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Abstract

We study a standard binary social learning model where agents’information

is serially correlated– it is generated by a Markov process. There is a unique

equilibrium in which a herd, sometimes incorrect, always forms. In the long run,

does greater persistence increase the likelihood that an incorrect herd forms?

In the medium run (prior to the formation of a herd), does a greater similarity

information– higher persistence– lead to a greater similarity of actions? The

answer to both questions is no.

1 Introduction

It is well-known that when economic agents seek to learn relevant information from

other agents, the possibility of herd behavior emerges– agents take the same action,

perhaps even ignoring their own information. This possibility was first recognized

by Banerjee (1992) and Bikhchandani, Hirschleifer and Welch (1992).1 These papers

have then spawned a vast literature on "social learning" that explores, in various

contexts, the specific conditions under which herd behavior emerges as an equilibrium

phenomenon. In most of this work, there is some unknown payoff-relevant state

of nature and, conditional on the realized state of nature, agents’ information is

independently distributed.

∗The research reported here was supported by a grant from the National Science Foundation
(SES-2048806). We are grateful to Stepan Aleksenko, Yuhta Ishii, Min-Feng Lu and Eduard Osipov
for helpful comments.
†Department of Economics, University of Tokyo, E-mail: yuawaya@gmail.com.
‡Department of Economics, Penn State University, E-mail: vkrishna@psu.edu.
1Bikhchandani et al. (1992) use the term "information cascade" to describe herd behavior.
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In many economic situations, however, it seems natural that, conditional on the

state, agents’ information is serially correlated (see, for instance, Graham, 1999).

In financial markets, investors get information from advisors, newsletters, and ac-

quaintances. But these sources themselves have a strong common component– Fed

announcements, political developments, market rumors. Thus, the information pro-

vided to investors today is correlated with that provided to investors yesterday.

In this paper, we study a situation in which the information of agents is serially

(positively) correlated– that is, persistent. Specifically, it is generated by a simple

Markov process– given the fundamentals, if one agent gets a high signal today, then

this makes it more likely that the next agent will also get a high signal tomorrow. This

structure results in a tractable model that allows for serial correlation of information.

In a simple binary-state, binary-action setting we first choose a particular candi-

date equilibrium and show that in each state, the resulting public beliefs– those of an

observer who sees only the actions chosen by the agents– form a finite Markov chain

with absorbing states. This is true even though the beliefs of an observer who sees all

the signals are not Markovian. Given this, we then establish that the candidate equi-

librium is indeed an equilibrium. This is the (essentially) unique Nash equilibrium

(Theorem 1).

In equilibrium, a herd forms for sure. Sometimes the herd is the correct one–

where all but a finite number of agents choose the action appropriate for the under-

lying state. But in other instances, an incorrect herd forms– all but a finite number

of agents choose the wrong action.

We then address two questions regarding the effects of greater persistence on

welfare and behavior.

1. In the long run, does greater persistence increase the likelihood that an incorrect

herd forms?

2. In the medium run (prior to the formation of a herd), does a greater similarity

information– higher persistence– lead to a greater similarity of actions?

As a first step, suppose that agents’information was perfectly persistent– that is,

they all receive the same information. This, of course, is the worst case since a wrong

initial signal will immediately trigger the wrong herd. Also, everyone would take the

same action. One may then reasonably conjecture that higher persistence would lead
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Figure 1: The figure depicts how the probability of an incorrect herd changes as
signals become more correlated.

to a higher probability of a wrong herd and also lead to a greater similarity of actions.

But we find that this is not the case.

First, it turns out that the relationship between persistence and the probability

of a wrong herd is "highly" non-monotonic. Figure 1 depicts an example showing

how the probability of an incorrect herd changes non-monotonically with an increase

in the serial correlation of signals, ranging from the case of (conditionally) indepen-

dent signals to those that are perfectly persistent2. As the persistence increases, the

probability of an incorrect herd increases smoothly and then jumps downward. This

pattern repeats a countably infinite number of times. Immediately to the right of

a discontinuity, the probability of an incorrect herd is smaller– and the welfare is

higher– than at lower levels of correlation to the left of a discontinuity. The total

variation of the function– a measure of non-monotonicity– is unbounded. We will

show that these features of the example are general (Theorem 2).

Why is this? How can an increase in the persistence of signals lead to a decrease

in the probability of an incorrect herd– and therefore an increase in welfare? As

usual in social learning models, if an agent observes that suffi ciently many agents

2The parameter values for this example are reported in Section 5.1.
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who precede him take the same action, say L, then this agent infers that others’

information is favorable for L and so is convinced to choose L even if his private

information indicates otherwise– a herd to L occurs. When signals become more

persistent, it takes a larger number of L’s to convince an agent to ignore his own

information. In other words, now this agent chooses a decision that reflects his own

information. This provides all succeeding agents with better information which in

turn decreases the chances of an incorrect herd. In this way, more persistent signals

can delay the formation of a herd.

Even though higher persistence can lead to a lower probability of incorrect herds,

one may still surmise that independent information is the best (as in Figure 1). If my

private information is independent of that of agents’whose actions I observe, then this

should be the best case for paying attention to my own information. We demonstrate

that this intuition is also incorrect and it may be that some persistence is better

than none. Although this is not a feature of the example in Figure 1, we identify

circumstances in which some persistence is better than independence (Proposition

5.3).

Second, we also find that prior to the formation of a herd, a greater similarity

of signals– greater persistence– implies a greater dissimilarity of actions. As argued

above, more persistent signals can lead to a delay in herds and so lead agents to rely

on their private information for longer. And since signals are noisy, this leads their

choices to be more dissimilar than if the signals were less persistent (Proposition 6.1).

Allowing for correlated signals also leads to an "anything goes" result. Suppose an

outsider observes a finite history of action choices. We show that any such history can

be rationalized as resulting from equilibrium behavior for some degree of correlation.

In this sense, correlated signals can provide an explanation of seemingly contrarian

behavior. A contrarian is an agent who does not follow the herd and makes a non-

conforming choice. Suppose we observe even though agent 11 sees 10 agents before

him choose action L, he chooses H. This behavior would be deemed contrarian (non-

equilibrium) under the hypothesis that agents’signals are serially independent. But

since persistent signals delay the formation of a herd, it is entirely possible that agent

11’s choice of H is an equilibrium response. Seeing 10 people before him choose L is

not enough to convince him that he should neglect his own signal. His choice of H

after seeing 10 choices of L may well be rational once signals are persistent.
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Related literature Starting from Banerjee (1992) and Bikhchandani, Hirshleifer

andWelch (1992, henceforth BHW), a vast literature– too extensive to discuss here–

has developed exploring various aspects of the theory as well as applying it to varied

environments. Fortunately, there are excellent surveys available, including a recent

comprehensive one by Bikhchandani, Hirshleifer, Tamuz and Welch (2024), and we

defer to these.3 Almost all of this work assumes that, conditional on the fundamental

state, agents’ information is independently distributed over time, that is, serially

uncorrelated. In this paper, we work with the very simple binary state, binary signal,

binary action model of Banerjee (1992) and BHW (1992) and explore the implications

of serially correlated (persistent) signals.

Smith and Sorensen (2000) introduce the possibility of continuously distributed

signals (as well as noise and payoff shocks) while retaining the assumption that these

are serially independent. In this richer environment, asymptotic behavior is deter-

mined by whether or not the posterior likelihood ratio of private beliefs (based only

on private signals) is bounded or not. When it is bounded, the possibility of incorrect

herd emerges as in the finite-signal models Banerjee (1992) and BHW (1992); if it

is unbounded, incorrect herds cannot arise. In the case of unbounded likelihood ra-

tios, actions converge stochastically so that even following a long sequence of "right"

actions, an agent chooses the "wrong" action. In other words, with positive prob-

ability equilibrium behavior is "contrarian." In recent work, Kartik, Lee, Liu and

Rappoport (2024) observe that unbounded beliefs cannot occur with more than two

states. These authors go well beyond the binary-signal model to allow for general sets

of states, signals and utilities and find suffi cient and (almost) necessary conditions on

the information structure to guarantee that social learning maximizes welfare in the

limit. Needless to say, these conditions are different from unbounded beliefs condition

of Smith and Sorensen (2000) for the case of binary states. While the Kartik et al.

