
ij − καDi,t + εDij , 0}

}
 dF (ε, σ, τ)

The probability that a post j is exposed at period t is simply
µij
J .2 Then, the Bellman equation is

transformed into the following:

αDi,t = ρ

1−
J∑
j=1

µij
J

αDi,t+1 + ρ

J∑
j=1

µij
J
WD
ijt,

where

WD
ijt ≡ αDi,t +

∫
ε

1
{
V detji + εPji > αPj,t

}
max{Ũdetij − καDi,t + εDij , 0}dF (ε). (2)

Post side I consider post j’s dynamic decision. Again the flow utility of remaining unmatch is nor-

malized to 0. Remark that the exposure set of post at period t is not always a singleton set. Let

uj(S;α
P
j,t, α

D
t ) denote the utility obtained when the exposure set is S ∈ 2I . The Bellman equation of

post side is written as follows:

αPj,t = ρ

∫
ε,σ,τ

[
1
{
∅ = R̃Pj,t

}
αPj,t+1 +

∑
S∈2I

1
{
S = R̃Pj,t

}
uj
(
S;αPj,t, α

D
t

)]
dF (ε, σ, τ).

Instead of specifying uj(S;α
P
j,t, α

D
t ), I put an assumption on the relative size of both sides to avoid

the happenings of such multiple meeting. A necessary condition for S to be a non-singleton set is that

σAi (t) = σAi′ (t) for at least one pair of i and i′. I call this incidence by overlap. Then, the probability of

no overlap in a sequence, i.e. in J periods, is directly calculated as:

PI,J = Pr(no overlap) =

I−1∏
k=0

(
1− k

J

)
.

By analyzing asymptotic behavior of this probability, I obtain the condition for no overlap in the large

2Pr
(
j ∈ R̃D

i,t

)
= Pr(σi(t) = j, Xi,t = 1) = Pr(σi(t) = j) Pr(Xi,t = 1 | σi(t) = j) = 1

J
µij .
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market.

Assumption 2. I = o(
√
J)

Proposition 1. Under Assumption 2, PI,J → 1 as J →∞.

Proof. See Appendix A.1.

Hence, under Assumption 2, when J is sufficiently large, the Bellman equation of post j is analogously

as in the case of the doctor’s Bellman equation: note that the probability of doctor i is exposed to post

j at a period t is
µij
J ×

(
J−1
J

)I−1
where the adjustment term

(
J−1
J

)I−1
captures the event that no other

doctors are never exposed to j at the period3,

αPjt = ρ

(
1−

I∑
i=1

µij
J

(
J − 1

J

)I−1
)
αPjt+1 + ρ

(
J − 1

J

)I−1 I∑
i=1

µij
J
WP
ijt,

where

WP
ijt ≡ αPj,t +

∫
ε

1
{
Ũdetij + εDij > καDi,t

}
max{Vji − αPj,t + εPji, 0}dF (ε). (3)

Stationary solution Under Assumption 1 and 2, when the number of posts is sufficiently large, the

system determining the continuation values of doctors and posts under the spot exposure rule induced by

an exposure intensity is as follows: where WD and WP are defined as in (2) and (3), and τ ≡
(
J−1
J

)I−1
,

αDi,t = ρ
(
1−

∑J
j=1

µij
J

)
αDi,t+1 + ρ

∑J
j=1

µij
J W

D
ijt,

αPjt = ρ
(
1−

∑I
i=1

µij
J τ
)
αPjt+1 + ρτ

∑I
i=1

µij
J W

P
ijt.

(4)

Hereafter, I use α to denote the vector of continuation values stacking the values of both sides. Note

that period t only exists in α’s subscript in the above system. This implies that, for some map g, I

can write αt+1 = g(αt) for all t = 1, · · · , J . Then, because another J periods begins after one sequence

of J periods, α1 = g(αJ) = g(g(αJ−1)) = gJ(α1) where gJ denotes the J-fold composition of g. This

argument can be applied to all t: for all the t, αt = gJ(αt). This statement implies that the continuation

values are periodic solution, or the stationary solution as a special case, of the system.

Theorem 1 establishes that the system g has a unique stationary solution under suitable regularity

conditions. The result follows from a Lipschitz bound for g derived in Lemma 1 in Appendix A.2. In

Example 1 in Appendix B, I show a specific sufficient condition for this result when the private types ε

follow a unit-scale type I extreme value distribution, which is assumed in the later empirical application.

Furthermore, I show how easily the sufficient condition for the contraction mapping is satisfied in the

case of the extreme value distribution, particularly when J and I are large.

Theorem 1 (Stationary uniqueness via contraction). Assume the conditions of Lemma 1 and let R and

q
(κ)
R be as defined there. If q

(κ)
R < 1, then:

1. (Existence & Uniqueness) There exists a unique stationary solution α⋆ ∈ BR to the system α⋆ =

g(α⋆).

3You can find that
∑

i
µij
J

×
(

J−1
J

)I−1
≤

∑
i

1
J
×

(
J−1
J

)I−1
= IC1

1
J

(
J−1
J

)I−1
≤ 1.
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2. (Global convergence) For any initial α(0) ∈ BR, the iteration α(k+1) = g(α(k)) converges to α⋆ at

a linear rate bounded by
(
q
(κ)
R

)k
under the sup norm.

3. (No nonstationary cycles) If gk(α) = α for some k ≥ 1, then necessarily α = α⋆. In particular,

no nontrivial periodic orbits exist.

Proof. By Lemma 1, g is a contraction on the complete metric space (BR, ∥ · ∥∞) with modulus q
(κ)
R < 1.

Banach’s fixed point theorem yields (1) and (2). For (3), if gk(α) = α then

∥α− α⋆∥∞ = ∥gk(α)− gk(α⋆)∥∞ ≤
(
q
(κ)
R

)k∥α− α⋆∥∞,
hence α = α⋆.

The stationary version of the system (4) is written as follows:
αDi = ρ

1−ρ
∑J
j=1

µij
J

∫
ε
1
{
V detji + εPji > αPj

}
max{Ũdetij − καDi + εDij , 0}dF (ε),

αPj = ρτ
1−ρ

∑I
i=1

µij
J

∫
ε
1
{
Ũdetij + εDij > καDi

}
max{Vji − αPj + εPji, 0}dF (ε).

(5)

The solution of system (5) is interpreted as an equilibrium of the two-sided sequential search model

(Adachi, 2003; Hitsch, Hortaçsu and Ariely, 2010). In other words, doctors decide whether to accept

or reject the exposed post based on their continuation values, thereby creating match opportunities for

the post side, which likewise decides based on its continuation values (and vice versa). Furthermore,

as shown in Theorem 1, this equilibrium is unique under suitable regularity conditions, which paves

the way for the empirical application. Hereafter, I only consider the system (5), which is expressed as

α = g(α, µ). I use αD(µ) and αP (µ) to denote the stationary solution of the system.

In this stationary environment the distribution of doctors and posts is constant. What changes by

different exposure rule is the effective options faced by those who remain unmatched. An exposure rule

that rushes the “best pairs” together skims off the mutually attractive encounters as soon as they arrive.

Conditional on not having matched in the current period, an agent’s subsequent exposures become

systematically worse along two margins: (i) the counterparts she meets are, on average, less appealing

to her; and (ii) conditional on meeting, she is less appealing to them, so acceptance from the other

side is less likely. These are policy–induced shifts in the composition of meetings, not a change in the

population itself. Because continuation values are the expected gains from future exposures, these shifts

depress continuation values even though the platform is stationary in levels. This is the sense in which

the “market thins” in our model: not fewer people, but worse prospects for the agents who still need

another draw.

3 Exposure Design

I formulate the platform’s exposure-design problem where I restrict attention to exposure rules induced by

an exposure intensity; thus, the optimal exposure rule is the one induced by the optimal intensity. First,

in Section 3.1, building on the system that governs agents’ behavior on the platform, I introduce user

value, defined as the sum of continuation values, as a objective function of the platform in comparison
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with aggregate flow match surplus. In Section 3.2, I present a tractable algorithm to compute the

exposure intensity that maximizes user value.

3.1 Match Surplus and User Value

I take the equilibrium continuation values as the core of the platform’s objective. This choice reflects

that platforms seek to grow and retain their user base, and participation hinges on the perceived value of

staying—naturally captured by continuation values. Yet it is not obvious which exposure rule maximizes

user value, defined as the sum of continuation values, because the platform must trade off two opposing

forces: raising contemporaneous match quality versus thinning the future options of those who remain

unmatched. Below, I make this trade-off explicit and show that the exposure rule that maximizes

aggregate flow match surplus generally differs from the rule that maximizes user value.

For a formal discussion, let B denote the budget polytope:

B =
{
µ ∈ [0, 1]I×J : lri ≤

∑
j µij ≤ cri , lcj ≤

∑
i µij ≤ ccj

}
.

In this set, the row sums
∑
j ιij and column sums

∑
i ιij—the expected numbers of exposures for doctor

i and for post j in a single sequence of J periods—are bounded below by lri ∈ R+ and lcj ∈ R+ and above

by cri ∈ R+ and ccj ∈ R+. For any µ ∈ B, I define the aggregate flow match surplus, S(µ), and the user

value, U(µ), by

S(µ) ≡ 1

J

∑
i,j

µijW
D
ij +

τ

J

∑
i,j

µijW
P
ij , U(µ) ≡ 1

ρ

∑
i

αDi +
∑
j

αPj

 .

Note that these values are per-arrival value in the sense that these values multiplied by ρ are contributions

to the current continuation values as shown in system (4).

Proposition 2 establishes a wedge between the platform’s aggregate flow match surplus S(µ) and

the long-run user value U(µ): maximizing S(µ) need not maximize U(µ). Moreover, at any interior

maximizer of S, the user-value gradient is componentwise nonnegative whenever the associated adjoint

vector is nonnegative. Proposition 3 in Appendix A.5 provides a sufficient condition for this adjoint

nonnegativity under the EV1 specification, and shows that the condition becomes mild in large markets.

Taken together, these results imply that the S-optimal exposure intensity typically understates user

value: from the perspective of maximizing U , the optimal rule tends to under-expose pairs.

Proposition 2 (Flow optimum induces nonnegative user-gradient). Fix µ ∈ B and let α(µ) = (αD(µ), αP (µ))

be the unique stationary solution of the fixed-point system G(α, µ) ≡ α − g(α, µ) = 0. Let µ⋆flow be an

interior maximizer of S(µ), so that ∇µS(µ⋆flow) = 0. If the associated adjoint vector π is componentwise

nonnegative, then

∇µU(µ⋆flow)ij ≥ 0 for all (i, j),

where π = (πD, πP ) ∈ RI+J solves the adjoint linear system

M⊤π = (1I ,1J)
⊤, M ≡ ∂G

∂α
(α, µ⋆flow) ∈ R(I+J)×(I+J).

Proof. See Appendix A.3.
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3.2 Exposure Design for User Value Maximization

The platform’s problem is defined as follows:

(P)

∣∣∣∣max
µ∈B

∑
i

αDi (µ) +
∑
j

αPj (µ).

P is a constrained optimization over I × J variables subject to the nonlinear fixed-point constraints

in (4). It is difficult to solve—and in practice often numerically unstable—especially in large markets.

Furthermore, if there are multiple maximizers of P, I cannot set a strict rule on which one is chosen.

To avoid these issues, I reformulate P into a more tractable and numerically stable problem by

introducing an entropic regularization. The objective value of P is recovered as the zero–temperature

limit of the entropically regularized problem. Furthermore, when P has multiple maximizers, the zero-

temperature limit selects the one that is KL–closest to a baseline exposure.

