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Abstract

We revisit the identification of the conduct parameter in homogeneous goods markets. Lau (1982)
shows that the conduct parameter is not identified if and only if the inverse demand function is sep-
arable, except for a specific separable function. This result has been regarded as an extension of the
result in Bresnahan (1982) to more general settings. However, we show that Lau’s claim is incor-
rect and provide a new characterization of the non-identification. Our characterization shows that
the presence of demand rotation instruments in the demand function is the necessary and sufficient
condition for identifying the conduct parameter. Therefore, our result properly generalizes the role
of demand rotation instruments in identifying the conduct parameter, as highlighted by Bresnahan

(1982), to more general settings.
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1 Introduction

Empirical research in industrial organization examines a wide range of questions, including the mea-
surement of market power and concentration, the evaluation of welfare, the assessment of cartels, and
the prediction of merger impacts. In virtually all of these applications, empirical conclusions depend
critically on assumptions about how firms compete, that is, on the specification of firm conduct. Re-
searchers often impose a particular competitive model, such as price-taking, Cournot, or Bertrand, be-
cause conduct is rarely identified without additional information, such as detailed cost data or industry-
or institution-specific information. Nevertheless, misspecifying conduct can distort the measurement or
lead to misleading conclusions.

To address this problem, the conduct parameter approach has been used in the literature on industrial
organization. This approach embeds a scalar measure of firm conduct into the marginal revenue function
and allows researchers to estimate conduct directly from data, providing a flexible model to investigate
several questions. The applications vary across industries and questions, including homogeneous-product
markets (Porter 1983, Genesove and Mullin 1998, Okazaki, Onishi and Wakamori 2022), differentiated-
product markets (Miller and Weinberg 2017, Ciliberto and Williams 2014, Sullivan 2020), pass-through
analysis (Weyl and Fabinger 2013, Miller, Osborne and Sheu 2017), welfare evaluation under imperfect
competition (Beringe and Whitmeyer 2025, Nocke and Schutz 2025), and merger evaluation (Aryal,
Chattopadhyaya and Ciliberto 2025).

Despite its broad use, the basic identification result on the conduct parameter in a homogeneous
goods market remains rooted in two classic contributions. First, Bresnahan (1982) shows that, with a lin-
ear demand and a linear marginal cost, a demand rotation instrument can identify the conduct parameter
by moving the slope and intercept of inverse demand simultaneously because it can keep the equilibrium
the same under the true conduct parameter while changing the equilibrium under the false conduct pa-
rameter. Second, Lau (1982) considers an environment with a more general inverse demand function
and a marginal cost function and shows that conduct is not identified if and only if the inverse demand
function is separable in demand shifters. Because demand rotation instruments break the separability
of the inverse demand function, Lau’s condition has been interpreted as a general characterization of
identification and regarded as an extension of Bresnahan’s idea in general settings.

The main contribution of this paper is to show that Lau’s characterization is incomplete and to pro-
vide a new condition that fully characterizes if and only if conduct and marginal cost are not identified.
Our main result shows that the non-identification of the conduct parameter and the marginal cost func-
tion arises if and only if demand shifters can change only the slope or only the intercept of the inverse
demand function. In this case, the inverse demand function cannot have any demand rotation instrument,
and hence conduct is identified precisely when the inverse demand function includes demand rotation
instruments. This result is both simpler and more restrictive than separability in Lau’s claim and clarifies

the precise role of demand rotation instruments in identifying the conduct parameter in general environ-



ments.

The intuition is the following. Given a conduct parameter and a marginal cost function, the non-
identification implies that we can transform the marginal cost function into another marginal cost func-
tion that, together with another conduct parameter, produces the same equilibrium quantity. However,
this transformation is usually invalid because keeping the equilibrium points the same in both models re-
quires the transformed marginal cost function to depend on demand shifters, which violates the exclusive
demand shifters assumption. This dependence disappears only when demand shifters can change just the
slope or just the intercept of the inverse demand function, in which case we can construct different pairs
of conduct parameters and marginal cost functions that yield the same equilibrium for any value of the
shifters without violating the exclusion restriction. Thus, when demand rotation instruments are present
in the inverse demand function, the transformation remains invalid, preventing observational equivalence
between alternative conduct and marginal-cost pairs and ensuring identification. The issue that makes
Lau’s proof incomplete is that while he also derives a transformation between marginal cost functions,
he fails to eliminate the dependence of the transformed marginal cost function on demand shifters.

Taken together, our results refine the theoretical foundations of conduct parameter estimation and clar-
ify the exact role that demand shifters must play to allow practitioners to implement empirical analysis
with a flexible competition model. The rest of the paper is organized as follows. Section 2 describes the
setting. Section 3 discusses Lau’s result and our main result. Subsections 3.3 and 3.4 provide a new char-
acterization of non-identification and show the necessary and sufficient condition for non-identification.
Section 4 discusses some criticisms of the conduct parameter approach. Section 5 concludes. The Ap-

pendix includes the omitted proofs in the main text and a summary of Goldman and Uzawa (1964).

2 Setting

2.1 Conduct Parameter Model

Consider a homogeneous product market with an aggregate inverse demand and an aggregate marginal
cost function denoted by P(Q, X%) and MC(Q, X*), respectively, where Q is the aggregate product
quantity, X ¢ and X are the vectors of demand shifters and cost shifters, respectively. Note that every
vector is represented by a bold letter, and its element or scalar value is represented by a non-bold letter.
Let K and K be the dimension of X% and X#, respectively.

Given the demand shifter X ¢ and the cost shifter X *, the equilibrium quantity Q® solves the follow-

ing equation:

P

dy __ s

P(Q, X% +6Q



where 0 € [0, 1] is called the conduct parameter. By rewriting the equilibrium condition (1), we have

P-MC
0=—P &4,

where £ is the price elasticity of demand. Therefore, the conduct parameter is also regarded as the
elasticity-adjusted Lerner index and represents the degree of market power of the firms. Depending on
the value of 6, the condition can represent the first-order condition of several models between perfect
competition (§ = 0) and joint-profit maximization (8 = 1).! Therefore, the left-hand side of (1) is
regarded as a generalized marginal revenue with 6, and hence the condition is a generalized first-order
condition with the conduct parameter.

For the identification analysis, we put some restrictions. First, we assume that the demand shifter and

the cost shifter are mutually exclusive:

Assumption 1. The set of all exogenous variables affecting the market equilibrium can be partitioned
into (1) exclusive demand shifters, X%, that affect the inverse demand function but not the marginal cost
function, (2) exclusive cost shifters, X ®, that affect the marginal cost function but not the inverse demand
function, and (3) common shifters, Z, that affect both the inverse demand function and the marginal cost

Sfunction.

The theoretical analysis of identification often simplifies the setting by assuming that the demand
shifters and cost shifters are mutually exclusive, as per Assumption 1. We formalize our approach by
conditioning the analysis on an arbitrary realization z of these common shifters. This means all sub-
sequent functions are understood to be conditional functions, P(Q, X9%) = P(Q,X% Z = z) and
MC(Q,X?) = McC (Q,X*,Z = z). By treating Z as fixed constants in this conditional analysis,
we maintain the notational simplicity of focusing only on the exclusive shifters while ensuring that the
derived non-identification characterization holds robustly across all values of the common variables in
empirical settings.

The next assumption restricts the effectiveness of the shifters:

Assumption 2. The given demand shifters and the cost shifters should affect the inverse demand function

and the marginal cost function. Formally, we should have that foralli =1,... , Kgandj=1,..., K,

oP
X7

@XY#£0 ad T2 (Q,X%) #0
J

forany @ > 0, X¢, and X*.