(2024) model is very general in many respects, it retains the standard assumption of

serially independent signals.

In work that predates the Banerjee and BHW papers, Scharfstein and Stein (1990)

study a model in which two investors may receive signals and then sequentially decide

whether to invest or not. But it is not known if the signals are informative or pure

noise. When signals are informative, they are perfectly correlated; otherwise, they

are independently distributed. There are reputational concerns as well– the second

3Other surveys include Chamley (2004) and Smith and Sorensen (2011).
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mover is interested in making outside observers believe that he is smart, that is,

his signals is informative. In equilbrium, the second agent follows the investment

choice of the first regardless of his information. In contrast to the Banerjee (1992)

and BHW (1992) models, correlated signals are necessary for a herd to emerge– with

independent signals there is no herding. In this sense, Sharfstein and Stein (1990)

compare correlated signals with independent ones, albeit in a model with reputational

concerns.

Signals are also correlated in the model of Schaal and Taschereau-Dumouchel

(2023) where in each period a continuum of agents decide simultaneously whether or

not to undertake a risky investment. In addition to his or her private signal, each

agent observes only the fraction of investors who invested in previous periods. Signals

have a (noisy) common component and when this is large, a boom ensues which is

then followed by a bust. Again, the model is very different from the one we study but

does contain the essential elements of correlated signals in a herding environment.

Wu (2021) studies a model of herding in which there are two separate queues

of agents. The states of nature in the two queues are different but correlated and

an agent in either queue can observe the history of actions in both queues. Signals

are still independent conditional on the underlying state in a particular queue. She

finds that although agents are now better informed than in the standard one-queue

model, the probability of an incorrect herd may increase as a result of this additional

information.

Varying the extent of serial correlation varies the underlying information structure.

While retaining the assumption of independent signals, Sato and Shimizu (2025)

exhibit an example with binary states and many signals in which a more informative

information structure can result in decrease in welfare.

In all of work discussed above, the state of nature is drawn once and for all and

stays fixed. Moscarini, Ottaviani and Smith (1998) study a model in which the state

of nature changes over time via a simple Markov process defined over two possible

states of nature. Conditional on the current state, signals are still independent.

Depending on the persistence of the state of nature, a herd may or may not occur.

Even if one does occur, it is necessarily temporary. The reason is that once suffi cient

time has elapsed, there is a good chance that the state has changed and that one’s

private signal is relevant. Thus, in the Moscarini et al. model, the state is serially

correlated while the signals are not. In our model, the state is fixed while the signals
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are correlated. In the same model, Wang (2024) shows that when the state is quite

persistent, actions change more rapidly than the state.

Organization of the paper The rest of this paper is organized as follows. The

model of social learning with persistent (serially correlated) signals is described in

the next section. Section 3 constructs an equilibrium and shows that it is unique

(modulo tie-breaking). The equilibrium generates public beliefs– those of an out-

side observer– that form a finite Markov chain with three absorbing states. These

absorbing states result in herds. Section 4 then studies how changes in persistence

affect the Markov chain. In Section 5 we derive the probabilities of the two different

herds. We then study how an increase in persistence affects the probability that an

"incorrect" herd forms. and show that, as in Figure 1, this probability behaves highly

non-monotonically with a change in persistence. Finally, in Section 6 we examine the

implications of our results on agents’behavior in the medium run.

2 Model

There are two states of nature, θH and θL, with prior probabilities ρ and 1 − ρ,

respectively. We assume that 1
2
< ρ < 1.

A countable infinity of agents arrive sequentially one-at-a-time at t = 1, 2, ... and

each chooses an action at ∈ A = {H,L} . Each agent receives a payoff of 1 if the

chosen action matches the unknown state and a payoff of 0 if it does not. In other

words, each agent has the same payoff function u
(
H, θH

)
= 1 and u

(
L, θH

)
= 0.

Similarly, u
(
L, θL

)
= 1 and u

(
H, θL

)
= 0.

The agent arriving at time t observes (i) the choices of all preceding agents– the

vector at−1 = (a1, a2, ..., at−1); and (ii) a private signal st ∈ {`, h} .
The signals st ∈ {`, h} are generated as follows: in state θH , the period 1 signals

are such that

Pr
[
s1 = h | θH

]
= q and Pr

[
s1 = ` | θH

]
= 1− q

where 1
2
< q < 1. In state θL, the corresponding probabilities of h and ` are 1− q and
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q, respectively. To economize on notation from now on we will write

PH [·] ≡ Pr
[
· | θH

]
and PL [·] ≡ Pr

[
· | θL

]
To avoid trivialities we will assume that the first period signal is suffi ciently in-

formative so that agent 1’s action a1 responds to his signal. In other words, a1 = H

if and only if s1 = h. Thus, we suppose that

q > ρ (1)

In other periods, the signals evolve according to a Markov process. In state θH ,

the transition probabilities PH [st+1 | st] are given by

SH =

θH st+1 = h st+1 = `

st = h α 1− α
st = ` 1− β β

where α and β are given parameters. Thus, PH [st+1 = h | st = h] = α etc. In state

θL, α and β are exchanged so that PL [st+1 = h | st = h] = β etc.

In order to isolate the effects of changes in the serial correlation of signals, we

will also assume that the signal process is such that in each state, the marginal

distribution of signals is preserved over time.

Condition 1 (Preservation of Marginals) For all t, PH [st = h] = q and PL [st = h] =

1− q. Equivalently,
1− β
1− α =

q

1− q

To see why the condition ensures that the marginals are preserved, note that

q = PH [st+1 = h]

= PH [st+1 = h | st = h]× PH [st = h] + PH [st+1 = h | st = `]× PH [st = `]

= αq + (1− β) (1− q)

which yields the condition above. The requirement that PL [st = h] = 1−q also yields
the same condition.
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Condition 1 is equivalent to: (q, 1− q) is the stationary distribution of the Markov
matrix

SH =

[
α 1− α

1− β β

]
and also equivalent to: (1− q, q) is the stationary distribution of the Markov matrix
SL obtained from SH by exchanging α and β. Condition 1 also implies that

α > β

since by (1), q > ρ > 1
2
.

It will be useful to define

γ ≡ β

α
(2)

and the condition that the marginal distribution of signals is preserved implies that

α, β and γ are co-monotonic– if any one of the three increases, the other two also

increase. We will then refer to γ as the persistence parameter since a higher γ implies

that the correlation between tomorrow’s signal and today’s signal is higher.

Notice that the signals are independently distributed over time if and only if

γ = 1−q
q
since, together with Condition 1, this is equivalent to α = q and β = 1− q.

We will thus suppose throughout that

γ =
β

α
≥ 1− q

q

Interpretation as a renewal process The Markovian signal process described

above is equivalent to the following (discrete) renewal process. In period 1, the signal

s1 is drawn with the marginal probabilities appropriate for the state. In every subse-

quent period t > 1, with constant probability p, the signal st is the same as st−1; and

with probability 1−p, st is an independent draw– that is, the signal is renewed– with
the relevant marginal probabilities (that is, the distribution of s1). Note that p is the

same in both states θH and θL.