3.2.1 Regularized Problem

Let ε > 0 be a temperature parameter and let q be a strictly positive baseline exposure that lies in the

interior of the budget polytope. An entropic regularization of P is defined as follows:

(Pε)

∣∣∣∣max
µ∈B

∑
i

αDi (µ) +
∑
j

αPj (µ)− ε
∑
ij

µij ln
µij
qij

,

where the last term represents a KL divergence between µ and q: and so I denote the term by KL(µ∥q) ≡∑
i,j µij ln

µij
qij

.

3.2.2 Zero-temperature Limit

I propose the zero-temperature limit of the solution of (Pε) as a solution of the original platform problem

P. It is natural to think the solution of this regularized problem converges to the solution of the original

problem in some as ε ↓ 0. Theorem 2 formalizes this correspondence and shows how the limit solution is

selected from a possibly multiple solutions of P.

Theorem 2 (Zero-temperature limit). For ε > 0 and qij ∈ B, define the regularized objective

Φε(µ) := U(µ)− εKL(µ∥q), KL(µ∥q) =
∑
ij

µij ln
µij
qij

.

Let µε ∈ argmaxµ∈B Φε(µ). Then:

(i) Every limit point µ0 of {µε}ε↓0 satisfies U(µ0) = maxµ∈B U(µ).

(ii) Let M := argmaxµ∈B U(µ). Every limit point µ0 lies in M and minimizes KL on M: i.e.,

µ0 ∈ argminµ∈M KL(µ∥q). If this minimizer is unique, then µε → µ0.

Proof. See Appendix A.4.
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3.3 Algorithm

For a fixed ε > 0, problem Pε is a KL-regularized optimization problem over the convex feasible set B.4

Rather than using the standard Sinkhorn algorithm, which is tailored to simple marginal constraints,

we solve Pε via the Bregman–Dykstra iterative projection method (Benamou et al., 2014). This method

generalizes Sinkhorn to an intersection of convex constraints and produces iterates that remain feasible

with respect to B.
To approximate the zero-temperature limit, we employ an annealing scheme in which the temperature

is gradually reduced, ε ↓ 0. At each temperature level, we run the Bregman–Dykstra iterations to

convergence and use the resulting solution to warm-start the next temperature. Pseudocode is provided

in Algorithm 1.

4 Empirical Application

I apply the model to a doctor-spot post matching platform and compute the optimal exposure rule.

In Section 4.1, I introduce the background information of this platform and show a set of descriptive

statistics to gauge the whole picture. In Section 4.2, I specify the data generating process and how to

parametrize the model primitives to identify the model. In Section 4.3, I show the estimation results and

gives some insights into the agent’s decisions in this platform. Lastly, in Section 4.4, I apply Algorithm 1

to this situation and compare the results to the other exposure rules.

4.1 Institutional Background and Data

The empirical setting is a two-sided platform that matches doctors to short-term “spot” posts, operated

by Medical Principle Co. in Japan. The platform is part of the firm’s broader medical-staffing business.

It serves doctors who already hold a medical license and have completed their internship—typically

physicians who maintain a full-time position at a medical institution. On the demand side, hospitals and

clinics contract with Medical Principle and list short-term openings at their facilities on the website, and

the platform intermediates applications and selection between doctors and providers.

I start by describing the detail of this platform. On the doctor side, doctors can search the website to

find suitable posts. Medical institutions do not directly search for candidates; instead, agents at Medical

Principle curate promising doctors from the platform’s user base, facilitating matches. The contents of

spot posts vary widely—e.g., overnight on-call shifts, health checkups, and ward coverage—and range

from a few hours or a single day to, in some cases, about a week. Doctors remain on the platform after

each match and—after an interval that differs across individuals—often return to take additional spot

work. By contrast, a task leaves the market once it is filled; yet many categories such as overnight duty

recur frequently as similar tasks, so the inflow into the platform is stationary.

I now describe the sequence in which a vacancy is filled on the platform. First, an “approach”

between a doctor and a post is generated either by the doctor’s web search or by a curated introduction

from Medical Principle’s agents; in the data we observe both the occurrence of an approach and its

channel. This approach corresponds with the meeting in my model. Once an approach occurs, the pair

4Equivalently, it can be viewed as an entropically regularized problem with a reference point q, subject to convex
constraints.
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Table 1. Mapping from Approach Status to Accept Indicators

Approach Status

Contract Cancelled After Contract NotHired Approach Inquiry Handled

doctor accept 1 1 1 0 0
post accept 1 1 0 1 -

Notes: 1 = accept, 0 = reject, - = not defined.

enters an information-exchange stage in which detailed attributes and terms are disclosed—typically via

inquiries routed through Medical Principle, and occasionally supplemented by an in-person or online

interview. Given this additional information, each side decides whether to accept or decline the current

counterpart; a match is formed only under bilateral acceptance. Importantly, even when a doctor initiated

the approach through search, the doctor may later decline after learning more: for example, the workload

proves demanding, the location is less accessible, and scheduling is inconvenient. Symmetrically, post-side

declines are also common.

For each approached pair, I also observe whether each side accepted or declined the counterpart.

This is because the platform records an “approach status” for every pair—one of Contract, Cancelled

After Contract, Not Hired, Approach, or Inquiry Handled. Using this status, we define binary indicators

of doctor- and post-side acceptance as in Table 1. For example, Contract implies mutual acceptance,

whereas Not Hired indicates that only the doctor accepted the post. The mapping was constructed in

consultation with Medical Principle’s staff. This information allows me to infer the outcome of post-

approach decisions from observed statuses.

In addition to the behavioral histories, the platform records rich attributes for each participant. On

the doctor side, available fields include age, years since licensure, medical specialty, home address, and

preferred task content. On the post side, the record includes the latitude–longitude of the work site, task

content, desired doctor specialty, working hours, and compensation. For task content, providers select

from predefined pull-down categories but may also supply free-text descriptions; further details are often

revealed through direct inquiries. In our model, such information beyond the observed covariates affects

payoffs and is treated as private information realized at the time of a meeting.

Descriptive Statistics I fix the sets of doctors I and posts J as follows: I consists of doctors who are

exposed to at least one approach in December 2024, and J consists of posts that are exposed to at least

one approach in the same month. This restriction is necessary because many doctors and posts are idle;

I therefore focus on the participants that conduct some form of active decision. Furthermore, I restrict

the posts open in Kanto region in Japan.

Table 2 summarizes the descriptive stats about the market size and acceptance patterns. The Decem-

ber market comprises 2,446 posts and 1,132 doctors with 3,898 observed approaches, yielding 1,358 agreed

contracts (overall agreement rate: 34.8%). Approaches are sparse on the post side and more dispersed

across doctors, suggesting a long right tail of highly active doctors. Self-search accounts for roughly 70%

of approaches. Acceptance patterns differ sharply by exposure rule: under self-search, doctors almost

always accept (98.0%) while posts are selective (40.6%); under agency recommendations, posts almost

always accept (97.8%) but doctors are selective (30.8%). The contract rate is higher for self-search

(40.6%) than for agency (28.6%), despite the latter’s very high post acceptance.
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Table 2. Market size and acceptance patterns by exposure rule

Panel A: Market size and outcomes

Number of posts (J) 2,446
Number of doctors (I) 1,132
Number of approaches 3,898
Number of agreed contracts 1,358
Agreement rate (overall) 34.84%

Panel B: Approaches per entity

Mean SD Min Median Max
Per post 1.594 1.527 1 1 23
Per doctor 3.443 4.474 1 2 46

Panel C: Acceptance by exposure rule

Agency (A) Self-search (S)
Share of approaches 30.20% 69.80%
Doctor accepts 30.80% 97.95%
Post accepts 97.75% 40.64%
Both accept (contract) 28.58% 40.64%

Notes: Shares and rates are computed over observed approaches. The overall agreement rate equals agreed contracts
divided by approaches (1358/3898 = 34.84%).

Table 3 reports summary statistics for doctor- and post-level variables. Panel A shows doctors are

on average 42.7 years old with 16.5 years of experience. This implies that they are mature doctors

and their skills are not in severe doubt unlike early-career doctors. Panel B summarizes post side: shifts

average 10.0 hours, advertised pay averages 72.1 thousand yen, and the implied hourly wage averages 9.25

thousand yen.5 The wide ranges and gaps between means and medians indicate substantial heterogeneity

in workload and compensation across posts.

In addition to the variables in Table 3, the dataset includes each doctor’s specialty and, for each

post, the desired doctor specialties. Figure F.1 shows the distribution of doctors across specialties. Most

posts specify two desired specialties—a primary and a secondary. Figure F.2 reports the number of posts

that list each specialty as the primary one. In both sides of the market, internal medicine is the most

prevalent specialty; roughly 50% of posts list internal medicine as their primary specialty. This pattern

is consistent with the nature of spot work: internal medicine is often bundled with routine services

such as general health checkups, which are well suited to short-term shifts. By contrast, specialties

that involve highly specialized tasks (e.g., cardiology) generate far fewer posts. On the supply side,

however, doctors’ registered specialties are less skewed, because physicians with specialized training can

still perform routine checkups; consequently, the distribution across doctors is more dispersed than the

distribution of posts.

Lastly, I present descriptive statistics for pairwise doctor–post variables. For each post’s primary–secondary

specialty pair, the platform specifies the set of doctor specialties that can “match” the post; this indic-

ator serves as a criterion in the agency recommendation. Figure F.3 reports the average number of posts

matched to each doctor specialty; as expected, internal medicine affords the most opportunities. Al-

though this match indicator is not a binding constraint on realized matches, it is included as a covariate

in the empirical analysis below. The mean doctor–post distance is 62.0km (median 353,km). In the

5Using the USD/JPY spot rate of 147.85 on September 12, 2025, 72.1 thousand yen ≈ $488 and 9.25 thousand yen ≈
$62.6.
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Table 3. Descriptive statistics of doctor-level and post-level variables

Panel A: Doctor-level (N = 1,132)

Variable Mean SD Min Median Max

Age 42.7 12.1 27.0 40.0 79.0
Exp (yrs) 16.5 11.8 2.00 13.0 53.0

Panel B: Post-level (N = 2,446)

Variable Mean SD Min Median Max

Hours 10.0 8.66 0.500 8.50 114
Pay (×1k yen) 72.1 43.4 4.00 60.0 650
Wage/hr 9.25 4.18 0.833 10.0 56.8

Notes: Wage/hr = Pay/hours. All figures rounded to three significant digits.

Kanto region, where rail is the primary mode of transport, such distances correspond roughly to 30–60

minutes of travel time.

4.2 Empirical Strategy

The platform implements two exposure rules: self-search exposure (S) and agency-recommendation ex-

posure (A). They are specified formally later. I observe the exposure sets generated by each rule; let

k ∈ {S,A} index the rule and the exposure sets are denoted by CDk,i ∈ 2J for doctors. These sets are dis-

joint : for any pair (i, j), the data specify at most one rule under which i and j are exposed to each other.

Define inclusion indicators for the exposure sets as follows: for each pair (i, j), cDk,i,j ≡ 1{ j ∈ CDk,i }. Note

that the exposure set of post is automatically determined by these doctor side exposure sets. For the

meeting pairs, I also observe the acceptance decisions of both sides. Remember that these are denoted

by aDi,j and aPj,i. When a pair (i, j) does not meet, these indicators take a null value ϕ. In short, an

“outcome variable” of one data point (i, j) is yij ≡
(
aDi,j , a

P
j,i,
(
cDS,i,j , c

D
A,i,j

))
.

