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Abstract

An informed planner wishes to spread information among a group of agents

in order to induce effi cient coordination– say the adoption of a new technology

with positive externalities. The agents are connected via a social network.

The planner informs a seed and then the information spreads via the network.

While the structure of the network affects the rate of diffusion, we show that

the rate of adoption is the same for all acyclic networks.
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1 Introduction

Policymakers often wish to inform the public about various policies and technologies–

a tax credit, a new seed variety, a new digital payment system– so that the public

will avail of or adopt these. The simplest way to disseminate such information is to

just broadcast a public service announcement (PSA) on television, radio and other

media. But there have been some doubts about the effectiveness of PSAs. For

various reasons, people may pay more attention to information coming from friends

and neighbors rather than mass media.1 Thus in many circumstances it is better

to "seed" the information to a few individuals and then let it spread naturally via

the existing social network. Of course, how quickly information diffuses depends

on the network. At one extreme, information will spread very quickly in a "star"

network– where one individual, say 1, is directly connected to all others who are

directly connected only to 1 (see Figure 1). At the other extreme, it will spread very

slowly in a "line" network– where individual 1 is connected only to individual 2, who

is connected only to one other, say 3, etc.

In this paper, we ask a different question. Suppose that the information concerns

the benefits of a new technology– say, a new digital payment system– and the poli-

cymaker wishes to get the public to adopt the system. In many such situations, there

are significant positive externalities– adopting a new digital payment system is useful

only if other people do so as well.2 Put another way, it is important for the players

to coordinate their actions. Instead of asking how the network structure affects the

rate of diffusion, we ask how it affects the rate of adoption.

Our main finding is that in the class of acyclic networks, the structure of the

network and how it is seeded is irrelevant– the rate of adoption is the same for all

such networks. In particular, the adoption rate when information diffuses quickly via

the star network is the same as when it diffuses slowly via the line network. So while

the structure of the network affects both the speed at which information is diffused

and, as we will see, its quality, it does not affect the prospects of effi cient coordinated

behavior.
1Banerjee, Breza, Chandrasekhar and Golub (2023) observe this in their field experiments and

provide some behavioral explanations why this might be the case.

2See Crouzet, Gupta and Mezzanotti (2023) for evidence of such extenalities in the adoption of
a digital wallet following the Indian demonetization in 2016.
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Figure 1: Star and Line Networks

To illustrate our findings, we begin with an example.

1.1 Example

A new technology is of uncertain value– it may or may not be useful/viable. There

are three agents who must simultaneously decide whether or not to adopt the new

technology at a cost c < 1 per person. The gross payoff to an agent is $1 if and only

if the technology turns out to be useful and all three agents adopt the technology;

otherwise, the gross payoff is zero.3 Thus, adoption has positive externalities. Let

ρ ∈ (0, 1) be the prior probability that the technology is useful.

A planner, agent 0, knows whether or not the technology is useful, and if it is,

sends a message to the agents. If it is not useful, no message is sent. Thus, anyone

who gets the message is sure that the technology is useful.

The three agents are part of single connected social network. Specifically, they are

arranged along a line as in Figure 2 (a). Agents can receive messages from and pass

these along to their neighbors. Message transmission is imperfect, however– at every

stage there is a small probability ε > 0 that a message that is sent to a neighbor is

lost.4 Thus, if the planner sends a message to 1, there is only a probability 1− ε that
1 will in fact get the message. If 1 receives the message and sends it on to 2, then

there is only a probability 1− ε that 2 will get the message and so on. Transmission

losses occur independently across links.

3In Section 4.1 we consider a general adoption game in which it is required that suffi ciently many,
but not necessarity all, other agents adopt.

4The assumption that ε is small is relaxed in later sections.

3



��
��

1 ��
��

2 ��
��

3

(a)

��
��

0

?

��
��

1 -��
��

2 -��
��

3

(b)

��
��

0

?

��
��

1 � ��
��

2 -��
��

3

(c)

Figure 2: Seeding the Line Network

A1. Seeding the network via 1. Here, if the technology is useful, the planner

sends a message to 1, which if received, is sent to 2, which if received, is then sent to 3

(this is depicted by the arrows in Figure 2 (b)). We claim that if the cost c ≤ (1− ε)2,

then every agent who is informed– gets a message– adopts.5 And if c > (1− ε)2,

then no agent, informed or not, adopts.

Case 1: c ≤ (1− ε)2 . First, consider agent 1 and suppose the others adopt if

informed. If 1 gets a message, then she knows that the technology is useful and so her

only worry is whether all other agents got the message as well. Since messages are

only passed along the line, the probability that agents 2 and then 3 are also informed,

and so will adopt, is just (1− ε)2 which is greater than the cost.6 Thus, if informed,

it is optimal for agent 1 to adopt.

Next, consider agent 2 and as above, suppose the others adopt if informed. If

2 gets a message, then she knows that 1 also got the message and that 3 got the

message with probability 1 − ε. Thus, it is optimal for agent 2 to adopt as long as

c ≤ 1− ε, a weaker requirement than that for agent 1.

Finally, consider agent 3 and again suppose others adopt if informed. If 3 gets

a message, then she knows for sure that 1 and 2 also got the message and so she is

willing to adopt for all c ≤ 1.

Thus, if c ≤ (1− ε)2 there is an equilibrium in which every agent adopts if she

gets the message. The probability that all agents adopt the technology when it is

5For our purposes it is not necessary to specify the exact strategy– that is, what an agent does
if she does not get the message. A detailed specification of the strategies is in Section 4.

6Since the gross payoff is 1 if the technology is useful and everyone adopts, and 0 otherwise, this
probability is also the gross expected payoff.
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useful is just the probability that the message reaches 3, that is, (1− ε)3 .

Case 2: c > (1− ε)2 . In this case, the unique equilibrium is one in which no

agent ever adopts.

To see why, note that if 1 is uninformed, the probability that she assigns to the

event that the technology is useful is small– it is of order ε. This is because the only

way this can happen is if the message from the planner to 1 was lost, an ε probability

event. When ε is small, this probability is smaller than the cost. This means that it

is dominated for an uninformed agent 1 to adopt.

Now from the argument above, 2 knows that 1 will not adopt if uninformed. If

2 does not get a message, her belief that 1 is informed is also of order ε because the

event that 1 is informed while 2 is not can occur only if the message from 1 to 2 was

lost, again an ε probability event. This means that it is (iteratively) dominated for

an uninformed 2 to adopt.

Now 3 knows that 1 and 2 will not adopt if uninformed. If 3 does not get a

message, then for similar reasons as above, her belief that both 1 and 2 got a message

is again of order ε. So it is (iteratively) dominated for an uninformed 3 to adopt.

Thus we have argued that it is iteratively dominated for every agent to adopt if

she does not get a message.

Now suppose agent 1 is informed. At best, the other agents will adopt only if

informed and the chance of this is (1− ε)2 and since c exceeds this, it is optimal for

1 to not adopt even when informed. Thus, agent 1 will never adopt.

But now if agent 1 never adopts, it is optimal for other agents to never adopt as

well.

A2. Seeding the network via 2. Seeding the network via 1 seems ineffi cient

since the information has to travel from 1 to 2 and then from 2 to 3. Suppose instead

that the planner sends a message to the agent who is "central," that is, 2. This

message, if received by 2, is forwarded to 1 and 3 simultaneously (this is depicted by

the arrows in Figure 2 (c)). We claim that even though this seems like a better way

to disseminate information, the prospects for effi cient coordination are the same as

when 1 is the seed. Again, if c ≤ (1− ε)2 , then every informed agent adopts. And if

c > (1− ε)2, then no agent ever adopts.
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Case 1: c ≤ (1− ε)2 . Now, when informed, agent 2’s belief that others are also

informed is again (1− ε)2 which is greater c. Thus, it is optimal for informed agent

2 to adopt if the others are doing so.

In the same way, 1 is willing to adopt as long as c ≤ 1−ε. This is because 1 knows

that 2 is informed for sure and that 3 is informed with probability 1− ε. Thus, it is
optimal for an informed agent 1 to adopt as well. The same is true for agent 3.

Thus, it is an equilibrium for every agent to adopt if she is informed. When the

technology is useful, the probability that the message reaches all the agents is just

(1− ε)3 , the same as in scenario A1.

Case 2: c > (1− ε)2 . Again, the unique equilibrium is one in which no agent

ever adopts.

Note that if 2 does not get a message, the probability that she assigns to the event

that the technology is useful is again of order ε (it is the same as that assigned by 1

when 1 was the seed in Scenario A1). Since c is greater than this, it is dominated for

an informed 2 to adopt.

Now 1 knows that 2 will not adopt if uninformed. As above, if 1 does not get a

message, her belief that 2 got a message is also of order ε. This belief is again smaller

than c. This means that it is (iteratively) dominated for an uninformed 1 to adopt.

As before, the same is true for 3.

Next suppose agent 2 gets a message. The chance that the other agents will adopt

is at most (1− ε)2 and since c exceeds this, it is optimal for 2 to not adopt even when

she gets a message. Thus, agent 2 will not adopt whether or not she is informed.

But now if agent 2 never adopts, it is optimal for 1 and 3 to never adopt as well.

Thus, we see that in this example, seeding information to a more "central" agent–

with more neighbors– does not improve the prospects for coordination.

