
 
 
 

  
 

 
 
 

 

 

 

 
UTMD-107 

 

Revisiting the Identification of the Conduct Parameter in 

Homogeneous Goods Markets 
 

Yuri Matsumura 
The Japan Fair Trade Commission 

 
Suguru Otani 

University of Tokyo 
 
 

January 14, 2026 



Revisiting the Identification of the Conduct Parameter in

Homogeneous Goods Markets

Yuri Matsumura Suguru Otani

January 14, 2026

Abstract

We revisit the identification of the conduct parameter in homogeneous goods markets. Lau (1982)

shows that the conduct parameter is not identified if and only if the inverse demand function is sep-

arable, except for a specific separable function. This result has been regarded as an extension of the

result in Bresnahan (1982) to more general settings. However, we show that Lau’s claim is incor-

rect and provide a new characterization of the non-identification. Our characterization shows that

the presence of demand rotation instruments in the demand function is the necessary and sufficient

condition for identifying the conduct parameter. Therefore, our result properly generalizes the role

of demand rotation instruments in identifying the conduct parameter, as highlighted by Bresnahan

(1982), to more general settings.
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1 Introduction

Empirical research in industrial organization examines a wide range of questions, including the mea-

surement of market power and concentration, the evaluation of welfare, the assessment of cartels, and

the prediction of merger impacts. In virtually all of these applications, empirical conclusions depend

critically on assumptions about how firms compete, that is, on the specification of firm conduct. Re-

searchers often impose a particular competitive model, such as price-taking, Cournot, or Bertrand, be-

cause conduct is rarely identified without additional information, such as detailed cost data or industry-

or institution-specific information. Nevertheless, misspecifying conduct can distort the measurement or

lead to misleading conclusions.

To address this problem, the conduct parameter approach has been used in the literature on industrial

organization. This approach embeds a scalar measure of firm conduct into the marginal revenue function

and allows researchers to estimate conduct directly from data, providing a flexible model to investigate

several questions. The applications vary across industries and questions, including homogeneous-product

markets (Porter 1983, Genesove and Mullin 1998, Okazaki, Onishi and Wakamori 2022), differentiated-

product markets (Miller and Weinberg 2017, Ciliberto and Williams 2014, Sullivan 2020), pass-through

analysis (Weyl and Fabinger 2013, Miller, Osborne and Sheu 2017), welfare evaluation under imperfect

competition (Beringe and Whitmeyer 2025, Nocke and Schutz 2025), and merger evaluation (Aryal,

Chattopadhyaya and Ciliberto 2025).

Despite its broad use, the basic identification result on the conduct parameter in a homogeneous

goods market remains rooted in two classic contributions. First, Bresnahan (1982) shows that, with a lin-

ear demand and a linear marginal cost, a demand rotation instrument can identify the conduct parameter

by moving the slope and intercept of inverse demand simultaneously because it can keep the equilibrium

the same under the true conduct parameter while changing the equilibrium under the false conduct pa-

rameter. Second, Lau (1982) considers an environment with a more general inverse demand function

and a marginal cost function and shows that conduct is not identified if and only if the inverse demand

function is separable in demand shifters. Because demand rotation instruments break the separability

of the inverse demand function, Lau’s condition has been interpreted as a general characterization of

identification and regarded as an extension of Bresnahan’s idea in general settings.

The main contribution of this paper is to show that Lau’s characterization is incomplete and to pro-

vide a new condition that fully characterizes if and only if conduct and marginal cost are not identified.

Our main result shows that the non-identification of the conduct parameter and the marginal cost func-

tion arises if and only if demand shifters can change only the slope or only the intercept of the inverse

demand function. In this case, the inverse demand function cannot have any demand rotation instrument,

and hence conduct is identified precisely when the inverse demand function includes demand rotation

instruments. This result is both simpler and more restrictive than separability in Lau’s claim and clarifies

the precise role of demand rotation instruments in identifying the conduct parameter in general environ-
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ments.

The intuition is the following. Given a conduct parameter and a marginal cost function, the non-

identification implies that we can transform the marginal cost function into another marginal cost func-

tion that, together with another conduct parameter, produces the same equilibrium quantity. However,

this transformation is usually invalid because keeping the equilibrium points the same in both models re-

quires the transformed marginal cost function to depend on demand shifters, which violates the exclusive

demand shifters assumption. This dependence disappears only when demand shifters can change just the

slope or just the intercept of the inverse demand function, in which case we can construct different pairs

of conduct parameters and marginal cost functions that yield the same equilibrium for any value of the

shifters without violating the exclusion restriction. Thus, when demand rotation instruments are present

in the inverse demand function, the transformation remains invalid, preventing observational equivalence

between alternative conduct and marginal-cost pairs and ensuring identification. The issue that makes

Lau’s proof incomplete is that while he also derives a transformation between marginal cost functions,

he fails to eliminate the dependence of the transformed marginal cost function on demand shifters.

Taken together, our results refine the theoretical foundations of conduct parameter estimation and clar-

ify the exact role that demand shifters must play to allow practitioners to implement empirical analysis

with a flexible competition model. The rest of the paper is organized as follows. Section 2 describes the

setting. Section 3 discusses Lau’s result and our main result. Subsections 3.3 and 3.4 provide a new char-

acterization of non-identification and show the necessary and sufficient condition for non-identification.

Section 4 discusses some criticisms of the conduct parameter approach. Section 5 concludes. The Ap-

pendix includes the omitted proofs in the main text and a summary of Goldman and Uzawa (1964).

2 Setting

2.1 Conduct Parameter Model

Consider a homogeneous product market with an aggregate inverse demand and an aggregate marginal

cost function denoted by P (Q,Xd) and MC(Q,Xs), respectively, where Q is the aggregate product

quantity, Xd and Xs are the vectors of demand shifters and cost shifters, respectively. Note that every

vector is represented by a bold letter, and its element or scalar value is represented by a non-bold letter.

Let Kd and Ks be the dimension of Xd and Xs, respectively.

Given the demand shifter Xd and the cost shifter Xs, the equilibrium quantity Qe solves the follow-

ing equation:

P (Q,Xd) + θQ
∂P

∂Q
(Q,Xd) = MC(Q,Xs), (1)
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where θ ∈ [0, 1] is called the conduct parameter. By rewriting the equilibrium condition (1), we have

θ = P −MC

P
εd,

where εd is the price elasticity of demand. Therefore, the conduct parameter is also regarded as the

elasticity-adjusted Lerner index and represents the degree of market power of the firms. Depending on

the value of θ, the condition can represent the first-order condition of several models between perfect

competition (θ = 0) and joint-profit maximization (θ = 1).1 Therefore, the left-hand side of (1) is

regarded as a generalized marginal revenue with θ, and hence the condition is a generalized first-order

condition with the conduct parameter.

For the identification analysis, we put some restrictions. First, we assume that the demand shifter and

the cost shifter are mutually exclusive:

Assumption 1. The set of all exogenous variables affecting the market equilibrium can be partitioned

into (1) exclusive demand shifters, Xd, that affect the inverse demand function but not the marginal cost

function, (2) exclusive cost shifters, Xs, that affect the marginal cost function but not the inverse demand

function, and (3) common shifters, Z, that affect both the inverse demand function and the marginal cost

function.

The theoretical analysis of identification often simplifies the setting by assuming that the demand

shifters and cost shifters are mutually exclusive, as per Assumption 1. We formalize our approach by

conditioning the analysis on an arbitrary realization z of these common shifters. This means all sub-

sequent functions are understood to be conditional functions, P (Q,Xd) ≡ P̃ (Q,Xd,Z = z) and

MC(Q,Xs) ≡ M̃C(Q,Xs,Z = z). By treating Z as fixed constants in this conditional analysis,

we maintain the notational simplicity of focusing only on the exclusive shifters while ensuring that the

derived non-identification characterization holds robustly across all values of the common variables in

empirical settings.

The next assumption restricts the effectiveness of the shifters:

Assumption 2. The given demand shifters and the cost shifters should affect the inverse demand function

and the marginal cost function. Formally, we should have that for all i = 1, . . . ,Kd and j = 1, . . . ,Ks,

∂P

∂Xd
i

(Q,Xd) ̸= 0 and
∂MC

∂Xs
j

(Q,Xs) ̸= 0

for any Q > 0, Xd, and Xs.

When this condition is not met, there could be areas where the inverse demand function and the

marginal cost function cannot be identified. For example, when a demand shifter does not change the
1It can also nest Cournot competition when θ = 1/N under some marginal cost function such as constant marginal cost

and linear marginal cost. In general, this holds when the aggregation of each firm’s first-order condition results in the aggregate
first-order condition.
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inverse demand function for some interval of the demand shifter, the equilibrium quantity is not affected

by the change in the demand shifter. Then, there is no variation to identify the inverse demand function

on the interval. Because our identification result for the conduct parameter and the marginal cost function

presumes the identification of the inverse demand function, to guarantee the identification of the inverse

demand function, the assumption is necessary.

