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Abstract

We study efficient mechanism design for allocating multiple heterogeneous objects.

The aim is to maximize the residual surplus, the total value generated from an al-

location minus the costs of screening. We discover a robust trend indicating that

no-screening mechanisms, such as serial dictatorship with exogenous priority order,

tend to perform better as the variety of goods increases. We analyze the underlying

reasons by characterizing asymptotically efficient mechanisms in a stylized environ-

ment. We also apply an automated mechanism design approach to numerically derive

efficient mechanisms and validate the trend in general environments. Building on these

implications, we propose the register-invite-book system (RIB) as an efficient system

for scheduling vaccinations against pandemic diseases.
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1 Introduction

Policymakers often face the challenge of allocating scarce resources under conditions of information

asymmetry. The goal is to allocate goods to those with the highest valuations, but when tractable

and socially costless screening devices such as monetary transfers are unavailable, screening can

become costly. For example, first-come-first-served (FCFS) mechanisms give high-value agents

an incentive to claim the good immediately after distribution begins, wasting the effort of acting

early as ordeals. Conversely, lottery-based mechanisms prevent wasted effort but risk misallocating

goods. Maximizing social welfare (defined as residual surplus, the agents’ total payoffs from the

realized allocation minus wasted screening costs) requires balancing allocative efficiency against

wasted screening costs.

Despite its importance, the literature has largely solved problems only in single-dimensional

settings with homogeneous goods (Hartline and Roughgarden, 2008). Indeed, real-world problems

often involve multiple heterogeneous goods. The scheduling of vaccine appointments during the

COVID-19 pandemic was a prominent example—reservation slots, each of which specifies when,

where, and which vaccine will be administered, are highly heterogeneous goods, and potential

recipients have diverse preferences over slots. In such settings, agents’ effort influences not only

whether they secure a good but also which good they obtain. Since the efficient allocation of a large

number of heterogeneous goods has not been sufficiently established in the literature, economists

were unable to provide effective guidance on vaccine appointment scheduling. Consequently, various

uncoordinated methods were adopted worldwide, often leading to confusion.1

This paper explores efficient screening mechanisms for allocating heterogeneous objects. Agents

have multi-dimensional preferences over objects but only demand one item. They can signal their

preferences through costly effort, which serves as a form of payment. The central planner aims

to maximize residual surplus.2 Two prominent candidates are serial dictatorship with exogenous

order (SD), where agents sequentially choose their most preferred available goods without pay-

ing screening costs, and the Vickrey-Clarke-Groves mechanism (VCG), which achieves allocative

efficiency at the expense of high screening costs. Between these extremes, the planner has many

options for balancing screening costs and allocative efficiency. Characterizing optimal mechanisms

in this multi-dimensional setting is widely believed to be challenging.

This study uncovers a robust trend: as the variety of goods increases, no-screening mechanisms

like SD tend to become more efficient. Figure 1a illustrates this result. We consider a scenario

where 2K agents each demand a single unit among K heterogeneous objects, and each agent i’s

1As detailed in Section 5.2, numerous regions that adopted FCFS, including Florida, Massachusetts,
Washington, D.C., and many local governments in Japan, experienced severe competition for reservation
slots. By contrast, several countries and regions that adopted other systems (such as an invitation-based
system) experienced far fewer such disruptions.

2The environment is the assignment market originally studied by Koopmans and Beckmann (1957) and
Shapley and Shubik (1971), but our objective differs in that it is the residual surplus, where monetary
transfers are not zero-sum but burned.
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(a) Finite Market (Weibull with Parameter 0.8) (b) Continuous Market (Weibull with Parame-
ter 0.6)

Figure 1: The relationship between the variety of goods and the per-capita residual surplus
achieved by SD, VCG, and the (numerically) efficient mechanism.

value for object k, vik, is drawn i.i.d. from a Weibull distribution with parameter 0.8. The horizontal

axis of the figure represents the value of K, and the vertical axis shows the residual surplus per

agent. Under this distribution, when K = 1 (i.e., the single-good case), the optimality of VCG

has been proven by Hartline and Roughgarden (2008). However, for K ≥ 3, SD outperforms VCG,

and when K ≥ 6, the performance gap between SD and the mechanism designed by RegretNet

(Dütting et al., 2019), an automated mechanism design method for discovering efficient mechanisms,

becomes negligible. As K increases further, the performance of SD continues to improve, whereas

the performance gains of VCG taper off. This paper’s findings suggest that such trends will likely

hold in a wide range of environments.

Formally, this paper examines the impact of multiple goods on efficient mechanisms through

theoretical analysis, computational experiments, and real-world applications. First, we use ex-

treme value theory to analytically characterize behavior in a stylized environment, showing that

the performance of no-screening mechanisms improves as the number of goods increases. Sec-

ond, we employ automated mechanism design to explore efficient mechanisms numerically, in more

general settings, confirming the robustness of our findings. Third, we consider vaccine appoint-

ment scheduling during COVID-19, demonstrating that the register-invite-book system (RIB), an

SD-based implementation, effectively distributes heterogeneous reservation slots.

We begin with a stylized large market with a continuum of agents and objects, called a con-

tinuous i.i.d. market. Agents consume at most one object, and objects are divided into K < ∞
types with equal capacities. Each agent’s value for each object type is drawn i.i.d. from a marginal

distribution. We first demonstrate that this setup reduces the problem to a single-dimensional

environment, where each agent’s value corresponds to the largest order statistic—the highest value

among all K options (for a formal statement of this reduction including underlying assumptions,
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see Section 3 and Theorem 1).

We analyze the reduced single-dimensional environment and the distribution of the largest

order statistic to characterize efficient mechanisms in the stylized environment. First, we prove

that in a single-dimensional environment, a no-screening mechanism is efficient if and only if the

value distribution satisfies the new better than used in expectation (NBUE) property. NBUE is a

weaker condition than increasing hazard rate (IHR), shown as a sufficient condition by Hartline

and Roughgarden (2008). Second, we prove that, for any marginal value distribution, as the variety

of goods, K, increases, the distribution of the largest order statistic tends to satisfy NBUE and

IHR, implying that no-screening mechanisms become more likely to be efficient as the number of

goods grows. Third, using extreme value theory, we analyze the limit as the variety of goods K

approaches infinity. We show that in this limit, the no-screening mechanism is efficient for a broad

class of marginal distributions, and even when it is not, it is practically close to being efficient.

Figure 1b illustrates the observation for the continuous market. Parallel to the setting of

Figure 1a, there are K types of objects with an equal mass and agents whose mass is twice that

of the objects. Each agent i’s value for each object type k, vik, is independently drawn from a

Weibull distribution with parameter 0.6. We observe that the performance of SD improves as K

increases. For such a continuous market, we can also prove as a theorem that whenever the marginal

value distribution satisfies the von Mises condition with parameter 0 (von Mises, 1936), such as

the Weibull distribution (with any parameter), the performance ratio of SD to the exact efficient

mechanism converges to one. (The setting and results will be reviewed in Section 3.9.)

Analytical and even numerical analyses for finite markets with heterogeneous objects have been

known to be extremely challenging. Nevertheless, we leverage deep-learning techniques for auto-

mated mechanism design, which have recently been developed with a primary focus on revenue

maximization (Dütting et al., 2019), to derive mechanisms for maximizing residual surplus. Con-

sistent with the results from the analysis of stylized environments, we show that in these finite

markets, as the number of objects (or types of objects) increases, the performance of SD improves,

as depicted in Figure 1a.

We further conduct numerical analyses of cases with correlated values, which are practically

important but challenging for the application of extreme value theory.3 Correlation between values

assigned to different objects by a single agent (within-agent correlation) brings the situation closer

to a single-dimensional (i.e., homogeneous-good) environment, thereby weakening the effect that

the multiplicity of objects improves the performance of no-screening mechanisms. However, the

correlation between values assigned to a single object by different agents (between-agent correlation)

enhances the relative performance of no-screening mechanisms, as in such cases, the screening costs

outweigh the allocative benefits. While these types of correlations can either amplify or mitigate

the effects of increasing the variety of goods, they do not qualitatively impact the policy implication

3According to a review by Majumdar et al. (2020), except for cases with weakly correlated values—where
the correlation length is finite and a renormalization group-like argument can reduce the problem to that of
uncorrelated values—the behavior of the extreme value statistic in the limit is largely unknown.
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that the relative performance of SD improves as the variety of goods increases.

Our findings have significant implications for vaccine distribution during pandemics. During

COVID-19, many authorities used FCFS systems, leading to stress and inefficiency. By contrast,

SD-based systems, used in some (local) governments, including British Columbia and Singapore,

effectively allocated reservation slots without inducing wasted effort. We build on these successful

examples as well as the analytical and numerical results to establish the register-invite-book system

(RIB) for vaccine distribution. RIB maximizes residual surplus by eliminating screening while

maintaining the practical convenience of FCFS.

2 Related Literature

Maximizing residual surplus parallels designing mechanisms with monetary transfers, such as auc-

tions that maximize welfare while discarding payments. This problem, often called money burning,

has been studied extensively. For environments with homogeneous goods, (Hartline and Roughgar-

den, 2008; Yoon, 2011; Condorelli, 2012; Chakravarty and Kaplan, 2013) provide characterizations

of efficient mechanisms. More recent works, such as Akbarpour et al. (2023b) and Tokarski (2025a),

combine wasteful effort (ordeals) with other screening devices, such as payments or damages, to

propose mechanisms that screen not only for the need for the good but also simultaneously for

other private characteristics, including social welfare weights and the cost of completing the ordeal.

Dworczak (2025) studies the allocation of money under costly screening and derives conditions

under which ordeal mechanisms outperform lump-sum transfers due to redistributive concerns.

Yang (2024) shows that when the productive and cost components of agents’ types are positively

correlated, an optimal mechanism does not use ordeals.

However, characterizing optimal mechanisms for multi-dimensional types with multiple objects

remains challenging. While revenue maximization has received considerable attention, complete

characterization is analytically intractable, even in simple scenarios (Thanassoulis, 2004; Pycia,

2006; Manelli and Vincent, 2006). Because full characterizations in general environments are elu-

sive, the literature has focused on tractable special environments (McAfee and McMillan, 1988;

Pavlov, 2011; Daskalakis et al., 2015, 2017; Giannakopoulos and Koutsoupias, 2018; Haghpanah

and Hartline, 2021; Bikhchandani and Mishra, 2022; Ghili, 2023; Yang, 2025), approximately op-

timal mechanisms (Cai et al., 2012, 2016, 2019; Hart and Nisan, 2017), and worst-case optimal

mechanisms (Carroll, 2017; Deb and Roesler, 2021, 2023; Che and Zhong, 2021, 2024). Parallel to

revenue maximization, maximizing residual surplus in multi-object environments is complex. The

existing literature provides only partial characterizations, and typically only in restricted environ-

ments. For example, Tokarski (2025b) shows that when distributing two goods using deterministic

mechanisms, one can improve residual surplus by deliberately degrading the value of the goods.

Fotakis et al. (2016) and Goldner and Lundy (2024) propose approximation mechanisms with per-

formance guarantees. Although our characterization is also confined to a stylized environment, our
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results suggest that when the number and variety of goods are large, the efficient mechanism may

become relatively simple and practically implementable.

Reflecting the analytical difficulty of designing mechanisms for environments with multi-dimensional

types, methods for automated mechanism design have also advanced substantially (Sandholm, 2003;

Conitzer and Sandholm, 2004; Dütting et al., 2019). To our knowledge, our study is the first to

apply these methods to residual surplus maximization. It is also worth noting that our study

provides practical insights, whereas revenue-maximizing mechanisms are often impractical for real-

world implementation because they frequently have complex structures or are highly sensitive to

the environment.

Serial dictatorship (SD) mechanisms are well-studied for their desirable properties. Pycia and

Troyan (2024) demonstrate that the random serial dictatorship in sequential form is the only

mechanism that satisfies Pareto efficiency, symmetry, and obvious strategy-proofness (Li, 2017).

Bade (2015) demonstrate SD’s robustness when agents can acquire preference information, and

Hakimov et al. (2023) confirm its empirical effectiveness in school choice. Additionally, SD achieves

at least 1 − 1/e of the first-best matching size (Krysta et al., 2014; Noda, 2020) and prevents

scalping (Hakimov et al., 2021). Combining these advantages with our findings, SD is a promising

option for allocating many heterogeneous goods without payments.

Finally, research on medical resource allocation during crises has grown rapidly. Studies have

analyzed incentives for production (Ahuja et al., 2021; Castillo et al., 2021; Athey et al., 2022),

capacity design (Noda, 2018), priorities (Gans, 2022; Akbarpour et al., 2023a), and reserves (Pathak

et al., 2022, 2024). Our paper complements this literature by focusing on the downstream process

of vaccine distribution, offering practical insights for future public health crises.

3 Continuous Market

We first consider a large market where a continuum of agents demands a continuum of goods,

which can be classified into a finite variety of types. By imposing a few simplifying assumptions,

this market can be reduced to a well-characterized single-dimensional environment, allowing us to

analytically derive the efficient mechanism. We demonstrate that as the goods variety increases, the

relative performance of the no-screening mechanism improves. Then, we characterize the properties

of the efficient mechanism in the limit, using the insights from extreme value theory.

3.1 Model

There is a unit mass of a continuum of agents I := [0, 1] with a unit demand. Each object has

a type k ∈ K, where K is a finite set of object types. The mass of type-k objects is denoted by

mk ∈ R+. We denote the total mass of objects by m̄ :=
∑

k∈K mk.

Each agent is specified by their valuation vector, v = (vk)k∈K ∈ V ⊂ RK
+ , where vk denotes

this agent’s valuation for a type-k object. For notational simplicity, we omit the index specifying
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the agent’s identity; thus, v represents the valuation vector of a single agent, not their profile.

Agents can choose a payment (effort cost) level, and the central planner can observe it. Since efforts

(ordeals) are used just like payments, we refer to them simply as “payments,” whereas we emphasize

that all payments are burned without enriching the central planner as revenue. Accordingly, when

this agent obtains object k with probability xk ∈ [0, 1] for each k while making a payment of p, her

payoff is
∑

k∈K vkxk − p.

Throughout this section, we consider direct mechanisms that determine an allocation and pay-

ment based only on the agent’s own report and the distribution of the reported type profiles.4 This

restriction has two effects. First, we can drop an index representing the agent’s identity because

an agent’s identity does not alter the agent’s outcome. Second, in a continuous market, there is no

aggregate uncertainty, and thus the distribution of reported types remains constant in equilibrium.

Accordingly, we can also omit the other agents’ type reports (or their distribution) from the argu-

ments of the mechanism. A mechanism M is comprised of an allocation rule x : V → [0, 1]K and

a payment rule p : V → R+, where x(v) and p(v) are the respective allocation and payment when

the agent has a valuation v. Let F : V → [0, 1] be the cumulative distribution function of agents’

valuations. Our main measure of social welfare, residual surplus from a mechanism M = (x, p) is

defined as

RS(M) :=

∫
V

(∑
k∈K

vkxk(v)− p(v)

)
dF (v). (1)

In our setting, because payments are burned, the objective function (1) differs from the gross

surplus, social welfare considered in a setting with monetary transfers:

GS(x) :=

∫
V

∑
k∈K

vkxk(v)dF (v).