When this condition is not met, there could be areas where the inverse demand function and the

marginal cost function cannot be identified. For example, when a demand shifter does not change the

"It can also nest Cournot competition when # = 1/N under some marginal cost function such as constant marginal cost
and linear marginal cost. In general, this holds when the aggregation of each firm’s first-order condition results in the aggregate
first-order condition.



inverse demand function for some interval of the demand shifter, the equilibrium quantity is not affected
by the change in the demand shifter. Then, there is no variation to identify the inverse demand function
on the interval. Because our identification result for the conduct parameter and the marginal cost function
presumes the identification of the inverse demand function, to guarantee the identification of the inverse
demand function, the assumption is necessary.

Next, we impose an assumption on the differentiability of the inverse demand function and the

marginal cost function:

Assumption 3. The inverse demand function is three times continuously differentiable, and the marginal

cost function is twice continuously differentiable.

As we will see, Lau (1982) only assumes twice-continuous differentiability of the inverse demand
function and the marginal cost function. Hence, our result requires a stronger assumption on the inverse
demand function. However, we will justify our assumption by showing that Lau’s claim also needs three-
times continuous differentiability later.

Finally, we impose the equilibrium existence condition:

Assumption 4. Given an inverse demand function, a conduct parameter, and a marginal cost function,
and given X% and X°*, the derivative of the equilibrium condition with respect to Q at the equilibrium
quantity Q° is not zero, that is,

PP e xiy_ aMc

(14 6) 55 (@ X% + Q" 53 (Q"

(Qe X®) #0.

Note that as the above equation consists of the derivative of the inverse demand and the marginal
cost, by Assumption 3, the derivative of the equilibrium condition with respect to @) is finite, and hence
the left-hand side is a finite value for any @, X%, and X*.

2.2 The Data Generation Process

Suppose that the researcher observes the aggregate price P and the aggregate quantity (), and the vector
of exogenous variables X¢ and X ®. Assume that the data is generated through the equilibrium condition
(1). We assume that from the data, the reduced form of the equilibrium quantity and the equilibrium

price are identified:

Assumption 5. The reduced form of the equilibrium quantity and the equilibrium price, defined as
Q° = hy(X?%,X%), P°=h,(X% X,

are identified.

The identification of the reduced forms follows directly from variation in the demand and cost shifters.



Remark 1. While Bresnahan (1982) considers a model with error terms, by following Lau (1982), we
do not consider any error term in the demand and the supply side, that is, our model does not have any
unobserved characteristics to the econometrician. This is a restrictive assumption because there could
be real data where X® and X are the same in two time periods, but the equilibrium outcomes are
different in the two periods. As the scope of this paper is to fully characterize the identification condition
along with Lau’s setting,. In other words, our identification analysis is independent of the presence of
error terms and concerns whether the structural mapping from primitives (6, M C) to the reduced-form
equilibrium outcomes (hq, hy) is injective, that is, whether (6, MC) can be uniquely recovered given

(hg, hp). We do not include unobserved characteristics and leave it for future research.

2.3 Definitions

Now, we introduce the definition of the identification problem in this setting. While our interest is the
identification of the conduct parameter and the marginal cost function, by following Lau (1982), we take
an indirect approach and specify the conditions under which the model is not identified. Our definition

of non-identification is based on when two different models lead to observational equivalence:

Definition 1. The conduct parameter and the marginal cost function are said to be non-identified if
there are two distinct pairs of conduct parameters and marginal cost functions, denoted by (6, MC) and
(0%, MC™), such that the corresponding reduced-form equilibrium quantity that satisfies the equilibrium
condition (1) and the corresponding reduced-form equilibrium price are identical for every demand- and

cost-shifter value:
Q° = hy(X %, X®) = k(X% X®) and P® = hy( X%, X*) = hj(X?, X*)

for any X% and X 5.

By taking the contraposition of Definition 1, we can characterize the identification of the conduct

parameter and the marginal cost function:

Corollary 1. The conduct parameter and the marginal cost are said to be identified if for any two distinct
pairs of a conduct parameter and a marginal cost function, there exists a pair of demand shifters Xd

and X where the equilibrium quantity Q¢ is different, that is, hq(Xd, Xs) #* hZ(X'd, X'S).

Note that the non-identification and the identification assume that the inverse demand function is
already identified. In other words, we study the identification of the conduct parameter and the marginal

cost function given an identified inverse demand function.



3 Main Result: Characterization of the Non-identification

3.1 Lau’s Claim

Lau (1982) investigates the identification of the conduct parameter and the marginal cost function and

obtains the following claim, which is the quote of Theorem 1 in Lau (1982):

Claim 1. Under the assumption that the inverse demand function and the marginal cost functions are
twice continuously differentiable, the index of competitiveness 0 cannot be identified from data on indus-
try price and quantity and other exogenous variables alone if and only if the industry inverse demand

function is separable in the demand shifter, that is,
P(Q, X?) = P(Q,r(X"), &)
but does not take the form
P(Q,r(X%) = Q7 or(X) + 5(Q). 3)

The result states that the separability of the inverse demand function is crucial for the identifica-
tion, but there is a type of separable inverse demand function that can lead to the identification. An
inverse demand function satisfying (2) has weak separability defined in Goldman and Uzawa (1964).>
The claim also emphasizes that the dimension of the demand shifter is important for the identifica-
tion. When the demand shifter is a scalar, (2) nests any inverse demand function because we can set
P(Q, X% = P(Q,r(X®). Thus, with a scalar demand shifter, the conduct parameter can be identified
only when the inverse demand function takes the form (3).

To understand the intuition of Lau’s claim, let us consider an example in Bresnahan (1982) without
an error term. Bresnahan considers a market with a linear inverse demand and a linear marginal cost,

where the linear inverse demand function is given as
P(Q,X%) = ap — nQ + cxX{ + a3QX{ + au Xy, @)

where X fl is a demand rotation instrument because it can change the slope and the intercept of the inverse
demand function without changing the equilibrium quantity. It is easy to verify that the demand rotation
instrument breaks the separability of the inverse demand function. Additionally, the dimension of the
demand shifter is greater than one, and hence Lau’s claim implies that even a nonlinear marginal cost
function, (4), leads to the identification of the conduct parameter.

While Lau’s claim has been regarded as an extension of Bresnahan (1982) to more general settings,

2See Definition B.1 in Appendix B. Note that the separability in Goldman and Uzawa (1964) is defined only when the
dimension of the demand shifter is greater than two. When the demand shifter is a scalar, we cannot apply the definition of
separability in Goldman and Uzawa (1964).



an important observation is that including demand-rotation instruments is inconsistent with imposing
separability on the inverse demand function, but the separability assumption itself does not preclude the
existence of demand-rotation shifters in an inverse demand function.

For example, consider an inverse demand function given as
P(Q,r(X%) = -Qr(X?) + Q +r(X%) =r(X)(1-Q) - Q,

where the range of r is greater than one, that is, r(X?) > 1 for any X¢. Assume that the dimension
of X is greater than two. Note that in this inverse demand function, the demand shifter can change the
slope and the intercept of the inverse demand function.

First, the function is verified to be separable because for any ¢ and j, we have

oP d
o (2 @XD) o <n(Xd)(1 9y 2 (m(Xd)> e
9Q \ 22, x9) ) ~ 9 \r,XH(1-Q)) ~ 8Q \rj(x9) ~ "

J

) dy — 6r(Xd)

where 7;(X¢) = “ox7 -
Second, we can verify that the demand shifters can work as demand rotation instruments to break

observational equivalence. Given the inverse demand function, the marginal revenue under € is written

as

MR(Q,X%0) = —r(X)(1 - (14+6)Q) +Q(1 +6).