In the data-generating process, yij is produced over J periods of spot-exposure rules corresponding to

the two rules and agents’ decisions after each meeting. A spot exposure rule, k ∈ {A,S} is an exposure

rule whose pairwise exposure intensity is denoted by µkij . At each period t, the random permutation,

σki , determines a possible counterpart and, the counterpart is drawn from a Bernoulli distrbituon with

parameter µkij , there is an exposure between j and j. The two spot exposure rules function independently,

and the exposure label for a pair is determined by whichever rule triggers exposure first. If both of the

spot exposure rules draw the same counterpart at the same period, I assume that S is prioritized.

4.2.1 Parametrization

I parametrize the preference structure of the agents in this platform and specify the acceptance indicators.

For each doctor–post pair (i, j), letXij denote observable characteristics which are known to the platform

operator, all agents, and the researcher. Xij form the deterministic component of the (one-time) matching

utilities, Ũdetij and V detji , as follows:

Ũdetij = X ′
ijβ

D + Z ′
ijδ

D, Vji = X ′
ijβ

P + Z ′
ijδ

P ,
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where Zij is a set of polynomials of Xij which captures the non-linear terms in the preferences. For now,

I fix the continuation values αDi and αPj . Then, under Assumption 1, the acceptance indicators aDi,j and

aPj,i, which are defined in (1), is specified as follows: for each meeting pair (i, j),

aDi,j =

1 if X ′
ijβ

D + Z ′
ijδ

D + εDij > καDi

0 otherwise
, aPj,i =

1 if X ′
ijβ

P + Z ′
ijδ

P + εPij > αPj

0 otherwise
,

I use θpref ≡
(
βD, βP , δD, δP

)
to denote the set of preference parameters. The doctor-side private type

εDij is i.i.d. across pairs with distribution HD, and the post-side private type εPji is i.i.d. across pairs with

distribution HP . We assume that HD and HP are logistic distributions with scale parameters ζD and

ζP , respectively. The acceptance probabilities for the two sides, denoted PDij and PPji , are given by:

PDij ≡ Pr
(
aDi,j = 1

)
=

1

1 + exp
(
καDi −X′

ijβ
D+Z′

ijδ
D

ζD

) , PPji ≡ Pr
(
aPj,i = 1

)
=

1

1 + exp
(
αPj −X′

ijβ
P+Z′

ijδ
P

ζP

) .

Remember that there are two exposure rules. Below, I formally specify how these rules operate. For

now, I fix the continuation values αDi and αPj .

Self-search exposure. This exposure rule functions by repeating a J-period sequence. The spot-

exposure sets for doctor i and post j are defined as follows:R̃
D
S,i,t =

{
j ∈ J | σSi (t) = j,X ′

ijβ
D + Z ′

ijδ
S + ṽSijt > καDi + ṽSijt0

}
R̃PS,j,t =

{
i ∈ I | σSi (t) = j,X ′

ijβ
D + Z ′

ijδ
S + ṽSijt > καDi + ṽSijt0

}
,

where the difference between δS and δD, which appears in doctor’s preference, captures a kind of mis-

perception: after meeting the doctor’s preference might be altered. σSi is a random permutation of

{1, . . . , J}. (ṽSijt, ṽ
S
ijt0) are idiosyncratic errors in the perceived utility that are not accounted for by

the deterministic components. The distribution of them is denoted HS . I assume that HS is a type-

I extreme-value distribution with scale parameter ζS . Hence, the pairwise exposure intensity µSij is

specified as follows:

µSij =
1

1 + exp

(
καDi −(X′

ijβ
D+Z′

ijδ
S)

ζS

) .
Agency recommendation exposure. This exposure rule functions by repeating a J-period. The

spot-exposure sets for doctor i and post j are defined as follows: R̃DA,i,t ≡
{
j ∈ J | σAi (t) = j, X ′

ijβ
P + f ′ijδ

A + ṽAijt > αPj + ṽAijt0
}

R̃PA,j,t ≡
{
i ∈ I | σAi (t) = j, X ′

ijβ
P + f ′ijδ

A + ṽAijt > αPj + ṽAijt0
}
,

where the difference between δP and δA, which appears in the preference of post, captures a kind

of misperception about the utility achieved by the post—relative to the true deterministic matching

utility—when evaluating a match between i and j from the perspective of the mating agents. σAi is a
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random permutation of {1, . . . , J}. Which is drawn independently from σSi . (ṽ
A
ijt, ṽ

A
ijt0) are independent

idiosyncratic errors in perceived utility that are not captured by the deterministic components. Their

distribution is denoted by HA. I assume that HA is a type-I extreme-value distribution with scale

parameter ζA. Hence, the pairwise exposure intensity µAij is specified as follows:

µAij =
1

1 + exp

(
αPj −(X′

ijβ
P+Z′

ijδ
A)

ζA

) .
I denote by θexpo ≡ (δS , δA) the tuple of additional parameters governing the misperception terms

in the two exposure rules. Let Γ ≡ (ζD, ζP , ζS , ζA) collect the scale parameters of all the idiosyncratic

error terms. The full parameter vector to be estimated is θ ≡ (θpref, θexpo,Γ, κ, ρ). When I emphasize

the pairwise exposure intensities are dependent on the parameters and the continuation values, I use

µSij(θ;α
D
i ) and µ

A
ij(θ;α

P
j ). For the same purpose, I also use PDij (θ;α

D
i ) and P

P
ji (θ;α

P
j ).

4.2.2 Likelihood Function and Constraints

I can calculate the probability of an observation yij by

Pr(yij) = Pr
(
aDi,j , a

P
j,i | cDS,i,j , cDA,i,j

)
· Pr
(
cDS,i,j , c

D
A,i,j

)
.

The first term follows from the distribution of private types due to Definition 1 under Assumption 1.

For the second term, the probabilities of the exposure-indicator pair (cDS,i,j , c
D
A,i,j) can be written as

functions of the pairwise exposure intensities µS and µA. Given α, this decomposition yields the log-

likelihood function to maximize which is denoted by LL(θ;α) ≡
∑
ij lnL (θ; yij , α) where the detail form

of L (θ; yij , α) is defined in Appendix C.

I specify the Bellman equation that determines agents’ continuation values when the two exposure

rules operate simultaneously. These equations impose nonlinear constraints on α, and I maximize the

log-likelihood subject to them. Proposition 4 in Appendix A.6 summarizes the steady system for the

Bellman equation. Note that, in comparison to the system (4), the current pairwise exposure intensity,

µ̂, depends on the continuation values.6

4.2.3 Identification and Estimation Procedure

I adopt NFXP algorithm to estimate the model (Rust, 1987). In other words, I repeat (i) solving the

fixed point of the system (11) and (ii) update the parameters to maximize the log-likelihood function

given the continuation values.

It is widely acknowledged that the discount factor is under-identified in a dynamic model (Magnac

and Thesmar, 2002). In this estimation, I fix the discount factor at ρ = 0.99. The market has about

2,400 posts per month—roughly 80 per day—and the average shift length is 10 hours (approximately a

full day’s work). Accordingly, I set κ ≈ 1− ρ80 ≈ 0.552 ≈ 0.55.

I introduce normalizations to the scale parameters of the distribution of private types: ζD = 1 and

ζP = 1. This is because, for any value of ζD and ζP , the system (11) and the terms in the system is not

6I examine whether the system exhibits a contraction-mapping property analogous to Theorem 1. Appendix A.7
describes sufficient conditions under which the system (11) is a contraction and admits a unique stationary equilibrium. In
particular, when J is sufficiently large, these conditions are likely to hold.
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Table 4. Equivalence change in other covariates to a 10% increase in salary

Side Variable Equiv. (raw) SE z p % (distance) SE % (distance)

Panel A: Self-search Exposure

Doctor ln Distance (km) −0.0553 0.0114 −4.8519 0.0000 −5.3762 1.0777
Doctor Age 1.1880 0.4185 2.8390 0.0045
Doctor Exp (yrs) 2.1914 1.2618 1.7368 0.0824
Doctor Hours −2.1470 0.5345 −4.0168 0.0001

Panel B: Agency-recommendation Exposure

Post ln Distance (km) 0.0773 0.0167 4.6342 0.0000 8.0352 1.8018
Post Age 1.3317 0.5685 2.3427 0.0191
Post Exp (yrs) −1.7535 0.9632 −1.8206 0.0687
Post Hours −1.0499 0.1591 −6.6004 0.0000

Panel C: Acceptance (Doctor)

Doctor ln Distance (km) 0.0117 0.1274 0.0919 0.9268 1.1776 12.8878
Doctor Age 0.0083 0.0900 0.0922 0.9266
Doctor Exp (yrs) −0.0117 0.1271 −0.0922 0.9266
Doctor Hours −0.0167 0.1798 −0.0927 0.9262

Panel D: Acceptance (Post)

Post ln Distance (km) 0.9618 0.6803 1.4138 0.1574 161.6455 178.0054
Post Age 0.7883 0.1218 6.4722 0.0000
Post Exp (yrs) −1.6555 0.3444 −4.8074 0.0000
Post Hours −2.4955 0.4897 −5.0954 0.0000

Notes: Entries report, for each covariate, the change in raw units that yields the same change in the
matching utility term as a 10% increase in salary. SEs use the fixed-α. The percent column is only defined
for ln Distance (km).

altered by scaling the parameters, θpref and θexpo, and the scale parameters of error terms, ζS and ζA,

with ζD and ζP . Under the normalizations, all the remaining parameters are identified; in particular, the

scale parameters of error terms, ζS and ζA, are identified as the coefficient attached with the continuation

values in µS and µA. Hence, the parameters to estimate is re-defined as θ ≡
(
θpref, θexpo, ζ

S , ζA
)
.

4.3 Estimation Results

Table 4 quantifies the trade-off between salary and other attributes. Specifically, it reports the change

in covariate x that yields the same utility gain as a 10% salary increase:

gx =
βsal + δsal
βx + δx

· log(1.1) · σx
σsal

,

where coefficients are scaled by their empirical standard deviations (σx, σsal). This ratio is invariant to

the scale of latent errors. Standard errors are derived using the delta method.7 For log distance, the

values are converted to percentage changes for interpretability.

On the exposure margin, both rules continue to show economically meaningful relationships with the

covariates. In self-search (Panel A), a 10% salary increase is equivalent to about a 5.38% reduction in

distance, indicating doctors’ clear preference for nearby posts. Agency recommendation (Panel B) goes

the other way: a 10% salary increase corresponds to roughly an 8.04% increase in distance, consistent

with the agency casting a geographic distance. Beyond distance, the agency places positive weight on

doctor experience—a 10% salary increase trades off against about 1.75 fewer years of experience on the

doctor side. By contrast, age is negatively valued on the post side: an increase of about 1.33 years is

equivalent to a 10% salary increase in the post’s matching utility.

At the acceptance margin, doctor acceptance (Panel C) remains essentially flat with respect to these

7See Appendix D for details. Given the large parameter space, I approximate the inverse Hessian using Hessian-vector
products.
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Figure 1. Monetary Measures of Continuation Values

Notes: The figure displays histograms of ∆ lnw computed from the estimated continuation values and the salary
slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars indicate that a
salary cut (raise) in (e|∆w| − 1)× 100 percent would leave the probabilities of accept and exposure unchanged if
the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from α to ∆ lnw.

covariates once exposure has occurred. Post acceptance (Panel D) remains responsive, with the same

qualitative signs as in Panel B: a 10% salary increase is comparable to about 0.79 in age, −1.66 years

of doctor experience, and −2.50 hours, indicating stronger sorting on the post side at the final decision

stage. The distance effect on the post side is large in magnitude (about +161.6%) but imprecise and

should therefore be interpreted cautiously; a natural interpretation is that, because the agency and

doctors already select nearby matches at the exposure stage, posts care less about a candidate’s distance

conditional on meeting. These patterns also hold when I examine the dummy variables that capture

whether a doctor’s desired job type matches the job description specified by the post side as shown in

Table F.1.

