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Abstract

In global games in which one player has better information than his rival, it
may be that in the unique equilibrium, the better informed player has a lower
payoff than the poorly informed player. The reason is that while the better in-
formed player faces less (or even no) uncertainty about economic fundamentals,
he may face greater strategic uncertainty.

1 Introduction

In strategic situations under incomplete information players face two kinds of uncer-
tainty. The first concerns economic fundamentals that directly affect their payoffs
and so is referred to as fundamental uncertainty. The second concerns the behavior
of other players and is referred to as strategic uncertainty. The latter is particularly
important if players face a coordination problem (as in Rubinstein, 1989).

It seems intuitive that a player who has better information about fundamentals—
someone with inside information, say—is better suited to adapt his actions to cir-
cumstances and as a result, should have an advantage over other, poorly informed
players. This intuition, however, does not take into account the strategic uncertainty
faced by a well-informed player. Specifically, the actions of his opponent with noisy
information about fundamentals will typically be noisy as well. This means that even
a well-informed player will face substantial strategic uncertainty.

In this paper we study this trade-off between the two kinds of uncertainty—if you
face large fundamental uncertainty then I face large strategic uncertainty—in the
context of a canonical setting familiar from the theory of global games (Carlsson and
van Damme, 1993). We have chosen to study this issue in the global-games setting
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because this framework has shed light on many interesting economic phenomena:
currency attacks, bank runs, regime change, etc. (See Morris and Shin, 2003 and
Angeletos and Lian, 2016 for surveys).

In our two-player setting, one of the players is perfectly informed about funda-
mentals while the other is very poorly informed. In other words, unlike most of the
existing work, we study global games in which payoffs are symmetric but the quality
of players’ information is asymmetric.! We identify circumstances in which the effect
mentioned above is so strong that it nullifies the advantage of the better informed
player. In the unique equilibrium of the game, the poorly informed player has a higher
expected payoff than the perfectly informed players.

The basic idea of the paper can be seen in the following two-player incomplete
information game familiar from the theory of global games. Each of two players
must choose whether to "invest" (I) or "not invest" (N). The payoffs depend on an
underlying "fundamental state" and are as follows:

T N
T 6.0 [6-10
N|0,6-1| 0,0

Suppose that the payoff relevant state § € {—1,v,2} where v € (%, 1) and that
each of the three states is equally likely. Player 1 knows the realization of 6 prior
to choosing his action while player 2 receives only a binary signal s € {b, g} prior to
choosing hers. The signals are distributed as follows:

0 iffd=-1
Prig|g)=4¢ 3 if0=v
1 iff=2

The game can be "solved" by the iterated elimination of dominated strategies (as
in the analysis of global games). First, note that it is dominant for player 1 to play
N in state # = —1 and to play [ in state # = 2. Now consider player 2. If her signal is
b, then playing I is dominated because even if player 1 were to play [ in state 6 = v,
player 2’s payoff from playing I is 2 (—1) + 3 < 0. Her payoff from playing N is, of
course, 0. If her signal is g, then playing N is dominated because even if player 1 were
to play IV in state § = v, player 2’s payoff from playing I is %(y —-1)+ % (2) > 0.
Thus, player 2 should play N if her signal is b and [ if it is ¢g. Finally, consider player
1 in state 6 = v. He knows that player 2 will play N with probability % and [ with
probability % If he plays [ in state 6 = v, his payoff is %V—l—% (v—1)> 0since v > %
Thus, [ is optimal for player 1 when 6 = v.

To summarize, the unique equilibrium of the game is: player 1 chooses N if § = —1

and [ if § = v or 2. Player 2 chooses N if her signal s = b and [ if s = g. Note that, in

LCorsetti et al. (2004) also study asymmetric global games in the context of currency attacks
but in their model there is payoff asymmetry as well as informational asymmetry.



equilibrium, the payoffs of the two players are the same in states § = —1 and 0 = 2.
In state v, however, player 1’s expected payoff is %1/+% (v—1)= 1/—% whereas player
2’s payoff is %I/ + %O = %u and this is higher than player 1’s payoff since v < 1. In
an otherwise symmetric game, the player with better information—actually perfect
information—about the payoff relevant parameter 6 has a lower payoff than the player
with very coarse information about 6.