B. Broadcasting. An alternative is to bypass the social network entirely and

"broadcast" the message– it is sent privately to all agents simultaneously (as in Fig-

ure 3). Again, with probability ε, the message to any agent i is lost and so not heard

by the agent. Lost messages occur independently across agents, each with probability

ε > 0.

It seems intuitive that directly broadcasting is a better method of dissemination

than letting the information trickle from agent to agent. In particular, with broad-

6
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Figure 3: Broadcast

casting the probability that any agent gets the information is 1−ε and so is the same
for all agents. In contrast, when the network is seeded via 1, the probability that

agent 2 gets the message is (1− ε)2 and the probability that 3 gets the message is

(1− ε)3.

We will show that even though broadcasting provides better information about

the usefulness of the technology, when it comes to engendering effi cient coordination,

it is equivalent to either of the indirect methods of dissemination A1 and A2.

Case 1: c ≤ (1− ε)2 . Again, in this case there is an equilibrium in which every

agent who gets the message adopts the technology. This follows from the fact that

for any informed agent i, the probability that the other two agents are also informed

is (1− ε)2 .

When the technology is useful, the probability that all agents get the message is

just (1− ε)3 , the same as that when the network is seeded via 1 or 2.

Case 2: c > (1− ε)2 . In this case, again the unique equilibrium is again one

in which no one ever adopts. If agent i does not get a message, her belief that the

technology is useful is again of order ε which is less than c. This means it is dominated

for an uninformed agent to adopt. If agent i does get a message, the probability that

the other two agents will adopt is at most (1− ε)2 and since c > (1− ε)2, agent i will

not adopt even if informed. This means that the unique equilibrium is for all agents

to never adopt.

Thus, in this example we see that how information is disseminated– indirectly via

seeding the network or directly sending it to each agent– does not affect the prospects

for coordination.
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In this paper we show that there is nothing special about the example. As in the

example, we study information dissemination in social networks without cycles– that

is, trees. Informally stated, our main result is:7

The prospects of effi cient coordination are the same no matter how information is

disseminated– it is independent both of the structure of the tree and how it is seeded.

Our main result says that if the goal of the planner is to induce effi cient coordi-

nated action– adopting a new technology or product– then the tree structure is irrel-

evant. Why is this? Effi cient coordination requires not only that agents be informed

about the fundamental uncertainty– whether or not the technology is useful– but

also be informed whether other agents are informed. Information about the funda-

mental uncertainty spreads very slowly in the line network– it has to travel from

agent to agent down the line. At the other extreme, the star network is very fast

in this regard– every agent is informed in at most two steps. But when it comes to

information about whether others know, the line network is better– every agent who

gets a message is sure that all those preceding him also got the message. This is not

true in the star network since every agent is rather uncertain about whether others

are informed.

We show below that this trade-off is general. If one network is better than another

in the first aspect– providing information about fundamentals– it is inevitably worse

in the second aspect– providing information about others’ knowledge. Our main

irrelevance result relies on the fact that these two effects exactly offset each other.

Rather than consider a particular game– like the adoption game in the example–

we derive and phrase our results by using the language of approximate common knowl-

edge. Thus our main result says that the extent of approximate common knowledge is

independent of the structure of the tree network and how it is seeded. The close con-

nection between approximate common knowledge and equilibrium behavior in games

is well-known (see Monderer and Samet, 1989, Kajii and Morris, 1997 and Oyama

and Takahashi, 2020).

Our irrelevance result relies crucially on the assumption that the social network

is acyclic. In such networks each agent has a single source of information– his or

her immediate predecessor. We recognize, of course, that real networks are more

complex and that people have multiple sources of news and as we show in Section

7The formal results (Theorem 1 below) applies not only to a single tree but also to networks
which are collections of disjoint trees– forests.
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5, in that case, the structure of the network becomes relevant. That said, there is

some evidence that suggests that even if the social network is complex and has cycles,

the spread of information takes place via a tree-like sub-network. Liben-Nowell and

Kleinberg (2008) examined how two public petitions, in the form of Internet chain-

letters, travelled through a relatively large population. They found that the flows

for both "exhibit[ed] tree-like patterns of dissemination ..." (p. 4633). By looking at

the signatories of different copies of the petition, Liben-Nowell and Kleinberg (2008)

were able to construct the graph representing how the petition went from person to

person. They report that in one chain-letter with 19,302 participants, the resulting

directed graph had only 19,784 edges. Since a tree with 19,302 nodes would have

exactly 19,301 edges, the information flow took place along a graph with only 483

"extra" edges.8

Many organizations– corporations, militaries, clandestine dissidents, etc.– are hi-

erarchical, that is, arranged as trees. Information flows from top to bottom. Some

are rather "vertical", with many layers between the top and the bottom; others are

more "horizontal," with only a few layers. There is a vast literature debating what

kinds of structures are conducive to better use of information.9 Many complex issues

are involved there but our results suggest that if the goal is to coordinate actions by

the members of the organization, then its structure– vertical or horizontal– is not

that important.

1.2 Related literature

The question of diffusion in social networks appears in many contexts– infectious

diseases, product awareness, plans for a revolt, etc. In most of these situations, the

planner is interested in the affecting the speed of diffusion– either decreasing it in

the case of disease or increasing it in the other cases. Recently, the question has

drawn the attention of development economists who are interested in conveying in-

formation about various policy initiatives and has been studied in various contexts–

microfinance (Banerjee et al. 2013), immunizations (Banerjee, Chandrasekhar, Duflo

and Jackson, 2019), planting techniques (Beaman, Ben Yishay, Magruder and Mo-

8They also found that the tree was rather "narrow"– each person forwarded the petition to only
one or two acquaintances. Liben-Nowell and Kleinberg (2008) study a simple theoretical model of
network formation that in simulations, produces the observed structure. Golub and Jackson (2010)
provide another explanation for the narrowness of the trees.

9See for instance, Alonso, Dessein and Matouschek (2008).
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barak, 2021), demonetization (Banerjee et al. 2023)– by conducting randomized

controlled trials (RCTs). One of the findings of this line of research is that spreading

the information via existing social networks may be superior to "broadcasting" the

information via media (Banerjee et al. 2023).

But these issues are not confined to developing countries. Chetty, Friedman and

Saez (2013) find that whether or not people optimally avail of the earned income

tax credit (EITC)– a large US government transfer program– depends on the neigh-

borhood they live in. In other words, information about the EITC spread via local

networks.

One is then naturally led to the question of how best to "seed" the information

by conveying it to a few key agents who spread it via the social network. Clearly,

if one is interested in spreading the information quickly and widely, the information

should be seeded via agents that are well-connected– that is, central players. But

identifying who is central is daunting task in any reasonable sized network. First, one

has to determine the network– a diffi cult task itself– and second, to find the central

players in the network. The latter problem is known to be computationally hard.

In a very interesting paper, Akbarpour, Malladi and Saberi (2023) have argued

that instead of finding the optimal seed, it is better to choose multiple seeds randomly.

The argument is that even if the information is seeded to non-central agents it will

find its way to those that are central anyway– by definition, the central players are

well-connected.

In all of this work, the focus is on the speed at which information spreads as well

as the extent of diffusion. Implicit in this is the assumption that once an agent is

informed, he/she will automatically adopt the new technology or avail of the policy

initiative. This may be the case if the costs and benefits of adoption do not depend

on whether others are doing so as well. But many new technologies/products are sub-

ject to complementarities in adoption/consumption– that is, network externalities.

Crouzet et al. (2023) document the presence of such externalities in the adoption

of a new digital payment platform in India. Naturally, adopting a digital payment

platform is useful only if others adopt it as well. Such externalities are also a key

feature of the theoretical diffusion model of Sadler (2020).

Our paper departs from the focus on the speed of diffusion. Rather, we are inter-

ested in the likelihood that the new technology– subject to network externalities–

will be adopted once the information has spread. Put another way, to what extent

10



will the public be able to coordinate adoption? As is well-known, effi cient coordi-

nation requires that people know not only whether or not the digital wallet works

and is safe– known as first-order uncertainty– but whether others know this as well

and whether others know that others know, etc.– higher-order uncertainty. The im-

portance of considering higher-order uncertainty is the main lesson of Rubinstein’s

(1989) E-mail game who shows that it can be a major cause of coordination failure.10

Field experiments by Gottlieb (2016) point to the importance of reducing higher-

order uncertainty in elections in Mali. In another field experiment, Arias, Balan,

Larreguy, Marshall and Querubín (2019) provide information detrimental to incum-

bents to voters in Mexico and find that this information leads to coordinated changes

in voting behavior against incumbents. The authors write that their findings provide

"a proof of concept for the widely held belief that social networks can stimulate voter

coordination (p. 477)."

The change in focus away from the speed of diffusion to effi cient coordination is

the key to our result. Once effi cient coordination is the goal, we find that in acyclic

networks, the network structure and who is the seed becomes irrelevant. In such

networks, there is no need to ascertain the exact structure or the optimal person to

choose as the seed.

In a different context, Dziubiński, Goyal, and Zhou (2024) also establish a network

irrelevance result. Two players choose efforts in multiple "battlefields" where the

outcome of each battle is determined by a Tullock contest success function. There

are spillovers in the efforts exerted in each battle– success in a particular battle is the

result of efforts specifically allocated to that battle and those spilling over from other

nearby battles. These spillovers are governed by a network and the authors show that

equilibrium payoffs and winning probabilities are unaffected by the network structure.