An allocation rule x is allocatively efficient if it maximizes the gross surplus.

Below, we list several constraints a mechanism must satisfy. A mechanism M satisfies the

resource constraint if, for each k, there is at most mass mk of agents who receive object k:∫
V
xk(v)dF (v) ≤ mk for all k ∈ K. (2)

A mechanism M is strategy-proof if there is no gain from misreporting:∑
k∈K

vkxk(v)− p(v) ≥
∑
k∈K

vkxk(v
′)− p(v′) for all v,v′ ∈ V. (3)

4This property is obtained in the continuous limit of a sequence of mechanisms satisfying Liu and Py-
cia’s (2016) regularity condition.
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A mechanism M is individually rational if no agent obtains a negative payoff:∑
k∈K

vkxk(v)− p(v) ≥ 0 for all v ∈ V. (4)

A mechanism M satisfies the unit demand condition if an agent obtains at most one object:∑
k∈K

xk(v) ≤ 1 for all v ∈ V. (5)

A mechanism M is efficient if it maximizes the residual surplus RS subject to all the above

constraints: the resource constraint, strategy-proofness, individual rationality, and unit demand.

3.2 Additional Restrictions for Analytical Tractability

For theoretical analyses, we make several additional simplifying assumptions to enable a closed-

form characterization of an efficient mechanism. Specifically, we assume that the set of all possible

valuations V can be written as V = [0, v̄]K , where v̄ ∈ R ∪ {+∞}, and there exists a marginal

value distribution G : [0, v̄] → [0, 1] such that the distribution function of valuation vectors, F , can

be written as a product of the G function: For all v = (vk)k∈K , we have F (v) =
∏

k∈K G(vk).

Throughout this paper, we assume that G has full support and is twice continuously differentiable.

The first and second-order derivative of G is written as g and g′, respectively. We further assume

that all object types have the same capacity; i.e., we set mk = m̄/K for all objects k ∈ K. We

focus on the case of m̄ ∈ (0, 1) to make the problem non-trivial. We refer to this environment as a

continuous i.i.d. market, which is parametrized by its marginal value distribution G, the cardinality

of object types, |K|, and the capacity parameter m̄. Slightly abusing notation, we denote K to

represent its cardinality |K| unless it causes confusion.5

We restrict our attention to symmetric mechanisms. We say that a mechanism is neutral if it

treats all objects symmetrically, without using their a priori labels.

Definition 1 (Neutrality). A mechanism M = (x, p) is neutral if for all permutations of objects

σ : K → K, we have

x(σ(v)) = σ(x(v)),

p(σ(v)) = p(v).

Since all objects are assumed to be symmetric, there always exists an efficient mechanism that

satisfies neutrality.

Proposition 1. In a continuous i.i.d. market, there exists an efficient and neutral mechanism.

5Appendix A.2 studies the case of asymmetric capacity.
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The proof is similar to that of Theorem 1 of Rahme et al. (2021).

The final assumption we impose for the theoretical analysis is ex post efficiency. A mechanism

is ex post (Pareto) efficient if the allocation resulting from the mechanism satisfies the property

that no group of agents can simply exchange objects (without monetary transfers) and still make

a mutual gain.

Definition 2 (Ex Post Efficiency). An allocation rule x is ex post efficient if there is no allocation

rule x′ that satisfies the following four conditions: (i) the resource constraint, (ii) the unit demand

condition, (iii)
∑

k∈K vkx
′
k(v) ≥

∑
k∈K vkxk(v) for all v ∈ V , and (iv) there exists V ′ ⊂ V such

that F (V ′) > 0 and
∑

k∈K vkx
′
k(v) >

∑
k∈K vkxk(v) for all v ∈ V ′.

In a continuous i.i.d. market, any finitely many type-level exchanges can be represented as a

measurable allocation rule that redistributes an arbitrarily small but positive mass of agents while

respecting feasibility and unit-demand constraints. Consequently, the absence of any such rule that

yields a pointwise improvement over x on a set of positive measure is equivalent to the absence

of profitable trades at the realized allocation. This establishes the correspondence between the

intuitive “no mutually beneficial exchanges” condition and Definition 2.

Although it is not clear a priori whether an optimal residual-surplus-maximizing mechanism

must satisfy ex post efficiency, restricting attention to ex post efficient mechanisms is well-motivated

for several reasons. First, in many practical environments, agents can reallocate resources through

informal swaps or secondary markets. If a mechanism generates allocations that are ex post in-

efficient, such off-mechanism trades will naturally occur, potentially undermining the intended

incentive properties or creating inequities among agents depending on their ability to coordinate

such trades. Second, ex post inefficiency is difficult to defend on normative grounds: if a group of

agents could all be made weakly better off through simple exchanges that leave all other agents

unaffected, it is hard to justify the original allocation as a policy recommendation.

We also note that, even without imposing neutrality or ex post efficiency, our automated

mechanism design computations consistently output mechanisms that satisfy ex post efficiency

up to numerical tolerances. This suggests that ex post efficiency emerges endogenously in optimal

residual-surplus–maximizing designs (at least in a certain class of environments).

3.3 Reduction to a Single-Dimensional Environment

Imposing neutrality and ex post efficiency removes the complexity arising from multidimensional

types and thereby greatly simplifies the analysis of the optimal mechanism. To achieve ex post

efficiency, we should allocate objects in such a way that agents receive their favorite one whenever

possible. In a continuous i.i.d. market, both the popularity and scarcity of objects are equal, and

neutrality requires the mechanism to allocate objects symmetrically. Accordingly, under a mech-

anism that is both neutral and ex post efficient, each agent faces only two possibilities: receiving

their favorite object or receiving nothing at all.
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Theorem 1. In a continuous i.i.d. market, if M = (x, p) is neutral and ex post efficient, then there

exists V ′ ⊂ V such that F (V ′) = 1 and xk(v) > 0 implies vk = maxl∈K vl for all v ∈ V ′.

Proofs are provided in Appendix B. This theorem holds only in the continuous i.i.d. market.

When the popularity or scarcity of objects is asymmetric, some agents may, of course, end up re-

ceiving unpopular or abundant objects, even if those are not their favorite ones. In finite markets,

objects symmetric ex ante may become asymmetric ex post, depending on realized preferences,

causing some agents to receive their second or lower choices. However, in broad environments,

agents tend to receive highly preferred objects when both goods and preferences are diverse. The-

orem 1 captures this insight in its most extreme yet tractable form. As we later show through

numerical analysis, the qualitative implications derived from the analysis of the continuous i.i.d.

market carry over to more general environments.

Due to Theorem 1, since each agent can only obtain their favorite object, valuations for other

objects can be disregarded. Thus, the problem can be reduced to a simpler environment with

single-dimensional types, which we call the reduced market. We denote each agent’s valuation for

the “single object” in the reduced market as v, and let GK be its distribution. The value v is

defined as the largest order statistic of valuations in the original market: v := maxk∈K vk. Thus,

we can derive its distribution GK using the marginal value distribution G as GK(v) := (G(v))K .

We refer to GK as the reduced value distribution. The “single object” in the reduced market has

capacity m̄, as it is the total capacity of the original environment. Slightly abusing the notation,

we use (x, p) to represent the allocation rule and the payment rule, whereas now x : [0, v̄] → [0, 1]

and p : [0, v̄] → R+ maps each agent’s value for the favorite object v to the probability that she

obtains her favorite good x(v) and her payment p(v), respectively.

The residual surplus maximization problem for the reduced market is expressed as follows.

max
(x,p)

∫ v̄

0
(vx(v)− p(v)) dGK(v)

s.t.

∫ v̄

0
x(v)dGK(v) = m̄, (Resource Constraint)

vx(v)− p(v) ≥ vx(v′)− p(v′) for all v, v′ ∈ [0, v̄], (Strategy-Proofness)

vx(v)− p(v) ≥ 0 for all v ∈ [0, v̄], (Individual Rationality)

x(v) ≤ 1 for all v ∈ [0, v̄]. (Unit Demand)

The solution is an efficient mechanism for a reduced market. It is straightforward to construct

the efficient mechanism in the original continuous i.i.d. market based on that solution. Letting

(xr, pr) be an efficient mechanism of the reduced problem, an efficient mechanism of the continuous

i.i.d. market, (xo, po), is given by xok(v) = xr(maxl∈K vl) if k = argmaxl∈K vl and xok(v) = 0

otherwise,6 and po(v) = pr(maxk∈K vk). Since k = argmaxl vl occurs with probability 1/K, we

6For simplicity of exposition, we ignore the case of ties, i.e., argmaxk∈K vk has multiple elements. Since
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have
∫
V xok(v)dF (v) = m̄/K for every k, implying that the original resource constraint is satisfied.

3.4 Mechanisms

No Screening/Serial Dictatorship For a reduced market, a no-screening mechanism is

defined as a mechanism that uniformly assigns the right to obtain the most preferred object with

probability m̄ ∈ (0, 1), requiring no payment. That is, x(v) = m̄ and p(v) = 0 for all v ∈ [0, v̄].

The residual surplus achieved under the no-screening mechanism is

RS(MSD) = m̄Ev∼GK
[v] = m̄

∫ v̄

0
vdGK(v).

The revenue equivalence theorem of Myerson (1981) implies that the gross surplus m̄E[v] cannot
be improved further without burning payments.

This result is achieved in a continuous i.i.d. market if we apply serial dictatorship (SD), in

which agents take their most preferred objects sequentially following an exogenous priority order.

In SD, the first m̄ agents of the priority order, facing all goods available, obtain their favorite

goods. Exactly when mass m̄ agents finish choosing, all goods are simultaneously exhausted, and

the remaining 1− m̄ agents receive nothing.7

Note that, besides SD, various no-screening mechanisms (e.g., the random favorite mechanism

discussed in Appendix A.2) yield an equivalent reduced mechanism to SD in a continuous i.i.d.

market.

Full Screening/VCG For a reduced market, a full-screening mechanism is defined as a mech-

anism that identifies agents’ values to achieve allocative efficiency, even at the cost of screening.

In the reduced market, the allocatively efficient allocation rule is to assign the right to obtain the

most preferred object with probability 1 to the agents with the highest value for a mass m̄ units,

while not allocating the good to any other agents; i.e., x(v) = 1 if v ≥ q and x(v) = 0 otherwise,

where q := G−1
K (1− m̄) is the (1− m̄)-quantile of the reduced value distribution GK . To implement

this allocation rule, the mechanism should require paying a price of q for allocated agents. The

residual surplus achieved under VCG is

RS(MV CG) = m̄Ev∼GK
[v − q|v > q] =

∫ v̄

q
(v − q) dGK(v).

The revenue equivalence theorem of Myerson (1981) implies that to achieve the gross surplus

m̄E[v|v ≥ q], each allocated agent needs to burn q; thus, the total expected burned payment is m̄q.

the probability of a tie is zero, any tie-breaking rule can be applied.
7Formally, the outcome of SD in a continuous environment is specified by an eating mechanism. While we

skip it because this paper does not intensively analyze the general continuous multidimensional environment,
interested readers should refer to Noda (2018). The asymptotic equivalence of (random) SD and an eating
mechanism is established by Che and Kojima (2010).
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For general environments, including finite environments and environments with continuous

agents and objects but non-i.i.d. values, the Vickrey-Clarke-Groves mechanism (VCG), which re-

quires each agent to pay their externality, achieves allocative efficiency. Furthermore, Green and

Laffont (1977, 1979); Holmström (1979) show that, under certain conditions, VCG is the unique

direct mechanism that achieves allocative efficiency even in environments with multi-dimensional

types.

Direct mechanisms such as VCG are not practically used in money-burning problems. However,

when indirect mechanisms are employed, the resulting equilibrium allocations often coincide with

or resemble those achieved by direct mechanisms. For example, during the COVID-19 pandemic,

FCFS was used to allocate vaccine reservation slots. Under this mechanism, agents who claim after

the distribution begins receive, in order of arrival, their most preferred goods among those still

available. If we formulate this as a problem where agents freely choose their payment (effort cost)

to claim earlier, then (i) agents who pay a higher payment are more likely to obtain goods, and (ii)

payments are made regardless of whether the good is obtained. In a reduced single-dimensional

market, this incentive structure is equivalent to an all-pay auction. In the reduced environment, an

all-pay auction implements the same allocation rule and expected utilities as the VCG by revenue

equivalence. Furthermore, whereas FCFS might yield a different outcome from VCG in general

environments, VCG, which achieves allocative efficiency, represents the opposite extreme of a no-

screening mechanism and serves as a useful benchmark.8

3.5 Characterizations of Efficient Mechanisms

Myerson (1981) proves that (i) an allocation rule can comprise a strategy-proof mechanism if and

only if x is monotonic (i.e., x(v′) ≥ x(v) for all v′ ≥ v), and (ii) if an allocation is nondecreasing,

strategy-proofness uniquely identifies the payment rule (up to constant). Using this approach,

Hartline and Roughgarden (2008) show that the expectation of the residual surplus is equal to the

expectation of the virtual valuation for utility ϑ under strategy-proofness (see their Lemma 2.6):

E[vx(v)− p(v)] =

∫ v̄

0
(vx(v)− p(v)) dGK(v) =

∫ v̄

0
ϑ(v;GK)x(v)dGK(v) = E[ϑ(v;GK)x(v)].

where

ϑ(v;GK) :=
1−GK(v)

gK(v)
.

In the context of revenue maximization, we exploit the relation of E[p(v)] = E[(v−ϑ(v;GK))x(v)] to

characterize an optimal mechanism. The value, v−ϑ(v;GK), is defined as the virtual valuation for

8In the finite market studied in Section 4, we assume finitely many agents and objects, unit demand,
and quasi-linear utility. This setting coincides with the assignment markets by Koopmans and Beckmann
(1957); Shapley and Shubik (1971). In this environment, it is also known from Crawford and Knoer (1981);
Demange et al. (1986) that dynamic auctions, which gradually raise the prices of over-demanded goods, can
find the allocation that maximizes gross surplus.
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payment. Since this paper’s focus is on residual-surplus maximization, we rather refer to ϑ(v;GK)

as the virtual valuation. Note that r(v;GK) = 1/ϑ(v;GK) = gK(v)/(1−GK(v)) is the hazard rate

function of the distribution GK .

The problem reduces to the maximization of E[ϑ(v)x(v)] subject to the resource constraint,

individual rationality, the unit demand condition, and monotonicity of x. To do so, we apply a

procedure called “ironing” (Myerson, 1981) to obtain a nondecreasing ironed virtual value function

ϑ̄(v;GK). Then, to derive an efficient mechanism, starting from higher values of v, we greedily

increase the allocation probabilities x(v) whereas assigning equal allocation probabilities within

intervals where ϑ̄(v;GK) is constant, until the resource constraint E[x(v)] ≤ m̄ becomes binding.