Next, we impose an assumption on the differentiability of the inverse demand function and the

marginal cost function:

Assumption 3. The inverse demand function is three times continuously differentiable, and the marginal

cost function is twice continuously differentiable.

As we will see, Lau (1982) only assumes twice-continuous differentiability of the inverse demand

function and the marginal cost function. Hence, our result requires a stronger assumption on the inverse

demand function. However, we will justify our assumption by showing that Lau’s claim also needs three-

times continuous differentiability later.

Finally, we impose the equilibrium existence condition:

Assumption 4. Given an inverse demand function, a conduct parameter, and a marginal cost function,

and given Xd and Xs, the derivative of the equilibrium condition with respect to Q at the equilibrium

quantity Qe is not zero, that is,

(1 + θ)∂P
∂Q

(Qe,Xd) + θQe ∂
2P

∂Q2 (Q
e,Xd)− ∂MC

∂Q
(Qe,Xs) ̸= 0.

Note that as the above equation consists of the derivative of the inverse demand and the marginal

cost, by Assumption 3, the derivative of the equilibrium condition with respect to Q is finite, and hence

the left-hand side is a finite value for any Q, Xd, and Xs.

2.2 The Data Generation Process

Suppose that the researcher observes the aggregate price P and the aggregate quantity Q, and the vector

of exogenous variables Xd and Xs. Assume that the data is generated through the equilibrium condition

(1). We assume that from the data, the reduced form of the equilibrium quantity and the equilibrium

price are identified:

Assumption 5. The reduced form of the equilibrium quantity and the equilibrium price, defined as

Qe = hq(Xd,Xs), P e = hp(Xd,Xs),

are identified.

The identification of the reduced forms follows directly from variation in the demand and cost shifters.
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Remark 1. While Bresnahan (1982) considers a model with error terms, by following Lau (1982), we

do not consider any error term in the demand and the supply side, that is, our model does not have any

unobserved characteristics to the econometrician. This is a restrictive assumption because there could

be real data where Xd and Xs are the same in two time periods, but the equilibrium outcomes are

different in the two periods. As the scope of this paper is to fully characterize the identification condition

along with Lau’s setting,. In other words, our identification analysis is independent of the presence of

error terms and concerns whether the structural mapping from primitives (θ,MC) to the reduced-form

equilibrium outcomes (hq, hp) is injective, that is, whether (θ,MC) can be uniquely recovered given

(hq, hp). We do not include unobserved characteristics and leave it for future research.

2.3 Definitions

Now, we introduce the definition of the identification problem in this setting. While our interest is the

identification of the conduct parameter and the marginal cost function, by following Lau (1982), we take

an indirect approach and specify the conditions under which the model is not identified. Our definition

of non-identification is based on when two different models lead to observational equivalence:

Definition 1. The conduct parameter and the marginal cost function are said to be non-identified if

there are two distinct pairs of conduct parameters and marginal cost functions, denoted by (θ,MC) and

(θ∗,MC∗), such that the corresponding reduced-form equilibrium quantity that satisfies the equilibrium

condition (1) and the corresponding reduced-form equilibrium price are identical for every demand- and

cost-shifter value:

Qe = hq(Xd,Xs) = h∗q(Xd,Xs) and P e = hp(Xd,Xs) = h∗p(Xd,Xs)

for any Xd and Xs.

By taking the contraposition of Definition 1, we can characterize the identification of the conduct

parameter and the marginal cost function:

Corollary 1. The conduct parameter and the marginal cost are said to be identified if for any two distinct

pairs of a conduct parameter and a marginal cost function, there exists a pair of demand shifters X̃d

and X̃s where the equilibrium quantity Qe is different, that is, hq(X̃d, X̃s) ̸= h∗q(X̃d, X̃s).

Note that the non-identification and the identification assume that the inverse demand function is

already identified. In other words, we study the identification of the conduct parameter and the marginal

cost function given an identified inverse demand function.
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3 Main Result: Characterization of the Non-identification

3.1 Lau’s Claim

Lau (1982) investigates the identification of the conduct parameter and the marginal cost function and

obtains the following claim, which is the quote of Theorem 1 in Lau (1982):

Claim 1. Under the assumption that the inverse demand function and the marginal cost functions are

twice continuously differentiable, the index of competitiveness θ cannot be identified from data on indus-

try price and quantity and other exogenous variables alone if and only if the industry inverse demand

function is separable in the demand shifter, that is,

P (Q,Xd) = P (Q, r(Xd)), (2)

but does not take the form

P (Q, r(Xd)) = Q− 1
θ r(Xd) + s(Q). (3)

The result states that the separability of the inverse demand function is crucial for the identifica-

tion, but there is a type of separable inverse demand function that can lead to the identification. An

inverse demand function satisfying (2) has weak separability defined in Goldman and Uzawa (1964).2

The claim also emphasizes that the dimension of the demand shifter is important for the identifica-

tion. When the demand shifter is a scalar, (2) nests any inverse demand function because we can set

P̃ (Q,Xd) = P (Q, r(Xd)). Thus, with a scalar demand shifter, the conduct parameter can be identified

only when the inverse demand function takes the form (3).

To understand the intuition of Lau’s claim, let us consider an example in Bresnahan (1982) without

an error term. Bresnahan considers a market with a linear inverse demand and a linear marginal cost,

where the linear inverse demand function is given as

P (Q,Xd) = α0 − α1Q+ α2X
d
1 + α3QXd

1 + α4X
d
2 , (4)

where Xd
1 is a demand rotation instrument because it can change the slope and the intercept of the inverse

demand function without changing the equilibrium quantity. It is easy to verify that the demand rotation

instrument breaks the separability of the inverse demand function. Additionally, the dimension of the

demand shifter is greater than one, and hence Lau’s claim implies that even a nonlinear marginal cost

function, (4), leads to the identification of the conduct parameter.

While Lau’s claim has been regarded as an extension of Bresnahan (1982) to more general settings,
2See Definition B.1 in Appendix B. Note that the separability in Goldman and Uzawa (1964) is defined only when the

dimension of the demand shifter is greater than two. When the demand shifter is a scalar, we cannot apply the definition of
separability in Goldman and Uzawa (1964).
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an important observation is that including demand-rotation instruments is inconsistent with imposing

separability on the inverse demand function, but the separability assumption itself does not preclude the

existence of demand-rotation shifters in an inverse demand function.

For example, consider an inverse demand function given as

P (Q, r(Xd)) = −Qr(Xd) +Q+ r(Xd) = r(Xd)(1−Q)−Q,

where the range of r is greater than one, that is, r(Xd) ≥ 1 for any Xd. Assume that the dimension

of Xd is greater than two. Note that in this inverse demand function, the demand shifter can change the

slope and the intercept of the inverse demand function.

First, the function is verified to be separable because for any i and j, we have

∂

∂Q

 ∂P
∂Xd

i

(Q,Xd)
∂P
∂Xd

j

(Q,Xd)

 = ∂

∂Q

(
ri(Xd)(1−Q)
rj(Xd)(1−Q)

)
= ∂

∂Q

(
ri(Xd)
rj(Xd)

)
= 0,

where ri(Xd) ≡ ∂r(Xd)
∂Xd

i

.

Second, we can verify that the demand shifters can work as demand rotation instruments to break

observational equivalence. Given the inverse demand function, the marginal revenue under θ is written

as

MR(Q,Xd; θ) = −r(Xd)(1− (1 + θ)Q) +Q(1 + θ).

When the quantity is Q′ = 1
1+θ , the marginal revenue is not affected by the change in the demand shifter

Xd because it is equal to one. Suppose that there is a marginal cost function MC where Q′ holds as an

equilibrium for some X̃s. Then, as the marginal revenue is a constant in the demand shifter, any change

in the demand shifter does not affect the equilibrium quantity. In contrast, suppose that under another

conduct parameter θ∗ and another marginal cost function MC∗, Q′ holds as an equilibrium for some X̃d

and X̃s , that is, Q′ satisfies

r(X̃d)(1− (1 + θ∗)Q′) +Q′(1 + θ∗) = MC∗(Q′, X̃s).

Here, the marginal revenue under θ∗ is a function of the demand shifter at Q′. Thus, the change in

Xd leads to a different equilibrium quantity from Q′, which implies the violation of the observational

equivalence. Therefore, the demand shifterXd can work as the demand rotation instrument atQ′ because

it changes the slope and the intercept of the inverse demand function simultaneously without changing the

equilibrium quantity under the true conduct, whereas the change leads to a different equilibrium quantity

under any false conduct.

Furthermore, when we treat r(Xd) as a scalar demand shifter, the second argument implies that
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even a scalar demand shifter can break observational equivalence, although the inverse demand function

does not satisfy (3). The example admits a separable inverse demand function with a demand rotation

instrument, but Lau does not clearly explain how this situation fits his claim, and hence it is not clear

why separability, rather than the availability of demand rotation instruments, is the key to identification.