Why is this? The reason is that even though player 1 faces no fundamental
uncertainty—about 6—he faces substantial strategic uncertainty—about player 2’s
actions. The only state in which it is important for player 1 to know what player 2
is going to do is in state § = v (in the other two states he has dominant actions).
But in this state, player 1 only knows that player 2 will choose I or N with equal
probability and so faces maximal strategic uncertainty.

Now consider player 2. When she gets the signal g, she faces no strategic uncer-
tainty since she is sure that player 1 will choose I. She does face some fundamental
uncertainty since she is unsure whether the state is ¢ = v or # = 2, but this is irrele-
vant for her decision. When player 2 gets the signal b, however, she faces both kinds
of uncertainty but again, the payoff consequences of this are small.

Another way to dissect the forces at work is to formulate the information available
to the two players in terms of partitions of the set of (Aumann) "w-states" of the
form w = (6, s) which encode both the payoff relevant state 6 and player 2’s signal s.
Define

wy = (—1,b0), wa = (v,b), ws = (v,g9) and wy = (2,9)

111

and the prior probabilities of these are 3, 7,5 and %, respectively. Since player 1

knows 6, his information partition of the set of w-states is

7)1 = {{wl} ) {w% w3} ) {w4}}

while that of player 2 is
7)2 — {{wla WQ} ) {W37 w4}}

Note that the equilibrium strategy for player 1 is: {w1} — N, {ws, w3} — I,{ws} —
I, while for player 2 it is: {wy,ws} — N, {ws,ws} — 1.

Consider the event Er; = {ws, w4} in which both players choose I and the event
Eny = {w1} in which both players play N. In these events, the players’ payoffs are
the same.

In the event Ejy = {ws} in which player 1 plays I while player 2 plays N, player
1’s payoff is ¥ — 1 < 0 while player 2’s payoff is 0. On the other hand, there is no
w-state in which player 1 plays N and 2 plays [ and so Ey; = &. In other words, the
event in which player 2 has a payoff advantage occurs while the event in which player
1 has an advantage never occurs.

Thus, even though player 2 is poorly informed relative to player 1, her payoff is
higher than that of player 1.



In what follows we examine the robustness of the example above in a situation in
which, as is typical in the theory of global games, there is a continuum of fundamental
states #. As in the example above, the value of the continuous parameter 6 known
to player 1 while player 2 still has very coarse (binary) information. In this sense,
the discrepancy in the quality of information available to the players is even more
extreme than in the example. Despite this extreme asymmetry of information, there
are reasonable circumstances in which, in the unique equilibrium (actually the unique
rationalizable outcome), player 2’s payoff is higher than that of player 1.

2 Main result

We study the same game as in the introduction:

T N
I 0,0 [6-1,0
N[06—-1] 0,0

but now assume that 6 has a normal distribution with mean p and variance o2. As
usual, if a player knew that § < 0, then N would be a dominant action and if a
player knew that # > 1, then [ would be dominant. If 0 < 6 < 1, and this fact were
commonly known, both (/,7) and (N, N) constitute equilibria. In this case, (I,])
is the Pareto dominant equilibrium and is risk-dominant as long as 6 > % (Harsanyi
and Selten, 1988).

As above, the two players are asymmetrically informed. Player 1 knows the re-
alization of § and so faces no uncertainty about the fundamentals. Player 2, on the
other hand, has very coarse information. Specifically, prior to choosing her actions,
player 2 gets a binary signal s € {b, g} such that

Prig|0]=®(0,v,7)

where @ (-, v, 7) is cumulative distribution function of a normal variable with mean v
and standard deviation 7.2 We will assume throughout that

T<v<l (1)

Note that the information about the fundamentals, that is 6, is very skewed.
Player 1 knows the precise value of § whereas player 2 knows only b or g. As in the
example in the introduction, the only asymmetry is informational.

2The corresponding normal density will be denoted by ¢ (-, v, 7). The unit normal distribution
function will simply be denoted by ® (-) so that ® (z) = ® (x,0,1) and the unit normal density by

¢ ()
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Figure 1: Equilibrium payoffs as a function of 7.