When the quantity is Q' = 1-%6’ the marginal revenue is not affected by the change in the demand shifter
X9 because it is equal to one. Suppose that there is a marginal cost function MC where Q' holds as an
equilibrium for some X 8. Then, as the marginal revenue is a constant in the demand shifter, any change
in the demand shifter does not affect the equilibrium quantity. In contrast, suppose that under another
conduct parameter #* and another marginal cost function M C*, Q' holds as an equilibrium for some xd

and X, that is, Q' satisfies
r(XY(1-(1+69Q)+Q(1+6") = MC*(Q, X?).

Here, the marginal revenue under 6* is a function of the demand shifter at ’. Thus, the change in
X% leads to a different equilibrium quantity from Q’, which implies the violation of the observational
equivalence. Therefore, the demand shifter X ¢ can work as the demand rotation instrument at Q' because
it changes the slope and the intercept of the inverse demand function simultaneously without changing the
equilibrium quantity under the true conduct, whereas the change leads to a different equilibrium quantity
under any false conduct.

Furthermore, when we treat (X ¢) as a scalar demand shifter, the second argument implies that



even a scalar demand shifter can break observational equivalence, although the inverse demand function
does not satisfy (3). The example admits a separable inverse demand function with a demand rotation
instrument, but Lau does not clearly explain how this situation fits his claim, and hence it is not clear

why separability, rather than the availability of demand rotation instruments, is the key to identification.

3.2 Main Result

We now show the following theorem:
Theorem 1. Given Assumption 1, 2, 3, and 4, and data on price, quantity, and other exogenous variables,

(i) if the conduct parameter 0 and the marginal cost function MC' are not identified, the industry

inverse demand function must be given as
P(Q,X%) = Qr(X) +5(Q) 5)

where o # —%.

(ii) if the inverse demand function takes the form (5) with the properties described in (i), then the

conduct parameter and the marginal cost are not identified.

As in Lau’s claim, when the demand shifter is a vector, the inverse demand function is separable
because the demand shifters affect the inverse demand function only through . However, our result tells
more about under what type of separable function the non-identification holds and has a clear economic
interpretation. As in Claim 1, our result has a special case where any change in demand shifters does
not affect the marginal revenue under the true conduct but does under any false conduct, and hence the
identification always holds (a = —%). Except in this case, observe that the demand shifter changes only
the slope of the inverse demand function when « # 0 or changes only the intercept of the inverse demand
function when a@ = 0. Recall that demand rotation instruments can change the intercept and the slope of
the inverse demand function simultaneously. Therefore, we cannot have any demand rotation instruments
under (5). The result implies that the identification holds if and only if the inverse demand function has
demand shifters that work as demand rotation instruments. Here, we are explicit that a demand rotation
instrument is not necessarily a single variable, but could be a combination of changes in some demand
shifters that alter the slope and the intercept of the inverse demand function simultaneously. Note also
that Bresnahan graphically demonstrates that the conduct parameter is identified when a demand rotation
instrument moves the demand curve in a way that leaves the equilibrium point unchanged at the true
conduct but changes the equilibrium under any false conduct. However, this is an extreme case and it
suffices that the instrument changes the slope and the intercept simultaneously. This clearly reinforces
the idea of Bresnahan (1982) using demand rotation instruments to identify the conduct parameter in

more general settings.



Hereafter, we provide the proof of Theorem 1. First, we derive the necessary condition for non-
identification based on Definition 1. By rewriting Definition 1, we obtain a transformation that maps the
derivatives of M C into the derivatives of another marginal cost function M C* that yields observational
equivalence given an inverse demand function (Lemma 2). However, the transformation is not valid
because it consists of derivatives of the inverse demand function and hence depends on the demand
shifter X ?. Without additional restrictions, M C* would therefore depend on X ¢, violating Assumption
1. Therefore, to make the transformation valid, we need to remove the effect of the demand shifter from
the transformation, which puts restrictions on the inverse demand function. Then, the restriction leads
to a differential equation that characterizes the inverse demand function that leads to non-identification
(Lemma 4). Then, to show sufficiency, under the inverse demand function characterized in Lemma 4, we

construct a transformation that leads to observational equivalence (Lemma 5).

3.3 Necessary Condition for the Non-identification

First, we characterize the non-identification condition based on Definition 1. The characterization is
based on the fact that observational equivalence implies that the reduced forms of the equilibrium quantity
hq and hy are identical for any X 4 and X®. Therefore, its derivative with respect to the demand and
cost shifters, Vhy and Vh;, should also be identical. Then, by applying the implicit function theorem
to the equilibrium condition, we can compute Vh, and Vhy. The following lemma characterizes the

non-identification condition:

Lemma 1. Non-identification implies that for any X%, X%, and Q¢ under these exogenous variables,

we have fori =1,..., Ky
@ XY+ 00 (@ x)
= 2@, X X7 | S25(@5 X 400 ai;];Q(Qe,Xd) , ©
andforj=1,..., K,
" (@ X = N@ X X Gl @ X, Q

where M(Q¢, X ¢, X®) is defined as

(1+656(Q" X) +6"Q5e (7, X) — %55 (@7 X*)

Qe X4, x¢ .
@ : (1+6)35 5@, Xd)+9Q63P(Qe Xd) — %(Qe,Xs)

See Appendix A for the detailed proof. Equation (6) and (7) imply that when non-identification
holds, the derivative of the marginal revenue with 6 can be transformed into the derivative of the marginal

revenue with 8%, and the derivative of the marginal cost M C with respect to X ® can be transformed into

10



the derivative of the marginal cost M C* with respect to X ® by A\(Q¢, X%, X?).

These transformations cannot always be valid because the transformed marginal revenue is affected
by the cost shifter X and the transformed marginal cost is affected by the demand shifter X ¢ through
A. These dependencies are not allowed by Assumption 1. Thus, to consider a valid transformation, we
further rewrite (6) and (7). The next lemma provides a transformation of the derivative of M C and M C*

with respect to () and X ® that leads to observational equivalence:

Lemma 2. For any Q¢, X% and X?, non-identification implies that the derivative of marginal cost MC

can be transformed into the derivative of marginal cost MC*: fori=1,...,Kg andj=1,..., K,
oMC* oMC
50 (@°X") = Di(Q, X%) + Gi(@, X) 5 -(Q, X°), ®)
and
OMC* o s\ _ ~ime v OMC o s

where C;(Q, X¢) and D;(Q, X %) are defined as

aXd £1(Q, X +0°Q5%:55(Q, X9

Ci(@, X% = - : 9)
o (@ X4) + 005355 (Q, X)
and
; 4y = 6" -0 oP a OP d
xd OP d o%p d
+Q6Q2( )aXd( X~ Q5@ X 5550 @ XY (10)

See Appendix A for the detailed proof. The subscript ¢ in C; and D; indicates that C; and D; consist
of the derivative of the inverse demand function with respect to X zd . Unlike Lemma 1, we have only the
transformation relating to marginal cost, and hence we can see the potential obstacle in this transformation
more clearly: for the transformations to hold universally for any Q)¢ and X*, they must be independent
of X 9. If the dependence holds, while a demand rotation instrument does not change the equilibrium
quantity @°, it changes M C* via C; and D;. However, this means that the marginal cost function is a
function of the demand shifter X ¢, which is prohibited by Assumption 1. Therefore, in order for the
transformations to be valid, both C; and D; must be independent of X a

To see when the terms C; and D; are independent of X 4 we take the derivative of C; and D; with
respect to Xj‘.i and set them equal to zero for all j = 1,..., K;. A concern is that, as C; and D; already
consist of the second-order derivative of the inverse demand function, taking the derivative of C; and D;

leads to three-times derivative of the inverse demand function. This is why we need a stronger restriction

11



(Assumption 3) on the inverse demand function than Lau considers (the twice-continuous differentiability

assumption in Lau’s claim).