Suppose we have the Markovian signal structure outlined above with parameters

α and β. If we set p = α + β − 1, then the resulting renewal process is the same as

defined by the Markov matrices SH and SL. Conversely, suppose we have a renewal

process in which with probability p, a signal is repeated and with probability 1−p, the
next period’s signal is renewed. Then it is easy to verify that if we set α = p+q (1− p)
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and β = 1− q (1− p) , then the resulting Markovian signal process is the same as the
renewal process.4

The renewal process can also be interpreted as follows. With probability p, agents

t and t − 1 have a "common" source of information (and so get identical signals)

and with probability 1− p, t’s source of information is independent of t− 1’s source.

Similarly, with probability p2, t, t− 1 and t− 2 have a common source, etc.

3 Equilibrium

In this section, we establish that the game described above has a unique equilibrium

(modulo tie-breaking). In this equilibrium, the agents’actions do not depend on the

entire history of the actions of preceding agents; rather they depend only on a "state

variable" that takes only a finite number of values.

A (pure) strategy for agent t is a function σt : At−1 × {`, h} → {L,H} , where
At−1 = {H,L}t−1 is the set of histories of past actions up to t−1. Thus, σt (at−1, st) ∈
{H,L} is the action chosen by t given the history of actions at−1 ∈ At−1 and his

private signal st ∈ {`, h} .We will say that an agent follows his signal if σt (at−1, h) =

H and σt (at−1, `) = L. An agent ignores his signal if σt (at−1, h) = σt (at−1, `) .

We will say that a history of actions at−1 ∈ At−1 is consistent with σ = (σ1, σ2, ...)

if there is a signal history st−1 ∈ {`, h}t−1 such that for all τ < t, aτ = στ (aτ−1, sτ ) .

Definition 1 Given strategies σ and a history of actions at−1 consistent with σ, the
public belief at time t > 1, denoted by Bt (σ,at−1) , is the likelihood ratio of the

posteriors of an outside observer who sees only the history of actions and knows that

these were chosen according to σ.5

Our first result is that in the social learning model with Markovian information

4It may be verified that in both states, the corresponding ϕ coeffi cient, the standard measure of
serial correlation for binary processes, is also α+ β − 1.

5Precisely,

Bt
(
σ,at−1

)
=
Pr
[
θH
]

Pr
[
θL
] × PH [{st−1 : ∀τ < t, aτ = στ

(
aτ−1, sτ

)}]
PL [{st−1 : ∀τ < t, aτ = στ (aτ−1, sτ )}]
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Theorem 1 There is a unique equilibrium σ∗ (modulo tie-breaking). It is such that:
(i) The public beliefs B∗t (·) ≡ Bt (σ∗, ·) form a finite Markov chain with three absorb-
ing states.

(ii) Agents follow their private signals when the public beliefs are transient and ignore

these when they are absrorbing.

The theorem will be established as follows. First, we will identify a finite set

Λ (m,n) of public beliefs (defined below) and use this to define a candidate equilibrium

σ∗. We will then show that

• The public beliefs B∗t generated by σ∗ lie in Λ (m,n) . (Proposition 3.1 below.)

• The public beliefs B∗t constitute a finite Markov chain on Λ (m,n) with three

absorbing states. (Proposition 3.2 below.)

• Given the public beliefs B∗t , the strategies σ∗ constitute an equilibrium. This
is the unique equilibrium (modulo tie-breaking). (Proposition 3.3 below.)

3.1 Likelihood ratios

For any t-period history of signals st = (s1, s2, ..., st) ∈ {`, h}t, denote the resulting
(likelihood ratio of) posterior beliefs about the states of nature by

λ
(
st
)

=
Pr
[
θH | st

]
Pr
[
θL | st

] =
Pr
[
θH
]

Pr
[
θL
] PH [s1]

PL [s1]

t∏
τ=2

PH [sτ | sτ−1]
PL [sτ | sτ−1]

We will argue that in equilibrium, even though an outside observer at time t does

not observe the signal history st−1 directly, the public beliefs B∗t (·) must equal λ (sτ )

for some τ ≤ t− 1.

Denote by `k a string of k consecutive signals of ` and similarly, by hj a string of j

consecutive signals of h. Thus, `k1hj1 . . . `kphjp denotes a signal history which consists

of k1 consecutive `’s followed by j1 consecutive h’s followed by k2 consecutive `’s etc.

Definition 2 Given γ, let m be the smallest positive integer j such that

λ
(
`hj+1`

)
≥ 1
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-
1−q
q

m = 1 2 3 4 · · ·
γ

6

λ(`hj+1`)

1

1

j = 1 2 3 4 · · ·

Figure 2: In the first interval, m = 1, In the second, m = 2 and so on.

Such an m exists and is unique since (i) λ (`h`) < 1; (ii) λ (`hj+1`) is increasing

in j and unbounded as j goes to infinity. Figure 2 depicts how m is determined.

Analogously,

Definition 3 Given γ, let n be the smallest positive integer k such that

λ
(
`k+1h

)
< 1

Again such an n exists and is unique since (i) λ (`h) > 1; (ii) λ
(
`k+1h

)
is decreasing

in k and goes to zero as k goes infinity.

Next, given a persistence parameter γ, suppose m and n are determined as above

and define the set

Λ (m,n) = {λ (h)}
∪
{
λ
(
`hk
)

: k = 1, 2, ...,m+ 1
}
∪
{
λ
(
`hk`

)
: k = 1, 2, ...,m

}
∪
{
λ
(
`kh
)

: k = 1, 2, ..., n
}
∪
{
λ
(
`k
)

: k = 1, 2, ..., n+ 1
}
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The set Λ (m,n) has 2 (m+ n)+1 elements.6 We will refer to the elements of Λ (m,n)

as belief states.

Notation 1 Let
A =

{
λ (h) , λ

(
`hm+1

)
, λ
(
`n+1

)}
Also, let

T = Λ (m,n)�A

We will show below that in the (essentially) unique equilibrium, the public beliefs

form a Markov chain on Λ (m,n) such that the belief states in A are absorbing while
those in T are transient.

3.2 Equilibrium strategy

Given a γ, let m and n be determined as in Definitions 2 and 3.

Consider the following strategy σ∗ = (σ∗1, σ
∗
2, ...).

• agent 1 follows her signal;

• agent t > 1,

— follows her signal if the public belief B∗t (at−1) is transient, that is, in T ;

— chooses at = at−1 if the public belief B∗t (at−1) is absorbing, that is, in A.

For any t > 1 and any at−1 not consistent with
(
σ∗1, σ

∗
2, ..., σ

∗
t−1
)
, agent t’s posterior

beliefs are arbitrary and the agent is assumed to optimize given these beliefs.

We will show below that if the action history at−1 is consistent with σ∗, then the

public beliefs B∗t (at−1) ∈ Λ (m,n) and so the strategy σ∗ is well-defined.

3.3 Public beliefs lie in Λ (m,n)

We now show

Proposition 3.1 For all t > 1, the public beliefs generated by σ∗, B∗t ∈ Λ (m,n) .

6In the description above, some elements are listed twice. For example, if k = 1, λ
(
`hk
)
= λ

(
`kh
)

and λ
(
`hk`

)
= λ

(
`k
)
.
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First, consider an arbitrary signal history st with s1 = h. Then σ∗ prescribes that

agent 1 choose a1 = H and so the public belief after period 1, B∗2 = λ (h) ∈ Λ (m,n) .

Now σ∗ prescribes that a2 = a1 = H regardless of s2. This means that public beliefs

cannot be updated and so B∗3 = λ (h) as well. Proceeding in this manner shows that

then in all subsequent periods, B∗t = λ (h) ∈ Λ (m,n). Thus, the conclusion of the

proposition holds if s1 = h.

So it remains to consider signal histories st with s1 = `. The number of such signal

histories is 2t−1 and so grows exponentially with t. Nevetheless, it will turn out that

the resulting posterior beliefs λ (st) can be classified into four simple types.