Here p =0.4,0 = 0.5 and v = 0.75. For all 7 < 0.5, there is a unique equilibrium and the resulting
payoffs are depicted. For all 7 < 0.2, player 2’s payoff is greater than that of player 1.

Our main result is

Theorem 1 For large enough o and small enough 7, there is a unique equilibrium.
The equilibrium payoff of the poorly informed player 2 is higher than the payoff of the
perfectly informed player 1.

See Figure 1 for an illustration of the theorem in an example. The proof of the
theorem follows from Propositions 1, 2 and 3 below.

3 Equilibrium

In this section, we show that when the parameter 7 is sufficiently small, there is an
equilibrium in which player 2 follows her signal and plays [ if her signal is ¢ and
N if it is b. Player 1 follows a threshold strategy and for some threshold k to be
determined, plays [ if 6 > k and plays N if 6 < k.

Player 1 Suppose player 2 follows the strategy of playing I if and only if her signal
is g. As usual, player 1’s best response to this is to choose a threshold & such that he
plays I if @ > k and N if 0 < k. At 0 = k, player 1 is indifferent between playing I
and N. In state k, the probability that player 2 got the signal ¢ (and so will play I)
is ® (k,v, 7). Thus, player 1’s payoff from playing I in state k is

S (k,v,T)k+(1—®(k,v,7))(k—1)
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while the payoft from playing N is 0. Thus, the threshold is the solution to
UV(ik)y=k—(1-®(k,v,7)=0 (2)

The assumption that v > % implies that ¥ (%) = % — (1 - o (%, V,T)) < 0 and also
that U (v) =v — (1 — ® (v,v, 7)) > 0. Since for all k,

UV(k)=1+-¢(k,v,7)>0

S|

there is a unique solution lying between % and v. Since we will study how this
threshold changes with 7, the solution to the equation above will be denoted by & (7)

and for future reference we record that
T<k(r)<v (3)

Recall that at = v, player 1 assigns probability % each to player 2 playing I or
N. His payoff from playing [ in state # = v is thus %l/ + % v—1)=v-— % > 0 and
this is, of course, strictly higher than the payoff from playing N. Since k (7) is defined
to be the state in which player 1 is indifferent between I and N, k(1) < v.

We have argued that & (7) is player 1’s unique best response to player 2’s strategy.
We begin by deriving some useful properties of player 1’s threshold & (7). Differenti-

ating the equation ¥ (k (7)) = 0 with respect to 7 we obtain

k(1) —v

KA(T)+ 0 (k(7), v, 7) K (1) = ——

gb(k}(T),V,T) =

and so

k(r)—v ¢ (k(r),v,7)
T 1+¢(k(r),v,7)

since by (3), k(7) < v. The next lemma shows that k (7) converges to v and that

k' (1) converges to a negative number. In other words, a small increase in 7 away

from 0 causes player 1 to become more aggressive in the sense that he plays I more

often.

K (1) = <0 (4)

Lemma 3.1 Player 1’s threshold satisfies

limk (1) =v

7—0
and
lm k' (1) =@ 1 (1 -v) <0

T—0

Proof. Since for all 7, k(7) < v and k (7) increases as 7 — 0, it has a limit, say
ko < v. Suppose that ky < v. Since for all 7,

k() =1- o (b2 (5)
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and so in the limit,

which is a contradiction since v < 1. Thus, lim, ¢k (7) = v.
Using the fact that lim, ok (7) = v in (5) now immediately implies that

v =1 (lim 222 )

T7—0

since ® is continuous. Thus, we have

lim k) —v = (1 -v)
7—0 T
From (4) we also have
. k(M) —v ok(r),vT)
lim &’ =1 —
) () o 1+ ¢ (k(r),v,7)

= o' (1—v)

which is negative since v > % [

Player 2 Let H, (f) denote the step function at v, that is,

H,,(G):{(l) Z;Z (6)

which is just the cumulative distribution function of the Dirac measure at v. Note
that as 7 — 0, ® (0,v,7) — H, () for all § # v. In other words, ® (-, v, 7) weakly
converges to H, (-).