Below, we establish a primitive condition on the reduced value distribution GK that is necessary

and sufficient for a no-screening mechanism to be efficient. Specifically, we prove that the condition

is GK satisfying the new better than used in expectation (NBUE) property. To the best of our

knowledge, this paper is the first to characterize the equivalence between NBUE and constant

ironed virtual value, thereby establishing conditions for the optimality of no screening.

Definition 3. A distribution function G satisfies the new better than used in expectation property

(NBUE) if for all t ∈ (0, v̄), we have the following:

EG[v] ≥ EG[v − t|v > t]. (6)

NBUE, like the hazard rate, originates from the survival analysis literature. Consider the

lifetime v of a product, following a distribution G. The left-hand side of (6) represents the mean

residual life of a new product E[v], whereas the right-hand side is the mean residual life conditional

on survival up to age t, E[v− t|v > t]. NBUE requires that, for any t, a new product lasts longer in

expectation than a used product. Note that NBUE is weaker than the increasing hazard rate (IHR)

condition, which requires the hazard rate r(·;G) is nondecreasing. This is because IHR requires

that for all v, the product becomes increasingly likely to fail at v as time passes, whereas NBUE

only requires that the new product lasts longer in expectation.9

Theorem 2. The following two statements hold.

(i) If the reduced value distribution GK is NBUE, then for all m̄ ∈ (0, 1), a no-screening mecha-

nism is efficient.

(ii) If the reduced value distribution GK is not NBUE, then for all m̄ ∈ (0, 1), a no-screening

mechanism is not efficient.

Note that statement (ii) is stronger than the converse of statement (i), in the sense that the

quantifier over m̄ is “for all” rather than “there exists.” When the reduced value distribution GK

9We can easily construct examples of distributions that are NBUE but not IHR, by considering a distri-
bution whose hazard rate is generally increasing as a trend, yet has small intervals where it decreases.
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is not NBUE, we can improve residual surplus by screening out agents with sufficiently low values,

at least in a neighborhood of v = 0. As a result, regardless of the value of m̄ ∈ (0, 1), a no-screening

mechanism cannot be efficient.

The proof proceeds by carefully tracking the mathematical steps involved in the ironing proce-

dure. It is straightforward to see that NBUE is necessary for no screening to be efficient. Under

no screening, allocating one good randomly to an agent yields a residual surplus of E[v] (which is

the left-hand side of (6)). In contrast, if we use a take-it-or-leave-it offer requiring a payment t,

agents accept it if and only if their value v is larger than t. By making this offer to 1/Pr(v > t)

agents, the planner can allocate the good to one agent on average, generating a residual surplus of

E[v − t|v > t] (which is the right-hand side of (6)). Accordingly, if NBUE is violated, the planner

can outperform the no-screening mechanism by (partly) using take-it-or-leave-it offers. Theorem 2

demonstrates not only this necessity but also the sufficiency: when NBUE holds, no mechanism

can outperform no screening, for any capacity parameter m̄.10

Conversely, the following theorem demonstrates that the decreasing hazard rate (DHR) property

of the reduced value distribution GK , that is, its hazard rate r(·;GK) is nonincreasing, is essential

for the efficiency of full-screening mechanisms.

Theorem 3. The following two statements are equivalent.

(i) The reduced value distribution GK has a DHR.

(ii) For all m̄ ∈ (0, 1), a full-screening mechanism is efficient.

As previously described, an efficient mechanism is obtained by increasing x(v) from the highest

values of v. If, at the moment the resource constraint E[x(v)] ≤ m̄ becomes binding, the current v

does not belong to an interval where the ironed virtual value ϑ̄(v;GK) is flat, then full screening

is efficient. Thus, the absence of such intervals—equivalently, a nondecreasing virtual value—

is a sufficient condition for full screening efficiency.11 This condition corresponds exactly to the

distribution GK satisfying DHR. Conversely, if GK does not satisfy DHR, there must exist intervals

where the ironed virtual value is flat, implying the existence of some m̄ for which full screening is

inefficient. Note that full screening may still be efficient even when the ironed virtual value is flat

in the low-v region. Thus, DHR is not a necessary condition for full screening to be efficient for

some fixed m̄.

10As their Corollary 2.11, Hartline and Roughgarden (2008) provide IHR as a tractable sufficient condition
for no screening to be efficient in a finite market. However, since IHR is stronger than NBUE, IHR is not
necessary. Alternatively, while IHR is equivalent to a nonincreasing virtual value, this is only a loose sufficient
condition for a nonincreasing (constant) ironed virtual value, a property equivalent to NBUE.

11For a finite market, Hartline and Roughgarden (2008) proposes this sufficient condition as Corollary
2.12.
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3.6 Effects from Increasing Variety

In this section, we show that as the variety of objects K increases, the reduced value distribution

GK is more likely to satisfy conditions such as NBUE or IHR, which ensure the efficiency of no-

screening mechanisms.

First, we can show that NBUE, the necessary and sufficient condition for no screening to be

efficient, becomes easier to satisfy as the variety of objects K increases.

Theorem 4. Suppose that GK satisfies NBUE. Then, GK+1 also satisfies NBUE.

The intuition behind Theorem 4, based on the terminology of survival analysis, is as follows.

While G(v) represents the probability that a single product fails by time v, its largest order statistic

GK(v) represents the probability that all K products fail by time v. When calculating the mean

residual life of a product, we are guaranteed that all K products are initially functioning. In

contrast, when calculating the mean residual life after t periods of use, E[v|v > t], the condition

v > t merely indicates that the largest order statistic v = max{v1, . . . , vK} exceeds t, ensuring

only that at least one product remains functioning at time t. Even when conditioning on the

event “at least one product survives,” the number of surviving products tends to fall as time

t increases. Consequently, when the variety of goods K becomes larger, the mean residual life

increases substantially for t = 0, but this effect is smaller for large t. This makes the NBUE

condition more likely to hold when we have a larger K.

The following result is immediate from Theorems 2 and 4.

Corollary 1. Suppose that a no-screening mechanism is efficient in a continuous i.i.d. market

(G,K, m̄). Then, a no-screening mechanism is also efficient in a continuous i.i.d. market (G,K +

1, m̄).

Second, we can also show that as the variety of goods K increases, the region in which the

reduced value distribution has an IHR expands.

Theorem 5. Let r′(·;GK) be the derivative of r(·;GK) with respect to v. Then, r′(v;GK+1) ≥ 0

if r′(v;GK) ≥ 0. Furthermore, for all v ∈ (0, v̄), there exists K0 such that for all K > K0,

r′(v;GK) > 0.

Again, we describe the intuition using the terminology of survival analysis. The hazard rate of

GK indicates “the probability density of all K products failing exactly at time v, conditional on at

least one product surviving until then.” For all K products to fail at time v, exactly one product

must survive until just before v, with the remaining K − 1 products having already failed. This

condition is rarely satisfied with K > 1 when v is small but becomes increasingly likely as v grows

larger. Therefore, increasing the number of products K significantly reduces the hazard rate at

small v, while having only a limited effect at large v. As a result, a larger K makes GK more likely

to satisfy the IHR condition.
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(a) Normalized probability density (b) Derivative of the normalized hazard rate

Figure 2: The behavior of the distribution of the normalized largest order statistic (aKw+bK)
when the value distribution is the Weibull distribution with shape parameter 0.9. The
sequence (aK , bK) is shown in Appendix A.1.

Theorem 5 implies that, as the variety of goods increases, DHR becomes harder to satisfy,

making full screening less likely to be an efficient mechanism.

Corollary 2. For every marginal distribution function G, there exists K and m̄ such that full

screening is inefficient for a continuous i.i.d. market (G,K, m̄).

Remark 1. These analyses, based on the properties of distributions for largest order statistics,

strictly apply only to the continuous i.i.d. market, where agents have no chance of obtaining goods

other than their top choices. However, even when this strong assumption does not hold, if the

variety of goods is large and agent preferences are diverse, each agent typically receives one of

their highly preferred goods. In such cases, the distributions of these relevant order statistics

should closely resemble that of the largest order statistic. Indeed, numerical simulations show

qualitatively similar results even in finite markets (see Section 4).

The effect of increasing the variety of goods K on making GK satisfy NBUE or IHR is substan-

tial. Figure 2 illustrates the case of a Weibull distribution with parameter 0.9, which is globally

DHR. As shown in Panel 2b, the derivative of the hazard rate is negative everywhere when K = 1,

but becomes positive over a large region even with K = 2. At this point, a no-screening mechanism

already outperforms a full-screening mechanism. As K increases further, this region continues to

expand, and in the limit K → ∞, the distribution of the largest order statistic GK converges to

the Gumbel distribution, which is globally IHR.

3.7 Extreme Value Theory

We present the large-market results based on the asymptotic properties of the reduced value dis-

tribution GK in the limit of K → ∞. The limiting behavior of the largest order statistic has

16



been extensively analyzed in the literature of extreme value theory. We utilize these results to

characterize efficient mechanisms in the large-market limit.

Definition 4. Let G, H be distribution functions. We say that H is an extreme value distribution

and that G lies in its domain of attraction of H if G and H are nondegenerate and there exist a

sequence of constants (aK , bK)∞K=1 with aK > 0 for all K, such that ĜK(w) := GK(aKw + bK) →
H(w) as K → ∞ for all w at which H is continuous.

For notational simplicity, we define a normalized reduced value distribution ĜK and allocation

rule x̂ as ĜK(w) := GK(aKw + bK) and x̂(w) := x(aKw + bK). Since aK > 0, the residual surplus

maximization for ĜK is equivalent to that for GK .

When the number of object types K becomes sufficiently large, the shape of the reduced value

distribution GK becomes less dependent on the shape of the marginal value distribution, G. Conse-

quently, the limit distribution can only be either Gumbel, Fréchet, or reverse-Weibull distribution.

Proposition 2 (Fisher and Tippett (1928); Gnedenko (1943)). Only the Gumbel, Fréchet, and

reverse-Weibull distributions,

Λ(w) = exp(− exp(−w)), −∞ < w < ∞ (Gumbel)

Φα(w) = exp(−w−α), w ≥ 0, α > 0, (Fréchet)

Ψα(w) =

exp(−(−w)α) w < 0

1 w ≥ 0,
α > 0 (reverse-Weibull)

can be an extreme-value distribution.

For the proof of Proposition 2, see Theorems 1.1.3 and 1.1.6 of De Haan and Ferreira (2006).12

Theorem 1.1.6 of De Haan and Ferreira (2006) additionally implies that, whenever a distribution

function G belongs to the domain of attraction of Gumbel, ĜK(w) := GK(aKw+ bK) → Λ(w) with

aK = s(G−1(1− 1/K)), bK = G−1(1− 1/K), where s(v) =

∫ v̄
v (1−G(v′))dv′

1−G(v)
. (7)

Furthermore, whenever a distribution function G belongs to the domain of attraction of Fréchet

with shape parameter α, ĜK(w) := GK(aKw + bK) → Φα(w) with

aK = G−1(1− 1/K), bK = 0 (8)

Throughout the paper, when we refer to (aK , bK)∞K=1, these constants are defined by (7) or (8).

We omit the condition for reverse-Weibull because the convergence occurs only if v̄ < +∞ and

for such a case, we do not need extreme value theory for characterizing an efficient mechanism in
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Table 1: Extreme Value Distributions of Common Probability Distributions

Limit Marginal Value Distribution

Gumbel Exponential, Normal, Gamma, Log-Normal, Logistic, Weibull, Gumbel, etc.
Fréchet Pareto, Cauchy, t, F , Burr, Log-Gamma, Zipfian, Fréchet, etc.

Reverse-Weibull Uniform, Beta, Reverse-Weibull, etc.

the limit (see Theorem 6).

Proposition 2 does not state that the distribution of the normalized maximum converges.13

Nevertheless, it is also known that many continuous distribution functions have an extreme value

distribution.14 Table 1 lists extreme value distributions of common probability distributions. The

limit is identical as long as distributions have the same right-tail property, even when their overall

shape differs significantly.

The extreme value theory literature has also characterized the conditions under which a marginal

value distribution G belongs to the domain of attraction of each extreme value distribution. How-

ever, this paper focuses not on the convergence of the distribution function G, but on the derivative

of the hazard rate, i.e.,

r′(w; ĜK) =
ĝ′K(w)(1− ĜK(w)) + (ĝK(w))2(

1− ĜK(w)
)2 .

For convergence of r′(·; ĜK), we also need a convergence of ĝK and ĝ′K , which are the first and

second derivatives of ĜK . The following is the necessary and sufficient condition for it.

Definition 5. Let G and H be distribution functions. We say that G lies in the twice differentiable

domain of attraction of H if G and H are nondegenerate and twice differentiable for all sufficiently

large w and Ĝ
(l)
K (w) → H(l)(w) as K → ∞ uniformly for all w in any finite interval for all l = 0, 1, 2.

Definition 6 (von Mises condition). A distribution function G satisfies the von Mises condition

with parameter γ if G is twice differentiable for all sufficiently large v and

ϑ′(v;G) =

(
1−G(v)

g(v)

)′
→ γ as v → ∞. (9)

We denote the set of all distribution functions satisfying (9) by VMC(γ).

12Whereas De Haan and Ferreira (2006) employ the representation of generalized extreme value distribu-
tion, as they introduce in pp.9-10, it is equivalent to Proposition 2.

13For example, the binomial, Poisson, and geometric distributions do not have an extreme distribution.
14Pickands III (1975) mentions that “Most ‘textbook’ continuous families of distribution functions are

discussed in Gumbel (1958). They all lie in the domain of attraction of some extremal distribution function.”
(page 119)

18



The von Mises condition (9) is originally established by von Mises (1936) as a tractable sufficient

condition for convergence of a distribution function. Later, Pickands III (1986) proves that (9) is

a necessary and sufficient condition for convergence of the second derivative.

Proposition 3 (Theorem 5.2 of Pickands III (1986)).

(i) G is in the twice differentiable domain of attraction of the Gumbel distribution Λ if and only

if G ∈ VMC(0).

(ii) G is in the twice differentiable domain of attraction of the Fréchet distribution with shape

parameter α, Φα, if and only if G ∈ VMC(1/α).

3.8 Large Market Limit

We characterize efficient mechanisms in a large market limit of the continuous i.i.d. market.

Bounded Support We start with the case of bounded support, i.e., v̄ < +∞. In this case, no

screening is efficient with sufficiently large K, while full screening is conversely the worst. When

K is large, almost every agent has at least one good that they value close to v̄. Therefore, even

with no screening, the gross surplus approaches v̄, and there is little need to screen the intensity of

preferences. On the other hand, if screening is conducted, almost all the surplus is burned due to

competition.

Theorem 6. Suppose that v̄ < +∞. Then, for any ϵ > 0 and δ > 0, there exists K0 > 0 such that

for all K > K0, we have both RS(MSD) > m̄(1− δ)(v̄ − ϵ) and RS(MV CG) < m̄ϵ.