To see how, note that in any history of signals st, the likelihood ratio of an `→ `

transition is the inverse of the likelihood ratio of an h → h transition and so these

ratios "cancel" each other. Similarly, the likelihood ratio of an ` → h transition is

the inverse of the likelihood ratio of an h → ` transition and so these also "cancel"

out. As an example,

λ (```hh) =
ρ

1− ρ︸ ︷︷ ︸
Prior

1− q
q︸ ︷︷ ︸

s1=`

β

α︸︷︷︸
`→`

β

α︸︷︷︸
`→`

1− β
1− α︸ ︷︷ ︸
`→h

α

β︸︷︷︸
h→h

=
ρ

1− ρ
1− q
q

β

α

1− β
1− α

= λ (``h)

Using such reductions, in Appendix A we show that if s1 = `, then any λ(st)

is equal to one of the following canonical forms: (i) λ
(
`d+1h

)
; (ii) λ

(
`hd+1

)
; (iii)

λ
(
`d+1

)
; or (iv) λ

(
`hd+1`

)
where, in each case d is some non-negative integer. We

will refer to this as the reduction property.

The proof of Proposition 3.1 is by induction and can be found in Appendix B.

The reduction property is crucial to the proof. Here we indicate the basic reasoning.

First, it is clear that if the public belief B∗t is in the set of absorbing belief states,

then in subsequent periods the public belief will remain in A. The reason is that
σ∗ prescribes that in absorbing states, agents choose actions that ignore their own

private signals. Since no new information is added, the public beliefs are not revised

after t.

This implies that if the public belief B∗t is in the set of transient belief states,

then it must be that the public beliefs in all previous periods were also transient.
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Now σ∗ prescribes that in transient states, agents follow their private signals. This

means that in all previous periods the actions reveal the signals and so B∗t = λ (st−1) .

For later use this may be summarized as: if the public belief B∗t is transient, then

B∗t = λ (st−1) and in all previous periods τ < t, B∗τ = λ (sτ−1) as well.

Now the reduction property (Lemma A.1) derived above implies that B∗t must

equal one of the four canonical forms (i) to (iv). As an example, suppose that B∗t =

λ
(
`hd`

)
where d < m since B∗t is transient. If the action chosen at time t is H, then

the signal st must have been h. So by definition of λ, B∗t+1 = λ
(
`hd`h

)
= λ

(
`hd
)

which is in Λ (m,n) . Similarly, if the action chosen at time t is L, then st must have

been `. Now B∗t+1 = λ
(
`hd``

)
= λ

(
`hd−1`

)
which is also in Λ (m,n) . It is easy to see

that the same argument applies to all canonical forms.

3.4 Public beliefs are Markovian

We have argued above that in transient states, the public belief B∗t = λ (st−1) , which

is as if the outside observer had seen the history of signals and not just the history

of actions. Is the process λ (st−1) → λ (st) Markovian? To see that this is not true,

notice that even though λ (`h) = λ (h`) , it is the case that λ (`hh) = ρ
1−ρ

α
β
whereas

λ (h`h) = ρ
1−ρ

q
1−q . But public beliefs are not always transient and so it may be that

B∗t 6= λ (st−1). Our next result is

Proposition 3.2 Suppose agents follow the strategy σ∗. Then in each state of na-
ture, the public beliefs B∗t form a Markov chain on Λ (m,n) .

The proof proceeds as follows. We know from Proposition 3.1 above that the

public beliefs lie in Λ (m,n) .

If B∗t is in an absorbing state, then σ
∗ implies B∗t+1 = B∗t and so the Markov

property is obvious.

If B∗t is in a transient state, then as above B
∗
t = λ (st−1) . Suppose there is

another signal history such that sτ−1 (with τ possibly different from t) such that the

corresponding public belief B
∗
τ = B∗t . Since B

∗
τ must also be transient, this implies

that λ (st−1) = λ
(
sτ−1

)
. Now Lemma A.2 shows that if two signal histories have

the same canonical form, then the last signal in each must be the same, that is,

st−1 = sτ−1. Note that the probability of a transition from st−1 to st depends only

on the signal st−1 (because signals are Markovian). Similarly, the probability of a
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Figure 3: Markov Chain of Public Beliefs in State θH

transition from sτ−1 to sτ depends only on the signal sτ−1. But since, by Lemma

A.2, st−1 = sτ−1, the probabilities of these transitions must be same. In other words,

the history of how B∗t was reached is irrelevant– the transitions between belief states

are Markovian. This completes the proof of Proposition 3.2.

As an example, when m = 2 and n = 3, the resulting Markov chain of public

beliefs in state θH is depicted in Figure 3. The belief states λ (h) , λ (`h3) and λ (`4)

are absorbing. For the remaining, transient, belief states, the transition probabilities

are given in the figure using α = 1− α and β = 1− β.

3.5 Optimality of σ∗

Here we establish

Proposition 3.3 The strategies σ∗ constitute an equilibrium. This is the unique
equilibrium (satisfying the tie-breaking rule that if indifferent, choose H).

First, note that σ∗1 specifies that agent 1 should follow his signal and this is optimal

since q > ρ.

Now suppose that agents 1, 2, ..., t − 1 follow σ∗. We will show that σ∗t is then a

best-response to σ∗1, σ
∗
2, ..., σ

∗
t−1.

16



Definition 4 Let B∗∗t (at−1, st) denote the belief of agent t after seeing the history of

actions at−1 and his private signal st ∈ {`, h}. We will refer to B∗∗t as the private
belief of agent t.

Note that the private belief of agent t differs from the public belief B∗t (at−1) only

in that agent t also knows his private signal st. An agent will choose action at = H

if and only if his private belief B∗∗t (at−1, st) ≥ 1 (ties are broken in favor of H). We

begin by deriving these private beliefs and then show that the actions dictated by σ∗

are optimal.

If the public belief B∗t is in a transient state, then B
∗
t (at−1) = λ (st−1). Moreover,

since public beliefs must have been transient in all previous periods, agent t can infer

st−1 from observing at−1. Thus, the private belief at time t, B∗∗t (at−1, st) = λ (st−1, st)

and this is the same as B∗t+1, the public belief at time t+ 1.

If the public belief B∗t is in an absorbing state, then let τ < t be the last period in

which B∗τ was transient. Thus, B
∗
τ+1 = λ (sτ ) and since this is absorbing, the public

belief stays the same in all subsequent periods. Moreover,

PH [st = ` | sτ = h]

PL [st = ` | sτ = h]
=
PH [st = `]

PL [st = `]
(3)

and the same holds if we exchange ` and h. When τ = t − 1, this is the same as

Condition 1 that guarantees that the marginal distribution of signals is preserved

over time. To see why this is true even when τ < t − 1, it is helpful to recast the

signal generation as a renewal process as in Section 2. Recall that in the renewal

process interpretation, if st 6= sτ , then it must be that at some point after τ the

process restarted with a new independent draw. Let τ ′ ≤ t be the last period in

which the signal was the result of a new draw. Since τ ′ was the last time there was

a new draw, st = sτ ′ = `. Now (3) follows.

We (3) in hand, we will derive the private belief of t when the public beliefs are

in absorbing states. To be concrete, suppose in fact that the public belief B∗t is in

the absorbing state λ (`hm+1) . As above, let τ < t be the last period in which B∗τ
was transient and sτ = h (Lemma A.2). Then the private belief of agent t who gets
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signal st = ` is

B∗∗t
(
at−1, `

)
= B∗t

(
at−1

)
× P

H [st = ` | sτ = h]

PL [st = ` | sτ = h]

= B∗t
(
at−1

)
× P

H [st = `]

PL [st = `]

= λ
(
`hm+1

)
× P

H [st = ` | st−1 = h]

PL [st = ` | st−1 = h]

= λ
(
`hm+1`

)
where the second and third equalities follow because of (3).