Organization of the Paper The remainder of the paper is organized as fol-

lows. The next section outlines the model as well as the terminology of approximate

common knowledge. Section 3 then derives the main result that all acyclic networks

induce the same level of approximate common knowledge. Section 4 connects the

10Coles and Shorrer (2012) show that the extreme coordination failure in Rubinstein’s two-player
E-mail game can be mitigated in multi-player games where communication takes place in a hub-
and-spoke network. In De Jaegher (2015) higher-order information is directly communicated to the
agents.

11



approximate common knowledge results of Section 3 to equilibria of games. A gen-

eral result that applies to all games says that the tree structure is irrelevant when

the chance that messages get lost is small. We then study a generalization of the

technology adoption game from the Introduction which requires only that suffi ciently

many, but perhaps not all, other players adopt and show how the main result may be

applied and strengthened. Finally, we show that the irrelevance result from Section 3

has an exact counterpart concerning equilibria of adoption games with unanimity– it

holds even when the chance that messages get lost is significant.11

All of our results rely on the assumptions that (a) the network is acyclic; and (b)

each tree in the network has a single seed. In Section 5 we show that the irrelevance

result does not extend if these assumptions are relaxed. We show by example that

there are circumstances in which a cycle can make the situation worse in terms of

the adoption rate. Also, there are circumstances in which a single seed is better than

multiple seeds. Finally, we also consider the possibility of randomly chosen seeds.

We show that choosing seeds at random can, in some cases, improve the situation.

Appendices A and C contain some auxiliary results.

2 Model

There is an uncertain fundamental state θ = g or b with prior probabilities ρ ∈ (0, 1)

and 1− ρ, respectively. A planner who knows θ wishes to convey this information to
a set of agents I = {1, 2, ..., I}– the public. The planner will be labeled as agent 0.

The agents in I constitute the nodes of a social network which is either a tree T–
an undirected connected graph without cycles– or a disjoint union T 1 ∪ T 2 ∪ ...∪ TR

of trees, that is, a forest. Let F =
(
T 1, T 2, ..., TR

)
denote the forest.12

In state g, the planner sends a private message to a single node sr in each tree

T r– the seed of T r. Let s =
(
s1, s2, ..., sR

)
denote a seeding of the forest. The message

then spreads through each tree as follows.

Fix a particular tree, say T 1, and let agent 1 be the seed. If the seed gets a

message, she forwards it to each i in the set of her neighbors, denoted by N (1).

Each of 1’s neighbors i ∈ N (1) then forwards the message to each of his neighbors

11A reader interested only in applications can skip Section 2.1 and Section 3 and go directly to
the self-contained Section 4.1.
12For formal definitions of these and other graph/network theory terms, we refer the reader to

the excellent book by Jackson (2008).
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j ∈ N (i) except 1. Each j ∈ N (i) \ {1} then forwards the message to each of her
neighbors in N (j) except i and so on.

In this manner, information spreads throughout the tree. Notice that because (a)

there are no cycles in the underlying undirected network; and (b) no agent sends a

message back to the person she received a message from, it is the case that now the

tree becomes directed– there is single direction of flow of information from seed to

all other nodes. Formally, for every node i, there is a unique agent that immediately

precedes i in the tree and is the only source of information for i. Given a forest F and

a seeding s, let T (F, s) denote the resulting directed tree with the planner, agent 0,

as the root. We will refer to T as the (directed) information tree.
The top panel of Figure 4 depicts a forest consisting of two undirected trees. The

other two panels show how the choice of different seeds results in different directed

trees. In each case, the arrows depict the flow of information.

Messages can be lost, however. If i forwards a message to her neighbor j, then

there is a probability ε > 0 that the message is lost and not received by j. Conditional

on i being informed, the losses of i’s messages to her neighbors are independent. Thus,

if i sends messages to her neighbors j and k, then the probability that both will receive

the message is (1− ε)2 . The same is true for messages from the planner to a seed– the

probability that in state g, the seed receives the message is also 1− ε.
Of course, if the message from i to j is lost, then j cannot forward it to anyone

and the flow of information to all the nodes that succeed j stops.

In state b, no messages are sent by the planner and so there is no flow of informa-

tion.

This means that if i receives a message, then he knows for sure that (1) the state of

nature is g; and (2) all agents j along the unique path from the seed to his immediate

predecessor also received a message.

Information Let xi ∈ {y, n} denote the information available to i ∈ I, where
xi = y ("yes") denotes that i received a message and xi = n ("no") denotes that i

did not. The set of states of the world is Ω = {g, b} × {y, n}I .
A state of the world ω ∈ Ω, then determines both the fundamental state θ ∈ {g, b} ,

as well as which of the agents are informed. For instance, the state of the world

(g, y, y, n) is one where the fundamental state is g, agents 1 and 2 receive the message

while agent 3 does not.
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Different network structures and seedings lead to different probability distribu-

tions on Ω. For instance, if three agents are arranged in a line as in Figure 2, then

state (g, n, y, y) is impossible if 1 is the seed, while it has a positive probability of oc-

curring if 2 is the seed. In what follows, we will fix the forest F =
(
T 1, T 2, ..., TR

)
and

a seeding s =
(
s1, s2, ..., sR

)
so also the resulting information tree T . All probabilities

will be calculated using the resulting probability distribution PT over Ω. Formally,

every information tree T results in a probability space
(
Ω, 2Ω,PT

)
.

LetG = {ω ∈ Ω : θ = g} be the event in which θ = g and let Yi = {ω ∈ Ω : xi (ω) = y}∩
G consist of states in G which i is informed (gets a message). By definition, Yi ⊂ G.

Similarly, let Ni = {ω ∈ Ω : xi (ω) = n}. Finally, let

Y ∗ = ∩i∈IYi

be the set of states in which every agent is informed. Since y is conclusive evidence

that the θ = g, in fact, Y ∗ consists of a single state ω∗ = (g, y, y, ..., y) .

2.1 Common beliefs

Although the distribution of states of the world depends on the information tree T ,
in what follows, we will assume this is fixed and temporarily suppress the dependence

of PT and other objects on T .
Following Monderer and Samet (1989), given any event E ⊆ Ω and probability p,

the event Bp
i (E) ⊆ Ω consists of states of the world ω in which E is p-believed by i

given the information xi (ω) ∈ {y, n} available to her in state ω. Formally,

Bp
i (E) = {ω ∈ Ω : P [E | Xi = xi (ω)] ≥ p}

In other words, in any state ω ∈ Bp
i (E) , i assigns probability exceeding p to the

event E given her information xi (ω) . We write

Bp (E) = ∩i∈IBp
i (E)

as the set of states in which E is p-believed by all the agents.

Now for ` = 1, 2, ... define Bp,` recursively by

Bp,` (E) = Bp
(
Bp,`−1 (E)

)
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where Bp,0 (E) = E and finally,

Cp (E) = ∩`≥1B
p,` (E)

Thus, Cp (E) is the set of states of the world in which E is common p-believed. In

other words, (i) everyone assigns probability exceeding p to the event E, and also

(ii) assigns probability exceeding p to the event that everyone assigns probability

exceeding p to the event E, and also (iii) assigns probability exceeding p to the

event that everyone assigns probability exceeding p to the event that everyone assigns

probability exceeding p to the event E, and so on.

Note that Bp
i is a monotone mapping, that is, E ⊆ E ′ implies that Bp

i (E) ⊆
Bp
i (E ′) . The same is then true of Bp,` and Cp. Also, if for some ` it is the case that

Bp,`+1 (E) = Bp,` (E) , then Cp (E) = Bp,` (E) . Thus, Cp (E) is a fixed point of Bp.

When p = 1, C1 (E) is the set of states in which the event E is commonly known.

For p close to 1, Cp (E) is the set of states in which E is approximately commonly

known.

We emphasize once again that since the probability distribution P over states
depends on the underlying information tree T , the sets Bp

i (E), Bp (E) and Cp (E)

also depend on T . Later when we want to make this dependence explicit, we will
write PT and Cp

T (E) , for instance.

3 Irrelevance of structure

Rather than considering a specific game, say the technology adoption game from the

Introduction, we begin by showing that the set of common p-beliefs does not depend

on the network or its seeding. As mentioned earlier, it is well-known that the de-

gree of approximate common knowledge is a fundamental determinant of equilibrium

behavior in incomplete information games (Monderer and Samet, 1989).

Our main result is that the extent of approximate common knowledge is indepen-

dent of the underlying information tree T = (F, s) . It depends only on the number

of agents I, the prior ρ and the error probability ε.

Theorem 1 For any p, the event Cp
T (G) in which G is common p-believed does

not depend on the information tree T . Moreover, the probability PT [Cp
T (G)] does not

depend on T either.
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3.1 Proof of Theorem 1

The proof of Theorem 1 is divided into two parts– when the error probability ε is

small and when it is large.

Let agent 1 be a seed of some tree in the forest and note that the probability of

G given that 1 is uninformed is

Pr [G | N1] =
ρε

1− ρ (1− ε) (1)

From Lemma A.3, the probability that all other agents are informed given that 1

is informed is

Pr [Y ∗ | Y1] = (1− ε)I−1 (2)

Note that these probabilities are the same for any seed of any tree in the forest since

all seeds receive information directly from the planner. Thus we simply write Pr to

denote these rather than PT .
Let ε be the unique value of ε that equates Pr [G | N1] and Pr [Y ∗ | Y1]. Such

a value exists and is unique since Pr [G | N1] is an increasing function of ε while

Pr [Y ∗ | Y1] is a decreasing function.