Gumbel Case Next, we consider the case where the marginal value distribution G satisfies

VMC(0), and thus belongs to the twice differentiable domain of attraction of the Gumbel distri-

bution Λ. The hazard rate function of Gumbel is given by

r(w; Λ) =
λ(w)

1− Λ(w)
=

exp(−w)

exp(exp(−w))− 1
,

and thus the Gumbel distribution Λ has an IHR. Accordingly, if the reduced value distribution is

exactly Gumbel, then an efficient mechanism is a no-screening mechanism.

Proposition 3 ensures that whenever G ∈ VMC(0), ĜK(w) converges to Λ(w) up to the second

derivative, uniformly in any finite interval of w. Accordingly, for any finite interval [c, c̄], the

hazard rate becomes increasing in [c, c̄] with sufficiently large K (see Lemma 1 in the Appendix).

Furthermore, by the standard arguments in optimal mechanism design, the efficient allocation rule

is guaranteed to be constant over the interval where the hazard rate is nondecreasing. (For clarity,

we formally present and prove this result as Lemma 2 in the Appendix.)
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Accordingly, for any interval [c, c̄], there exists K0 such that for all K > K0, an efficient

allocation rule becomes constant in the interval: x̂(w) = x̄ for w ∈ [c, c̄]. Furthermore, as Ĝ(c̄) −
Ĝ(c) → Λ(c̄)−Λ(c), by taking small c, large c̄, and large K, we can make ĜK(c̄)−ĜK(c) arbitrarily

close to one. Since (i) the allocation is flat on the interval [c, c̄], (ii) this interval can be taken

arbitrarily large to carry probability mass arbitrarily close to one, and (iii) the allocation must be

flat within the interval, the resource constraint forces this constant allocation level to be arbitrarily

close to m̄, with any residual allocation absorbed by the negligible outside mass. In this sense, an

efficient mechanism conducts no screening asymptotically.

Theorem 7. If G ∈ VMC(0), then for all ϵ > 0, there exists K0 such that for all K > K0,

there exists a constant x̄K ∈ [0, 1] such that an efficient allocation rule x̂ for (G,K) satisfies

Pr(x̂(w) = x̄K) > 1− ϵ. Furthermore, x̄K ∈ ((m̄− ϵ)/(1− ϵ), m̄/(1− ϵ)).

Fréchet Case Finally, we consider the case where the marginal value distribution G satisfies

VMC(1/α) for some α > 0. When α ∈ (0, 1], the right tail of Fréchet, Φα, is extremely heavy, and

the distribution does not have a mean; thus, we focus on the case of α > 1, where agents’ expected

payoffs are well-defined. The hazard rate function of Fréchet with parameter α is given by

r(w; Φα) =
ϕα(w)

1− Φα(w)
=

αw−α−1 exp(−w−α)

1− exp(−w−α)
.

We say that a distribution has an increasing and decreasing hazard rate (IDHR) if there exists w∗

such that the hazard rate is increasing for w < w∗ and decreasing for w > w∗. We can verify that

Fréchet has an IDHR.15

As the reduced value distribution has neither IHR nor DHR, we apply Myerson’s (1981) ironing

to obtain an efficient mechanism. Under IDHR, the ironing yields a cutoff w∗∗ ∈ (w∗,+∞] such

that the mechanism conducts full screening only for types above w∗∗. If w∗∗ < +∞, the mechanism

screens agents with w > w∗∗, whereas it does not screen those with w < w∗∗. Note that a

distribution can be NBUE even when it has a DHR, and in such a case, w∗∗ = +∞ and a no

screening mechanism is efficient, whereas Fréchet is not NBUE.16 If the supply m̄ is insufficient

to allocate all agents with w > w∗∗, then only those with the highest values will win an item.

Otherwise, an efficient mechanism first allocates goods with probability one to agents with values

w > w∗∗. The remaining goods are then distributed equally among the other agents without

payment.

15For Fréchet with parameter α, w∗ is the unique solution of

w−α

1− exp(−w−α)
=

α+ 1

α

with w > 0.
16If w∗∗ < +∞, the threshold w∗∗ is characterized by (28) in Appendix B.7.
The mean residual life function E[v − t|v > t] of Fréchet diverges as t increases, and thus it is not NBUE.

See Section 6.2 of Embrechts et al. (2013), for example.
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(a) Cumulative probabilities of regions in which
the extreme value distribution has an IHR
(Φα(w

∗)) and the efficient mechanism uses a
constant allocation (Φα(w

∗∗))

(b) Performance of the no screening mechanism
relative to the efficient one

Figure 3: How the no-screening mechanism is close to the efficient mechanism in the large
market limit under the Frećhet case

Proposition 4. When the reduced value distribution function ĜK has an IDHR, there exists

w∗∗ ∈ (w∗,+∞] with which an efficient allocation rule x̂ is represented as follows:

(i) If 1− ĜK(w∗∗) ≥ m̄, then

x̂(w) =

1 for w ∈ [Ĝ−1
K (1− m̄),+∞),

0 for w ∈ (−∞, Ĝ−1
K (1− m̄)).

(ii) If 1− ĜK(w∗∗) < m̄, then

x̂(w) =


1 for w ∈ [w∗∗,+∞),

m̄− (1− ĜK(w∗∗))

ĜK(w∗∗)
for w ∈ (−∞, w∗∗).

In particular, if w∗∗ = +∞, then (ii) implies x̂(w) ≡ m̄ (i.e., no screening).

Figure 3a shows the values of Φα(w
∗) and Φα(w

∗∗) for various shape parameters α.17 As α

becomes larger, the right tail of Fréchet decays, and in the limit of α → ∞, the distribution

17For Fréchet with parameter α, w∗∗ is a solution of

(1− exp(−w−α))w + Γ

(
α− 1

α
,w−α

)
− 1

α
wα+1(1− exp(−w−α)) = 0, (10)

where Γ(s, x) =
∫∞
x

ts−1e−tdt is the upper incomplete gamma function. See Appendix B.10 for the derivation
of (10).
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converges to Gumbel. Accordingly, as α increases, both Φα(w
∗) and Φα(w

∗∗) increase and converge

to one. The convergence of Φα(w
∗) is relatively slow. By contrast, the fraction of agents with

w > w∗∗ diminishes rapidly even with relatively small α, implying that under Fréchet with relatively

small α, an efficient mechanism conducts no screening for most agents. For example, when α = 3

and m̄ = 0.5, an efficient mechanism requires a substantial amount of money burning for obtaining

a good with probability 1, which only agents with the highest 1.5% of values will choose. The

remaining units, which can cover 48.5% of the population, are distributed to the rest of 98.5%

of agents with no screening, just as SD would do. In addition, Figure 3b illustrates that the

performance of SD rapidly approaches that of the efficient mechanism as the shape parameter α

increases.

Finally, we characterize the efficient mechanism when G ∈ VMC(1/α) and K is large but

finite. The condition G ∈ VMC(1/α) implies that for any finite interval [c, c̄], if K is sufficiently

large, ĜK is close to Fréchet Φα within that interval. By choosing c close to zero and c̄ larger than

w∗∗, and accordingly taking a large K, the efficient allocation rule x̂ for ĜK becomes constant over

most of the interval [0, w∗∗].

Theorem 8. If G ∈ VMC(1/α), then for all ϵ > 0, there exists K0 ∈ Z++ such that for all

K > K0, there exists a constant x̄K ∈ [0, 1] such that an efficient allocation rule x̂ for (G,K)

satisfies x̂(w) = x̄K for all w ∈ (ϵ, w∗∗ − ϵ), where w∗∗ is a solution of the equation (10).

3.9 Finite Variety (with Continuum Copies)

Figure 1b in the Introduction illustrates how residual surplus changes with the number of object

types K under SD (or no screening), VCG (or full screening), and the efficient mechanism. This

visualization is based on a continuous i.i.d. market, where the total mass of objects m̄ is 1/2, and the

marginal value distribution G is Weibull with parameter 0.6. The performance of each mechanism

is derived analytically using reduction to a single-dimensional environment.

The marginal value distribution has a DHR; thus, when K = 1, i.e., the single-good case, full

screening is efficient. However, since the distribution also belongs to VMC(0), in the limit of

K → ∞, the no-screening mechanism becomes asymptotically efficient. For intermediate, finite K,

the no-screening mechanism outperforms full screening for K ≥ 4 under this setting. Furthermore,

beyond this point, the performance of the no-screening mechanism rapidly converges to that of the

efficient mechanism. This observation suggests that the key policy implications of our study, the

superiority of SD in multi-object allocation without money, likely hold for practical settings.

4 Finite Market

This section considers finite markets, where a finite number of objects are allocated to a finite

number of agents (i.e., no continuum copies of agents and objects). The analysis of finite markets
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is widely believed to be considerably more challenging than analyzing continuous markets. In this

study, instead of characterizing efficient mechanisms analytically, we adopted the deep learning-

based approach developed by Dütting et al. (2019), originally for numerically constructing revenue-

maximizing auction mechanisms.

4.1 Model

We consider a finite market with a finite set of agents I and a finite set of object types K. Slightly

abusing notation, I and K also represent the cardinality of those sets. The endowment of each

object type k is mk ∈ Z++. We assume that the goods are scarce: I >
∑

k∈K mk. Agents’ utilities

are identical to that of the continuous market: When agent i obtains object k with probability xik
for each k while making a payment of pi, her payoff is

∑
k∈K vikx

i
k − pi.

Let V i ⊂ RK be the set of all possible valuation vectors for agent i, and vi be its generic

element. We define the set of all valuation profiles as V :=
∏

i∈I V
i, and v = (vi)i∈I as its generic

element. Here, we abandon equal treatment of equals and a direct mechanism M is comprised of

an allocation rule x : V → [0, 1]I×K and a payment rule p : V → RI
+, where x

i(v) and pi(v) are the

respective allocation and payment for agent i under valuation profile v. Let F be the probability

distribution that the valuation profile v follows.

The (per capita) residual surplus from a mechanism M = (x,p) is

RS(M) :=

∫
V

1

I

∑
i∈I

(∑
k∈K

vikx
i
k(v)− pi(v)

)
dF (v). (11)

A mechanism M satisfies the resource constraint if∑
i∈I

xik(v) ≤ mk for all k ∈ K,v ∈ V. (12)

A mechanism M is strategy-proof if∑
k∈K

vikx
i
k(v

i,v−i)−pi(vi,v−i) ≥
∑
k∈K

vikx
i
k(v̂

i,v−i)−pi(v̂i,v−i) for all i ∈ I,vi, v̂i ∈ V i,v−i ∈ V −i.

(13)

A mechanism M is individually rational if∑
k∈K

vikx
i
k(v)− pi(v) ≥ 0 for all i ∈ I,v ∈ V. (14)

A mechanism M satisfies the unit demand condition if∑
k∈K

xik(v) ≤ 1for all i ∈ I,v ∈ V. (15)
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(a) The ratio of the residual surplus achieved by
SD and VCG, (RS(MSD)/RS(MV CG))

(b) The performance of SD, VCG, and the
mechanism developed by RegretNet for c = 5

Figure 4: Comparison of the performance of SD, VCG, and the numerically efficient mech-
anism in a finite market

A mechanism M is efficient if it maximizes RS(M) subject to (12), (13), (14), and (15).

4.2 RegretNet

To numerically derive an efficient mechanism for finite markets, we adopt RegretNet, a deep learning-

based method for designing revenue-maximizing auction mechanisms proposed by Dütting et al.

(2019). In RegretNet, a mechanism, which is a function that takes a valuation profile as input

and returns an allocation and a payment profile, is represented by a neural network, which can

approximate a wide range of functions using a relatively small number of parameters. In Dütting

et al. (2019), the loss function used for learning consists of (i) the negated empirical expected

revenue of the seller and (ii) a penalty term for violating strategy-proofness. RegretNet uses the

augmented Lagrange method to find a mechanism (i.e., the parameters) minimizing such loss.

Residual-surplus maximization and revenue maximization have different objective functions

but share the same constraints. Therefore, we can derive an efficient mechanism by replacing the

objective function without making other modifications.

4.3 I.I.D. Case

We examine the extent to which the continuous-market model well approximates a finite market.

We first consider a market with 4c agents and two object types (K = 2) each with c ∈ Z++

capacities. Each agent i’s value for object k, vik follows Weibull, i.i.d.

In Figure 4a, we generate 10, 000 samples and compare the ratio of the residual surplus achieved

by SD and VCG, i.e., RS(MSD)/RS(MV CG) for c = 1, 5, 10. We also plot (i) the ratio in a

continuous market with a unit mass of agents and two objects with mk = 0.25 unit of endowments
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(i.e., m̄ = 0.5), which corresponds to a finite market in the limit of c → ∞, and (ii) the ratio in a

finite market with two agents and one object, which corresponds to the single-good case.

As characterized by Hartline and Roughgarden (2008), SD outperforms VCG if and only if

α > 1, for the single-good case. In the continuous case, SD achieves larger social welfare than

VCG as long as the shape parameter is larger than roughly 0.7, given K = 2. We observe a similar

pattern for finite markets: Even with c = 1, the threshold at which SD starts to outperform VCG

is strictly smaller than 1.0, and as c increases, the market becomes closer to the continuous case.

Figure 4b shows the residual surplus of SD, VCG, and the numerically efficient mechanism

returned by RegretNet for the case of c = 5. As we consider the case of K = 2, where the variety

of goods is minimal, RegretNet strictly outperforms both SD and VCG under some parameters,

particularly around α = 0.8, where SD surpasses the performance of VCG. However, based on the

analysis of the continuous market, this gap is expected to diminish as K and c increase.18

4.4 Correlation

Next, we relax the i.i.d. assumption and investigate cases where values are correlated. Throughout

this section, we consider an environment with 8 agents and 4 objects. We employ a Gaussian copula,

constructed by applying a probability integral transform to a multivariate normal distribution. This

allows us to generate multiple joint distributions F of v = (vik)k∈K,i∈I whose marginal distribution

of each vik are identical while the correlation between vik and vjl for (i, k) ̸= (j, l) varies. Using these

joint distributions, we analyze how the performance of SD, VCG, and RegretNet changes as the

strength of within-agent correlation and between-agent correlation varies. The detailed method is

described in Appendix A.5.

Within-Agent Correlation We first evaluate the effect of the within-agent correlation, the

correlation between vik and vil for two distinct objects k ̸= l (i.e., some agents need any object

more strongly than other agents). Using the Gaussian copula, we generate joint distribution F

whose marginal distribution is Weibull while the correlation coefficients between each pair of vik
and vil , Corr(v

i
k, v

i
l), vary. For i ̸= j, Corr(vik, v

j
l ) = 0 for all k, l ∈ K. By construction, when

Corr(vik, v
i
l) = 0, values are drawn i.i.d., and when Corr(vik, v

i
l) = 1, vik = vil holds for all k, l ∈ K

with probability one, i.e., goods are perfectly homogeneous.