Case: The denominators of C; and D; are zero for some demand shifters Before we characterize
the inverse demand function that makes C; and D; independent of X ¢ we first check when C; and D;
are not well-defined. This implies that (9) and (10) are violated, and hence the identification holds by
Corollary 1. All derivatives in C; and D; are finite by Assumption 3, and hence the numerator and the
denominator of C; and D; cannot take an infinite value. In this case, regardless of the numerator of C; or
D;, (9) and (10) are violated whenever at least one denominator for ¢ = 1,..., Ky is zero. In this case,
C; and D; will be infinite or indeterminate.

When the denominator of C; or D; is zero for some 4, we have that for some (Q, X %),

OP » s 8%P
0
aXd( X9 +6Q 8x%0Q

(@, X% =0. (11)

Let Z be the set of indices of the demand shifters where (11) holds. Note that (11) can be rewritten as

0

ox7 (P(Q, X%+ 0@ (Q, Xd)) =0,

which is the derivative of the marginal revenue under 6 with respect to X Zf’l . Therefore, this implies that
the marginal revenue under 6 is not affected by the change in X Zfi at (Q, X d). This also implies that the
equilibrium quantity is not affected by the change in X 4 at (Q, X9).

The non-identification implies that (11) does not hold for any Q¢ and X ¢. Once we have (Q, X %)
for some ¢ where (11) holds, it suffices for identification. While it is hard to characterize the inverse
demand function that satisfies (11) for some (Q, X%) and for some 4, we can characterize the inverse
demand function that satisfies (11) for all (Q, X d). Note that (11) is a partial differential equation that
can be solved analytically. Thus, we can characterize the inverse demand function that always leads to

identification for any Q and X %:

Lemma 3. Suppose that @ # 0 and Q) > 0. Then, the conduct parameter and the marginal cost function

are identified when the inverse demand function is such that

P(Q,X% = Q ir(X% + s(Q, X%y), (12)

d
where XfI is the vector of demand shifters whose index is not in T, and r : R — R and s : RIXZzlH+1

are at least twice-continuously differentiable.

See Appendix A for the proof. Under (12), the equilibrium condition (14) is given as
S(Q7 XEI) + 0Q3/(Qa XEI) = MC(Q) Xs)a

12



Therefore, when (11) holds, the equilibrium quantity is not affected by the change in X fl. On the other

hand, for any other 6* # 6, the equilibrium condition becomes
—1 0
@ ir(x9) (1- 1) + 5(0,X%) + Q5@ X5) = MC(@Q. X7).

As (X %) is a function of Xf by Assumption 1, the equilibrium condition implies that the equilibrium
quantity should depend on X Zd under 0*. Therefore, while the change in X f does not change the equi-
librium quantity under 6, it changes under 6*, which violates observational equivalence. Therefore, the
conduct parameter and the marginal cost function are always identified.

Recall that Lau’s claim includes an edge case where a separable inverse demand function leads to
the identification. The above lemma also includes his edge case when Z = (), that is, all demand shifters

work as a demand rotation instrument. We will see that (12) is also the edge case in our result.

Case: The denominators of C; and D; are not zero Now, suppose that (11) does not hold for any
and X % and for all demand shifters. Then, we take the derivative of C; and D; with respect to Xj‘.i for all
j=1,..., K4 and put the derivative being equal to zero. This process leads to differential equations for
the inverse demand function. Fortunately, these differential equations have analytical solutions, and we
can characterize an inverse demand function that satisfies the independence of C; and D; of the demand

shifter:

Lemma 4. The non-identification of the conduct parameter and the marginal cost function implies (11)
does not hold for all i = 1,...,Ky, and C;(Q, X?) and D;(Q, X?) are independent of X¢ for all i.

The independence implies that the inverse demand function is given as
P(Q, X% = Q*r(X%) +5(Q)

where o # —%, andr : RE¢ 5 R and s : Ry — R are at least twice-continuously differentiable.

See Appendix A for the proof. Technically, the twice-continuously differentiability of r and s is
required to meet Assumption 3. As we have discussed, this inverse demand function does not allow
for any demand rotation instrument. Recall that Bresnahan (1982) provides the idea of using a demand
rotation instrument to identify the conduct parameter. Then, Matsumura and Otani (2023) formalize
his idea by deriving a sufficient condition that guarantees the inverse demand function includes demand
rotation instruments for the identification in Bresnahan’s setting. The contraposition of their sufficient
condition implies that the non-identification holds only if the inverse demand function does not include
any demand rotation instrument. Therefore, our characterization is the generalization of their result in
general settings.

Another difference from Lau’s claim is that the conduct parameter can be identified even when the

demand shifter is a scalar as long as the inverse demand function includes a demand rotation instrument.
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For example, consider an inverse demand function with a scalar demand rotation instrument:
P(Q,X{) = ao + 11Q + o X{ + asQX{
y A7 (7)) a1 QA4 a3 1-

In this case, C7 and D1 are given as

as + 0a3@Q

4 TTOw dy _ (p* _ _ d
as + 0*a3Q and Dl(Q?Xl) (9 9)( al+a3X1)'

C1(Q, X =

This implies that the transformation (8) is not valid for any marginal cost function because D1 (Q, X f)
depends on X' f. Therefore, any M C* that leads to observational equivalence with M C should depend on

the demand shifter, under which the exclusion restriction is violated and hence identification is possible.

Remark 2. The differentiability assumptions are imposed on the inverse demand function through As-
sumption 3. The functions r and s appear as components of the solution to a differential equation implied
by the non-identification condition. Their differentiability is therefore inherited from that of P and is not
imposed as an independent assumption. Cases in which r or s fail to be sufficiently differentiable are

outside the scope of the theorem.

3.4 Sufficient Condition for Non-identification

We turn to check the sufficiency of the inverse demand function characterized in Lemma 4. To see
whether the inverse demand function (5) can lead to non-identification, we check whether there exists
a transformation between M C and M C* and the marginal revenue under € and under 6* such that any
equilibrium in & can also be an equilibrium in £* by using the mapping. Formally, suppose that there

exists a transformation 7" such that
MC*(Q,X°)=T(MC(Q, X?)).

and

oP

d *
PQ X% +0'Q55

@ ,Xd)=T( (Q,X"’)+0Q (Q,Xd))

Q

Then, suppose also that an equilibrium quantity Q)¢ satisfies the equilibrium condition under £. When
we have that for £*,
(Qe Xd) + Q*Qe (Qe Xd) MC’*(Qe, XS)

=T( @, x% +09°2 @, Xd)) T (MC@F, X)) =0,

oQ

then Q¢ also satisfies the equilibrium condition under £*, and hence the non-identification holds. In fact,

under the inverse demand function (5), we can construct such transformation 7' by using (8). Therefore,
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we can have the following sufficient condition for the non-identification:

Lemma 5. Given the inverse demand function (5) where a # —%, given a conduct parameter and
a marginal cost function, we can construct another pair of a conduct parameter and a marginal cost
function that leads to the same equilibrium point for any value of demand shifters and cost shifters.

Therefore, non-identification of the conduct parameter and the marginal cost function holds.

The proof is given in Appendix A. While Lau shows the separable inverse demand function is also a
sufficient condition for non-identification, his sufficiency proof is incomplete because it can be verified
that his proof implicitly assumes that there exists a transformation 7" under a separable inverse demand
function (2). However, the separability itself does not guarantee the existence of the transformation. In
contrast, Lemma 5 shows that the inverse demand function without any demand rotation instrument can

lead to a transformation that leads to non-identification.

3.5 Discussion

Rethinking the role of demand rotation instruments: Lemma 4 emphasizes the role of demand rota-
tion instruments. Intuitively, when a change in a demand shifter keeps the equilibrium quantity the same,

we have two equilibrium conditions:

P(Q, X% + ng—g(Q, X% = MC(Q, X*)

P(Q, X% + ng—g@, X = MC(Q, X*)

Here, we have two equations and two unknowns (8, M C(Q, X *®)), and hence we can solve the system of
equation with respect to the conduct parameter and the marginal cost function. Therefore, the existence
of a demand shifter that keep the equilibrium quantity the same is confirmed as the sufficient condition
for the identification in more general setting.