Player 2’s posterior beliefs on 6 after she gets a signal g are

®(0,v,7)9(0,p,0)
Pr[g]

and so the expected payoff of player 2 with signal ¢ when she plays I and player 1
uses the threshold k (7) is

fOlg) =

k()

1 o
W[/km9®(9,y,7)¢(9,u,0)d9+/_Oo O—1)®0,v,7)¢ (0, n,0)d0| (7)

and as 7 — 0, the term in brackets converges to

v

/meﬂywww,u,o)dﬂ/ (6~ 1) H, (6) 6 (6.1, 0) db

— 00

which is positive since H, (6) = 0 for # < v. This means that when 7 is small enough,
player 2 with signal g prefers to play I.



Similarly, the payoff of player 2 with signal b when she plays [ is

k()

1 o0
Pr o [/k(T)Q(l—CID(Q,V,T))Qb(Q,u,J)dQ—I—/OO O—-—1)1—-20,v,7)) 00, p,0)dl

and as 7 — 0, the term in brackets converges to

v

[ o0t 00m b~ [ (6-1)0-H6)6(0.n0)ds
which is negative since v < 1. This means that when 7 is small enough, player 2 with
signal b prefers to play V.
We have thus established

Proposition 1 There exists a T such that for all T < 7, there is an equilibrium in
which player 1 chooses I if and only if 0 > k (1), and player 2 chooses I if and only
if his signal is g.

The equilibrium of Proposition 1 is unique when ¢ is large enough and the unique-
ness is "uniform" in 7. Precisely,

Proposition 2 Fix any T > 0. Then there exists a o such that for all o > o and for
all T < T, there is a unique equilibrium.

Proof. The proposition is established using the iterated elimination of dominated
strategies (similar to the arguments in standard global games). Details are in the
Appendix. =

4 Payoffs

We now show that in the equilibrium described above, player 2’s payoff is higher
than that of player 1. This finding is the same as in the discrete example of the
introduction. There this somewhat counterintuitive payoff ranking emerged from the
fact that in equilibrium, there were no circumstances in which (N, I') was played while
there were circumstances in which (7, N') was played. In the equilibrium described in
the previous section, both (N, I') and (I, N) are played with positive probability. The
proposition below shows that the payoff ranking emerges even in these circumstances.
Roughly, when 7 is small, both (N, ) and (I, N) occur very rarely but the latter is
much more likely.

Proposition 3 There exists a T such that for all T < 7, there is an equilibrium in
which the payoff of player 2 is higher than the equilibrium payoff of player 1.



Proof. Consider the equilibrium of Proposition 1. The equilibrium payoff of player
1is

IT, :/Oo 9‘13(9,1/,7')925(9,u,a)d9+/ O@-1)(1-20,v,7)o(0,u,0)do
H )

The first term concerns the event in which both players choose /—this happens when
0 > k(1) and player 2’s signal is g. The second term concerns the event in which

player 1 chooses I while player 2 chooses N—this happens when § > k (7) and player
2’s signal is b. Similarly, the payoft of player 2 is

[e'e) k(T)
m:/ 9®(9,V,7)¢(9,u,0)d9+/ (6-1)® (0,0,7) 6 (0, 1,0) db
k

(1) —00

where, as above, the first term concerns the event in which both players choose
and the second term concerns the event in which player 1 chooses N while player 2
chooses 1.

Define A (7) = Iy — I1; to be the difference in payoffs (as a function of 7):

k() oo
A(r) = /_ O—-1)@0,v,7)p(0,1,0)d0 — k()(0—1)(1—@(9,V,7’))¢(0,u,0)d9

_ /_Oo (9—1)@(9,1/,7’)¢(6,u,0)d9—/k:0) (0—1)6(0, 1,0 do

[e.o]

First, note that since lim, ok (7) = v,

A(0) = / (9—1)Hu(9)¢(9,ma)d9—/oo(9—1)(1—HV(9))¢(97M,0)d9

—00

= 0

Differentiating A,

) = = [Co-vsen () om0

N J/
-

A(7)

+(k (1) = 1) ¢ (k(7),p,0) K (7) (8)

(. /

B(r)

and we will show that as 7 — 0, the limit of the first term is zero while the limit
of the second is positive. This will establish that lim, o A’ (7) > 0 and so for small
enough 7, A (7) > 0 as well.
First, consider the second term above. Lemma 3.1 implies that
limB(1)=@w—-1)® (1 -v)o(v,u,0) >0