In the same manner, if the public belief B∗t is in the absorbing state λ (h) , then

B∗∗t (at−1, `) = λ (h`) = ρ/ (1− ρ) . Finally, if the public belief B∗t is in the absorbing

state λ (`n+1) , then B∗∗t (at−1, st = h) = λ (`n+1h) .

We now argue that σ∗t is indeed a best response to
(
σ∗1, σ

∗
2, ..., σ

∗
t−1
)
.We know that

public beliefs can only equal one of the four canonical forms. Suppose, for example,

B∗t = λ
(
`hd
)
where d < m+ 1 and so transient. If st = h, then the resulting private

belief B∗∗t is λ
(
`hd+1

)
> 1 and so it is optimal for agent t to choose H. If st = `,

then the resulting private belief B∗∗t is λ
(
`hd`

)
< 1 from the definition of m. Thus,

it is optimal for agent t to choose L. Finally, if d = n + 1 and st = `, then from the

argument above, B∗∗t (at−1, `) = λ (`hm+1`) > 1 (again from the definition of m) and

so it is optimal for t to choose H. But if it is optimal for t to choose H when st = `,

it is also optimal when st = h. Thus, when the public belief is λ (`hm+1) , the optimal

response is H regardless of st.

The arguments for the optimality of σ∗t in all remaining belief states are analogous

and omitted.

To see that the equilibrium is unique, first notice that for agent 1, σ∗1 is strictly

dominant since q > ρ. Now for any t > 1, given
(
σ∗1, σ

∗
2, ..., σ

∗
t−1
)
, σ∗t is the unique

best response under the assumption that ties are broken in favor of action H.7

This completes the proof of Proposition 3.3 and hence also of Theorem 1.

7In fact, ties can occur only for a countable values of γ. For all other values, the incentives are
(iteratively) strict.
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4 Comparative Statics

In what follows we will study how the equilibrium outcomes are affected by a change

in the persistence γ of signals. The following simple result (apparent from Figure 2)

is key.

Lemma 4.1 Suppose m and n are determined as in Definitions 2 and 3. Both m

and n are non-decreasing functions of γ and unbounded as γ → 1.

Proof. It is easy to verify that

λ
(
`hj+1`

)
=

ρ

1− ρ
1− q
q

1

γj

Consider γ < γ′ and letm andm′ be determined for γ and γ′, as in Definition 2). Now

λ (`hm+1`) ≥ 1 and λ′(`hm
′+1`) ≥ 1. Since an increase from γ to γ′ causes λ (`hm+1`)

to decrease, m′ cannot be smaller than m.

A similar argument applies to n.

Finally, since q > ρ, for fixed m as γ → 1, λ (`hm+1`) < 1. Thus, to compensate

m→∞.

Lemma 4.1 implies that if an increase in γ to γ′ such that the corresponding

m′ > m or n′ > n, then the number of transient states in the Markov chain of public

beliefs increase. In other words, when the persistence is γ′ > γ, the strategy σ∗

prescribes that agents wait longer before neglecting their own signals than when the

persistence is γ.

To see this, suppose the history of actions consists of n + 1 choices of L. When

the persistence is γ, the resulting public belief is λ (`n+1) which is absorbing. Thus,

it is optimal even for agent n+ 2 with signal sn+2 = h to choose L as well since

λ
(
`n+1h

)
=

ρ

1− ργ
n < 1

Thus, a herd to L forms after n+ 1 periods.

But when the persistence is γ′ > γ, it is optimal for agent n + 2 with signal

sn+2 = h to choose H since now the corresponding public belief is

λ′
(
`n+1h

)
=

ρ

1− ρ (γ′)
n ≥ 1
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This is because the same event sn+1 = `n+1 is more indicative of the state θL when

the persistence is γ than when the persistence is γ′ > γ.

The same reasoning applies to the action history consisting of one choice of L

followed by m+ 1 choices of H.

5 Welfare Implications

Proposition 3.2 established that in both states of nature, the public beliefs– those of

an outside observer who sees only the actions chosen by the agents– form a Markov

chain on the set Λ (m,n). Since the public beliefs form a Markov chain with the

property that from every transient state it is possible to reach an absorbing state in

a finite number steps, the process is absorbed with probability one (see for instance,

Theorem 11.3 in Grinstead and Snell, 1997). In our context, this means that a herd

forms with probability one.

What is the ex ante probability Ψ that an incorrect herd forms– that is, the

probability that the absorbing states λ (h) and λ (`hm+1) are reached in state θL or

the absorbing state λ (`n+1) is reached in state θH?

One may reasonably conjecture that an increase in persistence would increase the

probability of an incorrect herd (decrease welfare). But we show

Theorem 2 The ex ante probability Ψ that an incorrect herd forms is locally increas-

ing in γ but has a countably infinite number of discontinuous jumps downwards.

In what follows, we find an explicit expression for Ψ in terms of the basic para-

meters ρ, q and γ.

To begin, note that the absorbing state, λ (h), is isolated– it can only be reached

if the signal in the first period s1 = h. On the other hand, if the first-period signal

s1 = `, then in both states, θH and θL, the process may reach either of the other

two absorbing states– λ (`n+1) or λ (`hm+1)– and we wish to determine the relative

likelihood of each.

Let H∞ denote the event (set of signal sequences s∞) that a herd to H eventually

forms– this is the same as the event that limB∗t = λ (`hm+1) or limB∗t = λ (h) .

Similarly, let L∞ denote the event that a herd to L eventually forms– this is the

same as the event limB∗t = λ (`n+1). In the first case, all but a finite number of

agents choose H; in the second, all but a finite number choose L.
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First, let us determine the probability of an incorrect herd in state θL, that is,

PL [H∞] . If the first signal s1 = h, then a herd to H occurs with probability one. If

s1 = `, then both herds occur with positive probability. Thus,

PL [H∞] = PL [s1 = h]PL [H∞ | s1 = h] + PL [s1 = `]PL [H∞ | s1 = `]

= (1− q) + qPL [H∞ | s1 = `] (4)

To determine PL [H∞ | s1 = `] we exploit the martingale property of likelihood

ratios (public beliefs).8 This is just the well-known result in statistics that under the

null hypothesis, the likelihood ratio is a martingale (see, for instance, Feller (1966,

Vol. II), p. 211). If we postulate the null hypothesis that the true state is θL, then

the martingale property implies that the limiting public beliefs after s1 = ` must be

such that

PL [H∞ | s1 = `]× λ
(
`hm+1

)
+ PL [L∞ | s1 = `]× λ

(
`n+1

)
= λ (`) (5)

Using the reduction formulae λ (`hm+1) = ρ
1−ργ

−m and λ (`n+1) = ρ
1−ρ

1−q
q
γn in (5),

we obtain that

PL [H∞ | s1 = `] =
γm (1− γn)

χ− γm+n (6)

where χ = q
1−q . Substituting (6) into (4) yields

PL [H∞] = (1− q) + q
γm (1− γn)

χ− γm+n

Finally, by interchanging the roles of q and (1− q) and α and β, we obtain PH [H∞]

and since PH [L∞] = 1− PH [H∞] ,

PH [L∞] = (1− q) γ
n (χ− γm)

χ− γm+n

Thus,

Proposition 5.1 The ex ante probability that an incorrect herd forms is

Ψ ≡ ρ (1− q)
(
r +

rχγm (1− γn) + γn (χ− γm)

χ− γm+n

)
(7)

8Its use in our context was suggested by a referee and greatly simplified our earlier direct proof.
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where r = 1−ρ
ρ
, χ = q

1−q and m and n are determined according to Definitions 2 and

3.