To build intuition for how the instrument relates to the proof, consider an economy with a linear
inverse demand with a demand rotation instrument and a linear marginal cost. Bresnahan (1982) con-
siders this environment. Then, assume that the true conduct is the perfect competition, that is, 8 = 0,
and the alternative conduct is the monopoly, that is, 8* = 1. Figure 1 illustrates this environment. Note
that the equilibrium quantity under perfect competition is determined by the intersection of the inverse
demand function and the marginal cost function M C. The equilibrium quantity under the monopoly is
determined by the intersection of the marginal revenue M R* and the marginal cost function M C™.

In Figure la, the perfect competition and the monopoly lead to the same equilibrium E. Then,
consider the change in a demand rotation instrument. In Figure 1b, the demand rotation instrument
changes the intercept and slope of the demand function without changing the equilibrium point under the
true model. Under the monopoly, the new equilibrium point is E*, which is different from E, and hence

the observational equivalence is violated. To obtain the same equilibrium after the change in the demand
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MC*

Q

(a) Step 1: Observable equivalence holds.

P

(c) Step 3.1: The intercept of M C* changes along

with the demand rotation to keep £ = E*.

MC*

(b) Step 2: Demand rotation changes D and M R*
P

(d) Step 3.2: The slope of M C* changes along with
the demand rotation to keep £ = E*.

Figure 1: Intuition of the role of the demand rotation instrument and identification

Note: The figures illustrate the intuition of how the demand rotation instrument works to identify the conduct parameter. M C
is the true marginal cost function, and M C™ is the marginal cost function that rationalizes the monopoly conduct. Step 1
illustrates that the monopoly and the perfect competition are observationally equivalent. In step 2, the demand rotation changes
the intercept and slope of the demand function without changing the equilibrium point under the perfect competition, but
changes the equilibrium point under the monopoly. Step 3 illustrates that to keep the equilibrium point under the monopoly,
MC™ should change along with the demand rotation, which is impossible because the marginal cost function is independent of

the demand shifter.
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rotation instrument (E' = E*), M C* should shift as in Figures 1c and 1d. Note that we changed only the
demand shifter, and hence the cost shifter is unchanged. Thus, for the observational equivalence to hold,
the shift in M C* should be derived from the change in the demand rotation instrument, which implies
that M C* is a function of the demand shifter. However, this is impossible because it violates Assumption
1, that is, the demand shifter should not affect the marginal cost function. The transformation in Lemma
2 clearly shows the possibility of the dependence of the marginal cost function on demand shifters, and

hence we need to shut down the effect of demand shifters, which leads to the inverse demand function

4.

The technical problem in Lau’s proof: To show Claim 1, Lau follows the same logic as in Lemma 1,

but he obtains a slightly different equation from (7):

oMC*, . L OMC

oX: @,X%), vQ, X7, (13)

where p(Q, X *®) depends only on @ and X ®. This corresponds to Equation (15) in Lau (1982). Then he

concludes that there is a transformation 7" such that
MC* Q% X°) =T(MC(Q% X?*),Q°).

The existence of the transformation 7' is shown by integrating (13) with respect to the cost shifter when
it is a scalar, and by applying Lemma B.1 from Goldman and Uzawa (1964) when the cost shifter is a
vector. Note also that in our approach, both (6) and (7) are necessary to derive the transformation between
marginal cost functions. In contrast, while Lau derives both equations (6) and (7) in his proof, he relies
solely on (7) to show the non-identification.

While Lau does not explicitly define w in his formulation, it can be verified that his y corresponds
to our . However, he neglects a point that the function p depends on the demand shifter X ¢, and
this dependence is not addressed in his analysis. As long as the effect of the demand shifter cannot be
eliminated from y, the transformation T' between M C and M C* could depend on X ¢, which violates
Assumption 1. Additionally, separability does not resolve the dependence of p on the demand shifter.
Unfortunately, Lau does not provide a justification for why he can assume that the effect of the demand
shifter can be removed from p, and hence it leaves a critical gap in the argument. Additionally, Lau only
assumes that the inverse demand functions are twice continuously differentiable, which allows him to
apply Lemma B.1 to justify the existence of the transformation 7. However, to eliminate the effect of
X9 from p, it is necessary to differentiate p with respect to X ¢ and require that the derivative is equal to
zero as in our analysis. This step, in turn, requires that the inverse demand function be at least three-times
continuously differentiable as in our proof. Therefore, twice-continuous differentiability is not enough

to characterize the non-identification.
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4 Other Discussions

Relationship with Firm Conduct Test In recent years, several papers have developed tests for firm
conduct (Backus, Conlon and Sinkinson 2021, Duarte, Magnolfi, Sglvsten and Sullivan 2024) that com-
pare two different models and statistically determine which firm conduct is close to the true firm conduct.
Dearing et al. (2024) investigate the mechanism how instrument variables can distinguish the true firm
conduct by focusing on pass-through. Magnolfi and Sullivan (2022) clarify when firm conduct test out-
performs firm conduct estimation. While these papers consider differentiated-product markets, the logic
can be applied to homogeneous-product markets, and our result emphasizes that demand rotation instru-
ments are essential in firm conduct test.

The results so far hold whenever we adopt the conduct parameter approach. However, the conduct
parameter approach has been criticized on several fronts. In this section, we discuss its micro-foundations

and its empirical accuracy.

Micro-foundations of Conduct Parameter Approach The conduct parameter approach is based on
the conjectural variation model. In the conjectural variation model, each firm has a conjecture about
how the competitors will react to the firm’s action. A major problem of the conjectural variation model
is that the conjecture and the reaction function do not coincide at equilibrium. Bresnahan (1981, 1983)
propose a Consistent Conjecture Equilibrium (CCE) that requires the conjecture and the reaction function
to coincide at equilibrium. However, the existence and uniqueness of the CCE are not guaranteed in
general (Klemperer and Meyer 1988, Robson 1983).

Several alternative micro-foundations have been proposed. For example, Escrihuela-Villar (2015)
shows that the corporation coefficient approach is equivalent to the conjectural variation model in some
specific settings. In this model, each firm maximizes its profit plus the weighted sum of its competitors’
profits, where the weight is called the corporation coefficient. Menezes and Quiggin (2020) investigates
the supply function approach in which firms choose not a quantity but a supply schedule based on price.
Menezes and Quiggin (2023) show the relationship between the conduct parameter approach and the
supply function approach in a model with linear demand and linear marginal cost, and Menezes and

Quiggin (2020) briefly discuss how to estimate competitiveness given information on marginal cost.

Accuracy of the Conduct Parameter Approach While this paper focuses only on the identification
problem, Corts (1999) argues that the conduct parameter approach can be inaccurate when the data-
generating process lies outside the conduct parameter model. For example, while a repeated game model
can sustain the equilibrium quantity under joint-profit maximization, the conduct parameter estimate
could be biased away from § = 1. As Corts (1999) and Magnolfi and Sullivan (2022) mention, this
criticism can be mitigated by assuming that the data-generating process is a static competition derived

from the equilibrium condition in (1).
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5 Conclusion

This paper revisited the identification of the conduct parameter in homogeneous product markets. In
the literature, Lau considers the identification problem in a fairly generalized setting. While Lau (1982)
characterizes the non-identification condition, we point out some problems in Lau’s paper and provide
a novel characterization of the non-identification condition. Based on the new characterization, we find
that the non-identification is equivalent to the absence of demand shifters that work as demand rotation
instruments proposed in Bresnahan (1982). We then consider the identification of all primitives in the
model and show that the inverse demand function that leads to the non-identification of the conduct
parameter and the marginal cost function cannot be identified, which immediately implies that the conduct
parameter and the marginal cost function are also not identified. Therefore, while a demand rotation
instrument is key for identifying the conduct parameter, identifying the entire model requires an inverse

demand function with a demand rotation instrument that is itself identifiable.
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Appendix

A Omitted Proofs

In this section, we provide the proofs of the lemmas and theorems in the main text. In what follows, we

suppress the arguments of functions when no confusion arises.