Continuation values. I evaluate the continuation values in this platform. For this purpose, I need the

“true” preference structure of both sides. Considering the above estimates, it is natural to assume that

doctors’ preferences are identified from the self-search exposure decisions, whereas post-side preferences

are identified from the acceptance decisions. Hence, I use the exposure model estimates (βD, δS) for

doctor side and the acceptance model estimates (βP , δP ) for post side for below analysis.

I measure continuation values in monetary units using salary offsets, which is denoted by ∆ lnw.

Specifically, I compute the change in log salary that equalizes the propensity of self-search exposure or

post acceptance between the baseline with the estimated α and the counterfactual with α = 0. Let β+ δ
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denote the composite coefficient on lnw. In other words,

Doctor: − καDi + (β + δ) lnw = (β + δ)
(
lnw +∆ lnw

)
⇒ ∆ lnw = − κ

β + δ
αDi ,

Post: − αPj + (β + δ) lnw = (β + δ)
(
lnw +∆ lnw

)
⇒ ∆ lnw = − 1

β + δ
αPj .

Note that β + δ > 0 on the doctor side, whereas β + δ < 0 on the post side: doctors prefer higher wages

while posts disprefer them. Consequently, the computed salary offsets should be negative for doctors

and positive for posts.8

Figure 1 expresses each side’s distribution of log salary offsets. The distributions suggest that doctors

hold the stronger position in this market: doctor offsets are typically more largely negative (median

−1.893, i.e., about an 85% decrease), whereas post offsets are modestly positive (median 0.05, i.e., about

a 5% increase), indicating greater selectivity on the doctor side. This pattern is natural given the spot

nature of the platform—medical institutions cannot afford to wait. The doctor-side distribution also

exhibits greater variance, implying unequal treatment across doctors: more attractive doctors can be

highly selective. By contrast, most posts have log salary offsets at or near zero, reflecting that many

posts receive few exposures over the sequence.

4.4 Optimal Exposure Rule

I compute optimal exposure rules by solving P (Section 3) subject to the constraint that each doctor

receives exactly 40 exposures in expectation (cri = lri = 40 for all i). This target reflects platform

guidelines designed to balance match opportunities against cognitive overload; no analogous restriction

is imposed on posts.9

The algorithm proceeds by alternating between solving the value fixed point and projecting the

kernel K = q ⊙ exp(∇U/ε) onto the budget set. Because the feasible set involves only row equalities

(
∑
j µij = 40) and box constraints, the Bregman–Dykstra projection simplifies to efficient alternating

row scaling and clipping. I initialize the baseline q as a row-normalized softmax of deterministic utilities

and use a temperature ε = 0.03 with damping θ = 0.3. Convergence tolerances are set tightly at 10−8

for the fixed point and 10−6 for the projector.

Optimal exposure. Figure 2 reports log salary offsets of continuation values under the optimal ex-

posure rule. The distributions again indicate that doctors hold the stronger position: doctor offsets are

typically more negative (median −5.127, i.e., about a 99% decrease), whereas post offsets are modestly

positive (median 0.208, i.e., about a 23% increase). Relative to the realized market in Figure 1, both

sides become more selective under the current rule—the medians move farther from zero in magnitude.

Moreover, the variance on the post side rises substantially (from 0.02 on the actual platform to 0.13

8To interpret the salary offsets, it helps to see how continuation values enter decisions. Focus on doctors; the same logic
applies to posts. A higher continuation value αD

i > 0 makes a doctor more selective—he is willing to wait longer for better

opportunities. If I remove this continuation value by setting αD
i = 0, he searches more aggressively and is exposed to more

posts. To keep his exposure propensity at the observed level, the salary must be reduced; the salary offset is exactly this
required reduction. Specifically, salary must be adjusted by (e∆ lnw − 1)× 100 percentage points. Larger absolute offsets
correspond to higher continuation values—that is, a platform the doctor finds more valuable.

9To implement this at the platform scale (I = 1,132, J = 2,446), I avoid the prohibitive memory cost of a dense Jacobian
by exploiting the matrix’s block structure. Specifically, I apply a Schur–complement reduction to form a smaller linear
system for the adjoint vector, which is then solved using an iterative Krylov method (details in Appendix E).
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Figure 2. Monetary Measures of Continuation Values under Optimal Exposure Rule

Notes: The figure displays histograms of ∆ lnw computed from the computed continuation values and the
estimated salary slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars
indicate that a salary cut (raise) in (e|∆w|−1)×100 percent would leave the probabilities of accept and exposure
unchanged if the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from
α to ∆ lnw.

under the optimal rule), reflecting a wider dispersion: many posts are exposed to more doctors under

this exposure rule and at the same time the inequality among posts grows.

In Table F.2, I regress log salary offsets on post- and doctor-side covariates, using ∆ lnw for posts

and −∆ lnw for doctors so that positive coefficients indicate larger absolute offsets. On the post side,

the on-call indicator is the dominant correlate, with a large positive association, while longer scheduled

hours are negatively related. Among content features, many covariates load negatively on the offset, with

the house-call indicator an exception that loads positively. On the doctor side, demographic variables

contribute little on average, whereas practice-content indicators are more informative: preferences aligned

with outpatient care, inpatient ward care, and endoscopy are the top three associated with larger absolute

offsets. Overall, value concentrates on specific post attributes (especially on-call duties) and on doctors

whose revealed content preferences align with those high-value posts.

Comparison with actual exposure rule. To compare the baseline exposure µ̂ with the optimal

exposure µ⋆, I run two complementary regressions. First, for each doctor i, I form the µ–weighted

average of a post attribute xPj , x̄
P
i (µ) =

∑
j µijx

P
j , and regress it on doctor covariates xDi in pooled OLS

across doctors: x̄Pi (µ) = β0(µ) + xD⊤
i β(µ) + εi. I estimate this twice—once with µ = µ̂ and once with

µ = µ⋆—and report b̂, b⋆, and their difference ∆ = b⋆ − b̂ with a Wald test for H0 : ∆ = 0. Second,

because distance is pair specific, I regress µij on ln(distanceij) at the pair level. I report basis points per

+10% increase in distance, computed as c× ln(1.1)× 10,000, where c is the log-distance coefficient. For

each exposure rule (µ̂ and µ⋆) I report the slope and, using a standard Wald test, the difference between
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Table 5. How the exposure design changes doctor–post attribute relations

Panel A: Doctor/Post-only attributes b̂ b⋆ ∆ = b⋆ − b̂ SE(∆) z p

Hours Age −0.011 0.008 0.019 0.008 2.308 0.021
Hours Experience −0.002 −0.002 0.000 0.008 0.056 0.956
Log salary Age 0.000 −0.001 −0.001 0.000 −1.735 0.083
Log salary Experience −0.001 0.001 0.001 0.000 3.340 0.001

Panel B: Distance effects

Distance (bps per +10%) −3.612 0.163 3.776 0.001 3544.882 0.000

Notes: Panel A reports OLS coefficients linking (doctor attributes) to (post-side attribute weighted

averages) under the baseline exposure ι̂ and the optimized exposure ι⋆, with ∆ = b⋆ − b̂ and a Wald
test for H0 : ∆ = 0. Panel B reports semi-elasticities of exposure with respect to distance in two units:
basis points (bps) per +10% increase in distance.

Figure 3. Monetary Measures of Continuation Values under Optimal Exposure Rule with Same #
Exposures

Notes: The figure displays histograms of ∆ lnw computed from the computed continuation values and the
estimated salary slope s for the selected stage/side. A vertical line marks the median. Negative (positive) bars
indicate that a salary cut (raise) in (e|∆w|−1)×100 percent would leave the probabilities of accept and exposure
unchanged if the benefits of remaining, i.e. the continuation values, were removed. See text for the mapping from
α to ∆ lnw.

the two slopes with its standard error and p-value.

Table 5 summarizes the comparisons. Panel A is about the side-specific attributes and Panel B is

about the pair-specific attribute. Two shifts in Panel A are noteworthy. First, the Hours–Age slope

flips sign: under the baseline, older doctors are weakly tilted toward posts with fewer hours, whereas

under the optimized rule they are tilted toward posts with more hours. Second, the Log-salary–Age slope

becomes more negative, indicating a mild reweighting away from the very highest-salary posts for older

doctors. The Log-salary–Experience slope turns positive, pointing to more experienced doctors being

steered toward higher-wage posts under the optimized exposure. Panel B shows a change in the distance

semi-elasticity. In the baseline, exposure falls with distance: about −3.61 bps per +10% distance. Under

the optimized rule the slope is essentially flat to slightly positive: about +0.16 bps per +10%. In other

words, the optimal design largely removes the baseline penalty on distance, making exposure far more

distance-neutral.
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Source of user value. I investigate the sources of user value generated under the optimal exposure.

To that end, I compute an alternative rule that fixes each doctor’s expected number of exposures at its

estimated level. Specifically, using the estimates, I obtain µ̂ij for all doctor–post pairs and define, for

each doctor i, the estimated expected number of exposures in a sequence as ξi ≡
∑
j µ̂ij . I then set the

budget polytope to

B̂ =
{
µ ∈ [0, 1]I×J :

∑
j µij = ξi ∀i

}
,

and solve the resulting optimal exposure problem P.

The distribution of log salary offsets under this rule is shown in Figure 3. The medians on both sides

are smaller in magnitude than in the realized market (Figure 1): on the doctor side, the median implies

only a 26% salary reduction (85% in the actual market), and on the post side, the median implies about

a 1% salary increase (5% in the actual marker). This pattern indicates that the primary source of user-

value gains under the optimal exposure design with 40 exposures per doctor is the scale of exposures. In

simulations, the median log salary offsets on both sides remain below their realized-market levels unless

I raise each doctor’s expected exposures to about seven times the realized level—that is, set ξi to 7× its

empirical value.

5 Discussion

In the empirical specification, acceptance decisions do not admit additional unobserved selection induced

by the exposure stage: i.e., no latent shock carried from exposure into acceptance beyond observed cov-

ariates. This exclusion greatly simplifies the likelihood—exposure can be treated as predetermined when

forming the acceptance component—yet it is plausibly too strong. A richer model could (i) introduce

pair- or side-specific random effects shared across exposure and acceptance, (ii) use a control–function

or copula link between the two stages, or (iii) leverage timing and quasi-random variation in expos-

ure intensity to identify selection at acceptance. Each approach preserves the fixed-point structure for

continuation values but requires either simulation-based likelihood or composite likelihood to remain

tractable.

Our analysis targets a stationary environment. Practical recommendation policies, however, operate

under nonstationary demand and seasonality. Extending the algorithm proposed here to such environ-

ment is therefore a promising direction, building on the growing literature on online matching and re-

commendation with operational frictions such as ranked-list presentation and limited attention/patience

(Brubach et al., 2025), as well as multi-channel traffic that partially bypasses platform recommendations

(Manshadi et al., 2025). Incorporating additional platform constraints—for instance, explicit fairness or

service-rate objectives—is also feasible and would connect naturally to recent algorithmic formulations

of fairness in online matching markets (Ma, Xu and Xu, 2023).
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A Omitted proofs

A.1 When does prob of no overlap go to 0?