Proof. The ex ante probability that an incorrect herd forms is just

(1− ρ)PL [H∞] + ρPH [L∞]

and now substituting from the expressions above yields (7).

The probability Ψ that an incorrect herd forms is a measure of the asymptotic

ineffi ciency of social learning. Following Rosenberg and Vielle (2022), a utilitarian

measure of ineffi ciency in state θL, say, is

WL = lim
δ→1

(1− δ)
∞∑
t=1

δt1at=H

where 1at=H is the indicator of the event at = H (the incorrect action for state θL)

and δ < 1 is a discount factor. By Abel’s Theorem, we have that

WL = lim
T→∞

1

T

T∑
t=1

1at=H

and since in our model, a herd to either H or L forms for sure,

EθL
[
WL

]
= PL [H∞]

Thus, as δ → 1, our measure of ineffi ciency is the same as measure of ineffi ciency

used by Rosenberg and Vielle (2022).9

5.1 Implications of persistence

To see how Ψ is affected by a change in γ, note that an increase in γ affects Ψ in

two ways. First, γ affects Ψ directly. Second, γ affects Ψ indirectly via the induced

changes m and n. The first effect increases Ψ and so decreases welfare. The second

effect, as will see, goes in the opposite direction and causes a discontinuous increase

in welfare.
9We note that the model of Rosenberg and Vielle (2022) again assumes that signals are condi-

tionally independent.
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To see the first effect, one may differentiate the expression for Ψ in (7) while

holding m and n fixed. This yields

dΨ

dγ
= ρ (1− q) χ (nγn−1 (1− rγm) (χ− γm) +mγm−1 (1− γn) (rχ− γn))

(χ− γm+n)2

and note that the numerator is positive since γ < 1, r = 1−ρ
ρ
< 1 < rχ < χ = q

1−q .

But while the probability that an incorrect herd forms is locally increasing, it is

not monotone– Ψ has a countable number of downward discontinuities. In particular,

it jumps downwards whenever an increase in γ causes either m or n to increase.

Note that

λ
(
`hk`

)
=

ρ

1− ρ
1− q
q

1

γk
=

1

rχ

1

γk

and Definition 2 implies that the change from m to m + 1 occurs at γm = (rχ)−
1
m .

Analogously,

λ
(
`kh
)

=
ρ

1− ρ
1− q
q

γk =
1

rχ
γk

and Definition 3 implies that the change from n to n+ 1 occurs at γn = (rχ)
1
n .

The next result shows that the ex ante probability of an incorrect herd, Ψ, jumps

downward at any γ where there is an increase in either m or n.

Proposition 5.2 Suppose that γn is a point of discontinuity of Ψ such that n in-

creases by 1 at γn while m stays fixed. Then there exists an ε such that for all

γ′ ∈ (γn − ε, γn) and γ′′ ∈ (γn, γn + ε) ,

Ψ (γ′) > Ψ (γ′′) .

The same is true if n is replaced with m and vice-versa.

Proof. It is suffi cient to show that for any fixed γ, Ψ is a decreasing function of n.

Using (7), this is the same as

rχγm (1− γn) + γn (χ− γm)

χ− γm+n >
rχγm (1− γn+1) + γn+1 (χ− γm)

χ− γm+n+1

and the latter in turn is equivalent to

γnχ (1− rγm) (1− γ) (χ− γm) > 0
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which holds since χ = q
1−q > 1, r = 1−ρ

ρ
< 1 and γ < 1.

The proof that for any fixed γ,Ψ is a decreasing function of m is similar.

This completes the proof of Theorem 2.

Example 1 Suppose that the prior probability of state θH , ρ = 0.6 and the quality

of the signal q = 0.7. Figure 1 in the introduction depicts the ex ante probability of

an incorrect herd, that is, the function Ψ. In the first interval of γ’s, m = 1 and

n = 1. In the second interval, m = 2 and n = 1; in the third, m = 2 and n = 2; in

the fourth m = 3 and n = 2 and so on.

What about the two extremes of independent signals (γ = (1− q) /q) and perfect
persistence (γ = 1)?

Is the probability of an incorrect minimized when signals are independent? Not

always.

Proposition 5.3 If q is close to ρ, then there exists a γ > 1−q
q
such that the proba-

bility of an incorrect herd when the persistence is γ is smaller than when signals are

independently distributed. Formally,

Ψ

(
1− q
q

)
> Ψ

(
1− ρ
ρ

)
Proof. For all γ ∈ [ 1

χ
, r) ∩ [ 1

χ
, 1
rχ

), both m = 1 and n = 1 and so from (7)

Ψ (γ) = ρ (1− q)
(
r +

rχγ (1− γ) + γ (χ− γ)

χ− γ2

)
Thus, in the independent case, the ex ante probability of an incorrect herd is

Ψ

(
1

χ

)
= ρ (1− q)

(
r +

χ+ rχ+ 1

χ2 + χ+ 1

)
Since χ is close to 1

r
, the first discontinuity in Ψ occurs when m = 1 and n = 2

and so for γ ∈ [r, r
1
2 )

Ψ (γ) = ρ (1− q)
(
r +

rχγ (1− γ2) + γ2 (χ− γ)

χ− γ3

)
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and so

Ψ (r) = ρ (1− q)
(
r +

2χr2 − r3 − χr4
χ− r3

)
It is easy to verify that when rχ ≈ 1, Ψ

(
1
χ

)
> Ψ (r) .

At the other extreme, Ψ is discontinuous at γ = 1 (perfect persistence) since

lim
γ→1

Ψ (γ) = (1− q) (1− q (2ρ− 1)) < 1− q = Ψ (1)

The probability of an incorrect herd varies non-monotonically with changes in

persistence and, as depicted in Figure 1, the function relating the two is highly non-

monotonic. One measure of how non-monotonic a function is its the total variation

(defined in Appendix C).

Proposition 5.4 The total variation of the function Ψ :
[
1−q
q
, 1
]
→ [0, 1] is un-

bounded.

Proof. See Appendix C.

6 Behavioral Implications

In the last section we showed that an increase in the persistence of signals can actually

improve welfare. Here we study the behavioral implications of such a change.

6.1 Similarity of actions

Social learning leads agents to take actions that are more similar than dictated by

their private information. Herds are an extreme manifestation of this idea– after a

while, all agents take the same action. In some contexts, the similarity of actions is

harmless. If everyone in society decides to dress in similar fashion, there is no apparent

social cost. But in other contexts, the similarity of actions may be detrimental. If all

banks hold the same portfolio– heavily weighted toward mortgage backed securities,

say– then this increases the systemic risk that the banking sector as whole faces. Even

if the same portfolio is optimal for an individual bank, from society’s perspective, it
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would be better if banks’portfolios were dissimilar. These considerations form the

basis of what are known as macroprudential policies.10

In this section we ask how an increase in the similarity (persistence) of signals

affects the similarity of equilibrium actions. We will argue that a small increase in

the serial correlation of signals– that causes either m or n to increase by 1– actually

causes a decrease in the similarity of actions. The reason is simple. Suppose for

instance that we are at a point of discontinuity of Ψ. Now suppose a small increase

in γ results in a change from n to n + 1. This delays the formation of a herd–

equivalently, this causes public beliefs to remain longer in transient states. This is

because there exist signal histories of length greater than n+ 1 such that the public

belief reaches the absorbing state λ (`n+1) when γ is to the left of the discontinuity

but remains transient to the right. In transient states, actions respond to signals and

so the probability that tomorrow’s action is different from today’s is the same as the

probability that tomorrow’s signal is different from today’s.

But an increase in γ also has a countervailing effect– the probability that tomor-

row’s signal is different from today’s decreases. This second effect is small relative to

the first when the increase in γ is small. The change from n to n+1 is a discontinuous

change whereas the change in probabilities is continuous.