3.2 Main Result

We now show the following theorem:

Theorem 1. Given Assumption 1, 2, 3, and 4, and data on price, quantity, and other exogenous variables,

(i) if the conduct parameter θ and the marginal cost function MC are not identified, the industry

inverse demand function must be given as

P (Q,Xd) = Qαr(Xd) + s(Q) (5)

where α ̸= −1
θ .

(ii) if the inverse demand function takes the form (5) with the properties described in (i), then the

conduct parameter and the marginal cost are not identified.

As in Lau’s claim, when the demand shifter is a vector, the inverse demand function is separable

because the demand shifters affect the inverse demand function only through r. However, our result tells

more about under what type of separable function the non-identification holds and has a clear economic

interpretation. As in Claim 1, our result has a special case where any change in demand shifters does

not affect the marginal revenue under the true conduct but does under any false conduct, and hence the

identification always holds (α = −1
θ ). Except in this case, observe that the demand shifter changes only

the slope of the inverse demand function when α ̸= 0 or changes only the intercept of the inverse demand

function when α = 0. Recall that demand rotation instruments can change the intercept and the slope of

the inverse demand function simultaneously. Therefore, we cannot have any demand rotation instruments

under (5). The result implies that the identification holds if and only if the inverse demand function has

demand shifters that work as demand rotation instruments. Here, we are explicit that a demand rotation

instrument is not necessarily a single variable, but could be a combination of changes in some demand

shifters that alter the slope and the intercept of the inverse demand function simultaneously. Note also

that Bresnahan graphically demonstrates that the conduct parameter is identified when a demand rotation

instrument moves the demand curve in a way that leaves the equilibrium point unchanged at the true

conduct but changes the equilibrium under any false conduct. However, this is an extreme case and it

suffices that the instrument changes the slope and the intercept simultaneously. This clearly reinforces

the idea of Bresnahan (1982) using demand rotation instruments to identify the conduct parameter in

more general settings.
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Hereafter, we provide the proof of Theorem 1. First, we derive the necessary condition for non-

identification based on Definition 1. By rewriting Definition 1, we obtain a transformation that maps the

derivatives of MC into the derivatives of another marginal cost function MC∗ that yields observational

equivalence given an inverse demand function (Lemma 2). However, the transformation is not valid

because it consists of derivatives of the inverse demand function and hence depends on the demand

shifter Xd. Without additional restrictions, MC∗ would therefore depend on Xd, violating Assumption

1. Therefore, to make the transformation valid, we need to remove the effect of the demand shifter from

the transformation, which puts restrictions on the inverse demand function. Then, the restriction leads

to a differential equation that characterizes the inverse demand function that leads to non-identification

(Lemma 4). Then, to show sufficiency, under the inverse demand function characterized in Lemma 4, we

construct a transformation that leads to observational equivalence (Lemma 5).

3.3 Necessary Condition for the Non-identification

First, we characterize the non-identification condition based on Definition 1. The characterization is

based on the fact that observational equivalence implies that the reduced forms of the equilibrium quantity

hq and h∗q are identical for any Xd and Xs. Therefore, its derivative with respect to the demand and

cost shifters, ∇hq and ∇h∗q , should also be identical. Then, by applying the implicit function theorem

to the equilibrium condition, we can compute ∇hq and ∇h∗q . The following lemma characterizes the

non-identification condition:

Lemma 1. Non-identification implies that for any Xd, Xs, and Qe under these exogenous variables,

we have for i = 1, . . . ,Kd,

∂P

∂Xd
i

(Qe,Xd) + θ∗Qe ∂2P

∂Xd
i ∂Q

(Qe,Xd)

= λ(Qe,Xd,Xs)
[
∂P

∂Xd
i

(Qe,Xd) + θQe ∂2P

∂Xd
i ∂Q

(Qe,Xd)
]
, (6)

and for j = 1, . . . ,Ks,

∂MC∗

∂Xs
j

(Qe,Xs) = λ(Qe,Xd,Xs)∂MC

∂Xs
j

(Qe,Xs), (7)

where λ(Qe,Xd,Xs) is defined as

λ(Qe,Xd,Xs) ≡
(1 + θ∗)∂P∂Q(Qe,Xd) + θ∗Qe ∂2P

∂Q2 (Qe,Xd)− ∂MC∗

∂Q (Qe,Xs)

(1 + θ)∂P∂Q(Qe,Xd) + θQe ∂2P
∂Q2 (Qe,Xd)− ∂MC

∂Q (Qe,Xs)
.

See Appendix A for the detailed proof. Equation (6) and (7) imply that when non-identification

holds, the derivative of the marginal revenue with θ can be transformed into the derivative of the marginal

revenue with θ∗, and the derivative of the marginal cost MC with respect to Xs can be transformed into
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the derivative of the marginal cost MC∗ with respect to Xs by λ(Qe,Xd,Xs).

These transformations cannot always be valid because the transformed marginal revenue is affected

by the cost shifter Xs and the transformed marginal cost is affected by the demand shifter Xd through

λ. These dependencies are not allowed by Assumption 1. Thus, to consider a valid transformation, we

further rewrite (6) and (7). The next lemma provides a transformation of the derivative of MC and MC∗

with respect to Q and Xs that leads to observational equivalence:

Lemma 2. For any Qe, Xd, and Xs, non-identification implies that the derivative of marginal cost MC

can be transformed into the derivative of marginal cost MC∗: for i = 1, . . . ,Kd, and j = 1, . . . ,Ks,

∂MC∗

∂Q
(Qe,Xs) = Di(Qe,Xd) + Ci(Qe,Xd)∂MC

∂Q
(Qe,Xs), (8)

and

∂MC∗

∂Xs
j

(Qe,Xs) = Ci(Qe,Xd)∂MC

∂Xs
j

(Qe,Xs).

where Ci(Q,Xd) and Di(Q,Xd) are defined as

Ci(Q,Xd) ≡
∂P
∂Xd

i

(Q,Xd) + θ∗Q ∂2P
∂Xd

i ∂Q
(Q,Xd)

∂P
∂Xd

i

(Q,Xd) + θQ ∂2P
∂Xd

i ∂Q
(Q,Xd)

, (9)

and

Di(Q,Xd) ≡ θ∗ − θ
∂P
∂Xd

i

(Q,Xd) + θQ ∂2P
∂Xd

i ∂Q
(Q,Xd)

[
∂P

∂Q
(Q,Xd) ∂P

∂Xd
i

(Q,Xd)

+Q
∂2P

∂Q2 (Q,Xd) ∂P

∂Xd
i

(Q,Xd)−Q
∂P

∂Q
(Q,Xd) ∂2P

∂Xd
i ∂Q

(Q,Xd)
]

(10)

See Appendix A for the detailed proof. The subscript i in Ci and Di indicates that Ci and Di consist

of the derivative of the inverse demand function with respect to Xd
i . Unlike Lemma 1, we have only the

transformation relating to marginal cost, and hence we can see the potential obstacle in this transformation

more clearly: for the transformations to hold universally for any Qe and Xs, they must be independent

of Xd. If the dependence holds, while a demand rotation instrument does not change the equilibrium

quantity Qe, it changes MC∗ via Ci and Di. However, this means that the marginal cost function is a

function of the demand shifter Xd, which is prohibited by Assumption 1. Therefore, in order for the

transformations to be valid, both Ci and Di must be independent of Xd.

To see when the terms Ci and Di are independent of Xd, we take the derivative of Ci and Di with

respect to Xd
j and set them equal to zero for all j = 1, . . . ,Kd. A concern is that, as Ci and Di already

consist of the second-order derivative of the inverse demand function, taking the derivative of Ci and Di

leads to three-times derivative of the inverse demand function. This is why we need a stronger restriction
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(Assumption 3) on the inverse demand function than Lau considers (the twice-continuous differentiability

assumption in Lau’s claim).

Case: The denominators of Ci and Di are zero for some demand shifters Before we characterize

the inverse demand function that makes Ci and Di independent of Xd, we first check when Ci and Di

are not well-defined. This implies that (9) and (10) are violated, and hence the identification holds by

Corollary 1. All derivatives in Ci and Di are finite by Assumption 3, and hence the numerator and the

denominator of Ci and Di cannot take an infinite value. In this case, regardless of the numerator of Ci or

Di, (9) and (10) are violated whenever at least one denominator for i = 1, . . . ,Kd is zero. In this case,

Ci and Di will be infinite or indeterminate.

When the denominator of Ci or Di is zero for some i, we have that for some (Q̃, X̃d),

∂P

∂Xd
i

(Q̃, X̃d) + θQ̃
∂2P

∂Xd
i ∂Q

(Q̃, X̃d) = 0. (11)

Let I be the set of indices of the demand shifters where (11) holds. Note that (11) can be rewritten as

∂

∂Xd
i

(
P (Q̃, X̃d) + θQ̃

∂P

∂Q
(Q̃, X̃d)

)
= 0,

which is the derivative of the marginal revenue under θ with respect to Xd
i . Therefore, this implies that

the marginal revenue under θ is not affected by the change in Xd
i at (Q̃, X̃d). This also implies that the

equilibrium quantity is not affected by the change in X̃d
i at (Q̃, X̃d).