Let

PI,J = Pr(no overlap) =

I−1∏
k=0

(
1− k

J

)
, 1 ≤ I ≤ J,

denote the probability that I agents, each independently selecting one of J goods, make distinct choices.

General expansion (valid for all I ≤ J). Using log(1− y) = −y − y2

2 −
y3

3 − . . . (0 < y < 1),

logPI,J = −I(I − 1)

2J
− (I − 1)I(2I − 1)

12J2
+RI,J , |RI,J | <

I4

12J3
. (6)

Square–root barrier. Set I = I(J) and let J →∞.

(i) Sub-critical regime. If I = o(
√
J) (equivalently I2/J → 0), every term in (6) vanishes, hence

PI,J = 1− o(1).

The no–overlap event occurs with probability tending to 1.

(ii) Critical window. If I ∼ c
√
J with constant c > 0, then

logPI,J −→ −c
2

2
, PI,J −→ e−c

2/2 ∈ (0, 1).

The probability converges to a non–degenerate limit.

(iii) Super-critical regime. If
√
J ≪ I ≤ o(J), the leading term − I2

2J → −∞, so

PI,J −→ 0,

making collisions virtually certain. (When I is a fixed fraction of J , the same exponential decay

was obtained earlier.)

Summary. The necessary and sufficient condition for

Pr(no overlap) −−−−→
J→∞

1

is

I = o
(√
J
)
⇐⇒ I2

J
−−−−→
J→∞

0.

The scale I ≍
√
J constitutes a sharp square-root threshold separating regimes of almost-sure uniqueness

from almost-sure collisions.

A.2 Proof of Theorem 1

Lemma 1 (Lipschitz bound (Bernoulli exposure)). Let g = (gD, gP ) be the time–homogeneous map

induced by the stationary version of (4) under the Bernoulli exposure rule: each doctor i draws a per-

24



mutation σi of J posts at the beginning of each sequence, and in period t an exposure between i and

j = σi(t) occurs with probability µij, independently across i and t conditional on (σi)i. Let WD,WP be

defined by (2)–(3).

Assume:

1. Deterministic parts are bounded: |Ũdet
ij | ≤ Ũ , |V det

ji | ≤ V̄ , and E[|εD|],E[|εP |] <∞.

2. Type shocks are independent and admit bounded densities: εD ⊥⊥ εP , supx fD(x) ≤ f̄D, supy fP (y) ≤
f̄P .

3. Define the exposure-mass bounds

γDmax := max
i

1

J

∑
j∈J

µij , γPmax := max
j
τ
1

J

∑
i∈I

µij , where τ :=
(
J−1
J

)I−1

.

Set

C
(κ)
D := Ũ + E[|εD|], CP := V̄ + E[|εP |], C

(κ)
∗ := max{γDmaxC

(κ)
D , γPmaxCP }.

Fix R ≥ ρ

1− ρ
C

(κ)
∗ and write BR := {α : ∥α∥∞ ≤ R}.

Then g(BR) ⊆ BR and, for all α, α′ ∈ BR,

∥g(α)− g(α′)∥∞ ≤ q
(κ)
R ∥α− α

′∥∞,

with

q
(κ)
R := ρ max

{
γDmax

[
1 + f̄P (R+ C

(κ)
D )

]
, γPmax

[
1 + κ f̄D (R+ CP )

]}
.

In particular, if q
(κ)
R < 1, the stationary system α = g(α) admits a unique fixed point in BR.

Proof. Throughout write a = αDi , b = αPj , a
′ = αD ′

i , b′ = αP ′
j , and note |a|, |a′|, |b|, |b′| ≤ R on BR.

Prelim: Bernoulli exposure implies weights µij/J . Under the Bernoulli exposure rule,

Pr
(
j ∈ R̃Di,t

)
= Pr(σi(t) = j) Pr(Xi,t = 1 | σi(t) = j) =

1

J
µij ,

where Xi,t ∼ Bernoulli(µi,σi(t)). Under Assumption 2 (large market), the post-side overlap adjustment

yields Pr(i ∈ R̃Pj,t) ≈ τ µij/J with τ = ((J − 1)/J)I−1. Therefore, suppressing t, the stationary form of

(4) can be written as

αDi = ραDi + ρ
∑
j

µij
J

E
[
1{V det

ji + εP > b} max{Ũdet
ij − κa+ εD, 0}

]︸ ︷︷ ︸
=: W̃D(a,b)

,

αPj = ραPj + ρ τ
∑
i

µij
J

E
[
1{Ũdet

ij + εD > κa} max{V det
ji − b+ εP , 0}

]︸ ︷︷ ︸
=: W̃P (a,b)

.

Equivalently, (1− ρ)α = g̃(α) where g̃Di (α) := ρ
∑
j
µij
J W̃

D(a, b) and g̃Pj (α) := ρ τ
∑
i
µij
J W̃

P (a, b). The

Lipschitz properties of g and g̃ coincide, so it is enough to work with W̃ .
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Step 1: Lipschitz bounds for W̃D, W̃P . By independence,

W̃D(a, b) = E[max{Ũdet − κa+ εD, 0}] · Pr(V det + εP > b),

W̃P (a, b) = Pr(Ũdet + εD > κa) · E[max{V det − b+ εP , 0}].

(own–argument). The maps a 7→ max{Ũdet − κa+ εD, 0} and b 7→ max{V det − b+ εP , 0} are κ– and

1–Lipschitz, respectively. Multiplying by probabilities in [0, 1] preserves Lipschitz moduli, hence

|W̃D(a, b)− W̃D(a′, b)| ≤ |a− a′|, |W̃P (a, b)− W̃P (a, b′)| ≤ |b− b′|.

(cross–argument). Let FP be the CDF of V det + εP and FD that of Ũdet + εD. Since FP , FD are

f̄P , f̄D–Lipschitz,

|Pr(V det + εP > b)− Pr(V det + εP > b′)| ≤ f̄P |b− b′|,

|Pr(Ũdet + εD > κa)− Pr(Ũdet + εD > κa′)| ≤ κ f̄D |a− a′|.

Moreover, for |a|, |b| ≤ R,

E[max{Ũdet − κa+ εD, 0}] ≤ E[|Ũdet + εD|] + κ|a| ≤ C(κ)
D +R ≤ R+ C

(κ)
D ,

E[max{V det − b+ εP , 0}] ≤ E[|V det + εP |] + |b| ≤ CP +R ≤ R+ CP .

Therefore

|W̃D(a, b)− W̃D(a, b′)| ≤ (R+ C
(κ)
D ) f̄P |b− b′|, |W̃P (a, b)− W̃P (a′, b)| ≤ κ (R+ CP ) f̄D |a− a′|.

Step 2: Lipschitz bound for g. Using Step 1,

|gDi (α)− gDi (α′)| ≤ ρ
∑
j

µij
J

(
|αDi − αD ′

i |+ f̄P (R+ C
(κ)
D ) ∥αP − αP ′∥∞

)
≤ ρ
(∑

j

µij
J

)[
1 + f̄P (R+ C

(κ)
D )

]
∥α− α′∥∞.

Taking sup over i yields

∥gD(α)− gD(α′)∥∞ ≤ ρ γDmax

[
1 + f̄P (R+ C

(κ)
D )

]
∥α− α′∥∞.

Similarly,

∥gP (α)− gP (α′)∥∞ ≤ ρ γPmax

[
1 + κ f̄D(R+ CP )

]
∥α− α′∥∞.

Combining gives the stated q
(κ)
R .

Step 3: g(BR) ⊆ BR. From the rearranged form (Prelim),

|gDi (α)| ≤ ρ
∑
j

µij
J

E[max{Ũdet − κa+ εD, 0}] ≤ ρ
(∑

j

µij
J

)
(R+ C

(κ)
D ),
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|gPj (α)| ≤ ρ τ
∑
i

µij
J

E[max{V det − b+ εP , 0}] ≤ ρ
(
τ
∑
i

µij
J

)
(R+ CP ).

Hence

∥g(α)∥∞ ≤ ρmax
{
γDmax(R+ C

(κ)
D ), γPmax(R+ CP )

}
≤ ρ (R+ C

(κ)
∗ ).

By the choice R ≥ ρ
1−ρ C

(κ)
∗ we have ρ(R+ C

(κ)
∗ ) ≤ R, thus g(BR) ⊆ BR.

A.3 Proof of Proposition 2

Step 0: Adjoint representation of ∇µU(µ). Let Û(µ) :=
∑
i α

D
i (µ) +

∑
j α

P
j (µ) so that U(µ) =

Û(µ)/ρ. By the implicit function theorem applied to G(α, µ) = 0,

M
∂α

∂µij
+

∂G

∂µij
= 0, M :=

∂G

∂α
(α, µ).

Hence ∂α
∂µij

= −M−1 ∂G
∂µij

and

∂Û

∂µij
= ∇αÛ⊤ ∂α

∂µij
= −∇αÛ⊤M−1 ∂G

∂µij
.

Define the adjoint vector π = (πD, πP ) by

M⊤π = ∇αÛ = (1I ,1J)
⊤,

to obtain
∂Û

∂µij
= −π⊤ ∂G

∂µij
.

Step 1: Computing ∂G/∂µij (holding α fixed). Since G = α− g, we have ∂G/∂µij = − ∂g/∂µij .
Under the Bernoulli exposure rule (Definition 1), the stationary mapping g has the form

gDi (α, µ) = ραDi +
ρ

J

∑
j′

µij′
(
WD
ij′ − αDi

)
, gPj (α, µ) = ραPj +

ρ τ

J

∑
i′

µi′j
(
WP
i′j − αPj

)
,

so that
∂gDi
∂µij

=
ρ

J

(
WD
ij − αDi

)
,

∂gPj
∂µij

=
ρ τ

J

(
WP
ij − αPj

)
,

and all other components are zero. Therefore,

∂Û

∂µij
= π⊤ ∂g

∂µij
=
ρ

J

[
πDi
(
WD
ij − αDi

)
+ τ πPj

(
WP
ij − αPj

) ]
.

Dividing by ρ yields

∇µU(µ)ij =
1

J

[
πDi
(
WD
ij − αDi

)
+ τ πPj

(
WP
ij − αPj

) ]
. (7)

Step 2: Wedge with the flow objective and the nonnegativity at µ⋆flow. For an interior maxim-

izer µ⋆flow of S(µ) we have ∇µS(µ⋆flow) = 0. Substituting this first-order condition into (7) and rearranging

gives

∇µU(µ⋆flow)ij =
1

J

[
πDi (µ⋆flow)

(
WD
ij − αDi

)
+ τ πPj (µ

⋆
flow)

(
WP
ij − αPj

) ]
.
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If π(µ⋆flow) ≥ 0 componentwise, then the bracketed term is weakly nonnegative for all (i, j), hence

∇µU(µ⋆flow)ij ≥ 0 for all (i, j), which proves Proposition 2.

A.4 Proof of Theorem 2

For any µ⋆ ∈ argmaxU , optimality of µε gives

U(µε)− εKL(µε∥q) ≥ U(µ⋆)− εKL(µ⋆∥q).

Thus U(µε) ≥ U(µ⋆) − εKL(µ⋆∥q), so U(µε) → maxµ U(µ). By compactness of B, any limit point µ0

satisfies U(µ0) = maxµ U(µ), proving (i).

For (ii), for any µ ∈M the same inequality rearranges to

KL(µε∥q) ≤ KL(µ∥q) +
U(µε)− U(µ)

ε
.

Since U(µε)→ U(µ) for all µ ∈ M, the last term vanishes in the limit. By lower semicontinuity of KL,

KL(µ0∥q) ≤ lim infε↓0 KL(µε∥q) ≤ KL(µ∥q) for all µ ∈ M, so µ0 is a KL minimizer onM. Uniqueness

of this minimizer implies full convergence.