3.1.1 Small ε

When ε < ε, it is the case that

Pr [G | N1] =
ρε

1− ρ (1− ε) < (1− ε)I−1 = Pr [Y ∗ | Y1] (3)

We then have

Proposition 3.1 If 0 < ε < ε, then for any information tree T ,

Cp
T (G) =


Ω if p ≤ Pr [G | N1]

Y ∗ if Pr [G | N1] < p ≤ Pr [Y ∗ | Y1]

∅ if p > Pr [Y ∗ | Y1]

Proof Fix an information tree T and let PT denote the resulting probability distri-
bution over Ω. In what follows, all probabilities are calculated using PT even though
this dependence on T is not made explicitly. Similarly, the dependence of Bp

i , B
p

and Cp is also suppressed.
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We consider each range of p’s separately.

Case 1: p ≤ Pr [G | N1] . In this case, p is so low that even an uninformed agent

1 assigns greater probability than p to G.

Lemma A.1 now implies that for any agent i in the forest, seed or not, Pr [G | N1] ≤
Pr [G | Ni] and so for all i, p ≤ Pr [G | Ni] . This means that every agent, informed or

not, assigns a probability of at least p to G. Formally,

Bp
i (G) = Yi ∪Ni = Ω

and since Bp (G) = ∩i∈IBp
i (G) ,

Bp (G) = Ω

But since everyone assigns probability 1 to Ω, it follows that Cp (G) = Ω.

Case 2: Pr [G | N1] < p ≤ Pr [Y ∗ | Y1] . This case is broken up into two steps.

Step 1 : Pr [G | N1] < p implies that Cp (G) ⊆ Y ∗.

To show this step we will argue that for any agent k, Cp (G) ∩Nk = ∅. In other
words, the event that G is common p-believed cannot include any state in which an

agent is uninformed.

Consider the unique path from 0 to k and suppose (after renaming, if necessary)

that this path consists of agents 1, 2, ..., k such that the direct predecessor of k is

k − 1. Note that 0 is the direct predecessor of 1.

Then since p > Pr [G | N1] , Bp
1 (G) ∩ N1 = ∅. But since Cp (G) ⊆ Bp (G) ⊆

Bp
1 (G), it is also the case that

Cp (G) ∩N1 = ∅ (4)

This is because if an uninformed agent 1 does not assign probability p to G, then the

event that G is common p-believed cannot include any state in which 1 is uninformed.

Now from Lemma A.2, Pr [Y1 | N2] < Pr [G | N1] which is less than p. So Bp
2 (Y1)∩

N2 = ∅. Next (4) implies that Cp (G) ⊆ Y1 and since B
p
2 is a monotone map-

ping, Bp
2 (Cp (G)) ⊆ Bp

2 (Y1) . Finally, since Cp (G) is a fixed point of Bp, Cp (G) =

Bp (Cp (G)) ⊆ Bp
2 (Cp (G)) and so Cp (G) ⊆ Bp

2 (Y1) . This implies that Cp (G)∩N2 =
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∅. Proceeding in this way we see that for all agents j along the path 1, 2, ..., k − 1,

Cp (G) ∩Nj = ∅ and so
Cp (G) ∩Nk = ∅

In other words, the event that G is common p-believed cannot include any state in

which k is uninformed.

Since k was arbitrary, we have shown that

Cp (G) ⊆ ∩i∈IYi = Y ∗

Step 2 : p ≤ Pr [Y ∗ | Y1] implies that Y ∗ ⊆ Cp (G) .

Since p ≤ Pr [Y ∗ | Y1] , Lemma A.3 implies that for all i, Pr [Y ∗ | Y1] < Pr [Y ∗ | Yi] ,
we have that for all i, Bp

i (Y ∗) = Yi and taking intersections over i, Bp (Y ∗) = ∩i∈IYi =

Y ∗ and so Cp (Y ∗) = Y ∗.

Now since Y ∗ ⊆ G, and the Cp operator is monotone, Cp (Y ∗) ⊆ Cp (G) and so

Y ∗ ⊆ Cp (G) .

Case 3: p > Pr [Y ∗ | Y1] . Now p is so high thatBp
1 (Y ∗) = ∅ and soCp (Y ∗) = ∅

as well.

From Step 1 of Case 2, we already know that Cp (G) ⊆ Y ∗ and so

Cp (G) ⊆ Cp (Y ∗) = ∅

This completes the proof. �

3.1.2 Large ε

When ε ≥ ε, it is the case that Pr [G | N1] ≥ Pr [Y ∗ | Y1] . We then have

Proposition 3.2 If ε ≥ ε, then for any information tree,

Cp
T (G) =

{
Ω if p ≤ Pr [G | N1]

∅ if p > Pr [G | N1]

Proof
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Case 1: p ≤ Pr [G | N1] . Here the proof is the same as in Case 1 of Proposition

3.1.

Case 2: p > Pr [G | N1] . As in Step 1 of Case 2 in the proof of Proposition 3.1,

Cp (G) ⊆ Y ∗.

Now since Pr [Y ∗ | Y1] ≤ Pr [G | N1] < p, the probability that 1 assigns to Y ∗ is

less than p and so Bp
1 (Y ∗) = ∅. It now follows that

Cp (Y ∗) = ∅

This completes the proof. �

Propositions 3.1 and 3.2 prove the first part of Theorem 1 since they show that

Cp
T (G) depends only on Pr [G | N1] and Pr [Y ∗ | Y1] , both probabilities that are in-

dependent of the information tree T = (F, s) .

The second part of Theorem 1 now follows as a simple consequence of the two

propositions. When Cp
T (G) = Ω or ∅, the probabilities are obviously 1 or 0, re-

spectively. When Cp
T (G) = Y ∗, Lemma A.4 implies that the probability is simply

(1− ε)I . So we have

Proposition 3.3 The probability PT [Cp
T (G)] does not depend on the information

tree T .

3.2 An informativeness perspective

Some intuition for the irrelevance result can be gleaned by comparing different infor-

mation trees using the informativeness criterion of Blackwell (1951).

Consider two information trees T = (F, s) and T ′ = (F ′, s′) . Let d (i) denote the

number of links between i and the root, agent 0, in the information tree T and let
d′ (i) denote the analogous number in T ′.
It is then natural to say that T diffuses information faster than T ′, written

T �dif T ′, if there is a permutation of the names of the agents π : I → I such that
for each i ∈ I, d (i) ≤ d′ (π (i)) .

We will say that T is first-order more informative than T ′, written T �FOT ′, if
there is a permutation π such that for each i ∈ I, i’s information about G versus
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Ω�G in T is Blackwell more informative than π (i)’s information about G versus

Ω�G in T ′.
Similarly, we will say that T is second-order more informative than T ′, written

T �SOT ′, if there is a permutation π such for each i ∈ I, i’s information about Y ∗

versus Ω�Y ∗ in T is Blackwell more informative than π (i)’s information about Y ∗

versus Ω�Y ∗ in T ′. The terminology reflects the fact that Y ∗ is the event that all
agents know that the state is G.

The following proposition shows that while the diffusion ordering �dif is the same
as the first-order �FO ranking, the second-order �SO ranking runs in the opposite
direction. If T is better than T ′ in conveying first-order information, it is worse that
T ′ in conveying second-order information (and vice versa).

Proposition 3.4 For any two information trees T and T ′,

(i) T �dif T ′ if and only if T �FO T ′

and

(ii) T �FO T ′ if and only if T �SO T ′

Proof. First, given any permutation π, note that d (i) ≤ d′ (π (i)) if and only if i’s in-

formation aboutG is Blackwell superior to π (i)’s information. This is because Lemma

A.1 implies that Pr [G | Ni] ≤ Pr
[
G | Nπ(i)

]
whereas Pr [G | Yi] = Pr

[
G | Yπ(i)

]
= 1

since any Yj is conclusive evidence that θ = g. Thus, d (i) ≤ d′ (π (i)) if and only if

i’s posterior beliefs about G are a mean-preserving spread of π (i)’s beliefs about G

versus Ω�G.13 (i) now follows immediately.
Second, d (i) ≤ d′ (π (i)) if and only if π (i)’s second-order information is Blackwell

superior to i’s information. In the latter case, the Blackwell experiment is well-

defined since the agents have a common prior about Y ∗ given by Lemma A.4. Lemma

A.3 and Lemma A.5 imply that Pr [Y ∗ | Yi] < Pr
[
Y ∗ | Yπ(i)

]
whereas, by definition,

Pr [Y ∗ | Ni] = Pr
[
Y ∗ | Nπ(i)

]
= 0. Thus, π (i)’s posterior beliefs about Y ∗ are a

mean-preserving spread of i’s beliefs about Y ∗ versus Ω�Y ∗.
Now from (i), T �FOT ′ if and only if T �dif T ′ and so there exists a permutation

π such that for each i, d (i) ≤ d′ (π (i)) . Now the argument above shows that this is

equivalent to T �SO T ′.
13In experiments with two "states," G and Ω�G or Y ∗ and Ω�Y ∗ this is suffi cient for ranking

the information in terms of the Blackwell criterion.
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The proposition establishes that there is a trade-off between the quality of in-

formation about G and the quality of information about Y ∗. While this trade-off

between first- and second-order information by itself is insuffi cient to establish our ir-

relevance result– the notion of common p-belief also employs third- and higher-order

information– it does offer some intuition why it might hold.