A.1 Proof of Lemma 1

Assume that given X¢ and X®, we can solve the equilibrium condition for the equilibrium quantity
Q°. The non-identification implies that the reduced form quantity Q¢ = hy(X 9, X*®) = hy(X d X?)
satisfies

P(Q°, Xd)+9Qe P e, x% = mc(ge, x*). (14)

oQ

and

P(Qe Xd)_+_0*Qe (Qe Xd) —MC*(QE Xs) (15)

Q

for any X and X °. For notational simplicity, we define

F(Q% X4, X560, MC) = P(Q°, Xd)+0Qe (Qe X4 — MC(Q°, X?®).

oQ

Then, by Assumption 4, we can apply the implicit function theorem, and for the reduced-form equation

Q° = hy(X %, X?), the gradient of the reduced-form function h, with respect to X¢ and X ® is given by

. 3—F(h (X%, X%), X4 X°)
Vhe(X%, X% = | - F b (X9 X%), X% X7) : (16)

3Q m=d,s
i=1,..,Km
The derivatives of F' for each variable are fort =1,...,Kgandi=1,..., K,

OF d o’pP
—(Q%, X% X% 0,MC) = € ©, Q°,

OF . —d +s. _ 8MC’ e s

BXf(Q’X’X’o’MC)__aXS (QaX )a

- € X XS. e X e v e Xs .

£(Q° X%, X550, MC) = (1+6) 50 (Q°, X% + Q" 5o (@, X4 - 5 7@, X°)
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Thus, the derivative of h with respect to X Zd and X7 are givenasfori =1,...,Kgandi =1,...

Oty a5 o (Q°, X ) +6Q° 5755 (Q, X

8Xd( B X1) +6Q 5 (@, X*) — Qe X*)’
and

%(Xd XS) _ %%Q(Qe Xs)

OX;T T (14 0)55(Q% X9) +0Q° 55 (@7 X9) — TP Qe X#)

Note that the same argument can be applied to the equilibrium condition (15) of the alternative model.

Recall that the non-identification implies that Q¢ = h, (X%, X*) = hy(X 4 X*) for all X% and X,

and hence we must have
Vhi(X% X?%) = Vhe(X?%, X®) VX4 X5,

From (16), this implies that for all Q¢, X d and X,

o (@5 X, X 6%, MC™) £ (Q°, X%, X%0,MC)

8Xd

aXd (Qe, X4, X3;6%, MC*) (Qe, Xd X*,0, MC)

_ )\(Qe,Xd, XS) aXd
BXS (Qe X4, X%,6%, MC*) aXS (Qe X4, X260, MC)

aXS (Q°, X% X%,6%, MC¥)

axs (Q°, Xd X%,0,MC)

where A(Q¢, X9, X?®) is defined as

Q2

NP W. ¢ .
( ) (1+6)55(Q°, X9) +6Q° 57 (Q¢, X¢) — 25 (Q°, X?)

(1+6%)95(Q°, X% + 0°Q° 5 (Q°, X %) — 24 (Q°, X?)

b

(7)

Assumption 4 guarantees that A(Q¢, X d, X'%) is nonzero and finite. From the first K4 rows in (17), (6)

and for the later K rows, (7) hold.
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A.2 Proof of Lemma 2
From (6), we have (we suppress the arguments of the functions for brevity)

oP %P oP 0’P OMC
— 4+ QR ——— |1 +0)—= +0Q° - —
axi T axiag [( 050 90 ~ a0 ]
oP 0P o’P oMcC*
. 0 8— * _ e =
ax¢ +0Q 8X40Q [( ) + a2 a0
* 92P
axd +90 Q&Xf’BQ [(1 +0)6P +9Q682P B 6MC’]
2P 2
aXd + 0055700 9Q oQ oQ
~ OP . 682P oOMC*
- [a+o3g+0eGs - %0
(9MC* N N e82P d oP 662P 6MC’
*)
The terms in (%) can be more simplified as
OP o’pP aXd +0*Q6Xd8Q OP o’pP
(14655 +9 Q503 — 25 2P [(1+ 05 +0¢ 2]
oQ oQ axa + 6Q 5%763 oQ oQ
1 ( o’p\ ( opP o*P
= (1+0*)—+0*Q ) ( +60Q
8P 2P 2 d d
axd T axdaQQ oQ 0X; 0X70Q
oP o’pP oP o’pP
- (14+0)— +0Q— — +0'Q——
(( +950 T Q6Q2> (aX;l+ QanaQ)
_ 0* — 0 OP OP ‘0 OP &°P QaP ’P
= 2P 90 A x4 4920 *008Xx%90 |’
BXd +96X§6QQ oQ 0X; 0X; 0%Q oQ 0X{oQ
which corresponds to D;(Q, X ¢) in (10), and hence we have
oOMC* oOMC
—>—(Q,X°) = Di(Q, X%) + Ci(Q, X —5-(Q, X*).
0Q oQ
Next, (6) and (7) imply that fori =1,...,Kgand j =1,..., K,
e wd ys 83?{?* Q% X°) aXd(Qe X) +9*Qea§?6362 (@7, X7) _ d
)‘(Q , X4 X )= OMC (0e x5 = e xd 00¢ 52p e xd ZCi(QaX )’
6X; (Q ’ ) axd(Q )+ Q aXZdaQ(Q ) )
Then, we have
oOMC* oMC
xe (@ X) = Ci(Q, X) 55 (@, X7).
J

8X3
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A.3 Proof of Lemma 3

Let u;(Q, X9) = ;TI}(Q, X%). Due to Assumption 2, we have that u;(Q, X¢) # 0 for all Q and X ¢.
Note that when = 0, (11) implies that u;(Q, X?) = 0 for all i € Z, which cannot be held because
of Assumption 2. Therefore, § # 0 to have (11). Additionally, (11) is reduced to u;(0, X d) = (0 when
@ = 0. Again, this cannot hold because of Assumption 2. Thus, we characterize the inverse demand
function where (11) holds only on @ > 0 and 6 # 0.

Rewrite (11) for ¢ € 7 as

ou, d
o (@ X9 1 0 (0, X9 =
W@ XD~ 6g — a0 eelu(@ X9 =~

1
Q"
By integrating both sides with respect to ), we have
d 1 d
log |us(@, X)| = —5log @ + Ry(X7),
where R;(X %) is a function of X ¢. By taking the exponential of both sides, we have

ui(@, X% = Q" ary(XY),

where 7;(X %) = exp(R;(X?)). Note that we can remove the absolute value for @ because it can be

assumed that Q > 0. By removing the absolute value operator for u;, we have two solutions
ui(Q, X4 = £Q o r;(X%).
Because r; is an arbitrary function, we can unify these solutions and can simply put the solution as
(@, X%) = Q ory(X.