The non-identification implies that (11) does not hold for any Qe and Xd. Once we have (Q̃, X̃d)

for some i where (11) holds, it suffices for identification. While it is hard to characterize the inverse

demand function that satisfies (11) for some (Q̃, X̃d) and for some i, we can characterize the inverse

demand function that satisfies (11) for all (Q,Xd). Note that (11) is a partial differential equation that

can be solved analytically. Thus, we can characterize the inverse demand function that always leads to

identification for any Q and Xd:

Lemma 3. Suppose that θ ̸= 0 and Q > 0. Then, the conduct parameter and the marginal cost function

are identified when the inverse demand function is such that

P (Q,Xd) = Q− 1
θ r(Xd) + s(Q,Xd

−I), (12)

where Xd
−I is the vector of demand shifters whose index is not in I, and r : RKd → R and s : R|Xd

−I |+1

are at least twice-continuously differentiable.

See Appendix A for the proof. Under (12), the equilibrium condition (14) is given as

s(Q,Xd
−I) + θQs′(Q,Xd

−I) = MC(Q,Xs),

12



Therefore, when (11) holds, the equilibrium quantity is not affected by the change in Xd
i . On the other

hand, for any other θ∗ ̸= θ, the equilibrium condition becomes

Q− 1
θ r(Xd)

(
1− θ

θ∗

)
+ s(Q,Xd

−I) +Qs′(Q,Xd
−I) = MC(Q,Xs).

As r(Xd) is a function of Xd
i by Assumption 1, the equilibrium condition implies that the equilibrium

quantity should depend on Xd
i under θ∗. Therefore, while the change in Xd

i does not change the equi-

librium quantity under θ, it changes under θ∗, which violates observational equivalence. Therefore, the

conduct parameter and the marginal cost function are always identified.

Recall that Lau’s claim includes an edge case where a separable inverse demand function leads to

the identification. The above lemma also includes his edge case when I = ∅, that is, all demand shifters

work as a demand rotation instrument. We will see that (12) is also the edge case in our result.

Case: The denominators of Ci and Di are not zero Now, suppose that (11) does not hold for any Q

and Xd and for all demand shifters. Then, we take the derivative of Ci and Di with respect to Xd
j for all

j = 1, . . . ,Kd and put the derivative being equal to zero. This process leads to differential equations for

the inverse demand function. Fortunately, these differential equations have analytical solutions, and we

can characterize an inverse demand function that satisfies the independence of Ci and Di of the demand

shifter:

Lemma 4. The non-identification of the conduct parameter and the marginal cost function implies (11)

does not hold for all i = 1, . . . ,Kd, and Ci(Q,Xd) and Di(Q,Xd) are independent of Xd for all i.

The independence implies that the inverse demand function is given as

P (Q,Xd) = Qαr(Xd) + s(Q)

where α ̸= −1
θ , and r : RKd → R and s : R+ → R are at least twice-continuously differentiable.

See Appendix A for the proof. Technically, the twice-continuously differentiability of r and s is

required to meet Assumption 3. As we have discussed, this inverse demand function does not allow

for any demand rotation instrument. Recall that Bresnahan (1982) provides the idea of using a demand

rotation instrument to identify the conduct parameter. Then, Matsumura and Otani (2023) formalize

his idea by deriving a sufficient condition that guarantees the inverse demand function includes demand

rotation instruments for the identification in Bresnahan’s setting. The contraposition of their sufficient

condition implies that the non-identification holds only if the inverse demand function does not include

any demand rotation instrument. Therefore, our characterization is the generalization of their result in

general settings.

Another difference from Lau’s claim is that the conduct parameter can be identified even when the

demand shifter is a scalar as long as the inverse demand function includes a demand rotation instrument.

13



For example, consider an inverse demand function with a scalar demand rotation instrument:

P (Q,Xd
1 ) = α0 + α1Q+ α2X

d
1 + α3QXd

1 .

In this case, C1 and D1 are given as

C1(Q,Xd
1 ) =

α2 + θα3Q

α2 + θ∗α3Q
and D1(Q,Xd

1 ) = (θ∗ − θ)(−α1 + α3X
d
1 ).

This implies that the transformation (8) is not valid for any marginal cost function because D1(Q,Xd
1 )

depends onXd
1 . Therefore, anyMC∗ that leads to observational equivalence withMC should depend on

the demand shifter, under which the exclusion restriction is violated and hence identification is possible.

Remark 2. The differentiability assumptions are imposed on the inverse demand function through As-

sumption 3. The functions r and s appear as components of the solution to a differential equation implied

by the non-identification condition. Their differentiability is therefore inherited from that of P and is not

imposed as an independent assumption. Cases in which r or s fail to be sufficiently differentiable are

outside the scope of the theorem.

3.4 Sufficient Condition for Non-identification

We turn to check the sufficiency of the inverse demand function characterized in Lemma 4. To see

whether the inverse demand function (5) can lead to non-identification, we check whether there exists

a transformation between MC and MC∗ and the marginal revenue under θ and under θ∗ such that any

equilibrium in E can also be an equilibrium in E∗ by using the mapping. Formally, suppose that there

exists a transformation T such that

MC∗(Q,Xs) = T (MC(Q,Xs)) .

and

P (Q,Xd) + θ∗Q
∂P

∂Q
(Q,Xd) = T

(
P (Q,Xd) + θQ

∂P

∂Q
(Q,Xd)

)
.

Then, suppose also that an equilibrium quantity Qe satisfies the equilibrium condition under E . When

we have that for E∗,

P (Qe,Xd) + θ∗Qe ∂P

∂Q
(Qe,Xd)−MC∗(Qe,Xs)

= T

(
P (Qe,Xd) + θQe ∂P

∂Q
(Qe,Xd)

)
− T (MC(Qe,Xs)) = 0,

then Qe also satisfies the equilibrium condition under E∗, and hence the non-identification holds. In fact,

under the inverse demand function (5), we can construct such transformation T by using (8). Therefore,

14



we can have the following sufficient condition for the non-identification:

Lemma 5. Given the inverse demand function (5) where α ̸= −1
θ , given a conduct parameter and

a marginal cost function, we can construct another pair of a conduct parameter and a marginal cost

function that leads to the same equilibrium point for any value of demand shifters and cost shifters.

Therefore, non-identification of the conduct parameter and the marginal cost function holds.

The proof is given in Appendix A. While Lau shows the separable inverse demand function is also a

sufficient condition for non-identification, his sufficiency proof is incomplete because it can be verified

that his proof implicitly assumes that there exists a transformation T under a separable inverse demand

function (2). However, the separability itself does not guarantee the existence of the transformation. In

contrast, Lemma 5 shows that the inverse demand function without any demand rotation instrument can

lead to a transformation that leads to non-identification.

3.5 Discussion

Rethinking the role of demand rotation instruments: Lemma 4 emphasizes the role of demand rota-

tion instruments. Intuitively, when a change in a demand shifter keeps the equilibrium quantity the same,

we have two equilibrium conditions:

P (Q,Xd) + θQ
∂P

∂Q
(Q,Xd) = MC(Q,Xs)

P (Q, X̃d) + θQ
∂P

∂Q
(Q, X̃d) = MC(Q,Xs)

Here, we have two equations and two unknowns (θ,MC(Q,Xs)), and hence we can solve the system of

equation with respect to the conduct parameter and the marginal cost function. Therefore, the existence

of a demand shifter that keep the equilibrium quantity the same is confirmed as the sufficient condition

for the identification in more general setting.

To build intuition for how the instrument relates to the proof, consider an economy with a linear

inverse demand with a demand rotation instrument and a linear marginal cost. Bresnahan (1982) con-

siders this environment. Then, assume that the true conduct is the perfect competition, that is, θ = 0,

and the alternative conduct is the monopoly, that is, θ∗ = 1. Figure 1 illustrates this environment. Note

that the equilibrium quantity under perfect competition is determined by the intersection of the inverse

demand function and the marginal cost function MC. The equilibrium quantity under the monopoly is

determined by the intersection of the marginal revenue MR∗ and the marginal cost function MC∗.

In Figure 1a, the perfect competition and the monopoly lead to the same equilibrium E. Then,

consider the change in a demand rotation instrument. In Figure 1b, the demand rotation instrument

changes the intercept and slope of the demand function without changing the equilibrium point under the

true model. Under the monopoly, the new equilibrium point is E∗, which is different from E, and hence

the observational equivalence is violated. To obtain the same equilibrium after the change in the demand
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Q

P

D

MR∗

MC

MC∗
E

(a) Step 1: Observable equivalence holds.