4 Applications

In this section we show how the irrelevance result of Section 3 concerning approximate

common knowledge can be translated into irrelevance results for games that are played

after information is spread using a tree network.

We begin with a general result that applies to all games. It shows how the

irrelevance result may be applied to any incomplete information game when the error

probability ε is small enough. The key is that how small ε has to be does not depend

on the information tree used to convey signals to the players.

As above, suppose that there are two states of nature θ = g or b, with prior

probabilities ρ and 1− ρ, respectively.
In state θ ∈ {g, b} , I players play the game Γθ =

(
Ai, u

θ
i

)I
i=1

where Ai is a finite

set of actions available to player i and uθi : A→ R is i’s payoff function in state θ (as
usual A denotes the product set ΠI

j=1Aj and A−i denotes Πj 6=iAj). Let a = (ai)i∈I
denote the vector of actions of all the players and let a−i = (aj)j 6=i denote the vector

of actions of players other than i.14

The I players constitute the nodes of an information tree T and prior to choosing
an action ai ∈ Ai, each player receives information via the tree T as in the earlier
sections. The set of states of the world Ω is as defined in (??) from Section 2. As

noted there, the probability distribution over Ω depends on the information tree T
and is denoted by PT .
This defines an incomplete information game Γ̃T where each player’s private in-

formation is determined via T and then each player chooses a possibly randomized
strategy σi : {y, n} → ∆ (Ai) .

Suppose that a∗ ∈ A is a strict Nash equilibrium of the complete information

game Γg. The equilibrium a∗ is p-dominant in Γg if for all i, a∗i is a best-response to

14Note that the games Γg and Γb do not depend on the tree structure.
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the event that a∗−i is played with probability greater than or equal to p. Every strict

Nash equilibrium is p-dominant for some p < 1.

The following result shows that the approximate common knowledge result in

Theorem 1 has consequences for equilibria of games.

Proposition 4.1 Suppose a∗ is a p-dominant equilibrium of Γg, where p < 1. Let

ε∗ be such that p = Pr [Y ∗ | Y1] . Then for all ε < ε∗, for every information tree T ,
there is a Bayes-Nash equilibrium σ∗T of the incomplete information game Γ̃T such

that σ∗T (a∗ | ω) = 1 whenever ω ∈ Y ∗.

Proof. For any ε < ε∗, p < Pr [Y ∗ | Y1] and so from Proposition 4.3, for all T ,
it is the case that Cp

T (G) = Y ∗. Thus, if ω ∈ Y ∗, the players have a common p-

belief that the game is Γg. Lemma 5.2 from Kajii and Morris (1997) implies that if

a∗ is p-dominant in Γg, then for any T , the incomplete information game Γ̃T has a

Bayes-Nash equilibrium σ∗T in which a
∗ is played with probability one whenever G is

common p-believed.

The fact that the ε∗ does not depend on T is clear from the definition since from

Lemma A.5, Pr [Y ∗ | Y1] = (1− ε)I−1 .

Some remarks on the proposition are in order. First, the result applies to any

game and says that any p-dominant equilibrium a∗ of Γg is the outcome of a Bayes-

Nash equilibrium of the incomplete information game generated by any information

tree T . The threshold error probability for this to occur is also tree independent.
Second, the hypotheses of the proposition concern only the complete information

game Γg in state θ = g. It makes no assumptions on what game Γb is played in the

other state θ = b.

Finally, the result above is silent on whether the conclusion holds when the error

probability ε is above the ε∗ threshold. In particular, it does not speak to the pos-

sibility that a∗ remains the outcome of a Bayes-Nash equilibrium of the incomplete

information game for all trees T even when ε is above the threshold ε∗. We now

consider a specific application where a sharper result can be obtained.

4.1 Technology adoption game

In a technology adoption game Γ̃ (J), indexed by a parameter J ≤ I, each of I players

can decide to adopt a new technology (choose action ai = 1) or not (ai = 0). The
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cost of adoption is c ∈ (0, 1) per person. Adoption yields a gross payoff of 1 if and

only if at least J − 1 other players adopt and the state is g. Otherwise, the gross

payoff is zero. Formally, the payoffs of the adoption game are

ugi (1,a−i) =

{
1− c if

∑
j 6=i aj ≥ J − 1

−c otherwise

while ugi (0,a−i) = 0 for all a−i. Moreover, for all a−i, ubi (1,a−i) = −c while
ubi (0,a−i) = 0. (In the example in the introduction J = I = 3.)

What does Proposition 4.1 have to say about the adoption game Γ̃ (J)?. Note

that for all J and for all c, the game Γg (J) has an equilibrium a∗ = (1, 1, ..., 1) in

which everyone adopts. This equilibrium is c-dominant. Proposition 4.1 now implies

that if c < Pr [Y ∗ | Y1] = (1− ε)I−1 then there exists an equilibrium of the technology

adoption game in which a∗ is played in the event Y ∗.

We now show a stronger result.

Proposition 4.2 Suppose c < (1− ε)J−1 . Then for any tree T , there is an equilib-
rium of the technology adoption game Γ (J) , such that everyone adopts if informed.

Proof. See Appendix B.
When J < I, Proposition 4.2 reaches the same conclusion as Proposition 4.1 but

under the weaker condition c < (1− ε)J−1 .

It is also the case that the condition on costs in Proposition 4.2 is tight. If

c > (1− ε)J−1 , then a∗ = (1, 1, ..., 1) is not an equilibrium outcome when the network

is a line with players arranged from 1 to I and 1 is the seed. Finally, if J < I and

c > (1− ε)J−1 but close to (1− ε)J−1 , then the irrelevance result does not hold.

There are some trees in which everyone adopting when informed is an equilibrium

and others where this is not the case.

4.2 Technology adoption game with unanimity

Here we consider the special case of the adoption game with J = I. In other words,

players get a payoff from adopting if and only if all other players adopt and the state

is g.

Consider a forest F = (T 1, T 2, ..., TR) and a seeding s =
(
s1, s2, ..., sR

)
, where sr

is the unique seed of tree T r. Again, denote by T the resulting (directed) information
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tree. Let E (T ) be the set of (possibly mixed) Bayes-Nash equilibria of the adoption

game in which the information to the players comes via the network and seeding pair

T = (F, s).

It is easy to verify that in general the set of Nash equilibria E (T ) varies with T .
In other words, in general if T 6= T ′, then E (T ) 6= E (T ′) . The following result says
that even though the set of equilibria E (T ) varies with T , the equilibrium in E (T )

that maximizes the probability that everyone adopts the technology does not– it is

the same for all T .
When J = I, a stronger result than Proposition 4.2– an exact counterpart of

Theorem 1– holds. This not only provides conditions under which everyone adopting

is an equilibrium outcome in all trees but also that if everyone adopting is not an

equilibrium outcome in some tree, then it is not an equilibrium outcome in any tree.

Moreover, unlike Proposition 4.2 the result is true for any ε.

Proposition 4.3 In the adoption game with unanimity, for any c, the highest equi-
librium probability that everyone adopts is PT [Cp

T (G)] where p = c. Moreover, the

probability that everyone adopts does not depend on T either.

Proof As in the case of Theorem 1, the proof is in two parts: when ε is small, that

is, when ε < ε and when ε ≥ ε. Here we only prove the result for the case when ε is

small (the proof when ε is large is similar and omitted).

We claim that if 0 < ε < ε, then the highest equilibrium probability that everyone

adopts is PT [Cp
T (G)] where p = c. Precisely, for any T = (F, s)

max
σ∈E(T )

PT [a = 1 |σ] =


1 if c ≤ Pr [G | N1]

Pr [Y ∗] if Pr [G | N1] < c ≤ Pr [Y ∗ | Y1]

0 if c > Pr [Y ∗ | Y1]

where 1 is a seed of some tree in F.

Case 1: c ≤ Pr [G | N1] . In this case, there is an equilibrium in which everyone

adopts regardless of whether he is informed or not. To see this, note that if everyone

but i always adopts, then the only uncertainty facing any player is whether the funda-

mental state is g or b. Lemma A.1 implies that for all i, Pr [G | Ni] ≥ Pr [G | N1] ≥ c,

every player is willing to adopt even if uninformed. Since everyone adopts regardless

of information, the probability that everyone adopts is 1.

25



Case 2: Pr [G | N1] < c ≤ Pr [Y ∗ | Y1]. In this case, there is an equilibrium in

which everyone adopts if and only if informed. Moreover, there is no equilibrium in

which an player adopts with positive probability when uninformed.

There are two steps to the argument.

Step 1 : Pr [G | N1] < c implies that no uninformed player adopts.

Consider the unique path from 0 to k and suppose (after renaming, if necessary)

that this path consists of players 1, 2, ..., k such that the direct predecessor of j is

j − 1.

Then since c > Pr [G | N1] , an uninformed player 1 does not adopt even if everyone

else adopts. In other words, adopting is dominated for an uninformed player 1.