A.5 Sufficient condition for non-negative adjoint vector

Proposition 3 (EV1 case). Assume Lemma 1’s conditions, and in addition: εD, εP are independent

Type I extreme value (unit scale); Ũdet
ij , V det

ji ∈ [0, 1]; µ ∈ B with row/column budgets. Let

C0 := 1 +

√
π2

6 + γ2 (γ : Euler’s constant), R :=
ρ

1− ρ
C0

J
, τ :=

(
J−1
J

)I−1

.

Let M := ∂αG(α, µ) at the fixed point and define π = (πD, πP ) by M⊤π = (1I ,1J)
⊤. If

1− ρ >
ρ

J e
κ (R+ C0) and 1− ρ >

ρ

J e
τ (R+ C0), (8)

then π ≥ 0 componentwise. A single sufficient condition is

1− ρ >
ρC0

e J
max{κ, τ}

(
1 +

ρ

(1− ρ) J

)
, (9)

and a coarse, easy-to-check form is

J >
ρC0

e (1− ρ)
max{κ, τ}. (10)

Proof. Write the adjoint system as the Z–matrix linear system L
(
πD

πP

)
=
(
1I
1J

)
with L =

(1− a) −B⊤

−D (1− c)

,
where (1 − a) := diag(1 − ∂gDi /∂ai), (1 − c) := diag(1 − ∂gPj /∂bj), Bji := − ∂gPj /∂ai ≥ 0, Dij :=

− ∂gDi /∂bj ≥ 0. Row–wise strict diagonal dominance implies L is a nonsingular M–matrix, hence L−1 ≥ 0

and π = L−11 ≥ 0. Under EV1 and bounded supports, the cross sums satisfy
∑
j Bji ≤

ρ
J e κ (R + C0)

and
∑
iDij ≤ ρ

J e τ (R + C0), while 1 − ai, 1 − cj ≥ 1 − ρ; this yields (8), and the relaxations (9)–(10)
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follow by upper-bounding.

A.6 Bellman Equations for Non-linear Constraints fro MLE

Proposition 4. Let µ̂ij := µSij + µAij − µSijµAij. Under Assumption 2, when the market is sufficiently

large, the stationary continuation values solve the following system for all i and j,
αDi = ρ

1−ρ
∑J
j=1

µ̂ij(θ;αDi ,α
P
j )

J PPji
(
θ;αPj

)
ζD ln

(
1 + exp

(
X′
ijβ

D+Z′
ijδ

D−καDi
ζD

))
,

αPj = ρτ
1−ρ

∑I
i=1

µ̂ij(θ;αDi ,α
P
j )

J PDij
(
θ;αDi

)
ζP ln

(
1 + exp

(
X′
ijβ

P+Z′
ijδ

P−αPj
ζP

))
.

(11)

Lemma 2. Fix (i, j) and a period with subperiods t = 1, . . . , J . For each rule k ∈ {S,A} let R̃Dk,i,t ⊆ J

be the realized spot–exposure set at t. Under the fastest–first policy with tie to S, define the realized

doctor-side set at t by

1{ j ∈ R̃D,firsti,t } = 1
{
j ∈ R̃DS,i,t ∧ j /∈

⋃
u<t

R̃DA,i,u

}
+ 1
{
j ∈ R̃DA,i,t ∧ j /∈

⋃
u≤t

R̃DS,i,u

}
. (⋆)

Then
J∑
t=1

E
[
1{j ∈ R̃D,firsti,t }

]
= ιSij + ιAij − ιSijιAij .

Proof. By construction,
∑
t 1{j ∈ R̃

D,first
i,t } ∈ {0, 1} and

J∑
t=1

1{j ∈ R̃D,firsti,t } = 1
{
j ∈

⋃
t

R̃DS,i,t or j ∈
⋃
t

R̃DA,i,t

}
.

Taking expectations and using independence across rules,

E
[∑

t

1{j ∈ R̃D,firsti,t }
]
= Pr

(
j ∈

⋃
t

R̃DS,i,t

)
+ Pr

(
j ∈

⋃
t

R̃DA,i,t

)
− Pr

(
j ∈

⋃
t

R̃DS,i,t

)
Pr
(
j ∈

⋃
t

R̃DA,i,t

)
= ιSij + ιAij − ιSijιAij .

Proof of Proposition 4. Fix doctor i and consider the one-period Bellman equation with J subperiods:

αDi = ρE
[
1{∅ = R̃D,firsti,t }αDi +

J∑
j=1

{
αDi + 1{j ∈ R̃D,firsti,t }1{V det

ji + εP > αPj } max{Ũdet
ij − καDi + εD, 0}

}]
,

where stationarity allows us to omit time subscripts on primitives. Averaging over subperiods, Lemma 2

yields

1

J

J∑
t=1

E
[
1{j ∈ R̃D,firsti,t }

]
=
ι̂ij
J
,

1

J

J∑
t=1

E
[
1{∅ = R̃D,firsti,t }

]
= 1− 1

J

J∑
j=1

ι̂ij .

Assuming independent Gumbel shocks εD, εP with scales ζD, ζP , and writing Ũdet
ij = X ′

ijβ
D + Z ′

ijδ
D
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and V det
ji = X ′

ijβ
P + Z ′

ijδ
P , we have

PPji (θ;α
P
j ) := Pr(V det

ji + εP > αPj ), E
[
max{Ũdet

ij − καDi + εD, 0}
]
= ζD ln

(
1 + e(Ũ

det
ij −καDi )/ζD

)
.

Substituting and moving the “no-exposure” term to the left gives

(1− ρ)αDi = ρ

J∑
j=1

ι̂ij
J
PPji (θ;α

P
j ) ζ

D ln
(
1 + e(X

′
ijβ

D+Z′
ijδ

D−καDi )/ζD
)
,

which is the first line of (11).

For the post side, the analogous Bellman equation and the large-market collision correction τ imply

1

J

J∑
t=1

E
[
1{i ∈ R̃P,firstj,t }

]
=
τ ι̂ij
J

.

Using

PDij (θ;α
D
i ) := Pr(Ũdet

ij + εD > καDi ), E
[
max{V det

ji − αPj + εP , 0}
]
= ζP ln

(
1 + e(V

det
ji −αPj )/ζP

)
,

the same rearrangement yields the second line of (11).

A.7 Contraction Property

Theorem 3. Consider the stationary system (11) with

ι̂ij = ιSij+ι
A
ij−ιSijιAij , PDij (θ;α

D
i ) = σ

(X ′
ijβ

D + Z ′
ijδ

D − καDi
ζD

)
, PPji (θ;α

P
j ) = σ

(X ′
ijβ

P + Z ′
ijδ

P − αPj
ζP

)
,

ψDij (α
D
i ) := ζD log

(
1+e

X′
ijβ

D+Z′
ijδ

D−καDi
ζD

)
, ψPij(α

P
j ) := ζP log

(
1+e

X′
ijβ

P+Z′
ijδ

P−αPj
ζP

)
, σ(x) :=

1

1 + e−x
.

Assume:

(A1) Bounded indices. There exist MD,MP > 0 such that |X ′
ijβ

D + Z ′
ijδ

D| ≤ MD and |X ′
ijβ

P +

Z ′
ijδ

P | ≤MP for all (i, j).

(A2) Scales. ζD, ζP > 0, κ ∈ (0, 1], ρ ∈ (0, 1).

(A3) Exposure sensitivity. The union exposure ι̂ij(θ;α
D
i , α

P
j ) is (globally) Lipschitz in its arguments

with ∣∣∂αDi ι̂ij∣∣ ≤ L
(D)
ι̂

J
,

∣∣∂αPj ι̂ij∣∣ ≤ L
(P )
ι̂

J
for all (i, j),

for some constants L
(D)
ι̂ , L

(P )
ι̂ ≥ 0 that do not depend on I, J .

For R > 0 define BR := {α : ∥α∥∞ ≤ R} and

BD(R) := sup
|a|≤R

ζD log
(
1 + e

MD+κ|a|
ζD

)
, BP (R) := sup

|b|≤R
ζP log

(
1 + e

MP+|b|
ζP

)
,
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and the exposure masses

γDmax := max
i

1

J

∑
j

ι̂ij , γPmax := max
j

τ

J

∑
i

ι̂ij .

Then the map g = (gD, gP ) given by the right-hand side of (11) satisfies:

(i) Self–mapping. If R obeys

R ≥ max
{ ρ

1− ρ
γDmaxBD(R),

ρ τ

1− ρ
γPmaxBP (R)

}
, (⋆)

then g(BR) ⊆ BR.

(ii) Lipschitz bound. For all α, α′ ∈ BR,

∥g(α)− g(α′)∥∞ ≤ qR ∥α− α′∥∞,

with

qR := max
{ ρ

1− ρ

[
γDmax L

D
ψ + BD(R)

(
L

(D)
ι̂

J +
L

(P )
ι̂

J + γDmax L
(P )
P

) ]
,

ρ τ

1− ρ

[
γPmax L

P
ψ + BP (R)

(
L

(D)
ι̂

J +
L

(P )
ι̂

J + γPmax L
(D)
P

) ] }
,

where the component-wise global Lipschitz moduli satisfy

LDψ ≤ κ, LPψ ≤ 1, L
(D)
P ≤ κ

4ζD
, L

(P )
P ≤ 1

4ζP
.

(iii) Contraction and uniqueness. If qR < 1, then g is a contraction on BR and the stationary

system (11) admits a unique fixed point α⋆ ∈ BR.

Proof. (i) Using ι̂ij ∈ [0, 1] and 1
J

∑
j ι̂ij ≤ γDmax,

|gDi (α)| ≤ ρ

1− ρ
1

J

∑
j

ι̂ij sup
|a|≤R

ψDij (a) ≤
ρ

1− ρ
γDmaxBD(R),

and similarly |gPj (α)| ≤
ρ τ
1−ρ γ

P
maxBP (R), which yields (⋆).

(ii) Write gDi = ρ
1−ρ

∑
j

1
JF

D
ij (ai, bj) with

FDij (a, b) := ι̂ij(a, b)P
P
ji (b)ψ

D
ij (a), a := αDi , b := αPj .

By the product rule and the bounds in the statement,

∣∣∂aFDij ∣∣ ≤ ∣∣∂aι̂ij∣∣︸ ︷︷ ︸
≤L(D)

ι̂
/J

|PPji ψDij |+ |̂ιij |︸︷︷︸
≤1

|PPji |
∣∣∂aψDij ∣∣︸ ︷︷ ︸
≤LDψ

≤
L
(D)
ι̂

J
BD(R) + LDψ ,

∣∣∂bFDij ∣∣ ≤ ∣∣∂bι̂ij∣∣︸ ︷︷ ︸
≤L(P )

ι̂
/J

|PPji ψDij |+ |̂ιij |︸︷︷︸
≤1

∣∣∂bPPji ∣∣︸ ︷︷ ︸
≤L(P )

P

|ψDij | ≤
L
(P )
ι̂

J
BD(R) + L

(P )
P BD(R).
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Summing over j and using 1
J

∑
j ι̂ij ≤ γDmax gives

∣∣gDi (α)− gDi (α′)
∣∣ ≤ ρ

1− ρ

[
γDmax L

D
ψ +BD(R)

(
L

(D)
ι̂

J +
L

(P )
ι̂

J + γDmaxL
(P )
P

)]
∥α− α′∥∞.