Figure 5a shows the performance ratio of SD and VCG, whereas Figure 5b shows the residual

surplus achieved by SD, VCG, and RegretNet for the case of α = 0.8. With every parameter α,

as the within-agent correlation becomes stronger, the relative performance of VCG improves. This

suggests that within-agent correlation attenuates the performance improvement of the no-screening

mechanism as the variety of goods increases. When the within-agent correlation is perfect, the prob-

18In Appendix A.3, we illustrate the mechanism returned by RegretNet for the case of c = 1 and α = 0.7
and α = 0.8. Furthermore, in Appendix A.4, we present figures corresponding to Figure 4b for c = 1,
single-good, and continuous cases.
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(a) The performance ratio between SD and VCG:
(RS(MSD)/RS(MV CG))

(b) The performance of SD, VCG, and RegretNet
given α = 0.8

Figure 5: The performance of mechanisms under within-agent correlation. The horizontal
axis represents Corr(vik, v

i
l).

lem essentially has single-dimensional types. When the within-agent correlation is intermediate, the

results are also intermediate between the single-dimensional type and the multi-dimensional i.i.d.

types. However, it is important to note that even with within-agent correlation, the multiplicity of

objects improves the performance of SD relative to VCG.

Between-Agent Correlation Next, we evaluate the effect of the between-agent correlation,

the correlation between vik and vjk for two distinct agents i ̸= j (i.e., some objects are more popular

than other objects). When such a correlation becomes stronger, the environment approaches a

common value scenario, where goods with high common value generate high value regardless of

who receives them. In such cases, the performance of SD improves, and SD becomes the first-best

in the case of pure common values. In contrast, adopting a mechanism that involves screening, such

as VCG, would lead to intense competition for popular goods. Consequently, the common value

would be entirely lost due to money burning. The following theorem formalizes this observation.

Proposition 5. Consider a profile of marginal distributions (Fk)k∈K , where Ev∼Fk
[v] = µk > 0

and Varv∼Fk
(v) = σ2

k < +∞. Consider a sequence of joint distribution functions F ρ such that for

all ρ, (i) for every agent i ∈ I and object k ∈ K, the marginal distribution of vik is Fk, and (ii)

for every distinct agents i, j ∈ I and object k ∈ K, Corr(vik, v
j
k) ≥ ρ. Then, as ρ → 1, we have

(i) RS(MSD;F
ρ)/RS(Mρ

FB;F
ρ) → 1, and (ii) RS(MV CG;F

ρ) → 0, where Mρ
FB is a mechanism

that maximizes residual surplus (11) subject to the resource constraint (12) and the unit demand

condition (15).

Figure 6a shows the performance ratio of SD and VCG, whereas Figure 6b shows the residual

surplus achieved by SD, VCG, and RegretNet for the case of α = 0.8. The simulation setting paral-

26



(a) The performance ratio between SD and VCG:
(RS(MSD)/RS(MV CG))

(b) The performance of SD, VCG, and RegretNet
given α = 0.8

Figure 6: The performance of mechanisms under between-agent correlation. The horizontal
axis represents Corr(vik, v

j
k).

lels that for the within-agent correlation cases, whereas we vary Corr(vik, v
j
k) instead of Corr(vik, v

i
l).

We set Corr(vik, v
j
l ) = 0 for all k ̸= l. When Corr(vik, v

j
k) = 0, values are drawn i.i.d., and when

Corr(vik, v
j
k) = 1, we have pure common values. With every parameter α, as the between-agent

correlation becomes stronger, the SD and VCG performance ratios increase, indicating that the

relative performance of SD improves. Furthermore, in the case of perfect correlation, the residual

surplus under VCG becomes zero.

5 Application: Pandemic Vaccination

5.1 Problem

The COVID-19 pandemic significantly disrupted global economic and social welfare, prompting

rapid vaccine development and deployment. By the end of 2021, around 9.14 billion COVID-19

vaccinations had been administered worldwide (Mathieu et al., 2021), marking one of history’s

largest allocation problems.

COVID-19 vaccines developed during the pandemic were clinically confirmed to be effective

in preventing severe illness and were anticipated to reduce infections and limit transmissions. Ef-

ficient vaccine allocation was crucial for safeguarding healthcare workers and reducing hospital

burdens. However, vaccine production occurred gradually, while initial demand was immediately

high, creating early vaccine scarcity. Although vaccines are mostly homogeneous, the reservation

slots, defined by “when, where, and which vaccine,” are heterogeneous, and people have diverse

preferences; thus, it is precisely the type of large-scale multi-object allocation problem studied in

this paper. Managing these reservations effectively is inherently a market design challenge.
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Rapid vaccine development outpaced mechanism design analyses, resulting in logistical ineffi-

ciencies and public frustration. Future pandemics remain likely due to globalization, yet improved

vaccine technologies suggest rapid development will continue. Therefore, proactively researching

optimal mass vaccination logistics, including mechanisms with or without screening, is essential for

future preparedness.

5.2 Lessons from the COVID-19 Pandemic

During the early rollout of COVID-19 vaccines, many countries and regions relied on FCFS. These

systems turned every available slot into a scarce heterogeneous good and induced high-intensity

competition among potential recipients. In early 2021, several counties in Florida opened public

vaccination sites with no reservation system. In Lee County, people paid substantial effort costs

(such as camping overnight and queuing for hours) to secure doses until officials acknowledged the

chaos and announced a shift to a reservation system (Fox 4 News, 2021). Even if a reservation

system is in place, similar confusion arises when reservations are accepted on an FCFS basis.

In other Florida counties that initially used an FCFS-based reservation system, as our theory

predicts, applicants rushed the system immediately after reservations opened and all slots were

exhausted within minutes, which in turn led to overwhelmed call centers. Consequently, several local

governments quickly abandoned FCFS (Coleman, 2021). Similar problems arose in Massachusetts.

When the state opened eligibility to older adults, the system experienced delays and outages due to

surges in access, leaving many residents unable to make reservations and frustrated (NBC Boston,

2021). In Washington, D.C., when an online portal was launched for newly eligible residents, it

immediately crashed under heavy traffic, and phone lines were jammed. The incident led to public

apologies from officials and a review of the system (Barthel et al., 2021). Reservation surges, along

with system and call center failures and the resulting public dissatisfaction, were widely observed

across many regions in Japan as well (e.g., Asahi Shimbun, 2021a,b; Yomiuri Shimbun, 2021).

In environments with many heterogeneous reservation slots, our theory implies that such screening-

induced races are particularly wasteful, which motivates replacing FCFS with no-screening mecha-

nisms, and several local governments indeed introduced alternative mechanisms. Minnesota intro-

duced a random lottery for seniors over 65. Residents had a 24-hour window to preregister, and

names were drawn at random; those selected received notice that directed them to complete a book-

ing, while the others remained in a queue for future lotteries (Olson, 2021). Local press reported

that the lottery was perceived as fairer and less stressful than the prior FCFS system (Stolle, 2021).

San Luis Obispo County in California, after facing similar FCFS failures, announced plans to intro-

duce a lottery (Pitcher, 2021). A lottery-based mechanism was also introduced in Kakogawa City,

Japan, as a direct-mechanism version of random serial dictatorship (Tada, 2021). There, the high

communication cost inherent to direct mechanisms—stemming from the requirement to submit a

full preference order—was one reason for later reverting to FCFS.

British Columbia, Canada, introduced a “Get Vaccinated System.” In this reservation system,
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residents registered once, and the government later sent invitations to book an appointment as

supply and age eligibility permitted (Government of British Columbia, 2021). In Singapore, the

government created an online pre-registration form and generated a list of prospective recipients;

when vaccine slots became available, those on the list received SMS invitations with booking links

(Liew, 2022). These can be seen as real-world cases where the authorities used a reservation system

recommended in this paper.

5.3 FCFS

FCFS allows participants to choose their favorite option among currently available slots. FCFS is

widely used in real-world allocation problems due to its various advantages. First, it is simple in

that participants can easily figure out an optimal action. Once participants access the system, they

can instantly see that it is optimal to choose their most preferred option among those displayed.19

Second, it has low communication costs: participants need only indicate their most preferred avail-

able option, without revealing more detailed information such as a full preference order. Third,

reservations are confirmed immediately: participants do not need to hold multiple time slots as

potential appointment times.

These features are often not satisfied by mechanisms derived as optimal in mechanism design re-

search. For example, VCG requires participants to report their entire valuation vector, and running

an equivalent ascending auction also entails substantial communication costs. The random favorite

mechanism, which can outperform SD in cases such as asymmetric capacities, demands complex

strategic considerations from participants (see Appendix A.2). Even SD, when implemented as a

direct mechanism, requires the revelation of the full preference order. To retain the same practical

advantages as FCFS, it must be implemented in sequential form.

However, under scarcity, the drawbacks of FCFS become more pronounced. FCFS is a screen-

ing mechanism that prioritizes participants who exert more effort to access the system earlier after

reservations open. Our analysis indicates that such mechanisms are inefficient for allocating many

heterogeneous goods (reservation slots). Indeed, as surveyed in Section 5.2, there are many cases

where FCFS caused reservation surges and disruptions, leading to a switch to alternative mecha-

nisms. We also note that FCFS unfairly advantages those with better Internet access or personal

assistance, exacerbating inequities in vaccine access.

5.4 Register-Invite-Book System (RIB)

We propose the register-invite-book system (RIB), which we consider the most suitable mechanism

for handling pandemic vaccine appointments. This mechanism is similar to SD in sequential form

and was effectively used for COVID-19 vaccine distribution in places including British Columbia,

19However, under FCFS, agents face complex strategic considerations in deciding how much effort to spend
on early system access, depending on their valuation vector and the severity of competition.
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Canada, and Singapore. RIB preserves the practical advantages of FCFS while minimizing compe-

tition and preventing the waste of screening costs.

As the name suggests, RIB first requires participants to complete registration. By registering,

participants provide contact information such as an email address and input information relevant

to their priority (e.g., age, occupation, underlying health condition). At this stage, no information

about participants’ preferences over slots needs to be entered. The system sorts the registered

participants using methods other than FCFS, such as age or a lottery. The system sequentially

sends an invitation to the next participant in line, while controlling the timing based on current

slot availability (i.e., sends invitations more rapidly if many slots are remaining). Upon receiving

an invitation, participants access the system and select their preferred slot from available options

to complete their booking on an FCFS basis. However, since invitations are sent in small batches,

only a small number of invitees can book at any given time.

The final stage of RIB retains the desirable practical properties of FCFS—simplicity, low com-

munication cost, and immediate confirmation. However, the incentive for participants to exert

effort to secure a slot is low because invitations are sent gradually, and few slots can be lost by

minor delays. Therefore, RIB is approximately SD implemented in sequential form, sorting agents

by an exogenous priority order and allowing them to choose their most preferred remaining slot

in turn. RIB thus combines the practical advantages of FCFS with the theoretically desirable

properties of SD, particularly the tendency to be an efficient mechanism when many heterogeneous

objects are allocated, as discussed in this paper.

In the application of vaccine distribution, RIB has other noteworthy advantages. First, it is easy

to prioritize specific groups of people. Those at higher risk, those prioritized for reasons of fairness,

and those prioritized to prevent the spread of infection are likely to emerge for many diseases

and vaccines, as discussed by Pathak et al. (2022, 2024); Akbarpour et al. (2023a). Prioritization

criteria, such as infection risk or fairness, can matter even more than willingness to pay or exert

effort. In RIB, policymakers can freely adjust the order in which invitations are sent to agents in

the queue based on their observable attributes. Moreover, to distribute reservation slots among

agents who belong to the same priority groups, SD implemented RIB saves the screening cost.

Second, RIB minimizes communication costs in the case of gradually supplied goods. Other

mechanisms typically suffer from increased communication costs—for instance, when FCFS is used

and new slots are added every midnight, participants have to repeatedly access the system every

night until they successfully make a reservation, which imposes unnecessary effort on participants

and increased server load.20 Implementing SD as a direct mechanism would require creating a new

lottery notification each time vaccines are supplied and having participants submit their preferences

for new dates, which incurs high unmodeled costs. In contrast, with RIB, participants only need to

access the system twice, for registration and booking. This property greatly reduces communication

20Such a system was indeed used in New York City during the COVID-19 pandemic, and people indeed
checked the system right after midnight (Krasnoff, 2021).
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costs, even compared with FCFS.

Finally, RIB allows participants to predict when they might secure a reservation slot. Under

FCFS, the competition for slots occurs each time new slots are released, and therefore, participants

cannot predict their chances of securing a slot. This uncertainty persists until a reservation is

secured, requiring participants to keep potential dates open and causing mental stress. In contrast,

with RIB, the system can continuously disclose how many people with higher priorities are waiting

for invitations, allowing participants to estimate when their turn might come. Although the exact

timing can be difficult to predict due to potential new registrations and uncertainties in vaccine

supply, RIB provides a much clearer and more predictable framework than FCFS.

Overall, RIB combines the practical simplicity of FCFS with the efficiency of SD. This makes

it a state-of-the-art mechanism particularly suited for large-scale, multi-object vaccine distribution

scenarios encountered during pandemics.

6 Concluding Remarks

We studied the efficient money-burning mechanism for allocating multiple heterogeneous goods,

where agents take costly actions to signal the magnitude of their values. While the structure

of residual-surplus maximizing mechanisms in multi-object allocation has remained largely unex-

plored, our findings reveal a clear trend: as variety increases, no-screening mechanisms like SD tend

to become more efficient.

We first explored this trend by analyzing a stylized environment with a continuum of agents and

objects, assuming values for all object types are drawn i.i.d., and the capacity of each object type

is uniform. Agents tend to acquire the goods they prefer more. As the variety of goods increases,

the distribution of the value for the “most preferred goods” increasingly favors no-screening mech-

anisms. Using extreme value theory, we showed that in the limit of a large variety, the efficient

mechanism involves little to no screening.

Second, we applied the automated mechanism design method established by Dütting et al.

(2019) to numerically explore efficient money-burning mechanisms. The results demonstrated that

several strong assumptions imposed in the stylized environment—such as a very large variety of

goods, a continuum of agents and objects, and uniform capacities—are not essential for the trend

that SD tends to be efficient in multi-object allocations. This suggests that SD can perform well

in practical settings. Given the various excellent properties of SD discussed in prior studies, our

findings position SD as a promising option.

Finally, we emphasize broader implications for future research and policy design. Policymakers

often face the challenge of allocating goods without monetary transfers, and our results suggest that

imposing burdensome administrative procedures to ensure that only those who truly need goods

and services receive them may often be unnecessary. This insight extends to diverse allocation

problems beyond vaccine distribution. Furthermore, while the immediate urgency of COVID-19
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vaccine distribution has subsided, preparing effective allocation mechanisms remains a critical issue

for future pandemics. The lessons from this research highlight the importance of developing and

implementing mechanisms like RIB or exploring other efficient no-screening mechanisms during

periods of preparedness rather than crisis.
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Appendix

A Supplementary Results

A.1 Property of the Weibull Distribution

This section details the example of the Weibull distribution with shape parameter 0.9, which is

illustrated in Figure 2.

The Weibull distribution with shape parameter α > 0 is given by

G(v) = 1− exp(−vα),

and its probability density function is

g(v) = αvα−1 exp(−vα).