Q

P

D

MR∗

MC

MC∗
E

E∗

(b) Step 2: Demand rotation changes D and MR∗

Q

P

D

MR∗

MC

MC∗

E = E∗

(c) Step 3.1: The intercept of MC∗ changes along
with the demand rotation to keep E = E∗.

Q

P

D

MR∗

MC

MC∗

E = E∗

(d) Step 3.2: The slope of MC∗ changes along with
the demand rotation to keep E = E∗.

Figure 1: Intuition of the role of the demand rotation instrument and identification
Note: The figures illustrate the intuition of how the demand rotation instrument works to identify the conduct parameter. MC
is the true marginal cost function, and MC∗ is the marginal cost function that rationalizes the monopoly conduct. Step 1
illustrates that the monopoly and the perfect competition are observationally equivalent. In step 2, the demand rotation changes
the intercept and slope of the demand function without changing the equilibrium point under the perfect competition, but
changes the equilibrium point under the monopoly. Step 3 illustrates that to keep the equilibrium point under the monopoly,
MC∗ should change along with the demand rotation, which is impossible because the marginal cost function is independent of
the demand shifter.
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rotation instrument (E = E∗), MC∗ should shift as in Figures 1c and 1d. Note that we changed only the

demand shifter, and hence the cost shifter is unchanged. Thus, for the observational equivalence to hold,

the shift in MC∗ should be derived from the change in the demand rotation instrument, which implies

that MC∗ is a function of the demand shifter. However, this is impossible because it violates Assumption

1, that is, the demand shifter should not affect the marginal cost function. The transformation in Lemma

2 clearly shows the possibility of the dependence of the marginal cost function on demand shifters, and

hence we need to shut down the effect of demand shifters, which leads to the inverse demand function

(5).

The technical problem in Lau’s proof: To show Claim 1, Lau follows the same logic as in Lemma 1,

but he obtains a slightly different equation from (7):

∂MC∗

∂Xs
j

(Q,Xs) = µ(Q,Xs)∂MC

∂Xs
j

(Q,Xs), ∀Q,Xs, (13)

where µ(Q,Xs) depends only on Q and Xs. This corresponds to Equation (15) in Lau (1982). Then he

concludes that there is a transformation T such that

MC∗(Qe,Xs) = T (MC(Qe,Xs), Qe).

The existence of the transformation T is shown by integrating (13) with respect to the cost shifter when

it is a scalar, and by applying Lemma B.1 from Goldman and Uzawa (1964) when the cost shifter is a

vector. Note also that in our approach, both (6) and (7) are necessary to derive the transformation between

marginal cost functions. In contrast, while Lau derives both equations (6) and (7) in his proof, he relies

solely on (7) to show the non-identification.

While Lau does not explicitly define µ in his formulation, it can be verified that his µ corresponds

to our λ. However, he neglects a point that the function µ depends on the demand shifter Xd, and

this dependence is not addressed in his analysis. As long as the effect of the demand shifter cannot be

eliminated from µ, the transformation T between MC and MC∗ could depend on Xd, which violates

Assumption 1. Additionally, separability does not resolve the dependence of µ on the demand shifter.

Unfortunately, Lau does not provide a justification for why he can assume that the effect of the demand

shifter can be removed from µ, and hence it leaves a critical gap in the argument. Additionally, Lau only

assumes that the inverse demand functions are twice continuously differentiable, which allows him to

apply Lemma B.1 to justify the existence of the transformation T . However, to eliminate the effect of

Xd from µ, it is necessary to differentiate µ with respect to Xd and require that the derivative is equal to

zero as in our analysis. This step, in turn, requires that the inverse demand function be at least three-times

continuously differentiable as in our proof. Therefore, twice-continuous differentiability is not enough

to characterize the non-identification.
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4 Other Discussions

Relationship with Firm Conduct Test In recent years, several papers have developed tests for firm

conduct (Backus, Conlon and Sinkinson 2021, Duarte, Magnolfi, Sølvsten and Sullivan 2024) that com-

pare two different models and statistically determine which firm conduct is close to the true firm conduct.

Dearing et al. (2024) investigate the mechanism how instrument variables can distinguish the true firm

conduct by focusing on pass-through. Magnolfi and Sullivan (2022) clarify when firm conduct test out-

performs firm conduct estimation. While these papers consider differentiated-product markets, the logic

can be applied to homogeneous-product markets, and our result emphasizes that demand rotation instru-

ments are essential in firm conduct test.

The results so far hold whenever we adopt the conduct parameter approach. However, the conduct

parameter approach has been criticized on several fronts. In this section, we discuss its micro-foundations

and its empirical accuracy.

Micro-foundations of Conduct Parameter Approach The conduct parameter approach is based on

the conjectural variation model. In the conjectural variation model, each firm has a conjecture about

how the competitors will react to the firm’s action. A major problem of the conjectural variation model

is that the conjecture and the reaction function do not coincide at equilibrium. Bresnahan (1981, 1983)

propose a Consistent Conjecture Equilibrium (CCE) that requires the conjecture and the reaction function

to coincide at equilibrium. However, the existence and uniqueness of the CCE are not guaranteed in

general (Klemperer and Meyer 1988, Robson 1983).

Several alternative micro-foundations have been proposed. For example, Escrihuela-Villar (2015)

shows that the corporation coefficient approach is equivalent to the conjectural variation model in some

specific settings. In this model, each firm maximizes its profit plus the weighted sum of its competitors’

profits, where the weight is called the corporation coefficient. Menezes and Quiggin (2020) investigates

the supply function approach in which firms choose not a quantity but a supply schedule based on price.

Menezes and Quiggin (2023) show the relationship between the conduct parameter approach and the

supply function approach in a model with linear demand and linear marginal cost, and Menezes and

Quiggin (2020) briefly discuss how to estimate competitiveness given information on marginal cost.

Accuracy of the Conduct Parameter Approach While this paper focuses only on the identification

problem, Corts (1999) argues that the conduct parameter approach can be inaccurate when the data-

generating process lies outside the conduct parameter model. For example, while a repeated game model

can sustain the equilibrium quantity under joint-profit maximization, the conduct parameter estimate

could be biased away from θ = 1. As Corts (1999) and Magnolfi and Sullivan (2022) mention, this

criticism can be mitigated by assuming that the data-generating process is a static competition derived

from the equilibrium condition in (1).
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5 Conclusion

This paper revisited the identification of the conduct parameter in homogeneous product markets. In

the literature, Lau considers the identification problem in a fairly generalized setting. While Lau (1982)

characterizes the non-identification condition, we point out some problems in Lau’s paper and provide

a novel characterization of the non-identification condition. Based on the new characterization, we find

that the non-identification is equivalent to the absence of demand shifters that work as demand rotation

instruments proposed in Bresnahan (1982). We then consider the identification of all primitives in the

model and show that the inverse demand function that leads to the non-identification of the conduct

parameter and the marginal cost function cannot be identified, which immediately implies that the conduct

parameter and the marginal cost function are also not identified. Therefore, while a demand rotation

instrument is key for identifying the conduct parameter, identifying the entire model requires an inverse

demand function with a demand rotation instrument that is itself identifiable.
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Appendix

A Omitted Proofs

In this section, we provide the proofs of the lemmas and theorems in the main text. In what follows, we

suppress the arguments of functions when no confusion arises.

A.1 Proof of Lemma 1

Assume that given Xd and Xs, we can solve the equilibrium condition for the equilibrium quantity

Qe. The non-identification implies that the reduced form quantity Qe = hq(Xd,Xs) = h∗q(Xd,Xs)

satisfies

P (Qe,Xd) + θQe ∂P

∂Q
(Qe,Xd) = MC(Qe,Xs). (14)

and

P (Qe,Xd) + θ∗Qe ∂P

∂Q
(Qe,Xd) = MC∗(Qe,Xs), (15)

for any Xd and Xs. For notational simplicity, we define

F (Qe,Xd,Xs; θ,MC) ≡ P (Qe,Xd) + θQe ∂P

∂Q
(Qe,Xd)−MC(Qe,Xs).