7—0



Next, consider the first term in (8). By changing the variable to = = 9_7",

A(r) = —/_oo(7$—1—V—1)x¢(w)¢(7x—l—y,,u,a)dx
— /_OO[(m:+1/—1)¢(Tm+y,u,0)]¢'(x)dx

using the fact that z¢ () = —¢' (z) . Integrating by parts (treating term in brackets
as one function)

o0

A(r) = [<m+u—1)¢><m+u,u,a>]¢<x>|i°m—/ 4 e (r + v, 1,0)] 6 () d

oo dx

Since the first term is zero, we have that
A(r) = —/ [To(tx +v,u,0) +7(te+v—1)¢ (to+v,u,0)] ¢ (z) d

where ¢’ (2, u, o) denotes the derivative of ¢ (z, u, o) with respect to z. Now

A(T)] < /OOTQS(TQ:—H/,M,J)QS(a:)dx—I—/OOT|7'm+y—1||¢’(Tx+u,u,0)|¢(x)dm
< §¢(O)+%¢(1)/:|Tx+y—1|gb(m)dm

< Zo@+Zo) [ Iralo@dn+ Zov—1

T

- Lo+ Somy 2+ Zema -y

where we have used the following facts: (1) 2¢ (0) is the maximum value of ¢ (7@ + v, j1,0) ;

(2) ¢ (1) is the maximized value of ¢’ (Tz + v, 1, 0); and (3) [*°_ |z ¢ (z) dz = \/g
Thus, lim, ¢ |A(7)] = 0.
To summarize, we have shown that derivative of the difference in payoffs A (1) =
Iy (1) — I (7) is
A'(t)=A(r) + B(1)

where lim,_o A (7) = 0 while lim, o B (1) > 0. This implies that for 7 small enough

A(r) >0

Some remarks on the main result are in order.

10



Remark 1 When 7 is small, the choices of the two players are well-coordinated in
states # < v — € since each player is very sure that the other will choose N. Their
choices are also well-coordinated in states § > v+ ¢ since each player is very sure that
the other will choose I. In states # such that 6§ € (v — ¢, v + ¢), player 1 faces a lot of
strategic uncertainty since he believes that player 2 will play I and N with roughly
equal probability. Player 2, on the other hand, is virtually certain that player 1 will
play I if her own signal is g. Similarly, she is very sure that player 2 will play N if
her signal is b. In this sense, player 2 faces less strategic uncertainty in the critical
states than does player 1.

Remark 2 The assumption that v > % plays a crucial role in our analysis. Note

that if 0 = v > %, then player 1 strictly prefers to choose I over N. Because of this
his threshold % (7) < v and, in the limit, player 1 chooses I more often than player 2.
Thus, player 1 plays too aggressively and as a result gets a lower payoff than player 2.
Ifrv< %, then by arguments analogous to those above, we would find that threshold
k(1) > v and now player 1 would play more conservatively. Moreover, if v < %,
then player 1’s payoff would be higher than player 2’s payoff when 7 is small enough.
The significance of the assumption that v > % can also be seen through the lens of
"risk-dominance". Recall that when % < # < 1, and this fact is common knowledge,

the (I, I) equilibrium risk-dominates the (N, N) equilibrium.

Remark 3 While v, the state # where the probability that player 2 receives the signal
g switches from below % to above %, is crucial, u, the prior mean is not. Similarly, o
plays only a small role in ensuring the uniqueness of equilibrium. Overall, our result
is rather independent of the prior distribution of the fundamentals. For instance, the
result would hold if the prior distribution of 6 were uniform on the interval [—a, a]
for a > 1.

5 Other information "paradoxes"

The nature of our finding is rather different from known examples showing that in
multi-agent settings, information may have a negative value—that is, better infor-
mation may make an agent worse off. Public information can have a negative value,
as was pointed out by Hirshleifer (1971). Private information can have a negative
value as well (see, for instance, Bassan et al., 2003). In a game, an improvement in
the quality of information of a particular player may make that player worse off. Our
main result is not about the value of information to a player; rather it compares the
payoffs across players in an otherwise symmetric game.