This implies that the derivative of P with respect to X zd is a separable function of Q and X ®. Hence, it

is natural to think that r;( X ) is a derivative of a function of X ¢ with respect to X f. In other words,

there is a function (X %) of X< such that r;( X¢) = %X;) holds. Therefore, we have for ¢ € Z,
ui(@ x4 = T X gy
) ) = P .
0X;

By integrating both sides with respect to X Zd, we have
PQ, X% =Q or(X% +s:/(Q, X%), i€l (18)

where s;(Q, X i) is a function of ) and X fi where X9 ; is the vector of X d excluding X Zd. To meet
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Assumption 3, we must have that (X ?) and s;(Q, X ¢,) are at least twice-continuously differentiable.
When X ¢ is a scalar or when X ¢ is a vector but |Z| > K4 — 1, there is no argument in Xi., and

hence we can remove the index of i from the function s;. Therefore, s(Q, X?,) = s(Q) holds, and hence

we have (12). When X ¢ is a vector and Kz — 2 > |Z| > 2, we can remove the index ¢ from s; in the

following way. Pick up any ¢ and j in Z such that ¢ # j, and then the derivative of (18) with respect to

X]‘.i is given by
oP o or(Xd) 1 0s(Q,XY%)
—(Q, X4 =—" b L 74
oxd @ XD = Txa @ —xa
J J J
and
oP or(X% 1
—(Q, X% = Qe.
d d
0X ¢ OX ¢

Since s; is a function of the demand shifters without X;, we do not have the term relating to s; in the
second equation. Therefore, by comparing the above two equations, we can conclude that the second

term in the first equation vanishes:

aSi(Q, Xiz)

= 0
d )
(9Xj

which implies that s;(Q, X fz) is independent of X]‘.’l. By applying the same argument to all ¢ € Z, we
can show that s;(Q, X ¢ ;) is independent of the demand shifters whose indices are in Z. That is, we can
reduce s;(Q, X¢,) to s;(Q, X% ;) where X2 is the vector of X ¢ excluding the demand shifters whose

indices are in Z. Then, by comparing (18) for all ¢ € Z, we have

si(Qa Xi_’[) = §j (Q7 Xi_’[)a

for all 4,57 € Z. This leads to the symmetry of s; for all # € Z, which implies that s(Q, X fz) =

5i(Q, X fz) for all ¢ € Z. Therefore, we can write the inverse demand function as
P(Q, X% = Q or(X?) +5(Q, X1).
When |I | = 1, we have X iz =X fi, and hence we can keep the index for s;, but it is also fine to write
it as S(Qa Xil) = Si(Qy Xil)
Note that when () = 0, we have that
ui(0, X% = 07 07;(X%) = o0,

because —% < 0. This is consistent with the argument that (11) does not hold at = 0. Thus, we have
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characterized the inverse demand function where (11) holds.

A.4 Proof of Lemma 4

Because C;(Q, X %) and D;(Q, X?) should be independent of X¢ simultaneously, we can first charac-
terize the class of inverse demand functions that make C;(Q, X¢) independent of X?. Then, we char-
acterize the class of inverse demand functions that make D;(Q, X ¢) independent of X ¢ by substituting

the derived inverse demand function into D;(Q, X¢).

Step 1: Necessity for C; is independent of X ¢

When C;(Q, X %) is independent of X ¢, the derivative of C;(Q, X %) with respect to X¢ is zero. Let
u(Q, X9) = %(Q, X%). Due to Assumption 2, we have that u;(Q, X¢) # 0 for all Q and X <. Then,

the derivative of C; with respect to X]‘.i forj=1,...,K,is given by
aC; 0*—0)Q Ou; Ou; Ou;
axi (@ x4 = ;u 2 [axdéQui - 8_65 x|
J (uz + GQB—QZ) J J

Note that because (11) does not hold, the denominator is not zero. As 6 # 8*, the derivative becomes
zero when (1) @ = 0 or (2) the term in the bracket is zero. In the first case, for arbitrary inverse demand
function, C; is independent of X 9. Therefore, we focus on the second case for @ > 0. Note that the

bracket term is a partial differential equation:

6u¢ w — Bui 6ui _
0X90Q "  0Qoxd

(19)

Now, instead of using (19) directly, we use the following relationship:

2 0 1 Ou; 1 &%u; ou; Ou;
% g ui(Q, XY = L [ =) L[, T Oui Oui )
9X30Q og [ui(@, X = 55 (u ax;l) 2 (“ 9X90Q ~ 9x3 aQ)

Note that the assumption u; # 0 implies that the inside of the log function is not zero and the denominator
in the last equality is not zero. Therefore, to check the independence of C; with respect to X ¢, it is

sufficient to solve the following partial differential equation such that

2

8
9X20Q

log|us(Q, X% =0, 4,j=1,...,Kq.

This implies that % log |u;(Q, X )| is independent of any element in X ¢, and hence we have a function
G(Q) such that

0
G 18 lui(Q, X4)| = G(Q).
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By integrating both sides with respect to @), we have fori = 1,..., Ky,

log |ui(@, X%)| = / G(Q)dQ + Ri(X),

where the last term is a function that is an analogue of the constant of integration. By taking exponential

on both sides, we have fori = 1,..., Ky,

lui(Q, X9)| = g(Q)r:i(X?)

where 7;(X?%) = exp(R;(X%)) and g(Q) = exp (f G(Q)dQ). This has two solutions, but again,

because r; is an arbitrary function, we can unify these solutions and put the solution as

ui(Q, X%) = g(Q)ri(XY).

Because wu; is a separable function of @ and X¢, it is natural to think that r;(X %) is a derivative
of a function of X ¢ with respect to de. In other words, there is a function 7(X¢) of X such that

ri(X%) = 87;)‘?;) holds. Therefore, we have

d
ui(Q, X% = 8;(; )

9(Q).
Integrating both sides with respect to X f, we have
P(Q,X% =g(Qr(X% +5(Q,X%), i=1,...,Ky, (20)

where s;(Q, Xﬂi) is an arbitrary function of @) and X fi where X fi is the vector of X @ excluding
X¢. To meet Assumption 3, we must have that R(X %) and s;(Q, X2,) are at least twice-continuously
differentiable and g(Q) is at least continuously differentiable.

We can remove the index of s; in the following way. Pick up any ¢, and then the derivative of (20)

with respect to X Zfi is given by

OP (g x% = X ) 4 P XE) _ or(X)
oxg™™’ oxg ox¢ oxg

9(Q),

and for any other j # i, the same derivative is given by

oP
X7

_ or(x?)

(@ X% = 202 9(Q) +

X7

9(Q) +
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These imply that

0s;j Qan
J(Tg”)=0 for all j # i.

Therefore, 5;(Q, X d j) is independent of X id, and hence s; is independent of XJ‘.l and X id. By applying
the same argument to all ¢ = 1,. .., K4, we can show that s;(Q, X fz) is independent of all elements in
Xﬂi, that is, si(Q,XEi) =s;(Q) foralli =1,...,Kg.

By comparing (20) foralli = 1, ..., Kg, itis easy to see that 5;(Q) = s;(Q) forall¢,j =1,..., K.
Therefore, we have a symmetry of s; forall¢ = 1,..., Ky, thatis, s;(Q) = s(Q) foralli = 1,..., K.
Thus, P(Q, X %) must be of the form

P(Q, X% = g(Qr(X?) + s(Q). 1)

Note that when g(Q) = 0 for any @ > 0, the inverse demand function depends only on the aggregate
quantity, which violate Assumption 2. Therefore, we assume that g(Q) # 0 for all Q > 0.
Step 2: Necessity for D; is independent of X ¢

Next, given the inverse demand function (21), we further specify the form of the inverse demand function

based on D;(Q, X ?). By substituting (21) into (10), we have

0* -0
ri(X9)(9(Q) + 6Qg'(Q))

Dy(Q, X = (¢ (@r(x*) +5(@)g(@ri(X?)

+Qg"(@r(X?) + 5"(Q)g(Q)ri(X7)
- QU @r(X) + (@) (@ri(X%)

[r(X)lg'(@)9(@) + Q" (@)9(@) - Q@)
+5(Q)9(Q) + Q5" (Q9(Q) - Q59 Q).