Note that Weibull has an IHR if α ≥ 1 and a DHR if α ≤ 1. When α = 1, it is identical to a

standard exponential distribution.

The inverse hazard rate is given by

ϑ(v;G) =
1−G(v)

g(v)
=

1

α
v1−α

and thus

ϑ′(v;G) =
1− α

α
v−α → 0 as v → ∞,

implying that the Weibull distribution satisfies the von Mises condition for all α > 0, implying that

the Weibull distribution belongs to the twice differentiable domain of attraction of Gumbel.

When G is the Weibull distribution with shape parameter α, from (7), we have

aK =
K

α
Γ

(
1

α
, logK

)
, bK = (logK)

1
α .

The probability density of the normalized largest order statistic, which is illustrated in Figure 2a

is given by ĝK(w) = aKgK(aKw + bK). The normalized hazard rate is given by

r(w; ĜK) =
aKgK(aKw + bK)

1−GK(aKw + bK)
,

and its derivative, illustrated as Figure 2b, is given by

r′(w; ĜK) =
a2Kg′K(aKw + bK)(1−GK(aKw + bK)) + a2Kg2K(aKw + bK)

(1−GK(aKw + bK))2
.
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(a) x1(v1, v2) (b) x2(v1, v2) (c) p(v1, v2)

Figure A.1: An efficient mechanism for the case of asymmetric capacity. The optimal solution
can be achieved with RF.

A.2 Asymmetric Capacity

In Section 3, for analytical tractability, we assumed that all object types have an equal capacity.

This assumption is not always realistic; for example, there are only two weekend days compared

to five weekdays. In such environments, an ex post efficient mechanism may assign non-favorite

objects when an agent’s favorite object is scarce, making it difficult to reduce the problem to a

single-dimensional environment as discussed in Section 3.2. This complexity makes it challenging

to characterize an efficient mechanism.

In this section, we solve a linear program (LP) to numerically derive an efficient mechanism

and compare its structure with that of the efficient mechanism in a continuous i.i.d. market. The

residual surplus function RS and constraints (2), (3), (4), and (5) are all linear in the allocation and

payment rule, (x, p), and thus this problem is an LP. To use a solver, we discretize the valuation

space V ⊂ RK
+ by dividing each dimension into n intervals with equal probability weights to produce

nK grid points, each of which is specified as a K-tuple of lower endpoints. Throughout this paper,

we take n = 30 intervals. We consider the case of K = 2 and assume that the value for each object

is drawn from a standard exponential distribution independently. If both objects had an equal

capacity, then SD would be efficient. Here, we instead assume that m1 = 0.4 and m2 = 0.1.

Figure A.1 illustrates an optimal solution to the LP for the case of asymmetric capacity. For all

figures, the horizontal axis represents the value of object 1 (v1), and the vertical axis represents the

value of object 2 (v2). The colors of panels (a), (b), and (c) indicate the probability of allocating

objects 1 and 2 (x1(v1, v2), x2(v1, v2)), and the payment (p(v1, v2)), respectively.

The efficient mechanism is neither SD nor VCG. The mechanism offers two options: Receiv-

ing object 1 with high probability or receiving object 2 with low probability, without requiring

payments. Following the terminology of Goldner and Lundy (2024), we call this mechanism the
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random-favorites mechanism (RF).21 By requiring which object to claim before drawing a lottery,

this mechanism partially screens for agents’ preference for their favorite object relative to the other

one—only agents who strongly prefer object 2 over object 1 desire to claim object 2, given that

object 1 is much easier to obtain. By contrast, under SD, claiming object 2 when it is available

is risk-free, and therefore, all agents who prefer object 2 over object 1 obtain object 2 whenever

possible. Consequently, RF outperforms SD with asymmetric capacities.

While RF outperforms SD in the residual surplus, it comes with several drawbacks. While

RF can be implemented as a strategy-proof mechanism in a continuous market, to determine the

allocation probability of each option, we need information about the value distribution, which

is often considered challenging in the market design literature (Wilson, 1985). By contrast, SD

is detail-free. Furthermore, RF cannot satisfy strategy-proofness in a finite market, even if the

market is large.22 This is because the object an agent should claim depends on which objects other

agents are claiming. In addition, RF cannot satisfy the practically desirable properties that FCFS

and the sequential-form SD meet (discussed in Section 5).

To evaluate the tradeoff between social welfare and the simplicity of the mechanism, we compare

the performance of SD and RF. The allocation probability of RF should satisfy a market-clearing

condition. That is, given the allocation probability, agents should optimally choose one option.

This determines the demand for each object, and together with the resource constraint, the demand

determines the allocation probability. The initial allocation probability should be consistent with

the last one. For each pair of endowments (m1,m2), there exists a unique RF that satisfies the

market-clearing condition, and its performance has a closed-form representation when values follow

an exponential distribution. The derivation is presented in Appendix B.11.

Figure A.2 displays the percentage difference of residual surplus between RF and SD (i.e.,

(RS(MRF ) − RS(MSD))/RS(MRF )) for various endowments, (m1,m2). For any endowments,

RF performs as good as or better than SD. Indeed, when m1 = m2, RF and SD return an iden-

tical allocation and the performance difference is zero. The percentage difference is at most 15%,

implying that the gain from using RF is not excessively large.

A.3 Illustration of Mechanisms Returned by RegretNet

Figures A.3 and A.4 show the approximately efficient mechanisms learned by RegretNet. The

horizontal and vertical axes represent v11 and v12, agent 1’s value for objects 1 and 2. Agent

21Goldner and Lundy (2024) study an (ex ante) symmetric environment, and therefore, each agent i
claims k ∈ argmax vik as their favorite object in equilibrium. This property does not necessarily hold with
asymmetric capacity because the probability of being assigned depends on which object to claim.

22Several studies on matching theory (e.g., Abdulkadiroğlu et al., 2011) have demonstrated that non-
strategy-proof mechanisms may outperform strategy-proof mechanisms in equilibrium because their equilib-
rium strategies can reflect agents’ preference intensity. Note also that RF may not satisfy even a weaker
notion of truthfulness, such as Bayesian incentive compatibility (BIC). While Goldner and Lundy (2024)
proves that RF satisfies BIC when each object k has a unit capacity and each value vik is drawn i.i.d., these
assumptions are rarely satisfied practically.
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Figure A.2: Percentage difference of the residual surplus achieved by RF and SD
(RS(MRF ) − RS(MSD))/RS(MRF ) for which the RF mechanism admits an interior so-
lution.

1’s allocation probability and the amount of agent 1’s payment are represented by color. While

RegretNet returns the full shape of the mechanism, for the illustration’s sake, we fix agent 2’s

valuation to (v21, v
2
2) = (2, 1) to draw these figures.

Figure A.3 shows the case for a Weibull distribution with parameter 0.8. The mechanism allo-

cates agent 1 to their favorite object, without payment and regardless of agent 2’s value, implying

that the mechanism is SD, which prioritizes agent 1 over agent 2.

Figure A.4 shows the case for a Weibull distribution with parameter 0.7. The value distribution

has a thicker tail, and the learned mechanism allocates the contested object with a price of the

other agent’s value—since agent 2 prefers object 1 over object 2 by v21 − v22 = 2 − 1 = 1, agent 1

obtains object 1 only if her excess value v11 − v12 is larger than 1, and agent 1 has to pay the price

of 1 in such cases. This is how VCG allocates objects.

A.4 Performance of SD, VCG, and the (numerically) efficient

mechanisms

Figure A.5 illustrates the residual surplus achieved by SD, VCG, and the (numerically) efficient

mechanism across four cases: c = 1, c = 5, the single-good case, and the continuous case. (Note

that the c = 5 case is identical to Figure 4b in the main text but is included here for comparison.)

For the single-good and continuous market cases, the efficient mechanism is derived analytically

using the results from Hartline and Roughgarden (2008) and Section 3. In contrast, for the c = 1
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Figure A.3: Allocation and payment for agent 1 from an efficient mechanism learned by
RegretNet. The marginal value distribution is the Weibull distribution with parameter 0.8.
Agent 2’s value is fixed to (v21, v

2
2) = (2, 1).

and c = 5 cases, the mechanism is obtained numerically using RegretNet.

In the single-good case, the efficient mechanism precisely aligns with the better-performing

mechanism between SD and VCG across all values of α. In the continuous case, the same pattern

holds visually, although a closer numerical inspection reveals that the efficient mechanism can

outperform both SD and VCG by a small but strictly positive margin. We also note that, in the

continuous case, where there is minimal but non-zero heterogeneity among goods (i.e., K = 2),

the threshold value of the Weibull parameter shifts from 1.0 to below 0.8. As K increases, this

threshold approaches α = 0.

The case with c = 1 exhibits characteristics that lie between those of the single-good case and

the c = 5 case. Even for c = 1, the effect of having multiple goods are clearly evident, as reflected

in the observed performance difference.

A.5 Simulation Settings for the Case of Correlated Values

This section illustrates how we construct the joint distribution F for the case of correlated values.

Let Σ ∈ [−1, 1](I×K)×(I×K) be a (I × K)-dimensional correlation matrix. The Gaussian copula

CΣ : [0, 1]I×K → [0, 1] is defined as

CΣ(w) = NΣ(N
−1(w1

1), . . . , N
−1(wI

K)), (16)

whereNΣ is the joint cumulative distribution function of an (I×K)-dimensional multivariate normal

distribution with mean vector zero and covariance matrix Σ, and N−1 is the inverse cumulative

distribution function of a (univariate) standard normal.

By construction of CΣ, for all (i, k), the marginal distribution of wi
k is a uniform distribution
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Figure A.4: Allocation and payment for agent 1 from an efficient mechanism learned by
RegretNet. The marginal value distribution is the Weibull distribution with parameter 0.7.
Agent 2’s value is fixed to (v21, v

2
2) = (2, 1).

over [0, 1]. Accordingly, by defining

F (v) = CΣ(G(v11), . . . , G(vIK)), (17)

We can construct a joint cumulative distribution F of v such that for all (i, k), the marginal value

distribution of vik is G. Furthermore, by imposing symmetry on the covariance matrix Σ used in

the construction of the copula—such as keeping within-agent correlation constant or between-agent

correlation constant—the symmetry will be preserved in the covariance matrix of the output joint

distribution F . Although covariance and correlation coefficients are not necessarily preserved during

the transformation process, the relative strength of the correlations is maintained. Therefore, if

stronger correlations are set in the covariance matrix Σ, the resultant joint distribution F will also

exhibit stronger correlations. As a result, by varying the covariance matrix Σ, we can generate

a joint distribution F with the desired strengths of within-agent correlation and between-agent

correlation.

In the numerical analysis, instead of directly computing the joint distribution F using (16) and

(17), we generate random variables v following the intended joint distribution F by generating

u = (u11, . . . , u
I
K) following a multivariate normal distribution with mean 0 and covariance matrix

Σ, and then transforming it as v = (G−1(N(u11)), . . . , G
−1(N(uIK))).

We use the following covariance matrices Σ for our simulations. For the analysis to evaluate

the effect of the within-agent correlation, we employ (i) Cov(uik, u
i
k) = 1 for all (i, k) ∈ I ×K, (ii)

Cov(uik, u
i
l) = c for all i ∈ I, for all distinct k, l ∈ K, for some c ∈ [0, 1], and (iii) Cov(uik, u

j
l ) = 0

otherwise. For the analysis to evaluate the effect of the between-agent correlation, we employ (i)

Cov(uik, u
i
k) = 1 for all (i, k) ∈ I ×K, (ii) Cov(uik, u

j
k) = c for all k ∈ K, for all distinct i, j ∈ I, for

some c ∈ [0, 1], and (iii) Cov(uik, u
j
l ) = 0 otherwise.
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(a) c = 1 (b) c = 5

(c) Single-good case (d) Continuous case

Figure A.5: The performance of SD, VCG, and the (numerically) efficient mechanism

Finally, we describe how we calculate the correlation coefficient of the generated distribution

F , which is represented on the horizontal axis of Figures 5 and 6. The method used is similar for

both cases, thus we will only describe the within-agent correlation case. Noting that all vik share

the same marginal distribution, the correlation coefficient between vik and vil for k ̸= l is defined as

follows:

Corr(vik, v
i
l) =

Cov(vik, v
i
l)

Var(vik)
. (18)

Here, Var(vik) is known since we specify the marginal distribution as Weibull. However, the joint

distribution F derived using the Gaussian copula does not have a tractable closed-form represen-

tation, thus Cov(vik, v
i
l) cannot be derived in closed form. Therefore, we estimate it by sampling.

Specifically, let the sample size be T , and denote the value of vik in the t-th sample as vik(t). The
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sample covariance S(i, k, l) between vik and vil is expressed as follows:

S(i, k, l) =
1

T

T∑
t=1

(
vik(t)− µ

) (
vil(t)− µ

)
,

where µ := E[vik(t)]. Note that we can calculate µ from the marginal value distribution G that each

vik(t) follows, and thus there is no need to compute its sample mean. Due to the symmetry of the

covariance matrix Σ used to generate u, Cov(vik, v
i
l) = Cov(vi

k̂
, vi

l̂
) holds as long as k ̸= l and k̂ ̸= l̂.

Using this property, we aggregate the samples of within-agent correlation across different (i, k, l)

to obtain the following sample covariance:

Ĉov(vik, v
i
l) =

1

I

2

K(K − 1)

I∑
i=1

K∑
k=1

K∑
l=k+1

S(i, k, l). (19)

In the simulations, we used a sample size of T = 100, 000 for each setting. By substituting the

sample covariance obtained from (19) into (18), we derive the correlation coefficients plotted on the

horizontal axis of Figure 5.

B Proofs

B.1 Proof of Theorem 1

Proof. We show the contrapositive. Suppose that there exists V ∗ ⊂ V with F (V ∗) > 0 such that

for each v ∈ V ∗, there exists k ∈ K such that k /∈ argmaxl∈K vl but xk(v) > 0. Since G is a

continuous distribution, F ({v ∈ [0, v̄]K : vk = vl for some k ̸= l}) = 0. Hereafter, we ignore any v

such that argmaxl∈K vl is not a singleton.

For each v ∈ V ∗, we denote k+(v) := argmaxl∈K vl, and define k− as follows:

K−(v) = {l ∈ K : xl(v) > 0 and vl < vk+(v)},

k−(v) = argmin
l∈K−(v)

vl.

That is, k−(v) is defined as the good allocated to a value-v agent with a positive probability, while

it is not a value-v agent’s favorite object. When there are multiple objects satisfying this condition,

we pick the least preferred one.

For each pair (a, b) ∈ K2 with a ̸= b, define

Va,b := {v ∈ V ∗ : k−(v) = a, k+(v) = b}.
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Then,

F (V ∗) =
∑
a̸=b

F (Va,b).

Since the number of pairs is finite, there exists a pair (k−, k+) such that F (Vk−,k+) > 0. Fix such

a pair and write V ∗∗ = Vk−,k+ . For every v ∈ V ∗∗, k−(v) = k− and k+(v) = k+.

We define a mapping T : V → V by

Tvk+ = vk− , T vk− = vk+ , T vk = vk for all k ∈ K \ {k+, k−}.