Precisely, we have

Proposition 6.1 Suppose that γn is a point of discontinuity of Ψ such that n in-

creases by 1 at γn while m stays fixed. Then there exists an ε such that for all

γ′ ∈ (γn − ε, γn) and γ′′ ∈ (γn, γn + ε) and t > n+ 1,

Pγ′
[
a′t+1 6= a′t

]
< Pγ′′

[
a′′t+1 6= a′′t

]
where Pγ′ and Pγ′′ denote the probability measures on equilibrium actions a′t and a

′′
t

induced by γ′ and γ′′, respectively.

10A paper from the International Monetary Fund states: "... what constitutes prudent behavior
from the point of view of one institution may create broad problems when all institutions engage
in similar behavior– whether by selling questionable assets, tightening credit standards, or holding
onto cash." (Jacome and Nier, 2012)
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6.2 Anything goes

Fix T. Then there exists a γT such that for all γ > γT and all T -period action

sequences aT = (a1, a2, ..., aT ) such that a1 6= H there is a positive probability that

aT is an equilibrium outcome.

The proof is simple. Let γT be such that the corresponding m and n both exceed

T. This means that as long as a1 6= H there is no possibility that in the first T

periods, the public beliefs reach either λ (`hm+1) or λ (`n+1) . This means that for all

γ > γT , and all t ≤ T, the public beliefs remain transient. Let the signal profile

sT = (s1, s2, ..., sT ) be such that st = ` if and only if at = L. Since, in equilibrium,

every agent follows his or her signal when the public beliefs are transient, the signal

profile sT results in the action profile aT . Thus with persistent signals any observed

behavior aT such that a1 6= H can be rationalized (for a large enough γ).

This is not true if information were serially independent (γ = 1−q
q
). Now every

rationalizable sequence aT must be one of the following forms: (1) (H,H, ..., H);

(2) (L,L, ..., L); (3) (L,H,H, ..., H); (4) (L,H,L,H,L, ..., H, L, L, L, L, ..., L); (5)

(L,H,L,H,L, ..., H, L,H,H, ..., H).

Behavior that seems "contrarian"– that is, not following the herd– in a model

with independent signals, can in fact be rationalized in a model with Markovian

signals.

7 Conclusion

Social learning imposes a social cost. Economic agents rely too much on learning from

others’observed behavior and under-weigh or even neglect their own information.

This has a cascading effect. If my choices only imperfectly (or not at all) reflect my

information, then others who observe these choices will not be able to infer much from

doing so. This can lead to choices that are too similar relative to a social optimum.

This is not only an ineffi cient use of available information for the agents, but may be

sub-optimal for wider society as well. If all banks hold similar portfolios as a result

of "herding", then this is not only ineffi cient for the banks, but the lack of diversity

in investments is too risky for society– a shock to one sector can trigger widespread

bank failures. Intuition then suggests that the more correlated agents information is,

the more correlated their actions will be. In this paper, we have argued that while this
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not true in general. To do so, we have developed a tractable model of social learning

that allows for the possibility that agents’information is correlated– perhaps because

of common sources. Such a model can be used to examine economically relevant

questions that could not be examined using existing models.

A Appendix: Reduction Property

Lemma A.1 (Reduction) Consider a signal history st that begins with s1 = `.

Then λ (st) must equal one of: (i) λ
(
`d+1h

)
; (ii) λ

(
`hd+1

)
; (iii) λ

(
`d+1

)
; or (iv)

λ
(
`hd+1`

)
where, in each case, d is some non-negative integer.

Proof. First, consider a signal history st such that s1 = ` and st = h. Any such

history can be written as

st = `k1hj1 . . . `kphjp

where each ki ≥ 1 and ji ≥ 1 and
∑p

i=1 ki +
∑p

i=1 ji = t. We then have,

λ
(
`k1hj1 . . . `kphjp

)
=

ρ

1− ρ
1− q
q︸ ︷︷ ︸

s1=`

(
β

α

)
︸ ︷︷ ︸
`→`

k1−1 1− β
1− α︸ ︷︷ ︸
`→h

(
α

β

)
︸ ︷︷ ︸
h→h

j1−1

× 1− α
1− β︸ ︷︷ ︸
h→`

(
β

α

)
︸ ︷︷ ︸
`→`

k2−1 1− β
1− α︸ ︷︷ ︸
`→h

(
α

β

)
︸ ︷︷ ︸
h→h

j2−1

× ...

...× 1− α
1− β︸ ︷︷ ︸
h→`

(
β

α

)
︸ ︷︷ ︸
`→`

kp−1 1− β
1− α︸ ︷︷ ︸
`→h

(
α

β

)
︸ ︷︷ ︸
h→h

jp−1

In the expression above, notice that the probability ratio of each `→ h transition is

just the inverse of a h → ` transition. Similarly, the probability ratio of each ` → `

transition is just the inverse of a h → h transition. This implies that the formula

above reduces to

λ
(
`k1hj1 . . . `kphjp

)
=

ρ

1− ρ
1− q
q

(
β

α

)d
1− β
1− α

where d ≡
∑p

i=1 ki −
∑p

i=1 ji. Note that when d ≥ 0,

λ
(
`k1hj1 ...`kphjp

)
= λ

(
`d+1h

)
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and when d < 0,

λ
(
`k1hj1 ...`kphjp

)
= λ

(
`h|d|+1

)
Similarly, consider a signal history st such that s1 = ` and st = `. Any such

history can be rewritten as

st = `k1hj1 ...`kp

and in a manner similar to that above, we obtain

λ
(
`k1hj1 ...`kp

)
=

ρ

1− ρ
1− q
q

(
β

α

)d
where d ≡

∑p
i=1 ki −

∑p−1
i=1 ji − 1. As above, note that when d ≥ 0,

λ
(
`k1hj1 ...`kp

)
= λ

(
`d+1

)
and if d < 0,

λ
(
`k1hj1 ...`kp

)
= λ

(
`h|d|+1`

)
The reduction lemma has an important consequence.

Lemma A.2 Consider two signal histories st and sτ (of possibly different lengths)
which begin with `. If λ (st) = λ (sτ ) , then st = sτ , that is, they must have the same

last signal.

Proof. The proof of Lemma A.1 demonstrates that if the last signal st = h, then

λ (st) is either of the form λ
(
`d+1h

)
or λ

(
`hd+1

)
. Similarly, if the last signal st = `,

then λ (st) is either of the form λ
(
`d+1

)
or λ

(
`hd+1`

)
. Thus, st = h if and only if the

last signal in its canonical form is also h. The same is true of sτ .

B Appendix: Equilibrium

Here we first prove Proposition 3.1 that shows that the public beliefs resulting from

the strategy σ∗ take on a finite set of values, that is, those in Λ (m,n) .

Proof of Proposition 3.1. The proof is by induction on t. First, B∗2 ∈ Λ (m,n)

since it is either λ (h) ∈ A or λ (`) ∈ T .
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Suppose, as the induction hypothesis, that in all periods τ ≤ t, B∗τ ∈ Λ (m,n) =

A ∪ T . We will argue that B∗t+1 ∈ Λ (m,n) as well.

Case 1. In some period τ ≤ t, B∗τ ∈ A.
Now the strategy σ∗ specifies that in period τ the agent ignore his own signal sτ .

Thus the action aτ carries no information about sτ and so the new public belief B∗τ+1
is the same as B∗τ . Thus, if B

∗
τ is ever in an absorbing state it remains so thereafter

and hence B∗t+1 ∈ A.

Case 2. In all periods τ ≤ t, B∗τ ∈ T .
We first claim that if in any period τ ≤ t, B∗τ ∈ T , then B∗τ+1 = λ (sτ ) . This is

because if B∗τ ∈ T is transient it must have been transient in all preceding periods
and so the actions in the preceding periods must have been revealed. In particular,

B∗t+1 = λ (st) .