Now from Lemma A.2, Pr [Y1 | N2] < Pr [G | N1] which is less than c. In other

words, adopting is iteratively dominated for an uninformed player 2. Proceeding in

this way we see that for all players j along the path 1, 2, ..., k, adopting is iteratively

dominated for an uninformed player j. Since k was arbitrary, we have shown that

adopting is iteratively dominated for all players.

Step 2 : c ≤ Pr [Y ∗ | Y1] implies that if all other players adopt when informed, it

is a best response for an informed player i to do so as well.

To see why, suppose all players but i adopt when informed. Since c ≤ Pr [Y ∗ | Y1] ,

Lemma A.3 implies that for all i, c < Pr [Y ∗ | Yi] , and so it is a best response for
player i to adopt as well. Thus, there exists an equilibrium in which everyone adopts

if and only if informed.

In this case, the probability that everyone adopts is just the probability of Y ∗.

Because of Step 1, no equilibrium can involve adopting with positive probability when

uninformed. Thus, the equilibrium in which every informed player adopts gives the

highest probability of adoption.

Case 3: c > Pr [Y ∗ | Y1] . In this case, the unique equilibrium is one in which

no one ever adopts.

To see why, note that the cost is so high that even if everyone else adopts only if

informed, it is a best response for an informed player 1 to not adopt. Thus, player 1

will never adopt.

This implies that no player will ever adopt. Thus, the only equilibrium is one in

which no one ever adopts. Of course, the probability of adoption is then 0.

This completes the proof of the case when ε < ε. The proof when ε ≥ ε is similar
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and omitted. �

Proposition 4.3 can also be derived as a consequence of Theorem 1 using some

results from Kajii and Morris (1997) and Oyama and Takahashi (2020). We have

chosen to provide a self-contained proof of the former as it emphasizes the parallel

nature of the proofs of the two propositions.

Payoffs What about players’payoffs in the technology adoption game with una-

nimity? It is easy to see that while the maximum equilibrium probability of adoption

is independent of the information tree T , players’payoffs do depend on T . This is
easily verified in the three-player example in the Introduction. Suppose ε is small

and c is in the intermediate range. When 1 is the seed, the expected payoffs are

ui = ρ (1− ε)3 − (1− ε)i c. Note that u1 < u2 < u3 and so the player with the worst

information about θ has the highest expected payoff. With broadcasting, all three

players have the same payoff ρ (1− ε)3 − (1− ε) c.
It is also the case that the equilibrium identified in Proposition 4.3 not only

maximizes the probability that everyone adopts, but also Pareto dominates all other

equilibria in terms of payoffs.

Corollary 4.1 In each case, the equilibrium from Proposition 4.3 that maximizes the
probability that everyone adopts also Pareto dominates all other equilibria.

Proof. For each player j, let
(
αj, βj

)
denote the randomized strategy of j in which

when informed, he adopts with probability αj and when uninformed, adopts with

probability βj. Define ui
(
αi, βi,α−i,β−i

)
to be i’s expected payoff when he plays

strategy (αi, βi) and the others play α−i = (αj)j 6=i and β−i =
(
βj
)
j 6=i .

First, consider the case where ε < ε.

In Case 1, the fact that adopting exerts positive externalities implies that

ui
(
αi, βi,α−i,β−i

)
≤ ui (αi, βi,1−i,1−i)

where α−i = 1−i means that all j 6= i play αj = 1 and the similarly for β−i. But

since for i, (αi, βi) = (1, 1) is a best-response to (1−i,1−i) , we have that

ui
(
αi, βi,α−i,β−i

)
≤ ui (1, 1,1−i,1−i)
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In Case 2, suppose that there is an equilibrium
(
αj, βj

)
for j ∈ I. Since adopting

is iteratively dominated when uninformed, it must be that in any equilibrium βj = 0

for all j. Now again since adopting exerts positive externalities,

ui (αi, 0,α−i,0−i) ≤ ui (αi, 0,1−i,0−i)

where β−i = 0−i means that all j 6= i play βj = 0. Since for i, (1, 0) is a best-response

to (1−i,0−i) ,

ui (αi, 0,α−i,0−i) ≤ ui (1, 0,1−i,0−i)

In Case 3 the equilibrium is unique.

The proof for the case where ε ≥ ε is almost the same and omitted.

In the adoption game with unanimity, the equilibrium that maximizes the prob-

ability of adoption is independent of the tree. In this sense, the tree structure is

irrelevant. But the tree structure is not irrelevant as far as payoffs are concerned.

The same equilibrium in different trees may lead different payoff distributions. Sup-

pose the costs are in the intermediate range so that the maximum equilibrium is one

in which everyone adopts if and only if informed. In the star network, the equilibrium

expected payoff of the seed is

u∗1 = ρ (1− ε)
(
(1− ε)I−1 − c

)
= ρ (1− ε)I − ρ (1− ε) c

because 1 adopts if and only if he gets a signal (the probability of which is ρ (1− ε))
and the probability that all others get a signal is (1−ε)I−1. Similarly, the equilibrium

expected payoff of every other agent i 6= 1 is

u∗i = ρ(1− ε)I − ρ (1− ε)2 c

In the line network, with 1 as the seed, the payoffof the seed is the same as above,

that is,

u∗1 = ρ (1− ε)I − ρ (1− ε) c

But now the payoff of agent i in the line is

u∗i = ρ(1− ε)I − ρ (1− ε)i c
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It is then clear that the expected payoffs in the line Pareto dominate those in the star

network. Moreover, the further an agent is from the seed, the higher his expected

payoff.

In general, we have

Corollary 4.2 If T and T ′ are two information trees such that T �dif T ′ (defined
in Section 3.2), then, up to a relabelling of player names, the equilibrium payoffs in

T ′ Pareto dominate the payoffs in T .

The Corollary implies that the network that is worst in terms of spreading infor-

mation about the state of nature– the line network– is best in terms of equilibrium

payoffs.

Asymmetric equilibria In each case of Proposition 4.3, the equilibrium that

maximizes the probability that everyone adopts is symmetric– all players play the

same strategy. But not all equilibria are symmetric. Consider a situation in which 1

and 2 are connected and 3 is isolated (a trivial tree). Suppose 1 and 3 are the seeds

for each of the two trees. Then if ρ > 1
2
and ε is small enough, for an open set of c’s

there is an asymmetric equilibrium in which 1 and 2 adopt if and only if informed

whereas 3 always adopts. Of course, the corollary above implies that this asymmetric

equilibrium is Pareto dominated by one in which everyone always adopts.

4.3 Potential games

What is the general class of games for which the exact irrelevance result holds?

Consider an I-player symmetric game in which each i chooses an action ai ∈
A = {0, 1}. Let a = (ai)i∈I denote the vector of actions of all the players and let

a−i = (aj)j 6=i denote the vector of actions of all the players except i.

There are two possible states of nature θ ∈ {g, b} and the payoff functions in state
θ, uθi : AI → R are such that uθi (ai,a−i) depends only on i’s own action ai and on

the number of other players who play aj = 1,
∑

j 6=i aj.

To avoid trivialities, we will be interested in situations in which in the game with

payoffs ugi , it is a strict Nash equilibrium for everyone to play ai = 1 and also a strict

Nash equilibrium for everyone to play ai = 0.
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As defined by Monderer and Shapley (1996), a game with payoffs uθi : AI → R is

a potential game if there is a potential function vθ : AI → R such that for all i, ai, a′i
and a−i,

uθi (ai,a−i)− uθi (a′i,a−i) = vθ (ai,a−i)− vθ (a′i,a−i)

In other words, for each θ, the game is best-response equivalent to a game with

common interests.

It is easily verified that every binary-action symmetric game is a potential game.

Consider games with potentials of the form

vg (a) =

{
w if

∑
j aj = I

−
(∑

j aj

)
γ if

∑
j aj < I

vb (a) = −
(∑

j aj

)
γ (5)

where w and γ > 0 are parameters that satisfy w > − (I − 1) γ. Let P denote the
class of potential games of the form in (5).

The requirement that w > − (I − 1) γ guarantees that in the game with common

payoffs vg, it is a strict Nash equilibrium for everyone to choose ai = 1. And since

γ > 0, it is also a strict Nash equilibrium for everyone to choose ai = 0.

It is easy to verify that the technology adoption game from the previous subsection

is a potential game from the class P where γ = c and w = 1 − Iγ, so that the last
requirement that w > − (I − 1) γ reduces to 1 > c.

Much along the lines of Proposition 4.3 it can be shown that if ε < ε, then for

any potential game in the class P the irrelevance result applies.

5 Other networks and seedings

In this section we explore some limits to our results. Specifically, we show that the

irrelevance result does not hold once the networks have cycles. Also, it is sensitive

to the assumption that each tree has a single seed– multiple or random seedings can

make the structure relevant.

In this section we state all of our findings using the technology adoption game with

unanimity. These can all be restated in terms of common p-beliefs as well.
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Figure 5: Cycle Network

5.1 Cycles

Our irrelevance result rests crucially on the assumption the underlying network is

acyclic– a forest. Once there are cycles, the conclusion of our main result does not

hold.

Consider, for example, a situation with 4 players in the cyclic network depicted

in Figure 5. Suppose that the planner seeds the network by sending a message to

1. The resulting information network, depicted on the right-hand side of the figure,

is now not a directed tree. Here, 3 can receive messages from two sources– either

from 2 or from 4. And of course, what 3 believes about whether players 2 and 4 are

informed depends on whom she hears from. If 3 receives a message only from 2, then

she knows 1 and 2 are informed but is unsure about 4. If she hears from both 2 and

4, then she knows that everyone else is informed.