By neutrality, we have xk+(v) = xk−(Tv), xk−(v) = xk+(Tv), and xk(v) = xk(Tv) for all k ∈
K \ {k+, k−}. We define an alternative allocation rule x′ by

x′k+(v) = xk+(v) + xk−(v) for all v ∈ V ∗∗,

x′k−(v) = 0 for all v ∈ V ∗∗,

x′k+(v) = 0 for all v ∈ TV ∗∗,

x′k−(v) = xk+(v) + xk−(v) for all v ∈ TV ∗∗,

x′(v) = x(v) for all v /∈ V ∗∗ ∪ TV ∗∗.

By construction,
∑

k∈K x′k(v) =
∑

k∈K xk(v) ≤ 1, implying that x′ satisfies the unit demand

condition. Furthermore, since we have F (v) = F (Tv) in a continuous i.i.d. market, the resource

constraint is also satisfied. Finally, all agents with valuation v ∈ V ∗∗ ∪ TV ∗∗ prefers x′ over x,

whereas F (V ∗∗) > 0 by assumption. Accordingly, x is not ex post efficient.

B.2 Proof of Theorem 2

We apply the construction of the ironed virtual value established in Section 6 of Myerson (1981)

to a distribution function GK .

Definition 7 (Ironed Virtual Value). The ironed virtual value ϑ̄ is constructed as follows:

1. For q ∈ [0, 1], define h(q) = ϑ(G−1
K (q);GK).

2. Define H(q) =
∫ q
0 h(r)dr.

3. Define I as the convex hull of H, the largest convex function bounded above by H for all

q ∈ [0, 1].

4. Define i(q) as the derivative of I(q), where defined, and extend to all of [0, 1] by right

continuity.

5. ϑ̄(v;GK) = i(GK(v)).
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Proof of Theorem 2. The ironed virtual value ϑ̄ becomes constant if and only if I(q) is linear. Since

I is the convex hull of H, I(1) = H(1) must be the case; if I(1) > H(1), I is not bounded above by

H, and if I(1) < H(1), I is not the largest convex function bounded above by H. Accordingly, I(q)

is linear if and only if I(q) = H(1) · q. It is easy to see that such a function is the pointwise largest

among all convex functions satisfying I(0) = H(0) = 0 and I(1) = H(1). Thus, such a function I

is the convex hull of H if and only if I is bounded above by H, i.e., I(q) = H(1)q ≤ H(q) for all

q ∈ (0, 1).

From the definition of H, we have

H(q) :=

∫ q

0
ϑ(G−1

K (r);GK)dr

=

∫ G−1
K (q)

0
ϑ(v′;GK)gK(v′)dv′

=

∫ G−1
K (q)

0
(1−GK(v′))dv′.

Accordingly, H(1)q ≤ H(q) is equivalent to

∫ G−1
K (q)

0
(1−GK(v))dv ≥ q

∫ v̄

0
(1−GK(v))dv.

Define t = G−1
K (q). Then, the above equation can be rewritten as∫ t

0
(1−GK(v))dv ≥ GK(t)

∫ v̄

0
(1−GK(v))dv,

or equivalently, ∫ t

0
(1−GK(v))dv ≥ GK(t)E[v]

⇔
∫ v̄

t
(1−GK(v))dv ≤ (1−GK(t))E[v]

⇔ 1

1−GK(t)

∫ v̄

t
(v − t)dGK(v) ≤ E[v]

⇔ E[v − t|v > t] ≤ E[v],

as desired.
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B.3 Proof of Theorem 4

Proof. By direct calculation, we can verify that a cumulative distribution function F is NBUE if

and only if ∫ v̄

t

F (t)(1− F (v))

1− F (t)
dv ≤

∫ t

0
(1− F (v))dv (20)

for all t ∈ [0, v̄]. We will show that if (20) is satisfied with F = GK , then (20) is also satisfied with

F = GK+1.

Since the right-hand side of (20) with F = GK+1 is larger than that with F = GK , it suffices

to show that the left-hand side of (20) with F = GK+1 is smaller than that with F = GK . Thus,

the desired equation is∫ v̄

t

[
GK(t)(1−GK(v))

1−GK(t)
− GK+1(t)(1−GK+1(v))

1−GK+1(t)

]
dv ≥ 0.

To this end, we will prove

GK(t)(1−GK(v))

1−GK(t)
− GK+1(t)(1−GK+1(v))

1−GK+1(t)
≥ 0 (21)

for all v ∈ [t, v̄).

For notational simplicity, let a = G(t) and b = G(v). Then, (21) can be expressed as

aK(1− bK)

1− aK
− aK+1(1− bK+1)

1− aK+1
≥ 0.

This inequality is equivalent to

(1− bK)(1− aK+1)− a(1− bK+1)(1− aK) ≥ 0,

or

(1 + b+ · · ·+ bK−1)(1 + a+ · · ·+ aK)− a(1 + b+ · · ·+ bK)(1 + a+ · · ·+ aK−1) ≥ 0. (22)

Let A = 1 + a+ · · ·+ aK−1, and B = 1 + b+ · · ·+ bK−1. Then, (22) becomes

B(1 + aA)− a(1 + bB)A ≥ 0,

or equivalently,

(B − aA) + aAB(1− b) ≥ 0. (23)

It follows from a = G(t), b = G(v), and v ≥ t that a, b ∈ [0, 1] and B ≥ A ≥ aA ≥ 0. Accordingly,

(23) is indeed satisfied, as desired.
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B.4 Proof of Theorem 5

Proof. Recall that

r(v;GK) =
gK(v)

1−GK(v)
=

Kg(v)(G(v))K−1

1− (G(v))K
.

By direct calculation, we can show that

r′(v;GK) =
K(G(v))K−2

(1− (G(v))K)2
(
K(g(v))2 − ((g(v))2 − g′(v)G(v))(1− (G(v))K)

)
.

Thus, r′(v;GK) ≥ 0 if and only if

K(g(v))2 ≥ ((g(v))2 − g′(v)G(v))(1− (G(v))K). (24)

We show that, for any fixed v, if (24) holds with K, then (24) also holds with K+1. This claim

is trivial if g′(v) ≥ 0. In the following, we consider the case of g′(v) < 0.

Suppose that (24) holds with K. Then, we have

K(g(v))2 ≥ ((g(v))2 − g′(v)G(v))(1− (G(v))K).

and thus

(K + 1)(g(v))2 ≥ ((g(v))2 − g′(v)G(v))
K + 1

K
(1− (G(v))K).

Therefore, it suffices to show that

K + 1

K
(1− xK) ≥ 1− xK+1

for all x ∈ [0, 1], or equivalently,

(K + 1)(1− xK)−K(1− xK+1) ≥ 0. (25)

It follows from 1− xK = (1− x)(xK−1 + xK−2 + · · ·+ x+ 1) that (25) holds if

(K + 1)(xK−1 + xK−2 + · · ·+ x+ 1)−K(xK + xK−1 + · · ·+ x+ 1) ≥ 0,

or equivalently,

xK−1 + · · ·+ x+ 1 ≥ KxK . (26)

Indeed, (26) holds for all x ∈ [0, 1] because xk ≥ xK holds for all k = 0, 1, . . . ,K − 1, as desired.

We show that for all v ∈ (0, v̄), there exists K0 such that for all K > K0, r
′(v;GK) > 0. The

right-hand side of (24) is bounded above by ((g(v))2− g′(v)G(v)). Since we assume that G has full
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support, i.e., g(v) > 0 for all v ∈ (0, v̄), there exists K0 such that

K0(g(v))
2 > (g(v))2 − g′(v)G(v).

Clearly, for all K > K0, we have (24), implying that r′(v;GK) > 0.

B.5 Proof of Theorem 6

Proof. Take ϵ > 0 and δ > 0 arbitrarily. Let δ̄ = min{δ, (1 − m̄)/2}. Since v̄ = sup support(G) <

+∞, we have G(v̄−ϵ) < 1. LetK0 be the smallest integerK satisfying GK(v̄−ϵ) := (G(v̄−ϵ))K < δ̄,

i.e., K0 = ⌊log δ̄/ logG(v̄− ϵ)⌋+1. By construction of K0, for any K > K0, we have GK(v̄− ϵ) < δ̄,

or equivalently, Pr(v ∈ (v̄ − ϵ, v̄]) > 1− δ̄.

Given such K0, for any K > K0,

RS(MSD) = m̄

∫ v̄

0
vdGK(v)

> m̄

∫ v̄

v̄−ϵ
(v̄ − ϵ)dGK(v)

= m̄Pr(v ∈ (v̄ − ϵ, v̄])(v̄ − ϵ)

> m̄(1− δ̄)(v̄ − ϵ)

≥ m̄(1− δ)(v̄ − ϵ).

Next, we evaluate RS(MV CG) with the same K0. For any K > K0, we have GK(v̄ − ϵ) < δ̄ <

1− m̄. Accordingly, we have q := G−1
K (1− m̄) > v̄ − ϵ. Accordingly,

RS(MV CG) =

∫ v̄

q
(v − q) dGK(v)

<

∫ v̄

q
(v̄ − (v̄ − ϵ)) dGK(v)

= ϵ(1−GK(q))

= m̄ϵ.

B.6 Proof of Theorem 7

We first introduce two lemmas.

Lemma 1. If G ∈ VMC(0), then for any finite interval [c, c̄], there exists K0 such that for all

K > K0, we have ϑ′(w; ĜK) < 0 for w ∈ [c, c̄].
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Proof. Recall that ϑ(w; ĜK) := (1− ĜK(w))/ĝK(w).

ϑ′(w; ĜK) :=

(
1− ĜK(w)

ĝK(w)

)′

=
−(ĝK(w))2 − ĝ′K(w)(1− ĜK(w))

(ĝK(w))2
.

Since G has full support and twice differentiable, there exists g such that ĝK(w) > g for all w ∈ [c, c̄].

Furthermore, ĜK , ĝK , ĝ′K converges uniformly to Λ, λ, λ′ in [c, c̄]. Accordingly, for all w ∈ [c, c̄],

ϑ′(w; ĜK) → −(λ(w))2 − λ′(w)(1− Λ(w))

(λ(w))2
= ϑ′(w; Λ) < 0,

where the convergence is uniform in [c, c̄]. Hence, there exists K0 such that for all K > K0, we

have ϑ′(w; ĜK) < 0 for w ∈ [c, c̄].

Lemma 2. Let [a, b] be an interval on which virtual valuation ϑ(·; ĜK) is nonincreasing, and x be

the allocation rule of any strategy-proof mechanism. Then, the allocation rule

x̃(w) :=


∫ b

a
x(w′)ĝK(w′)dw′

ĜK(b)− ĜK(a)
if w ∈ [a, b],

x(w) otherwise,

is a monotonic allocation rule that satisfies the resource constraint. Furthermore, its residual

surplus is no less than that of x.

This lemma is a basic step in deriving revenue-maximizing mechanisms and has been well-

known. We include it here for completeness. The proof follows the approach outlined in Fu (2017).

Proof. Since x is an allocation rule of a strategy-proof mechanism, x is monotonic; thus, x̃ is also

monotonic.

Next, we show that x̃ satisfies the resource constraint.∫ ∞

−∞
x̃(w)ĝK(w)dw

=

∫ b

a
x̃(w)ĝK(w)dw +

∫
w/∈[a,b]

x(w)ĝK(w)dw

= (ĜK(b)− ĜK(a))

∫ b
a x(w)ĝK(w)dw

ĜK(b)− ĜK(a)
+

∫
w/∈[a,b]

x(w)ĝK(w)dw

=

∫ ∞

−∞
x(w)ĝK(w)dw.

Since x satisfies the resource constraint, x̃ also satisfies it.

For w /∈ [a, b], x and x̃ are identical and hence generate the same residual surplus. On [a, b],

let ĜK(·|w ∈ [a, b]) denote the conditional distribution of w given w ∈ [a, b], which has density
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ĝK/(ĜK(b)− ĜK(a)). Then,∫ b

a
x̃(w)ϑ(w)ĝK(w)dw

=

∫ b
a x(w)ĝK(w)dw

ĜK(b)− ĜK(a)

∫ b

a
ϑ(w)ĝK(w)dw

= Ew∼ĜK(·|w∈[a,b])[x(w)]Ew∼ĜK(·|w∈[a,b])[ϑ(w)](ĜK(b)− ĜK(a))

≥ Ew∼ĜK(·|w∈[a,b])[x(w)ϑ(w)](ĜK(b)− ĜK(a))

=

∫ b

a
x(w)ϑ(w)ĝK(w)dw.

The inequality is an application of Harris inequality, which states that for any nondecreasing func-

tion f and nonincreasing function g on R and any probability measure on R, we have E[fg] ≤
E[f ]E[g].

Proof of Theorem 7. Given for any ϵ > 0, take c̄ and c to satisfy 1−ϵ/2 < (Λ(c̄)−Λ(c)). Then, since

ĜK(w) → Λ(w) asK → ∞, there existsK0 such that for allK > K0, we have 1−ϵ < ĜK(c̄)−ĜK(c).

Lemmas 1 and 2 imply that there also exists K0 such that for all K > K0, for all w ∈ [c, c̄],

x̂(w) = x̄K for some x̄K ∈ [0, 1]. Let K0 be the larger one of these two. Then, clearly we have

Pr(x̂(w) = x̄K) > 1− ϵ. Furthermore, the resource constraint implies that

m̄ =

∫ ∞

−∞
x̂(w)ĝK(w)dw ≥

∫ c̄

c
x̂(w)ĝK(w)dw > x̄K(1− ϵ),

or equivalently, x̄K < m̄/(1− ϵ). The resource constraint also implies

m̄ =

∫ ∞

−∞
x̂(w)ĝK(w)dw ≤

∫ c̄

c
x̂(w)ĝK(w)dw +

∫
w/∈[c,c̄]

ĝK(w)dw = (1− p)x̄K + p,

where p = Pr(w /∈ [c, c̄]) < ϵ. The above inequality can be rewritten as x̄K ≥ (m̄− p)/(1− p). The

right-hand side is larger than (m̄− ϵ)/(1− ϵ) because it is decreasing in p and p < ϵ. Accordingly,

x̄K > (m̄− ϵ)/(1− ϵ).

B.7 Proof of Proposition 4

Proof. If ĜK is NBUE, then by Theorem 2, a no-screening mechanism is efficient. In this case, we

may set w∗∗ = +∞ and take x̂(w) ≡ m̄.

In the following, we consider the case in which ĜK is not NBUE. We first prove the following

lemma.