Now, as shown in Appendix A, λ (st−1) can be reduced to one of the canonical

forms: (i) λ
(
`d+1h

)
; (ii) λ

(
`hd+1

)
; (iii) λ

(
`d+1

)
; and (iv) λ

(
`hd+1`

)
where, in each

case, d is some positive integer. Moreover, since B∗t = λ (st−1) ∈ T , in cases (i) and
(iii), d < n and cases (ii) and (iv), d < m.

Notice that by definition

λ
(
st
)

= λ
(
st−1

)
× P

H [st | st−1]
PL [st | st−1]

where λ (st−1) is equal to one of the canonical forms (Lemma A.1) with d < m or

d < n (because by the induction hypothesis λ (st−1) is transient).

Suppose for concreteness the canonical form is λ
(
`d+1h

)
, that is λ (st−1) = λ

(
`d+1h

)
for some d < n. Then

B∗t+1 = λ
(
st
)

= λ
(
st−1

)
× P

H [st | st−1]
PL [st | st−1]

= λ
(
`d+1h

)
× P

H [st | st−1]
PL [st | st−1]

Now Lemma A.2 says that if λ (st−1) = λ
(
`d+1h

)
, then st−1 = h. Thus,

B∗t+1 = λ
(
`d+1h

)
× P

H [st | st−1 = h]

PL [st | st−1 = h]
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There are two cases to consider. If st = h, then the public belief B∗t+1 =

λ
(
`d+1h2

)
, which reduces to λ

(
`dh
)
∈ Λ (m,n) . On the other hand, if st = `,

then B∗t+1 = λ
(
`d+1h`

)
which reduces to λ

(
`d+1

)
∈ Λ (m,n) . Thus in both cases,

B∗t+1 ∈ Λ (m,n) .

A similar argument applies to the other three canonical forms. �

C Appendix: Total Variation of Ψ

The total variation of a function f : [a, b]→ R is

TV (f) = sup
P

nP−1∑
i=0

|f (xi+1)− f (xi)|

where the supremum runs over the set of all partitions

P = {{x0, x1, ..., xnP } : a = x0 < x1 < ... < xnP−1 < xnP = b}

of [a, b] into sub-intervals.

In this appendix, we show that TV (Ψ) =∞.
We will construct a particular partition PN = {x0, x1, ..., xN} of

[
1
χ
, 1
]
as follows.

Let x0 = 1
χ
, x1 = r, x2 = r

1
2 , ..., xn = r

1
n , ..., xN = r

1
N , xN+1 = 1.

We first show

Lemma C.1 If γ = r
1
n , then the m corresponding to γ satisfies

nδ ≤ m < nδ + 1

where δ = ln
(
1
rχ

)
/ ln r > 0.

Proof. From the definition of m,

(
1

rχ

) 1
m−1

< γ ≤
(

1

rχ

) 1
m
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The second inequality is equivalent to

m ≥
ln
(
1
rχ

)
ln γ

= n
ln
(
1
rχ

)
ln r

= nδ

since, by definition, ln γ = 1
n

ln r.

Similarly, the first inequality is equivalent to

m− 1 < n
ln
(
1
rχ

)
ln r

= nδ

By definition, for all γ such that r
1

n−1 ≤ γ < r
1
n

Ψ (γ) = ρ (1− q)
(
r +

rχγm (1− γn) + γn (χ− γm)

χ− γm+n

)
where we know from Lemma C.1 that m < nδ+ 1. Now the fact that Ψ is decreasing

in m implies that

Ψ (γ) ≥ ρ (1− q)
(
r +

rχγnδ+1 (1− γn) + γn
(
χ− γnδ+1

)
χ− γnδ+1+n

)

and so,

lim
γ→r

1
n

Ψ (γ) ≥ ρ (1− q) r

1 +
χrδ+

1
n (1− r) +

(
χ− rδ+ 1

n

)
χ− rrδ+ 1

n


For γ = r

1
n ,

Ψ
(
r
1
n

)
= ρ (1− q)

r +
rχγm

(
1− rr 1n

)
+ rr

1
n (χ− γm)

χ− γmrr 1n


where we know from Lemma C.1 that nδ ≤ m. Now the fact that Ψ is decreasing in
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m implies that

Ψ
(
r
1
n

)
≤ ρ (1− q) r

1 +
χrδ

(
1− rr 1n

)
+ r

1
n

(
χ− rδ

)
χ− rδrr 1n


Now define

Dn = lim
γ↑r

1
n

Ψ (γ)−Ψ
(
r
1
n

)
≥ ρ (1− q) rχ

(
1− rδ

)( 1− r 1n
χ− rδ+ 1

n
+1

)

So

lim
n→∞

nDn ≥ ρ (1− q) rχ
(
1− rδ

)
lim
n→∞

n

(
1− r 1n

χ− rδ+ 1
n
+1

)
> 0

By the limit comparison test, since
∑

1
n
diverges and limn→∞ nDn > 0,

∑
Dn also

diverges.

References

[1] Banerjee, A. V. (1992). "A Simple Model of Herd Behavior." Quarterly Journal

of Economics, 107 (3), 797—817.

[2] Bikhchandani, S., Hirshleifer, D., and Welch, I. (1992). "A Theory of Fads,

Fashion, Custom, and Cultural Change as Informational Cascades." Journal of

Political Economy, 100 (5), 992—1026.

[3] Bikhchandani, S., Hirshleifer, D., O. Tamuz and Welch, I. (2024). "Information

Cascades and Social Learning." Journal of Economic Literature, 62 (3), 1040—

1093.

[4] Chamley, C. P. (2004). Rational Herds. Cambridge University Press.

[5] Feller, W. (1966). An Introduction to Probability Theory and Its Applications,

Volume II, Wiley.

[6] Graham, J. R. (1999). "Herding Among Investment Newsletters: Theory and

Evidence." Journal of Finance, 54 (1), 237—268.

33



[7] Grinstead, C. M. and L. J. Snell (1997). Introduction to Probability, American

Mathematical Society.

[8] Jácome, L. I., and E. W. Nier (2012). "Macroprudential policy: Protecting the

Whole." IMF Finance and Development, 2012.

[9] Kartik, N., S. Lee, T. Liu and D. Rappoport (2024). "Beyond Unbounded Beliefs:

How Preferences and Information Interplay in Social Learning." Econometrica,

92 (4), 1033—1062.

[10] Moscarini, G., M. Ottaviani, and L. Smith (1998). "Social Learning in a Chang-

ing World." Economic Theory, 11 (3), 657—665.

[11] Rosenberg, D. and N. Vielle (2022). "On the Effi ciency of Social Learning."

Econometrica, 87(6), pp. 2141—2168.

[12] Schaal, E. and M. Taschereau-Dumouchel (2023). "Herding through Booms and

Busts." Journal of Economic Theory, 210, p. 105669.

[13] Scharfstein, D. and J. Stein (1990). "Herd Behavior and Investment." American

Economic Review, 80 (3), 465—479.

[14] Sato, H. and K. Shimizu (2025). "Value of Information in Social Learning." arXiv

2503.05015.

[15] Smith, L. and P. Sørensen (2000). "Pathological Outcomes of Observational

Learning." Econometrica, 68(2), pp. 371—398.

[16] Smith, L. and P. Sorensen (2011). "Observational Learning." The New Palgrave

Dictionary of Economics Online Edition, 29—52.

[17] Wang, Wanying (2024). "The Emergence of Fads in a Changing World," Working

Paper, Monash University.

[18] Wu, J. (2021). "Correlated Information Cascades." Available at SSRN:

https://ssrn.com/abstract=3951879.

34