So let Y 2
3 denote the event that player 3 heard a message only directly from 2

and similarly, let Y 4
3 denote the event that player 3 heard only from 4. Finally, let

Y 2∧4
3 denote the event that she heard from both 2 and 4. As before, let N3 denote

the event that 3 did not hear from either source. The events Y 2
3 , Y

4
3 , Y

2∧4
3 and N3

are mutually exclusive and exhaustive.

Consider the technology adoption game with four players. We will compare equi-

librium outcomes in the cycle network with those in the line network with four players.

Claim 5.1 Consider the four-player technology adoption game. When ε is small and
c > 1

2
, the largest equilibrium in cycle network is one in which players 1, 2 and 4 adopt
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Figure 6: Mutiple Seeds

if informed whereas 3 adopts if only if informed both via 2 and 4. The probability that

everyone adopts in this equilibrium is smaller than the corresponding probability with

any tree network.

The proof of the claim is in Appendix C.1. In the described equilibrium player

3’s strategy appears too conservative– he adopts only if he hears from both 2 and 4.

The reason is that conditional on not getting a message from 4, say, player 3 assigns

almost the same probability to the event that a message from 4 to him was lost as to

the event that 4 himself was uninformed.

5.2 Multiple seeds

We have assumed that the planner sends information to a single player in each tree

of the forest network– that is, each tree has a single seed. Intuition suggests that it is

better to send information to many players at once– that is, to create multiple seeds.

This will surely help reduce first-order uncertainty about the state. Here we show that

the effect of multiple seeds on reducing higher-order uncertainty is ambiguous and in

some circumstances a single seed is "better" than multiple seeds. In the technology

adoption game from the introduction, there is a range of costs c for which players’

welfare is higher with a single seed than with multiple seeds.

Consider a simple network with two connected players (as in left-hand panel of

Figure 6). Now suppose the planner seeds both 1 and 2. This results in the information

network depicted in the right-hand panel. Here if 1 gets a message, she passes it along

to 2 and vice versa. Thus each player has two sources of information– directly from

the planner or indirectly from the other player. And of course, what 1 believes about

whether 2 is also informed depends on the channel by which she received a message.
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If 1 received a message from 2, then she knows that 2 is also informed. But if 1

received a message directly from 0, and not from 2, then she is unsure about whether

2 is informed.

Suppose that the players play the two-player version of the technology adoption

game from Section 4.

For the connected two-player network in Figure 6, we have

Claim 5.2 Consider the two-player technology adoption game. When ε is small, for
an open set of costs c, the largest equilibrium with two seeds is one in which both

players adopt if and only if they are informed directly by the planner and also receive

a message from the other player. The probability of adoption in this equilibrium is

smaller than that when there is a single seed.

The proof of this claim is in Appendix C.2.

5.3 Random seeds

We have assumed that the planner chooses a single seed in each tree and the identity

of the seed is known to all the players. Does the irrelevance result still hold if the

planner choose a single seed, but at random? The answer is no as the following

example demonstrates.15

Suppose there are only two players, 1 and 2 and the network is connected. With

probability 1
2
the planner chooses 1 as the seed and with probability 1

2
chooses 2 as

the seed.

For the connected two-player network, we have

Claim 5.3 Consider the two-player technology adoption game. When ε is small, for
an open set of costs c, there is an equilibrium with a random seeding in which the

probability that everyone adopts is greater than that from any equilibrium with only

one seed.

The proof of this claim is in Appendix C.3.

15The question of random seeds was posed by Nageeb Ali.
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6 Conclusion

People are interconnected in many ways. The same person may be part of a profes-

sional network, a family network or a leisure network and so have many sources of

information. In such situations, the overall network will not have a tree-like structure

and as shown in Section 5, our irrelevance result will not apply. Nevertheless, the

point that there is a trade-off between disseminating information quickly and making

the information commonly-known can be applied more generally. When the goal of

the policymaker is to engineer coordinated behavior, the latter is more important.

A Appendix: Agents’beliefs

This appendix derives players’beliefs of different events used to prove the main result.

A.1 Beliefs along a path

Here we derive three results that compare the beliefs of players who lie along the

same path originating with the planner (player 0). So let 1 be a seed and let K be a

terminal node (a leaf). Suppose, after renaming, that the unique path from 0 to K

consists of players k = 1, 2, .., K such that the direct predecessor of k is k − 1.

The first lemma simply says that the posterior probability than an uninformed

agent ascribes to the event that θ = g, (a) depends only on how far the agent is

from the planner; and (b) this probability increases in an agent’s distance from the

planner. This is because an uninformed player further from the seed ascribes a higher

probability to the event that the fundamental is g and the message got lost somewhere

along the way, than someone closer to the planner.

Lemma A.1 The sequence Pr [G | Nk] is increasing in k.

Proof. Note that

Pr [G | Nk] =
ρ
(

1− (1− ε)k
)

1− ρ (1− ε)k
(6)

since Pr [Yk] = ρ (1− ε)k and so Pr [Nk] = 1 − ρ (1− ε)k . The result then follows
immediately.
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The second lemma says that the further an uninformed player is from the planner,

the more pessimistic he is about the event that all his predecessors are informed. The

intuition is that the further the player is along the path, the greater the chance that

the message was lost somewhere prior to reaching his immediate predecessor.

In what follows, it will be convenient to write

Y0 = G (7)

Lemma A.2 For k ≥ 1, the sequence Pr [Yk−1 | Nk] is decreasing in k.

Proof. Note that since Y0 = G, for any k ≥ 1,

Pr [Yk−1 | Nk] =
ρ (1− ε)k−1 ε

1− ρ (1− ε)k

The numerator is the probability of the joint event Yk−1 ∩Nk which occurs if only if

k − 1 receives the message (probability ρ (1− ε)k−1) and k does not (probability ε).

The denominator is the probability of Nk which is just 1− Pr [Yk]. Now Yk occurs if

and only if k gets the message (probability ρ (1− ε)k).
It is now easy to verify that Pr [Yk−1 | Nk] > Pr [Yk | Nk+1] .

The third lemma is also rather intuitive. It says that informed players who are

further along the path are increasingly optimistic that all players, whether or not

they are on the path, are informed as well.

Lemma A.3 The sequence Pr [Y ∗ | Yk] is increasing in k.

Proof. Since for all k, Pr [Y ∗ | Yk]× Pr [Yk] = Pr [Y ∗] , we have

Pr [Y ∗ | Yk−1]

Pr [Y ∗ | Yk]
=

Pr [Yk]

Pr [Yk−1]

And since Yk ⊂ Yk−1 and k − 1 is the unique direct predecessor of k,

Pr [Yk] = Pr [Yk | Yk−1]× Pr [Yk−1]

= (1− ε)× Pr [Yk−1]

and so
Pr [Y ∗ | Yk−1]

Pr [Y ∗ | Yk]
= 1− ε (8)
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A.2 Probability of Y ∗

Suppose the I players are completely disconnected so that each player is a "tree"

with one node (as in Example 1 case B). Now the only way the information can get

to all the players is if every player is a seed– that is, the planner "broadcasts" the

message. Since each message is lost independently with probability ε, the probability

that the information reaches all the players is simply (1− ε)I .
In an arbitrary tree (or more generally, a forest), if a message from i to j is lost

so that j is uninformed, then this means that all players in the sub-tree with j as the

root are also uninformed. Thus, unlike in the case of a broadcast, whether or not i

and j are informed are correlated. The next result shows that despite this, no matter

what the structure of the forest is, the probability that all players are informed is the

same as when there is a broadcast.

Lemma A.4 For any forest with I nodes,

Pr [Y ∗ | G] = (1− ε)I

Proof. The proof is by induction on I.
For I = 1, clearly the probability Pr [Y ∗ | G] = 1− ε.
Now suppose that for any forest with I − 1 players, Pr

[
∩I−1
i=1Yi | G

]
= (1− ε)I−1 .

In the forest with I players, let I be a leaf (a terminal node) of some tree in the

forest and let the unique direct predecessor of I be I − 1. Then since

Pr
[
∩Ii=1Yi | G

]
= Pr

[
∩I−1
i=1Yi | G

]
× Pr

[
YI | ∩I−1

i=1Yi, G
]

and Pr
[
YI | ∩I−1

i=1Yi, G
]

= 1− ε, the claim is established.

A simple consequence of the previous result is

Lemma A.5 For any forest,

Pr [Y ∗ | Y1] = (1− ε)I−1
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Proof. The proof just mimics the proof of Lemma A.4.

Combined with the fact that for successive players along the path from 1 to K,

Pr [Y ∗ | Yk−1] = (1− ε)× Pr [Y ∗ | Yk]

(see (8)), Lemma A.5 implies that for all k,

Pr [Y ∗ | Yk] = (1− ε)I−k (9)

B Appendix: Technology adoption game

In this appendix we establish Proposition 4.2.

Let Y J = {ω : # {j : xj (ω) = y} ≥ J} denote the event in which at least J players
are informed. Note that Y I = Y ∗.

The first lemma mimics Lemma A.3 and shows that agents further along the path

are more optimistic about the event Y J .