Lemma 3. Suppose that the reduced value distribution ĜK has an IDHR and is not NBUE. Then,
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the ironed virtual value ϑ̄ is given by

ϑ̄(w; ĜK) =

ϑ(w∗∗; ĜK) for w ∈ (−∞, w∗∗]

ϑ(w; ĜK) for w ∈ (w∗∗,+∞)
(27)

where w∗∗ is the solution of the following equation:∫ w

−∞
ϑ(w′; ĜK)ĝK(w′)dw′

ĜK(w)
= ϑ(w; ĜK). (28)

Proof. Since ĜK has an IDHR, H is concave for (0, ĜK(w∗)) and convex for (ĜK(w∗), 1). Since ĜK

is not NBUE, the convex hull I cannot coincide with the line segment connecting (0, 0) and (1, H(1)),

and therefore the supporting line from the origin touches H at an interior point q∗∗ ∈ (0, 1); thus,

we have the following:

I(q) =


H(q∗∗)

q∗∗
· q for q < q∗∗,

H(q) for q ≥ q∗∗.

This implies that the ironed virtual value is given by (27), where w∗∗ = Ĝ−1
K (q∗∗).

Furthermore, since q∗∗ is defined as the point of tangency, it solves H(q)/q = h(q), or equiva-

lently, ∫ q

−∞
ϑ(Ĝ−1

K (r); ĜK)dr

q
= ϑ(Ĝ−1

K (q)).

Finally, we obtain (28) by replacing q with ĜK(w) and applying the substitution r = ĜK(w) to

the integral in the left-hand side.

By Theorem 2.8 of Hartline and Roughgarden (2008), an efficient mechanism maximizes the

value of x̂(w) in regions where ϑ̄(w; ĜK) is larger while fulfilling the resource constraint and the

unit demand condition. The conclusion is immediate from this.

B.8 Proof of Theorem 8

Proof. By Proposition 3, for any 0 < c < c̄ < ∞, ĜK → Φα, ĝK → ϕα, ĝ
′
K → ϕ′

α uniformly on

[c, c̄]. Since the hazard-rate derivative r′(w;F ) is a continuous functional of (F, f, f ′) as long as

1− F is bounded away from 0, we obtain r′(w; ĜK) → r′(w; Φα) uniformly on [c, c̄].

Since Φα has an IDHR, there exists w∗ > 0 such that r′(w; Φα) > 0 for w < w∗ and r′(w; Φα) < 0

for w > w∗. We choose c and c̄ such that 0 < c < min{ϵ, w∗} and c̄ > w∗∗ > w∗, where w∗∗ is the

unique solution to (10). Then, for any small δ > 0, for all sufficiently large K, r′(w; ĜK) > 0 on

[c, w∗ − δ] and r′(w; ĜK) < 0 on [w∗ + δ, c̄].
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Since ϑ(·; ĜK) is decreasing on [c, w∗− δ), the efficient allocation rule x̂ must be constant on an

interval starting from (or before) c. Specifically, there exists w†
K > w∗−δ and a constant x̄K ∈ [0, 1]

such that x̂(w) = x̄K for all w ∈ [c, w†
K), and x̂(w) > x̄K for w > w†

K .

To evaluate the location of w†
K , we define the auxiliary function Θ. For a distribution Ĝ, let

Θ(w; Ĝ) :=

∫ w

0
ϑ(t; Ĝ)ĝ(t)dt

Ĝ(w)
− ϑ(w; Ĝ).

Note that w∗∗ is the unique solution to Θ(w; Φα) = 0. Furthermore, for a lower bound c > 0, define

the truncated version Θc by

Θc(w; Ĝ) :=

∫ w

c
ϑ(t; Ĝ)ĝ(t)dt

Ĝ(w)− Ĝ(c)
− ϑ(w; Ĝ) =

∫ w

c
(1− Ĝ(t))dt

Ĝ(w)− Ĝ(c)
− ϑ(w; Ĝ).

Due to the uniform convergence of Θc(·; ĜK) and its derivative to those of Θc(·; Φα) on (c, c̄],

combined with the IDHR property of Φα, Θc(w; ĜK) = 0 has a unique solution w††
K,c for sufficiently

large K. Analogous to the proof of Lemma 3, the definition of w††
K,c ensures that the line segment

connecting (ĜK(c), H(ĜK(c))) and (ĜK(w††
K,c), H(ĜK(w††

K,c))) is tangent to H at w††
K,c. Due to the

IDHR structure, this line segment lies below H on the interval [c, w††
K,c]. Since this line segment

connects two points on the graph of H, the ironed cumulative virtual value I, being the global

convex hull of H, must lie below it. Consequently, I is strictly less than H on the interior of

the interval. By the property of the convex hull, I must be a line segment on any interval where

it strictly detaches from H. Thus, the ironed virtual value is constant on [c, w††
K,c]. Since w†

K is

the right endpoint of the constant allocation interval starting from (or before) c for the original

distribution, it must satisfy w†
K ≥ w††

K,c.

We now show that w††
K,c approaches w∗∗ for sufficiently small c and large K. Since Φα has an

IDHR, Θ(·; Φα) is strictly decreasing in a neighborhood of w∗∗. Thus, for the fixed ϵ, there exists

η > 0 such that

Θ(w∗∗ − ϵ/2; Φα) > η and Θ(w∗∗ + ϵ/2; Φα) < −η.

First, consider the approximation by Θc. As c → 0,
∫ w
c (1 − Φα(t))dt →

∫ w
0 (1 − Φα(t))dt and

Φα(c) → 0. For w in the neighborhood of w∗∗, Φα(w)−Φα(c) is strictly positive and bounded away

from zero for sufficiently small c. Thus, Θc(w; Φα) → Θ(w; Φα) for any w in the neighborhood of

w∗∗. We can choose c < min{ϵ, w∗} small enough such that for w ∈ {w∗∗ − ϵ/2, w∗∗ + ϵ/2},

|Θc(w; Φα)−Θ(w; Φα)| < η/3.

Fix such c.

Next, consider the convergence as K → ∞. Since ĜK → Φα uniformly on [c, c̄] and Φα(w) −
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Φα(c) is bounded away from zero for w in the neighborhood of w∗∗, Θc(·; ĜK) converges uniformly

to Θc(·; Φα) on the neighborhood of w∗∗. Consequently, there exists K0 such that for all K > K0,

|Θc(w; ĜK)−Θc(w; Φα)| < η/3 for w ∈ {w∗∗ − ϵ/2, w∗∗ + ϵ/2}.

Combining these evaluations, for K > K0:

Θc(w
∗∗ − ϵ/2; ĜK) > Θ(w∗∗ − ϵ/2; Φα)− 2η/3 > η/3 > 0,

Θc(w
∗∗ + ϵ/2; ĜK) < Θ(w∗∗ + ϵ/2; Φα) + 2η/3 < −η/3 < 0.

By the intermediate value theorem, the root w††
K,c lies in (w∗∗ − ϵ/2, w∗∗ + ϵ/2).

Finally, we have

w†
K ≥ w††

K,c > w∗∗ − ϵ/2 > w∗∗ − ϵ.

Since x̂(w) = x̄K for w ∈ [c, w†
K) and c < ϵ, it follows that x̂(w) = x̄K for all w ∈ (ϵ, w∗∗ − ϵ).

B.9 Proof of Proposition 5

Proof. First, it is straightforward to see that, for all ρ,

RS(MSD;F
ρ) ≥ E

[
K∑
k=1

mk min
i∈I

vik

]
=

K∑
k=1

mkE
[
min
i∈I

vik

]
,

RS(Mρ
FB;F

ρ) ≤ E

[
K∑
k=1

mk max
i∈I

vik

]
=

K∑
k=1

mkE
[
max
i∈I

vik

]

Furthermore, since we assume that the goods are scarce (i.e., I >
∑

k∈K mk), for each v, there

exists an agent i∗(v) ∈ I who is not allocated. Under VCG, each agent who obtains object k must

pay at least v
i∗(v)
k . Accordingly,

E[(VCG payment)] ≥
K∑
k=1

mkE
[
v
i∗(v)
k

]
≥

K∑
k=1

mkE
[
min
i∈I

vik

]

Therefore, ∑
k∈K mkE[mini v

i
k]∑

k∈K mkE[maxi vik]
≤ RS(MSD;F

ρ)

RS(Mρ
FB;F

ρ)
≤ 1,

0 ≤ RS(MV CG;F
ρ) ≤

K∑
k=1

mk

(
E
[
max
i∈I

vik

]
− E

[
min
i∈I

vik

])
.

Accordingly, it suffices to show that for each object k, E[mini∈I v
i
k] → µk and E[maxi∈I v

i
k] → µk

as ρ → 1.
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For each k ∈ K, let Hρ
k denote the distribution of maxi∈I v

i
k and Lρ

k that of mini∈I v
i
k. Using

standard integral identities,

E
[
max
i∈I

vik

]
=

∫ ∞

0
(1−Hρ

k (w))dw, E
[
min
i∈I

vik

]
=

∫ ∞

0
(1− Lρ

k(w))dw.

Let Sk(v) := I(1− Fk(v)). Since
∫∞
0 |Sk(w)|dw = Iµk < ∞, Sk is integrable. Furthermore, we

have (i) 1−Lρ
k(w) ≤ 1−Hρ

k (w) by definition, and (ii) 1−Hρ
k (w) ≤ Sk(w) by the union bound. Thus,

by the dominated convergence theorem, once we show pointwise convergence, Hρ
k (w) → Fk(w) and

Lρ
k(w) → Fk(w) at all continuity points of Fk, then the dominated convergence theorem implies

E[maxi v
i
j ] → µj and E[mini v

i
j ] → µj .

Finally, we prove pointwise convergence. Let Xi
k := (vik − µk)/σk so that for all i ∈ I, k ∈ K,

and j ̸= i, we have E[Xi
k] = 0, Var(Xi

k) = 1, and Cov(Xi
k, X

j
k) ≥ ρ. Define the differences

Di
k := X1

k −Xi
k. Then, E[Di

j ] = 0 and Var(Di
k) = 2− 2Cov(X1

k , X
i
k) ≤ 2(1− ρ).

By the union bound and Chebyshev’s inequality,

Pr

(
max
i ̸=1

|Di
k| ≥ ε

)
≤
∑
i ̸=1

Pr(|Di
k| ≥ ε)

≤
∑
i ̸=1

Var(Di
k)

ε2

≤ 2(I − 1)(1− ρ)

ε2
−−−→
ρ→1

0.

Let Mk := maxi ̸=1 |v1k − vik|. Then,

Pr

(
max
i ̸=1

|v1k − vik| ≥ ε

)
≤
∑
i ̸=1

Pr
(
|v1k − vik| ≥ ε

)
=
∑
i ̸=1

Pr

(
|Di

k| ≥
ε

σk

)
−−−→
ρ→1

0.

Fix a continuity point v of Fk. Then

|Hρ
k (v)− Fk(v)| = Pr

(
max

i
vik > v and v1k ≤ v

)
≤ Pr(Mk ≥ ε) + Pr

(
Mk < ε and v1k ∈ (v − ε, v + ε)

)
≤ Pr(Mk ≥ ε) +

(
Fk(v + ε)− Fk(v − ε)

)
.

The first term vanishes as ρ → 1, and the second term can be made arbitrarily small by choosing

ε. Thus Hρ
k (v) → Fk(v). We can prove that Lρ

k(v) → Fk(v) in a similar manner.
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B.10 Efficient Mechanism for a Fréchet Case

We transform (28) to derive (10) as follows.

0 =

∫ v
0 ϑ(w; Φα)ϕα(w)dw

Φα(v)
− ϑ(v; Φα),

0 =

∫ v
0 (1− Φα(w))dw

Φα(v)
− 1− Φα(v)

ϕα(v)
,

0 =

∫ v

0
(1− e−w−α

)dw − 1− e−v−α

αv−α−1
,

0 =

[
w − 1

α
Γ

(
− 1

α
,w−α

)]v
0

− 1− e−v−α

αv−α−1
,

0 = v − 1

α
Γ

(
− 1

α
, v−α

)
− 1− e−v−α

αv−α−1
,

0 = v − 1

α
(−α)

[
Γ

(
1− 1

α
, v−α

)
− ve−v−α

]
− 1− e−v−α

αv−α−1
,

0 = (1− e−v−α
)v + Γ

(
α− 1

α
, v−α

)
− 1

α
vα+1(1− e−v−α

).

B.11 Random Favorite (RF) Mechanism

We characterize the RF mechanism for the following setting:

• A continuous i.i.d. market.

• Two object types: K = 2.

• The marginal value distribution is standard exponential: G(v) = 1− e−v.

• The capacities of objects 1 and 2 are given by (m1,m2), wherem1 ≥ m2 > 0 andm1+m2 ≤ 1.

RF offers two options: without making any payments, (i) obtain object 1 with probability

a ∈ (0, 1] and obtain object 2 with a zero probability, or (ii) obtain object 2 with probability

b ∈ (0, 1] and obtain object 1 with a zero probability. An agent claims object 1 if av1 ≥ bv2, or

equivalently, av1/b ≥ v2 and claims object 2 otherwise.

Conditional on v1, the probability that an agent claims object 2 is 1 − G(av1/b) = e−av1/b.

Thus, the total mass of agents who claim object 2 is∫ ∞

0
e−

a
b
v1e−v1dv1 =

b

a+ b
.

Accordingly, given (a, b), the demand for object 1 is a2/(a + b) and the demand for object 2 is

b2/(a + b). The market clearing condition requires that a2/(a + b) = m1 and b2/(a + b) = m2.

Solving these equations, we obtain

a = m1 +
√
m1m2, b = m2 +

√
m1m2,
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which constitute the unique solution in (0, 1]2 satisfying the agent’s optimality condition and the

market-clearing condition whenever m1 +
√
m1m2 ≤ 1. We focus on the case in which such an

interior solution exists.

In this interior region, the residual surplus achieved by RF is given by

RS(MRF )

= a

∫ ∞

0
v1(1− e−

a
b
v1)e−v1dv1 + b

∫ ∞

0
v2(1− e−

b
a
v2)e−v2dv2

= a

(
1− b2

(a+ b)2

)
+ b

(
1− a2

(a+ b)2

)
= (a+ b)− ab(a+ b)

(a+ b)2

= m1 +m2 + 2
√
m1m2 −

√
m1m2

= m1 +m2 +
√
m1m2.

Next, we compute the residual surplus achieved by SD. Since m1 ≥ m2 and objects 1 and 2 are

equally popular, in the beginning, all agents obtain their favorite objects, and object 2 is exhausted

when the first 2m2(< m1 + m2 < 1) unit of agents makes a choice. Afterward, all agents obtain

object 1, and when an additional m1−m2 unit of agents makes a choice, object 1 is also exhausted.

Accordingly, the residual surplus achieved by SD is

RS(MSD)

= 2m2

∫ ∞

0
vg2(v)dv + (m1 −m2)

∫ ∞

0
vg(v)dv

= 2m2

∫ ∞

0
v(2e−v − 2e−2v)dv + (m1 −m2)

∫ ∞

0
ve−vdv

= 3m2 + (m1 −m2)

= m1 + 2m2.

Since we assume m1 ≥ m2, within the interior region, RS(MRF ) ≥ RS(MSD) always holds,

and the equality holds if and only if m1 = m2. In Figure A.2, we plot

RS(MRF )−RS(MSD)

RS(MRF )
=

√
m1m2 −min{m1,m2}
m1 +m2 +

√
m1m2

to illustrate the performance difference between RF and SD.

59