The post side follows symmetrically with

FPij (a, b) := ι̂ij(a, b)P
D
ij (a)ψ

P
ij(b),

and the column mass bound τ
J

∑
i ι̂ij ≤ γPmax, plus |∂aPDij | ≤ L

(D)
P . Taking the max of the two sides

yields the stated qR. (iii) is an application of Banach’s fixed-point theorem.

Corollary (logistic S/A rules). If each rule is logistic in its “own” side,

ιSij =
1

J
σ
(X ′

ijβ
D + Z ′

ijδ
S − καDi

ζS

)
, ιAij =

1

J
σ
(X ′

ijβ
P + Z ′

ijδ
A − αPj

ζA

)
,

then, using σ′(x) ≤ 1/4 and the product formula for ι̂,

L
(D)
ι̂ ≤ κ

4ζS
, L

(P )
ι̂ ≤ 1

4ζA
,

so Assumption (A3) holds with the same 1/J scaling as in the multinomial case.

B Example of EV type I distribution

Example 1 (Type I extreme value shocks). Assume the conditions of Lemma 1 under the Bernoulli

exposure rule. In addition, suppose εD, εP are independent Type I extreme value shocks (unit scale), and

Ũdet
ij , V det

ji ∈ [0, 1] for all (i, j). Let

m1 := E[|ε|] =

√
π2

6 + γ2 (γ Euler’s constant), C0 := 1 +m1,

so that C
(κ)
D ≤ C0 and CP ≤ C0 for all κ ∈ (0, 1]. Moreover, the unit-scale Type I extreme value density

satisfies supx f(x) = 1/e.

Define

γDmax := max
i

1

J

∑
j∈J

µij , γPmax := max
j
τ
1

J

∑
i∈I

µij , τ :=
(
J−1
J

)I−1

.

Take

R =
ρ

1− ρ
C0 max{γDmax, γ

P
max}.

Then the Lipschitz modulus in Lemma 1 satisfies the bound

q
(κ)
R ≤ ρ max{γDmax, γ

P
max}

[
1 +

C0

e

(
1 +

ρ

1− ρ
max{γDmax, γ

P
max}

)]
.

In particular, a simple sufficient condition for q
(κ)
R < 1 is

ρ max{γDmax, γ
P
max}

[
1 +

C0

e

(
1 +

ρ

1− ρ
max{γDmax, γ

P
max}

)]
< 1.

32



This sufficient condition is easy to satisfy in large markets. First, the doctor-side exposure mass γDmax

is at most 1 and is often much smaller when each doctor is shown only a small fraction of posts on

average. Second, the post-side term γPmax is multiplied by τ = ((J − 1)/J)I−1 ≈ exp(−(I − 1)/J), which

decays rapidly when I is large relative to J , making the post-side contribution negligible. Thus, even for

fairly high ρ, moderate J together with large I typically implies q
(κ)
R < 1.

C Likelihood Function

Proposition 5 summarizes the expressions for the three mutually exclusive cases: (1, 0), (0, 1), and (0, 0).

Proposition 5.

Pr
(
(cDS,i,j , c

D
A,i,j) = (1, 0)

)
= µSij

(
1− J − 1

2J
µAij

)
,

Pr
(
(cDS,i,j , c

D
A,i,j) = (0, 1)

)
= µAij

(
1− J + 1

2J
µSij

)
,

Pr
(
(cDS,i,j , c

D
A,i,j) = (0, 0)

)
= (1− µSij)(1− µAij).

Proof. Take (cDS,i,j , c
D
A,i,j) = (1, 0) as an example. The probability of this case is computed as follows:

Pr
(
(cDS,i,j , c

D
A,i,j) = (1, 0)

)
=

J∑
t1=1

J∑
t2=1

Pr
(
σSi (t1) = j, σAi (t2) = j

)
× Pr

(
(cDS,i,j , c

D
A,i,j) = (1, 0) | σSi (t1) = j, σAi (t2) = j

)
=

J∑
t1=1

J∑
t2=1

1

J2

[
1 {t1 ≤ t2}Pr

(
BerSij(t1) = 1

)
+ 1 {t1 > t2}Pr

(
BerSij(t1) = 1, τAi (t2) ̸= j

)]
=

1

J2

J∑
t1=1

[
t1−1∑
t2=1

Pr
(
BerSij(t1) = 1,BerAij(t2) = 0

)
+

J∑
t2=t1

Pr
(
BerSij(t1) = 1

)]

=
1

J2

J∑
t1=1

[
t1−1∑
t2=1

ιSij(1− ιAij) +
J∑

t2=t1

ιSij

]

=
1

J2

J∑
t1=1

[
(t1 − 1)ιSij(1− ιAij) + (J − t1 + 1)ιSij

]
=

1

J2

J∑
t1=1

[
JιSij − (t1 − 1)ιSijι

A
ij

]
= ιSij − ιSijιAij

1

J2

J∑
t1=1

(t1 − 1)

= ιSij − ιSijιAij
1

J2

(
J(J + 1)

2
− J

)
= ιSij

(
1− J − 1

2J
ιAij

)
.

Note that we use the independence of the two random permutations and the two multinomial distribu-

tions. The similar calculation yields the result.
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Given the continuation values, α, the likelihood of one data point is constructed as

L (θ; yij , α) =
(
PDij (θ;α

D
i )
)aDij (1− PDij (θ;αDi ))1−aDij × (PPji (θ;αPj ))aPji (1− PPji (θ;αPj ))1−aPji

×
(
µSij(θ;α

D
i )

(
1− J − 1

2J
µAij(θ;α

P
j )

))1{(cDS,i,j ,cDA,i,j)=(1,0)}

×
(
µAij(θ;α

P
j )

(
1− J + 1

2J
µSij(θ;α

D
i )

))1{(cDS,i,j ,cDA,i,j)=(0,1)}

×
(
(1− µSij(θ;αDi ))(1− µAij(θ;αPj ))

)1{(cDS,i,j ,cDA,i,j)=(0,0)}
.

D Detail of Estimation

Let ℓn(θ) be the (negative) average log-likelihood (so we minimize ℓn), and let θ̂ be a local minimizer. The

observed information (for MLE under correct specification) is Hn(θ̂) := ∇2ℓn(θ̂); the usual covariance

estimator is V̂ar(θ̂) ≈ Hn(θ̂)
−1. In practice p := dim(θ) can be large and we only need variances or

covariances for a few components or a smooth scalar functional g(θ). This section shows how to compute

selected columns of H−1 without forming H, using Hessian–vector products (HVPs) and a linear solver

(conjugate gradient, CG).

Lemma 3. Let H ∈ Rp×p be invertible and ei the i-th canonical basis vector. The unique solution x to

the linear system Hx = ei equals the i-th column of H−1.

Proof. By definition H−1ei is the i-th column of H−1 and satisfies H(H−1ei) = ei. By uniqueness of

solutions for invertible H, x = H−1ei.

Corollary. For any index set S ⊂ {1, . . . , p}, solving Hx = es for all s ∈ S returns the submatrix H−1
S,S

via column extraction.

Thus, to obtain a 2× 2 covariance block for (θi, θj), one solves Hx = ei and Hx = ej and reads off(H−1)ii (H−1)ij

(H−1)ji (H−1)jj

 .

D.1 Hessian–vector products and CG

Forming H explicitly is O(p2) memory and O(p2) time. Instead, we use an oracle for HVPs

v 7→ Hv = ∇2ℓn(θ̂) v,

and apply a Krylov solver (e.g. conjugate gradient) to each right-hand side es. Modern autodiff frame-

works provide HVPs at the cost of a few reverse/forward passes (Pearlmutter’s trick):

Hv = d
[
∇ℓn(θ)

]
θ=θ̂

[v].

When H is positive definite, CG converges rapidly; for numerical stability one can solve

(H + λI)x = es (λ > 0),
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which returns (H + λI)−1-columns, a Tikhonov-regularized approximation to H−1. Small λ yields neg-

ligible bias and improved conditioning. Preconditioning further accelerates convergence but is optional.

D.2 Delta method with selected blocks

Let g : Rp → R be differentiable, and suppose g depends only on a small subset S of parameters. By the

delta method,

Var
(
g(θ̂)

)
≈ ∇g(θ̂)⊤H(θ̂)−1∇g(θ̂).

If ∇g(θ̂) has support in S, then only H−1
S,S is needed:

Var
(
g(θ̂)

)
≈
(
∇Sg(θ̂)

)⊤
H−1
S,S ∇Sg(θ̂).

Hence it suffices to solve Hx = es for s ∈ S, stack the resulting columns into C = [H−1es]s∈S , and

compute Var(g) ≈ (∇Sg)⊤C∇Sg. This yields standard errors and z-scores for g(θ̂) without ever mater-

ializing the full H or its inverse.

D.3 Extensions: sandwich and quasi-ML

Under correct specification, the MLE satisfies S(θ̂) = H(θ̂), where

S(θ̂) =
1

n

n∑
t=1

st(θ̂)st(θ̂)
⊤, H(θ̂) = ∇2ℓn(θ̂),

so Var(θ̂) ≈ H−1. For misspecification or dependent data, the robust (sandwich) variance is

Var(θ̂) ≈ H−1S H−1.

The same column-solve idea applies: one can obtain H−1u for any vector u by solving Hx = u with

CG+HVP. Thus, products like H−1SH−1 with a vector can be built without forming any large dense

matrices.10

D.4 Profile likelihood / NFXP remark

In nested fixed-point (NFXP) settings, a nuisance object α(θ) is defined implicitly by a contraction

mapping. If the outer objective uses the profile criterion ℓn(θ, α(θ)), then the observed profile Hessian

w.r.t. θ plays the role of H(θ̂) above. In practice one often treats a numerically converged α̂ as fixed

(“K-step” M-estimation), and computes H as the θ-Hessian of ℓn(θ; α̂). Under standard regularity

(contraction, inner-loop convergence, and smoothness), this differs from the exact profile Hessian by

op(1), so the same HVP+CG method consistently recovers the needed inverse blocks.

D.5 Algorithmic summary

1. Compute θ̂ and fix the nuisance α̂ if applicable (profile or K-step).

10For example, to extract a 2 × 2 block of H−1SH−1, compute ci = H−1ei and cj = H−1ej , then assemble
[ci, cj ]

⊤S[ci, cj ].
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2. Implement an HVP oracle v 7→ Hv for H = ∇2
θθℓn(θ̂; α̂).

3. For indices S of interest, solve (H + λI)x = es by CG, using only HVPs. Stack the solutions as

columns to obtain an approximation to H−1
, S .

4. Read off H−1
S,S ; apply the delta method to any g(θ) whose gradient is supported on S.

E Solve Adjoint Equation

In each outer iteration of the optimization, the adjoint vector π solves

M⊤π = 1, M =

A B

C D

 ∈ R(I+J)×(I+J).

In our model, thanks to the fixed-point Jacobian structure:

• A ∈ RI×I and D ∈ RJ×J are diagonal (with positive entries),

• B ∈ RI×J and C ∈ RJ×I are dense but their products can be formed in O(IJ).

This is ideal for avoiding an O((I+J)3) dense solve of M⊤ by using Schur complements to reduce the

system to dimension min{I, J}.

E.1 Solving on the P -side (size J)

Write π =

πD
πP

 and A⊤ C⊤

B⊤ D⊤

πD
πP

 =

1I
1J

 .
From the first block: πD = (A⊤)−1(1I − C⊤πP ). Substituting into the second block gives

(
D⊤ −B⊤(A⊤)−1C⊤)︸ ︷︷ ︸

S⊤
P

πP = 1J −B⊤(A⊤)−11I .