Lemma B.1 In any path {1, 2, ..., K} in T and any k 6= 1 along the path

PT
[
Y J | Yk−1

]
< PT

[
Y J | Yk

]
Proof. The proof is identical to that of Lemma A.3 once Y ∗ is replaced by Y J .

Lemma B.2 For any tree T and any seed 1,

PT
[
Y J | Y1

]
≥ (1− ε)J−1

Proof. Let T (J) be a sub-tree of T with J players including 1. Rename the players

in T (J) as 1, 2, ..., J. From Lemma A.5,

PT (J)

[
∩Jj=1Yj | Y1

]
= (1− ε)J−1

and note that

PT (J)

[
∩Jj=1Yj | Y1

]
= PT

[
∩Jj=1Yj | Y1

]
Now observe that Y J ⊇ ∩Jj=1Yj. This is because Y

J is the event that at least J players

are informed and ∩Jj=1Yj is a particular event in which exactly J players 1, 2, ..., J are
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informed. Thus,

PT
[
Y J | Y1

]
≥ PT

[
∩Jj=1Yj | Y1

]
and so

PT
[
Y J | Y1

]
≥ (1− ε)J−1

Proof of Proposition 4.2 First, suppose that all i 6= 1 adopt if informed. Then,

1’s payoff from adopting is PT
[
Y J | Y1

]
− c and from Lemma B.2, this is at least

(1− ε)J−1 − c > 0. Thus, 1 should adopt.

Now, consider any other player k and suppose all players i 6= k adopt if informed.

From Lemma B.1, k’s payoff from adopting is at least as high as PT
[
Y J | Y1

]
−c > 0.

Thus, k should also adopt.

This completes the proof. �

C Appendix: Other networks and seedings

C.1 Cycles

For the cyclical network of Section 5.1 we have

Claim C.1 Suppose 1−ε
2−ε < c < (1− ε)4 and ρε

ρε+1−ρ < c. Then with the cycle network,

there is an equilibrium in which i = 1, 2, 4 adopt if and only if informed and 3 adopts

if only if he is informed via both 2 and 4.

Proof. First, since c > Pr [G | N1] = ρε
ρε+1−ρ it is iteratively dominated for any

uninformed player to adopt. Clearly, it is dominated for N1 to adopt. Given this,

Lemma A.2, it is iteratively dominated for N2 and N4 to adopt.

Second, given that N1, N2 and N4 do not adopt, it is iteratively dominated for Y 2
3

to adopt. This is because if 3 got a message from 2, she is sure that both 1 and 2 are

informed. The only uncertainty she faces concerns player 4 and it is easily verified

that Pr [Y4 | Y 2
3 ] = (1− ε) / (2− ε) . Since this is smaller than c, Y 2

3 should not adopt.

By interchanging the roles of 2 and 4, we infer that Y 4
3 should not adopt either.

Third, given the specified strategies, it is a best-response for Y1 to adopt since

the probability that all others adopt is Pr [Y2 ∩ Y4 ∩ Y 2∧4
3 | Y1] = (1− ε)4 . To see this
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note that

Pr
[
Y1 ∩ Y2 ∩ Y4 ∩ Y 2∧4

3

]
= Pr [Y1] Pr [Y2 ∩ Y4 | Y1] Pr

[
Y 2∧4

3 | Y2 ∩ Y4

]
(10)

= Pr [Y1]× (1− ε)2 × (1− ε)2

Since c < (1− ε)4 , it is a best-response for Y1 to adopt.

Given the strategies, Y2, Y4 and Y 2∧4
3 are all more optimistic than Y1 about the

event that everyone will adopt. So they too will adopt.

From (10), the probability that everyone will adopt in the equilibrium described

in the claim above is just (1− ε)5 and this is the highest achievable since N1, N2, N4,

Y 2
3 and Y

4
3 do not adopt in any equilibrium.

In the line network (or any tree), the corresponding probability is (1− ε)4.

C.2 Multiple seeds

When both 1 and 2 are seeds, let Y 0
i denote the event that i heard only directly from

the planner, Y j
i the event that i heard only from player j = 3− i, and Y 0∧j

i the event

that i heard from both the planner and j 6= i. Finally, let Ni be the event that i

hears from neither. Let Yi denote the event that i heard from either source, that is,

Yi = Y 0
i ∪ Y

j
i ∪ Y

0∧j
i .

In effect, there are now four types of each player and thus the states of the world

are more complicated since they specify not only whether or not i is informed but the

source of her information. Let ΩM be the states of the world for the example when

there are multiple (two) seeds.

With multiple seeds,

PM [G | Ni] =
ρε2 + ρε (1− ε) ε

ρε2 + ρε2 (1− ε) + 1− ρ

=
ρε2 (2− ε)

ρε2 (2− ε) + 1− ρ (11)

where the probabilities PM are now determined in the network with multiple seeds.

The numerator is the probability that if θ = g, neither hears from 0 (probability ε2)

plus the probability that i does not hear from 0 (probability ε) but j does (probability

1 − ε) and then j’s message is lost (probability ε). The denominator is just the
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probability that i hears from neither source.

First, note that if 1 hears directly only from 0, then her belief that 2 is informed

is

PM
[
Y2 | Y 0

1

]
= (1− ε) + ε (1− ε) = 1− ε2

and so from (11) it follows that for ε small enough, PM [G | N1] < PM [Y2 | Y 0
1 ] .

Claim C.2 With multiple seeds, if PM [G | N1] < c ≤ PM [Y2 | Y 0
1 ] , then there is

an equilibrium in which players adopt if and only if they get a message from either

source. This equilibrium Pareto dominates all other equilibria.

Proof. If i does not get a message, then his belief about the event G is smaller than
the cost and so it is dominant to not adopt.

Suppose 2 adopts whenever she is informed. Now since, c ≤ Pr [Y2 | Y 0
1 ] , if 1 gets

a signal only from 0, he will adopt. And if 1 hears from 2, then he knows that 2 is

also informed and so will also adopt.

For the range of costs in the claim above, with multiple seeds, the resulting equi-

librium payoff can be calculated as follows.

The probability that both adopt in the event G is

PM [Y1 ∩ Y2 | G] = 2 (1− ε)2 ε+ (1− ε)2

= (1− ε)2 (1 + 2ε)

The probability that 1 adopts and 2 doesn’t is

PM [Y1 ∩N2 | G] = (1− ε) ε2

Since adoption occurs only in the event G, the ex ante equilibrium payoff of either

player when both are seeds is

πM = ρ (1− ε)2 (1 + 2ε) (1− c) + ρ (1− ε) ε2 (−c)

Single seed If 1 is the only seed, then we are in the situation studied in Section

4 and let P denote the resulting probability distribution over Ω. Proposition 3.1 (Case

1) implies that
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Claim C.3 With a single seed, if c < P [G | N1] , then there is an equilibrium in

which everyone adopts regardless of information.

The equilibrium payoff of an player with a single seed is simply πS = ρ− c.
Finally, note that when ε is small,

PM [G | N1] < P [G | N1] < PM
[
Y2 | Y 0

1

]
So if c is such that

PM [G | N1] < c ≤ P [G | N1]

the conditions of both claims above are satisfied. The difference in payoffs

πM − πS = ρ (1− ε)2 (1 + 2ε) (1− c) + ρ (1− ε) ε2 (−c)− (ρ− c)

and it may be verified that when c ≈ PM [G | N1] , the difference is negative.

C.3 Random seeds

Denote by P1 the probability distribution over Ω when 1 is the seed, by P2 the prob-

ability distribution over Ω when 2 is the seed, and by P̃ the probability distribution
over Ω when the seeds are randomly chosen

Consider player 1 when uninformed. The probability that this player assigns to

G is

P̃ [G | N1] =
ρ
(

1
2
ε+ 1

2
(ε+ (1− ε) ε)

)
ρ
(

1
2
ε+ 1

2
(ε+ (1− ε) ε)

)
+ 1− ρ

=
1
2
ρε (3− ε)

1
2
ρε (3− ε) + 1− ρ

To see why, note that the numerator, the probability of G∩N1, involves three possi-

bilities in state G: (i) 1 is the seed (probability 1
2
) and the message from the planner

to 1 was lost (probability ε); (ii) 2 is the seed and the message from the planner to 2

was lost; and (iii) 2 is the seed, the message from the planner to 2 was received but

then lost when sent to 1. The denominator takes into account the fact that when

θ = b, no messages are sent.
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Also, recall from (1) that

P1 [G | N1] =
ρε

ρε+ 1− ρ

and note that P1 [G | N1] < P̃ [G | N1] .

Let ε be small enough so that P̃ [G | N1] < P1 [Y ∗ | Y1] .

Claim C.4 If
P1 [G | N1] < c < P̃ [G | N1]

then with random seeding, there exists an equilibrium in which both players adopt

regardless of whether they are informed or not.

Proof. Suppose 2 always adopts. Then the only uncertainty that N1 faces is regard-

ing G and since c < P̃ [G | N1] , it is optimal for N1 to also adopt. Then it is certainly

optimal for Y1 to adopt as well.

Agents 1 and 2 are symmetrically placed and so the claim is established.

When 1 is the only seed, Proposition 3.1 shows that when P1 [G | N1] ≤ c <

P1 [Y ∗ | Y1] , it is not an equilibrium for both players to adopt regardless of whether

they are informed or not.

Thus, with random seeding, the probability that everyone adopts is greater than

with a single seed. The payoffs of the two players are also greater with random

seeding.
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