11



A Appendix: Uniqueness

This appendix contains the proof of Proposition 2. As usual, uniqueness is established
via the iterated elimination of dominated strategies. There are three steps.

1. It is dominant for player 1 to choose I if § > 1 and to choose N if 6§ < 0.

2. Given Step 1, it is dominant for player 2 to choose [ if her signal is g and to
choose N if her signal is b. (This is the only step in which we will need o2 to be
large.)

3. Given Step 2, the unique best response for player 1 is to choose a threshold
k(1) as defined in (2).

Step 1 is obvious and Step 3 has already been established in Section 3. So it
remains to show the claim in Step 2.

Suppose player 2 with signal g plays I. Her payoff is no less than the payoff if
player 1 plays N for all § < 1 and [ for all # > 1. This is the same as player 1 choosing
a threshold of k = 1 and so analogous to (7), this lower bound is

1

! [/1009@(9,%7)¢(9,/L,0)d@+/

By [ 0-ne@rno0.n0 de} ©)

Similarly, suppose player 2 gets a b signal and plays I. Her payoff from playing [
is at most the payoff if player 1 plays [ for all # > 0 and N for all § < 1. This is the
same as player 1 choosing a threshold of £ = 0 and so this upper bound is

0

%[b] {/0009(1_q><e,y,7))¢(e,y,0)d9+/

—00

O@-1)(1—-20,v,7)o(0,p,0) d@]

(10]

We now show that given any 7, there exists a o such that for all 0 > g and 7 < 7,
(9) is positive so that even if player 1 chooses a threshold k& = 1, player 2 with signal
g will choose I. We also show that (10) is negative so that even if player 1 chooses a
threshold of k£ = 0, player 2 with signal b will choose V.

We will show that given any 7, there exists a o such that for all 0 > o and 7 < 7,
(9) is positive and (10) is negative.

The bracketed term in (9) is the same as

1

/OO 00 (0, v,7)d (0, u,0) d@—/ S 0,v,7)p(0,u,0)db (11)

o0 — 00

and player 2 would choose to play I whenever this is positive.
Since the second integral in (11) is at most 1, it is enough to show that the first
term

12



I:/OO 00 (0,1, 7) 6 (0, 11, o) df

—00

is greater than 1. Using the fact that

¢ (0,1, 0) = —% (Q_M) ¢ (0,1, 0)

g

we can write

[e.9]

T——c [ 0@wr)d Opo)do+u [ ©0.07)0(0.0.0)d0

[e.e] —00
. /

J

Integrating by parts
T=o* [ 660,100 0m0)d0
Also, some algebra reveals that the integrand in 7,

1 I AN 1 L(6—n\*
¢(97U>T)¢(07M70—> = \/%TGXP<—§< TU)>>< 27T0'exp _5( UM))

2.2

= (b (9’ Ti/;i:zy’ 002.—:7'2) X ¢ (07 w—-r, 02 + T2>

and so
J=0% (07u —v, Vo + 72)
Thus,
T =0 (0,,u—1/,\/02+7'2> —l—u/ S O,v,7)p(0,p,0)do

and since the second term of 7 is positive,

2 . 2
Veryo? + 12 2(02 +12)
= L(o,7)
It is easily verified that L (o,7) is increasing in ¢ and lim, .. L (0,7) = o0.
Moreover, it is also easily verified that for any ¢ > |u—v|, L(o,7) is decreasing

in 7. Thus, we have shown that for any 7, L (o,7) > 1 once o is large enough and
moreover, L (o,7) > 1 for all 7 < T as well.

13



Finally, consider the payoff of player 2 with signal b when she plays I and player

1 plays [ as long as ¢ > 0. This payoff can be written as

/_Oo9(1—@(6,1/,7’))¢(6,u,0)d9—/_0 (1= ®(0,0,7)) 6 (0, 1, 0) dO

_ M_z_/ (1= ®(0,0,7)) 6 (0, 1, ) dO

—0o0

< u—1I
< p—L(o,7)

since from above, Z > L (o, 7). The properties of L (¢, 7) now guarantee that for any
T this last expression is negative once o is large enough and remains so for all 7 < 7
as well.

This completes the proof.
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