6 -0
~9(Q)+0Q4'(Q)

The dependence of D;(Q, X %) on X comes only from the first term in the bracket. Therefore, D;(Q, X %)
is independent of X ¢ if and only if

0D;
d
0X;

(Q,Xd) _ (0* - H)Tj(Xd)

/ " _ ’ 2
= SO T 00409 @9(Q) + Q" (@9 - Q@) = 0.

As Assumption 2 implies that (X 4) is nonzero, we must have the terms in the bracket to be zero:

7 (@)9(Q) +Q4"(Q)9(Q) — Q4" (Q))* = 0. (22)
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Asg(Q) #0for@ > 0, letv(Q) = Z((g)). Because v'(Q) = g”(Q)g(gQ(z?;z(gl(Q)P, dividing (22) by g(Q)?
gives

v(@) +Qv'(Q) =0. (23)
This is a first-order linear differential equation. To solve this differential equation, we consider two cases.

Case 1: v(Q) = O for all @ > 0. This happens when g(Q) is a constant. In this case, (22) holds

immediately, and hence (23) also holds. Let g(Q) = C for some nonzero constant C. Then, we have
P(Q, X% =Cr(X?% +s(Q).
For simplicity, we can absorb the constant C into (X %) and s(Q), and hence we have
P(Q, X% =r(X") +5(Q). (24)
Case 2: v(Q) # 0 for all Q > 0. In this case, (23) implies that

V(@) _ 1

v(@) @

Then, it can be written as
d d
—1 =——1 .
a0 og |v(Q)] a0 8¢
Integrating both sides with respect to (), we have
log [v(Q)| = —log @ + a1,

where a; € R is a constant. By taking the exponential of both sides, we have

where a = exp(a;) is a positive constant. This has two solutions

2(Q) = 9@ _ @

9(Q) Q

Since a > 0, we redefine the constant as a € R\{0} to absorb the sign into c. Then, we have

d

——log|g(Q)| = a

) log Q.

d
dQ
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Again, by integrating both sides with respect to ), we have

log |g(Q)| = alog Q + a2,

where a2 € R is a constant. By taking the exponential of both sides, we have

9(Q)] = 2@,

where aie = exp(ag) is a positive constant. Again, this has two solutions

9(Q) = £a2Q".

Since ag > 0, we can define ag € R\ {0} to absorb the sign into ap. Therefore, when C; and D; are

independent of X ¢, the inverse demand function must be of the form
P(Q,X%) = Qr(X?) +5(Q). (25)

Here, o is absorbed into 7.

While « is nonzero in (25), by allowing that o = 0, it can include (24) as a special case. At the
same time, recall that we require that (11) does not hold for any ¢. However, when o = —%, we have the
inverse demand function is equal to (12) where Z = ), which implies that the conduct parameter and the
marginal cost function are identified. Therefore, we should have o # —% to ensure the non-identification

of the conduct parameter.

A.5 Proof of Lemma 5

From the proof of Lemma 4, we know that C; and D; are independent of X 4 under (5). Under the inverse

demand function (21), we have

Qo‘ri(Xd) + 9*aQari(Xd) _1+0%a

A e
Gil@, X7) = Qori(X ) 4+ 0aQor(X?)  1+6a”
and
> 6" — 0 / a " a / a
Di(Q, X% = 0o + 6ol [5'(Q)Q* +Qs"(Q)Q™ — §'(Q)aQ”]
o —07d _, ,
= 1100 EQS Q) —as'(Q)| -

Then, consider a transformation of the derivative of a function f(Q, X) with respect to @ based on
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(8) such that

To (f(@,X),Q) = (Q,Xd)+C(Q Xd) 5(@%)

9* 0 0*a 0
15 @-as@|+ T @)

This can be integrated with respect to @, and hence we obtain a transformation of f(Q, X) as

T(f(@X),Q) = 1 5o [05(Q) ~ as(Q)] + T027(Q, ).

Note that we assume the integral constant is zero for simplicity.

Define a marginal cost function M C* as

0*—46 0*
T [05(Q) — as(@)] + T o MC(Q, X)

MC*(Q,X?®) =

Then, by substituting the marginal revenue under 6 into 7", we can obtain the marginal revenue under 6*:

[Q5(Q) — as(@)] + T2 [(1+00)@r(X%) +5(Q) +0Q5 (@]

0 -0+ (1+6*)0)Qs'(Q) + (1 + 6*a— (0* — 0)a)s(Q)
1+ 6a
(14 00)s(Q) + 6*(1 + 00)Qs'(Q)
1+ 6a

=(1+0*2)Q*r(X?%) + s(Q) + 6*Qs'(Q).

0* — 0
1+ 6a

=1+ O*Q)Q"‘r(Xd) +

=(1+460*a)Qr(X?) +

Then, suppose that Q¢ satisfies the equilibrium condition under (6, M C). Then, by using the definition
of M C* and the above observation on the marginal revenue, we can confirm that Q¢ also satisfies the

equilibrium condition under (6*, MC*):

P(Qe Xd)+0*Qe (Qe Xd) MC*(Qe,XS)

oQ
f Ercy (Q) —as(@] + 1116;5 [(1+60)Qr(X) + 5(Q) + 6Qs'(Q)]
0" — 14+ 6%« e ws
"1+ 6a [QS( ) —as(Q)] - 1+ 0o MC(Q°, X?)

:11—:—00*04 [(1+60)Qr(X?) + 5(Q) + 6*Qs'(Q) — MC(Q%, X*)] =0.

The last equality holds because Q¢ satisfies the equilibrium condition under (6, MC). Therefore, the

two models are observationally equivalent, which implies that the non-identification holds.
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B Summary of Goldman and Uzawa (1964)

Let n be the number of variables and z = (1, ..., Zy) be a vector of n variables. Consider a partition

of X into K parts, {z',...,2X} such that X = Ui, z* and z* Nz} = @ for k # 1.

Definition B.1. A function is weakly separable with respect to the partition if

of (.1 K
o -(z*,...,x
0 ?9?(1 K) =0, ijeati¢at.
Xy E(w,,x)

This implies that the ratio of the derivative with respect to z; and x;, which are in the same category,
is not affected by the change in the variables in other partitions. Intuitively, by taking the ratio, the
component of f relating to x; is canceled out, and hence the derivative of the ratio with respect to ;
becomes zero. When f is a utility function, this implies that the marginal rate of substitution between
commodity 4 and j in the same partition is independent of the quantities of commodities outside z*.

Then, Goldman and Uzawa (1964) specifies the functional form that a weak separable function should

satisfy.

Theorem B.1. A function f(x) is weakly separable with respect to a partition {x', ..., x%} if and only

if f(x) is of the form:

where ®(r1, ..., vE) is a function of K variables and, for each k, v*(z*) is a function of subvector z*

alone.
The next lemma is a key lemma in Lau’s proof.

Lemma B.1. Ler f(z) and g(x) be two continuously twice-differentiable functions of n variables x =

(x1,...,%n). If each indifference surface is connected, and if there exists a function A(x) such that
g—;;(a:) = A(w)g—i(w), i=1,...,n, forallz, (26)

then f(z) is a transformation of g(x); namely, there exists a function T of one variable such that

flz)=T(g9(z)) forallzx.

Hence, in particular, the function \(x) satisfying (26) must be of the form:

Az) = A(g(z)) forall z,

with some function A of one variable.
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If there is a function T such that f(z) = T'(g(z)), then by the chain rule, we have g—i(m‘) =
T’(g(w))g—i(a)) where T” is the derivative of T'. Thus, by defining A(z) = T"(g(z)), we have g—i(m) =
)\(w)g—i(w). Intuitively, the lemma implies that the converse of the chain rule holds under additional

conditions.
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