Hence

πP = (S⊤
P )

−1
(
1J −B⊤(A⊤)−11I

)
, πD = (A⊤)−1

(
1I − C⊤πP

)
.

Here A is diagonal, so (A⊤)−1 = diag(1/diag(A)) is trivial. SP = D − B⊤A−1C⊤ is J × J , so if J ≤ I

this is much cheaper than a full (I+J)-system.

E.2 Solving on the D-side (size I)

Similarly, from the second block: πP = (D⊤)−1(1J −B⊤πD). Substitute into the first block:

(
A⊤ − C⊤(D⊤)−1B⊤)︸ ︷︷ ︸

S⊤
D

πD = 1I − C⊤(D⊤)−11J ,
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πD = (S⊤
D)

−1
(
1I − C⊤(D⊤)−11J

)
, πP = (D⊤)−1

(
1J −B⊤πD

)
.

Again D is diagonal ⇒ (D⊤)−1 is trivial; this is preferable if I ≤ J .

Complexity and Memory

• Dense direct solve: O((I + J)3) time, O((I + J)2) memory.

• Schur complement: building costs about O(IJ min{I, J}); solve costs O(min{I, J}3).

• Diagonal blocks A,D make inverses O(I + J).

Because I ̸= J in practice, picking the smaller side gives a substantial speedup.

E.3 Iterative Solvers: GMRES

M⊤ is generally non-symmetric and not SPD, so the conjugate gradient method is unsuitable, but

GMRES works well. Use a block-Jacobi preconditioner P ≈ diag(A,D) and implement only mat-

rix–vector products in O(IJ):

matvec: x =

xD
xP

 7→
AxD + C⊤xP

B⊤xD +DxP

 , prec: r 7→

A−1rD

D−1rP

 .
Pseudo-code Snippet For the P -side (J × J) solve:

Input: A = diag(a), D = diag(d), B ∈ RI×J , C ∈ RJ×I .

Step 1: BA← A−1 scales columns of B (BA = A−1B).

Step 2: T ← BA⊤C⊤ ∈ RJ×J .

Step 3: SP ← D − T.

Step 4: r ← 1J −B⊤A−11I .

Step 5: πP ← (S⊤
P )

−1r (⇔ S⊤
P πP = r).

Step 6: πD ← A−1(1I − C⊤πP ).

F Additional Figures

As a model–fit check, I compare the distributions of the observed numbers of exposures for doctors and

posts with the corresponding model–implied expected numbers computed from the estimates. Figure F.4

presents side–by–side histograms: Panel A for doctors and Panel B for posts. The model reproduces the

modal mass of the observed distributions well. In terms of means, the doctor–side expectation is 3.142

versus an observed mean of 3.138, and the post–side expectation is 1.454 versus an observed mean of

1.452.
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Figure F.1

Figure F.2
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Figure F.3

Panel A: Doctor counts Panel B: Post counts

Figure F.4. Observed vs. expected exposure counts by side
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ALGORITHM 1: Nested Fixed-Point Bregman–Dykstra Annealing

Input: baseline q ∈ (0,∞)I×J , initial µ(0) ∈ B, bounds (lr, cr) ∈ RI+, (lc, cc) ∈ RJ+, initial
temperature ε0 > 0, cooling γ ∈ (0, 1), tolerances τFP, τKKT, damping θ ∈ (0, 1]

Output: µ⋆

t← 0;
ε← ε0;
repeat

Value step: solve G(α(t), µ(t)) = 0 for α(t) (warm start);

Adjoint: form M (t) = ∂αG(α
(t), µ(t)) and solve

M (t)⊤π(t) = (1I ,1J)
⊤.

;

Gradient: compute ∇U (t):

∇U (t)
ij =

ρ

J

[
π
D,(t)
i

(
WD
ij − α

D,(t)
i

)
+
(
J−1
J

)I−1

π
P,(t)
j

(
WP
ij − α

P,(t)
j

) ]
.

;

Kernel: K(t) ← q ⊙ exp
(
∇U (t)/ε

)
;

BD init: X ← K(t); initialize KL–Dykstra shadow variables
Zbox←1, Zr,≤←1, Zr,≥←1, Zc,≤←1, Zc,≥←1 (all I × J);

repeat
// Bregman--Dykstra loop (KL projections over constraint sets)

(Box) Y ← X ⊙ Zbox; P ← clip(Y, 0, 1) elementwise; Zbox ← Zbox ⊙ (Y ⊘ P ); X ← P ;

(Row cap) Y ← X ⊙ Zr,≤; for each i: let si =
∑
j Yij and βi = min{1, cri /si}, set

Pij = βiYij ; Z
r,≤ ← Zr,≤ ⊙ (Y ⊘ P ); X ← P ;

(Row floor) Y ← X ⊙ Zr,≥; for each i: si =
∑
j Yij , βi = max{1, lri /si}, Pij = βiYij ;

Zr,≥ ← Zr,≥ ⊙ (Y ⊘ P ); X ← P ;

(Col cap) Y ← X ⊙ Zc,≤; for each j: tj =
∑
i Yij , γj = min{1, ccj/tj}, Pij = γjYij ;

Zc,≤ ← Zc,≤ ⊙ (Y ⊘ P ); X ← P ;

(Col floor) Y ← X ⊙ Zc,≥; for each j: tj =
∑
i Yij , γj = max{1, lcj/tj}, Pij = γjYij ;

Zc,≥ ← Zc,≥ ⊙ (Y ⊘ P ); X ← P ;

(Stopping) bd res← ∥X − X̂∥1 with X̂ previous-X; break if bd res ≤ τFP;
until converged ;

Set update: µ̂(t+1) ← X;

Damping: µ(t+1) ← (1− θ)µ(t) + θ µ̂(t+1);

Residuals: resFP := ∥µ(t+1) −DBD(K
(t))∥1; stationarity (KKT) surrogate:

resKKT := max
i,j

∣∣∣∇U (t)
ij − ε ln(µ

(t+1)
ij /qij)− λi − ηj − ξij

∣∣∣,
where dual surrogates are read from the shadows:

λi := −ε ln
(
Z̄r,≤i Z̄r,≥i

)
, ηj := −ε ln

(
Z̄c,≤j Z̄c,≥j

)
, ξij := −ε lnZbox

ij ,

with Z̄r,•i (resp. Z̄c,•j ) the row (resp. column) geometric means of the corresponding Z (or

any consistent aggregation);
if resFP ≤ τFP and resKKT ≤ τKKT then

ε← γ ε; // anneal toward 0
end
t← t+ 1;

until ε < εmin or (final residuals below tolerance);

return µ⋆ = µ(t) (at final ε);
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Table F.1. Equivalence change in other covariates to a 10% increase in salary

Side Variable Equiv. (raw) SE z p

Panel A: Self-search Exposure (Doctor)

Doctor Outpatient care 0.0715 0.0181 3.9584 0.0001
Doctor Home-visit medical care 0.0403 0.0130 3.1041 0.0019
Doctor Inpatient ward care 0.0309 0.0065 4.7756 0.0000
Doctor Dialysis 0.0094 0.0020 4.6866 0.0000
Doctor Health checkup 0.0417 0.0103 4.0601 0.0000
Doctor Endoscopic surgery 0.0122 0.0027 4.4275 0.0000
Doctor Surgery −0.0298 0.0248 −1.2020 0.2294
Doctor House calls 0.1540 0.2549 0.6042 0.5457
Doctor Image interpretation (radiology) 0.0115 0.0028 4.1060 0.0000
Doctor Self-pay care 0.0148 0.0033 4.5386 0.0000

Panel B: Agency-recommendation Exposure (Post)

Post Outpatient care −0.1454 0.0559 −2.6007 0.0093
Post Home-visit medical care 0.1075 0.0806 1.3328 0.1826
Post Inpatient ward care −0.0512 0.0118 −4.3296 0.0000
Post Dialysis −0.0127 0.0026 −4.8369 0.0000
Post Health checkup −0.1145 0.0587 −1.9497 0.0512
Post Endoscopic surgery −0.0152 0.0032 −4.7186 0.0000
Post Surgery 0.1996 0.3953 0.5048 0.6137
Post House calls −0.0480 0.0194 −2.4738 0.0134
Post Image interpretation (radiology) −0.1210 0.1422 −0.8504 0.3951
Post Self-pay care −0.0163 0.0032 −5.0418 0.0000

Panel C: Acceptance (Doctor)

Doctor Outpatient care −0.0133 0.1447 −0.0919 0.9268
Doctor Home-visit medical care 0.0015 0.0167 0.0921 0.9266
Doctor Inpatient ward care −0.0026 0.0278 −0.0922 0.9265
Doctor Dialysis −0.0030 0.0324 −0.0922 0.9266
Doctor Health checkup 0.0017 0.0182 0.0922 0.9266
Doctor Endoscopic surgery −0.0017 0.0183 −0.0922 0.9266
Doctor Surgery −0.0123 0.1344 −0.0912 0.9274
Doctor House calls −0.0030 0.0327 −0.0921 0.9266
Doctor Image interpretation (radiology) 0.0021 0.0231 0.0922 0.9266
Doctor Self-pay care −0.0261 0.2898 −0.0899 0.9284

Panel D: Acceptance (Post)

Post Outpatient care 0.5007 0.3015 1.6608 0.0968
Post Home-visit medical care 0.0491 0.0079 6.2349 0.0000
Post Inpatient ward care 17.2355 368.8461 0.0467 0.9627
Post Dialysis −7.7758 96.3487 −0.0807 0.9357
Post Health checkup 0.0885 0.0164 5.3911 0.0000
Post Endoscopic surgery −0.1385 0.0363 −3.8215 0.0001
Post Surgery 2.2045 8.7175 0.2529 0.8004
Post House calls 0.1336 0.0347 3.8524 0.0001
Post Image interpretation (radiology) 0.2567 0.1213 2.1166 0.0343
Post Self-pay care 0.0262 0.0038 6.8816 0.0000

Notes: Entries report, for each covariate, the change in raw units that yields the same change
in the matching utility term as a 10% increase in salary. Standard errors use the fixed-α outer
likelihood with observed information, and are mapped to the reported statistics via the delta
method.
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Table F.2. Determinants of salary offsets

Post Doctor

On call 0.0422∗∗∗ —
(0.0061)

Hours −0.0036∗∗∗ —
(0.0002)

Age — −0.0109∗

(0.0053)

Experience — 0.0424∗∗∗

(0.0054)

Service/feature indicators

Outpatient care −0.0235∗∗∗ 0.3849∗∗∗

(0.0035) (0.0482)

Inpatient ward care −0.0207∗∗∗ 0.4677∗∗∗

(0.0053) (0.0506)

Health checkup −0.0357∗∗∗ 0.2200∗∗∗

(0.0051) (0.0445)

Radiology reading 0.0154 0.1221
(0.0140) (0.0811)

Home-visit medical care −0.0609∗∗∗ 0.0293
(0.0071) (0.0563)

House calls 0.0207∗ 0.0105
(0.0096) (0.0669)

Endoscopic surgery −0.0208∗∗ 0.4667∗∗∗

(0.0080) (0.0756)

Dialysis −0.0532∗∗∗ 0.2306∗∗∗

(0.0102) (0.0588)

Surgery −0.0369 −0.0734
(0.0389) (0.0869)

Self-pay care −0.0540∗∗∗ 0.2606∗∗∗

(0.0074) (0.0552)

Industrial physician 0.0000 −0.0765
(0.0000) (0.0661)

Notes: Entries are OLS coefficients for salary offsets on post-
/doctor-side attributes; standard errors in parentheses. Stars:
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. “—” indicates the
covariate is not included on that side.
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