Then, by Assumption 4, we can apply the implicit function theorem, and for the reduced-form equation

Qe = hq(Xd,Xs), the gradient of the reduced-form function hq with respect to Xd and Xs is given by

∇hq(Xd,Xs) =

−
∂F

∂Xm
i
(hq(Xd,Xs),Xd,Xs)

∂F
∂Q(hq(Xd,Xs),Xd,Xs)


m=d,s

i=1,...,Km

. (16)

The derivatives of F for each variable are for i = 1, . . . ,Kd and i = 1, . . . ,Ks,

∂F

∂Xd
i

(Qe,Xd,Xs; θ,MC) = ∂P

∂Xd
i

(Qe,Xd) + θ
∂2P

∂Xd
i ∂Q

(Qe,Xd)Qe,

∂F

∂Xs
i

(Qe,Xd,Xs; θ,MC) = −∂MC

∂Xs
i

(Qe,Xs),

∂F

∂Q
(Qe,Xd,Xs; θ,MC) = (1 + θ)∂P

∂Q
(Qe,Xd) + θQe ∂

2P

∂Q2 (Q
e,Xd)− ∂MC

∂Q
(Qe,Xs).
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Thus, the derivative of h with respect to Xd
i and Xs

i are given as for i = 1, . . . ,Kd and i = 1, . . . ,Ks,

∂hq

∂Xd
i

(Xd,Xs) = −
∂P
∂Xd

i

(Qe,Xd) + θQe ∂2P
∂Xd

i ∂Q
(Qe,Xd)

(1 + θ)∂P∂Q(Qe,Xd) + θQe ∂2P
∂Q2 (Qe,Xd)− ∂MC

∂Q (Qe,Xs)
,

and

∂hq
∂Xs

i

(Xd,Xs) =
∂MC
∂Xs

i
(Qe,Xs)

(1 + θ)∂P∂Q(Qe,Xd) + θQe ∂2P
∂Q2 (Qe,Xd)− ∂MC

∂Q (Qe,Xs)
.

Note that the same argument can be applied to the equilibrium condition (15) of the alternative model.

Recall that the non-identification implies that Qe = hq(Xd,Xs) = h∗q(Xd,Xs) for all Xd and Xs,

and hence we must have

∇h∗q(Xd,Xs) = ∇hq(Xd,Xs) ∀Xd,Xs.

From (16), this implies that for all Qe, Xd, and Xs,

∂F
∂Xd

1
(Qe,Xd,Xs; θ∗,MC∗)

...
∂F

∂Xd
Kd

(Qe,Xd,Xs; θ∗,MC∗)

∂F
∂Xs

1
(Qe,Xd,Xs; θ∗,MC∗)

...
∂F

∂Xs
Ks

(Qe,Xd,Xs; θ∗,MC∗)


= λ(Qe,Xd,Xs)



∂F
∂Xd

1
(Qe,Xd,Xs; θ,MC)

...
∂F

∂Xd
Kd

(Qe,Xd,Xs; θ,MC)

∂F
∂Xs

1
(Qe,Xd,Xs; θ,MC)

...
∂F

∂Xs
Ks

(Qe,Xd,Xs; θ,MC)


, (17)

where λ(Qe,Xd,Xs) is defined as

λ(Qe,Xd,Xs) ≡
(1 + θ∗)∂P∂Q(Qe,Xd) + θ∗Qe ∂2P

∂Q2 (Qe,Xd)− ∂MC∗

∂Q (Qe,Xs)

(1 + θ)∂P∂Q(Qe,Xd) + θQe ∂2P
∂Q2 (Qe,Xd)− ∂MC

∂Q (Qe,Xs)
.

Assumption 4 guarantees that λ(Qe,Xd,Xs) is nonzero and finite. From the first Kd rows in (17), (6)

and for the later Ks rows, (7) hold.
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A.2 Proof of Lemma 2

From (6), we have (we suppress the arguments of the functions for brevity)[
∂P

∂Xd
i

+ θ∗Qe ∂2P

∂Xd
i ∂Q

] [
(1 + θ)∂P

∂Q
+ θQe ∂

2P

∂Q2 − ∂MC

∂Q

]

=
[
∂P

∂Xd
i

+ θQe ∂2P

∂Xd
i ∂Q

] [
(1 + θ∗)∂P

∂Q
+ θ∗Qe ∂

2P

∂Q2 − ∂MC∗

∂Q

]
∂P
∂Xd

i

+ θ∗Q ∂2P
∂Xd

i ∂Q

∂P
∂Xd

i

+ θQ ∂2P
∂Xd

i ∂Q

[
(1 + θ)∂P

∂Q
+ θQe ∂

2P

∂Q2 − ∂MC

∂Q

]

=
[
(1 + θ∗)∂P

∂Q
+ θ∗Qe ∂

2P

∂Q2 − ∂MC∗

∂Q

]
∂MC∗

∂Q
= (1 + θ∗)∂P

∂Q
+ θ∗Qe ∂

2P

∂Q2 − Ci(Q,Xd)
[
(1 + θ)∂P

∂Q
+ θQe ∂

2P

∂Q2

]
︸ ︷︷ ︸

(∗)

+Ci(Q,Xd)∂MC

∂Q
.

The terms in (∗) can be more simplified as

(1 + θ∗)∂P
∂Q

+ θ∗Q
∂2P

∂Q2 −
∂P
∂Xd

i

+ θ∗Q ∂2P
∂Xd

i ∂Q

∂P
∂Xd

i

+ θQ ∂2P
∂Xd

i ∂Q

[
(1 + θ)∂P

∂Q
+ θQ

∂2P

∂Q2

]

= 1
∂P
∂Xd

i

+ θ ∂2P
∂Xd

i ∂Q
Q

[(
(1 + θ∗)∂P

∂Q
+ θ∗Q

∂2P

∂Q2

)(
∂P

∂Xd
i

+ θQ
∂2P

∂Xd
i ∂Q

)

−
(
(1 + θ)∂P

∂Q
+ θQ

∂2P

∂Q2

)(
∂P

∂Xd
i

+ θ∗Q
∂2P

∂Xd
i ∂Q

)]

= θ∗ − θ
∂P
∂Xd

i

+ θ ∂2P
∂Xd

i ∂Q
Q

[
∂P

∂Q

∂P

∂Xd
i

+Q
∂P

∂Xd
i

∂2P

∂2Q
−Q

∂P

∂Q

∂2P

∂Xd
i ∂Q

]
,

which corresponds to Di(Q,Xd) in (10), and hence we have

∂MC∗

∂Q
(Q,Xs) = Di(Q,Xd) + Ci(Q,Xd)∂MC

∂Q
(Q,Xs).

Next, (6) and (7) imply that for i = 1, . . . ,Kd and j = 1, . . . ,Ks,

λ(Qe,Xd,Xs) =
∂MC∗

∂Xs
j
(Qe,Xs)

∂MC
∂Xs

j
(Qe,Xs)

=
∂P
∂Xd

i

(Qe,Xd) + θ∗Qe ∂2P
∂Xd

i ∂Q
(Qe,Xd)

∂P
∂Xd

i

(Qe,Xd) + θQe ∂2P
∂Xd

i ∂Q
(Qe,Xd)

≡ Ci(Q,Xd),

Then, we have

∂MC∗

∂Xs
j

(Q,Xs) = Ci(Q,Xd)∂MC

∂Xs
j

(Q,Xs).
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A.3 Proof of Lemma 3

Let ui(Q,Xd) ≡ ∂P
∂Xd

i

(Q,Xd). Due to Assumption 2, we have that ui(Q,Xd) ̸= 0 for all Q and Xd.

Note that when θ = 0, (11) implies that ui(Q,Xd) = 0 for all i ∈ I, which cannot be held because

of Assumption 2. Therefore, θ ̸= 0 to have (11). Additionally, (11) is reduced to ui(0,Xd) = 0 when

Q = 0. Again, this cannot hold because of Assumption 2. Thus, we characterize the inverse demand

function where (11) holds only on Q > 0 and θ ̸= 0.

Rewrite (11) for i ∈ I as

∂ui
∂Q (Q,Xd)
ui(Q,Xd)

= − 1
θQ

=⇒ ∂

∂Q
log |ui(Q,Xd)| = − 1

θQ
.

By integrating both sides with respect to Q, we have

log |ui(Q,Xd)| = −1
θ
logQ+Ri(Xd),

where Ri(Xd) is a function of Xd. By taking the exponential of both sides, we have

|ui(Q,Xd)| = Q− 1
θ ri(Xd),

where ri(Xd) = exp(Ri(Xd)). Note that we can remove the absolute value for Q because it can be

assumed that Q ≥ 0. By removing the absolute value operator for ui, we have two solutions

ui(Q,Xd) = ±Q− 1
θ ri(Xd).

Because ri is an arbitrary function, we can unify these solutions and can simply put the solution as

ui(Q,Xd) = Q− 1
θ ri(Xd).

This implies that the derivative of P with respect to Xd
i is a separable function of Q and Xd. Hence, it

is natural to think that ri(Xd) is a derivative of a function of Xd with respect to Xd
i . In other words,

there is a function r(Xd) of Xd such that ri(Xd) = ∂r(Xd)
∂Xd

i

holds. Therefore, we have for i ∈ I,

ui(Q,Xd) = ∂r(Xd)
∂Xd

i

Q− 1
θ .

By integrating both sides with respect to Xd
i , we have

P (Q,Xd) = Q− 1
θ r(Xd) + si(Q,Xd

−i), i ∈ I, (18)

where si(Q,Xd
−i) is a function of Q and Xd

−i where Xd
−i is the vector of Xd excluding Xd

i . To meet
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Assumption 3, we must have that r(Xd) and si(Q,Xd
−i) are at least twice-continuously differentiable.

When Xd is a scalar or when Xd is a vector but |I| ≥ Kd − 1, there is no argument in Xd
−i, and

hence we can remove the index of i from the function si. Therefore, s(Q,Xd
−i) = s(Q) holds, and hence

we have (12). When Xd is a vector and Kd − 2 ≥ |I| ≥ 2, we can remove the index i from si in the

following way. Pick up any i and j in I such that i ̸= j, and then the derivative of (18) with respect to

Xd
j is given by

∂P

∂Xd
j

(Q,Xd) = ∂r(Xd)
∂Xd

j

Q− 1
θ +

∂si(Q,Xd
−i)

∂Xd
j

,

and

∂P

∂Xd
j

(Q,Xd) = ∂r(Xd)
∂Xd

j

Q− 1
θ .

Since sj is a function of the demand shifters without Xj , we do not have the term relating to sj in the

second equation. Therefore, by comparing the above two equations, we can conclude that the second

term in the first equation vanishes:

∂si(Q,Xd
−i)

∂Xd
j

= 0,

which implies that si(Q,Xd
−i) is independent of Xd

j . By applying the same argument to all i ∈ I, we

can show that si(Q,Xd
−i) is independent of the demand shifters whose indices are in I. That is, we can

reduce si(Q,Xd
−i) to si(Q,Xd

−I) where Xd
−I is the vector of Xd excluding the demand shifters whose

indices are in I. Then, by comparing (18) for all i ∈ I, we have

si(Q,Xd
−I) = sj(Q,Xd

−I),

for all i, j ∈ I. This leads to the symmetry of si for all i ∈ I, which implies that s(Q,Xd
−I) =

si(Q,Xd
−I) for all i ∈ I. Therefore, we can write the inverse demand function as

P (Q,Xd) = Q− 1
θ r(Xd) + s(Q,Xd

−I).

When |I| = 1, we have Xd
−I = Xd

−i, and hence we can keep the index for si, but it is also fine to write

it as s(Q,Xd
−i) = si(Q,Xd

−i).

Note that when Q = 0, we have that

ui(0,Xd) = 0−
1
θ ri(Xd) = ∞,

because −1
θ < 0. This is consistent with the argument that (11) does not hold at Q = 0. Thus, we have
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characterized the inverse demand function where (11) holds.

A.4 Proof of Lemma 4

Because Ci(Q,Xd) and Di(Q,Xd) should be independent of Xd simultaneously, we can first charac-

terize the class of inverse demand functions that make Ci(Q,Xd) independent of Xd. Then, we char-

acterize the class of inverse demand functions that make Di(Q,Xd) independent of Xd by substituting

the derived inverse demand function into Di(Q,Xd).

Step 1: Necessity for Ci is independent of Xd

When Ci(Q,Xd) is independent of Xd, the derivative of Ci(Q,Xd) with respect to Xd is zero. Let

ui(Q,Xd) ≡ ∂P
∂Xd

i

(Q,Xd). Due to Assumption 2, we have that ui(Q,Xd) ̸= 0 for all Q and Xd. Then,

the derivative of Ci with respect to Xd
j for j = 1, . . . ,Kd is given by

∂Ci

∂Xd
j

(Q,Xd) = (θ∗ − θ)Q(
ui + θQ∂ui

∂Q

)2
[

∂ui

∂Xd
j ∂Q

ui −
∂ui
∂Q

∂ui

∂Xd
j

]
.

Note that because (11) does not hold, the denominator is not zero. As θ ̸= θ∗, the derivative becomes

zero when (1) Q = 0 or (2) the term in the bracket is zero. In the first case, for arbitrary inverse demand

function, Ci is independent of Xd. Therefore, we focus on the second case for Q > 0. Note that the

bracket term is a partial differential equation:

∂ui

∂Xd
j ∂Q

ui −
∂ui
∂Q

∂ui

∂Xd
j

= 0. (19)

Now, instead of using (19) directly, we use the following relationship:

∂2

∂Xd
j ∂Q

log |ui(Q,Xd)| = ∂

∂Q

(
1
ui

∂ui

∂Xd
j

)
= 1

u2i

(
ui

∂2ui

∂Xd
j ∂Q

− ∂ui

∂Xd
j

∂ui
∂Q

)
.

Note that the assumption ui ̸= 0 implies that the inside of the log function is not zero and the denominator

in the last equality is not zero. Therefore, to check the independence of Ci with respect to Xd, it is

sufficient to solve the following partial differential equation such that

∂2

∂Xd
j ∂Q

log |ui(Q,Xd)| = 0, i, j = 1, . . . ,Kd.

This implies that ∂
∂Q log |ui(Q,Xd)| is independent of any element in Xd, and hence we have a function

G(Q) such that

∂

∂Q
log |ui(Q,Xd)| = G(Q).
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By integrating both sides with respect to Q, we have for i = 1, . . . ,Kd,

log |ui(Q,Xd)| =
∫

G(Q)dQ+Ri(Xd),

where the last term is a function that is an analogue of the constant of integration. By taking exponential

on both sides, we have for i = 1, . . . ,Kd,

|ui(Q,Xd)| = g(Q)ri(Xd)

where ri(Xd) ≡ exp(Ri(Xd)) and g(Q) = exp
(∫

G(Q)dQ
)
. This has two solutions, but again,

because ri is an arbitrary function, we can unify these solutions and put the solution as

ui(Q,Xd) = g(Q)ri(Xd).

Because ui is a separable function of Q and Xd, it is natural to think that ri(Xd) is a derivative

of a function of Xd with respect to Xd
i . In other words, there is a function r(Xd) of Xd such that

ri(Xd) = ∂r(Xd)
∂Xd

i

holds. Therefore, we have

ui(Q,Xd) = ∂r(Xd)
∂Xd

i

g(Q).

Integrating both sides with respect to Xd
i , we have

P (Q,Xd) = g(Q)r(Xd) + si(Q,Xd
−i), i = 1, . . . ,Kd, (20)

where si(Q,Xd
−i) is an arbitrary function of Q and Xd

−i where Xd
−i is the vector of Xd excluding

Xd
i . To meet Assumption 3, we must have that R(Xd) and si(Q,Xd

−i) are at least twice-continuously

differentiable and g(Q) is at least continuously differentiable.

We can remove the index of si in the following way. Pick up any i, and then the derivative of (20)

with respect to Xd
i is given by

∂P

∂Xd
i

(Q,Xd) = ∂r(Xd)
∂Xd

i

g(Q) +
∂si(Q,Xd

−i)
∂Xd

i

= ∂r(Xd)
∂Xd

i

g(Q),

and for any other j ̸= i, the same derivative is given by

∂P

∂Xd
i

(Q,Xd) = ∂r(Xd)
∂Xd

i

g(Q) +
∂sj(Q,Xd

−j)
∂Xd

i

.
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These imply that

∂sj(Q,Xd
−j)

∂Xd
i

= 0 for all j ̸= i.

Therefore, sj(Q,Xd
−j) is independent of Xd

i , and hence sj is independent of Xd
j and Xd

i . By applying

the same argument to all i = 1, . . . ,Kd, we can show that si(Q,Xd
−i) is independent of all elements in

Xd
−i, that is, si(Q,Xd

−i) = si(Q) for all i = 1, . . . ,Kd.

By comparing (20) for all i = 1, . . . ,Kd, it is easy to see that si(Q) = sj(Q) for all i, j = 1, . . . ,Kd.

Therefore, we have a symmetry of si for all i = 1, . . . ,Kd, that is, si(Q) = s(Q) for all i = 1, . . . ,Kd.

Thus, P (Q,Xd) must be of the form

P (Q,Xd) = g(Q)r(Xd) + s(Q). (21)

Note that when g(Q) = 0 for any Q > 0, the inverse demand function depends only on the aggregate

quantity, which violate Assumption 2. Therefore, we assume that g(Q) ̸= 0 for all Q > 0.

Step 2: Necessity for Di is independent of Xd

Next, given the inverse demand function (21), we further specify the form of the inverse demand function

based on Di(Q,Xd). By substituting (21) into (10), we have

Di(Q,Xd) = θ∗ − θ

ri(Xd)(g(Q) + θQg′(Q))

[
(g′(Q)r(Xd) + s′(Q))g(Q)ri(Xd)

+Q(g′′(Q)r(Xd) + s′′(Q))g(Q)ri(Xd)

−Q(g′(Q)r(Xd) + s′(Q))g′(Q)ri(Xd)
]

= θ∗ − θ

g(Q) + θQg′(Q)

[
r(Xd)[g′(Q)g(Q) +Qg′′(Q)g(Q)−Q(g′(Q))2]

+ s′(Q)g(Q) +Qs′′(Q)g(Q)−Qs′(Q)g′(Q)
]
.

The dependence ofDi(Q,Xd) onXd comes only from the first term in the bracket. Therefore,Di(Q,Xd)

is independent of Xd if and only if

∂Di

∂Xd
j

(Q,Xd) =
(θ∗ − θ)rj(Xd)
g(Q) + θQg′(Q) [g

′(Q)g(Q) +Qg′′(Q)g(Q)−Q(g′(Q))2] = 0.

As Assumption 2 implies that rj(Xd) is nonzero, we must have the terms in the bracket to be zero:

g′(Q)g(Q) +Qg′′(Q)g(Q)−Q(g′(Q))2 = 0. (22)
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As g(Q) ̸= 0 for Q > 0, let v(Q) = g′(Q)
g(Q) . Because v′(Q) = g′′(Q)g(Q)−(g′(Q))2

g(Q)2 , dividing (22) by g(Q)2

gives

v(Q) +Qv′(Q) = 0. (23)

This is a first-order linear differential equation. To solve this differential equation, we consider two cases.

Case 1: v(Q) = 0 for all Q > 0. This happens when g(Q) is a constant. In this case, (22) holds

immediately, and hence (23) also holds. Let g(Q) = C for some nonzero constant C. Then, we have

P (Q,Xd) = Cr(Xd) + s(Q).

For simplicity, we can absorb the constant C into r(Xd) and s(Q), and hence we have

P (Q,Xd) = r(Xd) + s(Q). (24)

Case 2: v(Q) ̸= 0 for all Q > 0. In this case, (23) implies that

v′(Q)
v(Q) = − 1

Q
.

Then, it can be written as

d

dQ
log |v(Q)| = − d

dQ
logQ.

Integrating both sides with respect to Q, we have

log |v(Q)| = − logQ+ a1,

where a1 ∈ R is a constant. By taking the exponential of both sides, we have

|v(Q)| = α

Q
,

where α = exp(a1) is a positive constant. This has two solutions

v(Q) = g′(Q)
g(Q) = ±α

Q
.

Since α > 0, we redefine the constant as α ∈ R\{0} to absorb the sign into α. Then, we have

d

dQ
log |g(Q)| = α

d

dQ
logQ.
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Again, by integrating both sides with respect to Q, we have

log |g(Q)| = α logQ+ a2,

where a2 ∈ R is a constant. By taking the exponential of both sides, we have

|g(Q)| = α2Q
α,

where α2 = exp(a2) is a positive constant. Again, this has two solutions

g(Q) = ±α2Q
α.

Since α2 > 0, we can define α2 ∈ R\{0} to absorb the sign into α2. Therefore, when Ci and Di are

independent of Xd, the inverse demand function must be of the form

P (Q,Xd) = Qαr(Xd) + s(Q). (25)

Here, α2 is absorbed into r.

While α is nonzero in (25), by allowing that α = 0, it can include (24) as a special case. At the

same time, recall that we require that (11) does not hold for any i. However, when α = −1
θ , we have the

inverse demand function is equal to (12) where I = ∅, which implies that the conduct parameter and the

marginal cost function are identified. Therefore, we should have α ̸= −1
θ to ensure the non-identification

of the conduct parameter.

A.5 Proof of Lemma 5

From the proof of Lemma 4, we know that Ci and Di are independent of Xd under (5). Under the inverse

demand function (21), we have

Ĉi(Q,Xd) = Qαri(Xd) + θ∗αQαri(Xd)
Qαri(Xd) + θαQαri(Xd)

= 1 + θ∗α

1 + θα
.

and

D̂i(Q,Xd) = θ∗ − θ

Qα + θαQα

[
s′(Q)Qα +Qs′′(Q)Qα − s′(Q)αQα

]
= θ∗ − θ

1 + θα

[
d

dQ
Qs′(Q)− αs′(Q)

]
.

Then, consider a transformation of the derivative of a function f(Q,X) with respect to Q based on
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(8) such that

TQ (f(Q,X), Q) ≡ D̂i(Q,Xd) + Ĉi(Q,Xd) ∂f
∂Q

(Q,X)

= θ∗ − θ

1 + θα

[
d

dQ
Qs′(Q)− αs′(Q)

]
+ 1 + θ∗α

1 + θα

∂f

∂Q
(Q,X).

This can be integrated with respect to Q, and hence we obtain a transformation of f(Q,X) as

T (f(Q,X), Q) ≡ θ∗ − θ

1 + θα

[
Qs′(Q)− αs(Q)

]
+ 1 + θ∗α

1 + θα
f(Q,X).

Note that we assume the integral constant is zero for simplicity.

Define a marginal cost function MC∗ as

MC∗(Q,Xs) ≡ θ∗ − θ

1 + θα

[
Qs′(Q)− αs(Q)

]
+ 1 + θ∗α

1 + θα
MC(Q,Xs).

Then, by substituting the marginal revenue under θ into T , we can obtain the marginal revenue under θ∗:

θ∗ − θ

1 + θα

[
Qs′(Q)− αs(Q)

]
+ 1 + θ∗α

1 + θα

[
(1 + θα)Qαr(Xd) + s(Q) + θQs′(Q)

]
=(1 + θ∗α)Qαr(Xd) + (θ∗ − θ + (1 + θ∗α)θ)Qs′(Q) + (1 + θ∗α− (θ∗ − θ)α)s(Q)

1 + θα

=(1 + θ∗α)Qαr(Xd) + (1 + θα)s(Q) + θ∗(1 + θα)Qs′(Q)
1 + θα

=(1 + θ∗α)Qαr(Xd) + s(Q) + θ∗Qs′(Q).

Then, suppose that Qe satisfies the equilibrium condition under (θ,MC). Then, by using the definition

of MC∗ and the above observation on the marginal revenue, we can confirm that Qe also satisfies the

equilibrium condition under (θ∗,MC∗):

P (Qe,Xd) + θ∗Qe ∂P

∂Q
(Qe,Xd)−MC∗(Qe,Xs)

= θ∗ − θ

1 + θα

[
Qs′(Q)− αs(Q)

]
+ 1 + θ∗α

1 + θα

[
(1 + θα)Qαr(Xd) + s(Q) + θQs′(Q)

]
− θ∗ − θ

1 + θα

[
Qs′(Q)− αs(Q)

]
− 1 + θ∗α

1 + θα
MC(Qe,Xs)

=1 + θ∗α

1 + θα

[
(1 + θα)Qαr(Xd) + s(Q) + θ∗Qs′(Q)−MC(Qe,Xs)

]
= 0.

The last equality holds because Qe satisfies the equilibrium condition under (θ,MC). Therefore, the

two models are observationally equivalent, which implies that the non-identification holds.
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B Summary of Goldman and Uzawa (1964)

Let n be the number of variables and x = (x1, . . . , xn) be a vector of n variables. Consider a partition

of X into K parts, {x1, . . . , xK} such that X =
⋃K

k=1 x
k and xk ∩ xl = ∅ for k ̸= l.

Definition B.1. A function is weakly separable with respect to the partition if

∂

∂xl

 ∂f
∂xi

(x1, . . . , xK)
∂f
∂xj

(x1, . . . , xK)

 = 0, i, j ∈ xk, l /∈ xk.

This implies that the ratio of the derivative with respect to xi and xj , which are in the same category,

is not affected by the change in the variables in other partitions. Intuitively, by taking the ratio, the

component of f relating to xl is canceled out, and hence the derivative of the ratio with respect to xl

becomes zero. When f is a utility function, this implies that the marginal rate of substitution between

commodity i and j in the same partition is independent of the quantities of commodities outside xk.

Then, Goldman and Uzawa (1964) specifies the functional form that a weak separable function should

satisfy.

Theorem B.1. A function f(x) is weakly separable with respect to a partition {x1, ..., xK} if and only

if f(x) is of the form:

f(X) = Φ(r1(x1), . . . , rK(xK))

where Φ(r1, . . . , rK) is a function of K variables and, for each k, rk(xk) is a function of subvector xk

alone.

The next lemma is a key lemma in Lau’s proof.

Lemma B.1. Let f(x) and g(x) be two continuously twice-differentiable functions of n variables x =

(x1, . . . , xn). If each indifference surface is connected, and if there exists a function λ(x) such that

∂f

∂xi
(x) = λ(x) ∂g

∂xi
(x), i = 1, . . . , n, for all x, (26)

then f(x) is a transformation of g(x); namely, there exists a function T of one variable such that

f(x) = T (g(x)) for all x.

Hence, in particular, the function λ(x) satisfying (26) must be of the form:

λ(x) = Λ(g(x)) for all x,

with some function Λ of one variable.
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If there is a function T such that f(x) = T (g(x)), then by the chain rule, we have ∂f
∂xi

(x) =

T ′(g(x)) ∂g
∂xi

(x) where T ′ is the derivative of T . Thus, by defining λ(x) = T ′(g(x)), we have ∂f
∂xi

(x) =

λ(x) ∂g
∂xi

(x). Intuitively, the lemma implies that the converse of the chain rule holds under additional

conditions.
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