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Abstract

Deep learning has emerged as a promising approach for optimal auction design,
particularly in complex multi-bidder, multi-item settings. RegretNet (Diitting et al.
(2019)) is a notable architecture in this domain, capable of learning revenue-maximizing
auctions. However, ensuring Dominant-Strategy Incentive Compatibility (DSIC) in Re-
gretNet, specifically through the estimation of ‘regret,” is computationally intensive,
posing a barrier to its practical application. This paper proposes a method to acceler-
ate RegretNet training by leveraging the sufficiency of Local Incentive Compatibility
(LIC) for DSIC under common auction settings. Instead of minimizing global regret,
which requires an expensive search for optimal deviations, we minimize ‘local regret’,
restricting the search to a small neighborhood of the true valuation. This approach sig-
nificantly reduces the computational burden of regret estimation, primarily by decreas-
ing the number of gradient ascent steps required. Experimental results demonstrate
that our approach reduces training time by approximately 80% while maintaining rev-
enue and regret levels comparable to the original RegretNet. This work contributes a
more efficient training methodology for RegretNet, thereby enhancing its accessibility

for designing optimal auctions.

1 Introduction

Optimal auction design is a cornerstone of economic theory, crucial for allocating scarce
resources efficiently. While single-item auctions are well-understood since Myerson (1981),

designing optimal mechanisms for multi-bidder, multi-item settings remains a significant
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analytical challenge. Known optimal solutions are limited to very specific cases, such as a
single bidder with particular valuation distributions (Daskalakis et al. (2017); Manelli and
Vincent (2006); Pavlov (2011)) or when bidder valuations are restricted to two possible
values (Yao (2017)). The optimal auction is unknown for general multi-bidder, multi-item
scenarios, even for simple 2-bidder, 2-item cases.

The analytical intractability of many such problems has spurred the adoption of compu-
tational approaches (CONITZER (2002); Sandholm and Likhodedov (2015)). Deep learning,
in particular, has emerged as a powerful tool. Diitting et al. (2019) pioneered this by in-
troducing RochetNet and RegretNet, two architectures that apply deep learning to optimal
auction design. These methods have successfully replicated theoretically optimal auctions
and discovered novel mechanisms in previously unsolved settings, and have been extended
to various constraints and problems (Duan et al. (2022); Feng et al. (2018); Golowich et al.
(2018); Ivanov et al. (2022); Kuo et al. (2020); Peri et al. (2021); ?7); Rahme et al. (2021);
Ravindranath et al. (2021)).

RegretNet is particularly versatile, capable of handling multiple bidders by learning auc-
tion mechanisms through direct parameterization of allocation and payment rules using
neural networks. It ensures individual rationality (IR) and feasibility by its architecture.
However, RegretNet only guarantees approximate dominant-strategy incentive compatibil-
ity (DSIC) by penalizing a measure of ‘regret’—the utility gain a bidder could achieve by
misreporting their valuation. The estimation of this regret, which involves finding a bidder’s
optimal misreport, typically requires numerous computationally expensive gradient ascent
steps for each training sample. This computational bottleneck limits the scalability and
practical applicability of RegretNet (7). Furthermore, while these gradient descent-based
methods aim to find the best misreport, there is no inherent guarantee that they consis-
tently converge to the true global optimum. This could potentially lead to an underesti-
mation of actual regret during training, although the primary focus of this paper is on the
computational cost.

Addressing these aspects of regret estimation has been a subject of related research. For
instance, 7 proposed ALGnet, where a separate “misreporter” neural network is trained
adversarially to generate misreports. Separately, Curry et al. (2020) focused on the accuracy
of regret measurement post-training; they developed methods using integer programming to
find the certifiable best misreport and thus the true regret of a learned mechanism, offering
a rigorous way to evaluate a mechanism independent of gradient-descent-based estimation
during training.

This paper introduces a novel approach to accelerate RegretNet training, a key charac-

teristic of which is its strong theoretical underpinning derived from economic mechanism



design theory. We leverage the theoretical concept of ‘sufficiency of Local Incentive Com-
patibility (LIC)’ (Carroll (2012)). This important result states that under specific, common
conditions in auction theory (including additive valuations and convex support of valuation
distributions), ensuring LIC is equivalent to ensuring the stronger condition of DSIC. This
theoretical foundation provides a principled way to simplify the IC enforcement problem.

Our primary contribution is a RegretNet variant that, guided by this sufficiency result,
focuses on minimizing ‘local regret’—deviations within a small neighborhood of the true
valuation. This local regret is estimated efficiently with a single gradient ascent step initial-
ized at the true valuation. By targeting LIC rather than global DSIC directly and relying
on the theoretical sufficiency guarantee, we significantly reduce the computational cost of
the regret estimation step. Through simulations, we empirically demonstrate that this ap-
proach greatly reduces training time without a significant loss in revenue or the quality of
IC guarantees compared to the original RegretNet.

While using local regret offers substantial computational savings, its differing nature and
scale compared to global regret can introduce new challenges in tuning the penalty coefficients
within RegretNet’s original augmented Lagrangian training method. These parameters,
already known for their sensitivity (Ivanov et al. (2022)), might require meticulous and
setting-specific adjustments when applied to local regret. To address this potential issue
and ensure stable and effective training with local regret, we adopt the ‘regret budget’
method, as proposed by Ivanov et al. (2022). This method explicitly defines an acceptable
aggregate level of regret and dynamically adjusts a single Lagrange multiplier to meet this
budget. Applying this existing technique to our local regret framework aims to provide a
more robust mechanism for managing the revenue-regret trade-off, thereby mitigating the
difficulties associated with fine-tuning multiple sensitive hyperparameters for the novel local
regret measure.

The remainder of this paper is organized as follows: Section 2 covers preliminaries on the
auction setting, desirable mechanism properties, RegretNet, and the regret budget method.
Section 3 details our proposed method using the sufficiency of LIC. Section 4 presents ex-

perimental results. Section 5 concludes the paper.

2 Preliminaries

2.1 Auction Setting

We consider an auction with a set of n bidders N = {1,...,n} and a set of m heterogeneous,

indivisible items M = {1,...,m} to be allocated. Each bidder i € N has a private valuation



function v; : 2" — R, , where v;(S) is the value bidder i derives from obtaining the bundle of
items S C M. In this work, we focus on settings where bidders have additive valuations:
vi(S) = X_jcs vij» or unit-demand valuations: v;(S) = max;es vy, where v;; = v;({j}) is
bidder #’s value for item j. Under the constraint that the sum of the allocation probabilities
of each item for a bidder can not exceed one, unit-demand valuations are equivalent to
additive valuations. We denote bidder 4’s valuation vector as v; = (vi1, ..., Vim) € V; C R
Bidders have quasi-linear utility: if bidder i receives items yielding total value v;(x;) (where
x; represents the allocation to bidder i) and pays p;, their utility is u; = v;(z;) — p;. With
probabilistic allocations, if x;; is the probability bidder i receives item j, their utility is
> jen VijTij — Di-

Each bidder’s valuation v; is drawn independently from a distribution F; with support
Vi. We denote the joint valuation profile as v = (vy,...,v,) € V = HiGN V;, and v_; as the
valuations of bidders other than ¢. The distributions F; are common knowledge, while the
realized valuations v; are private information.

By the revelation principle, we can restrict our attention to direct mechanisms where
bidders report their valuations (bids) b = (by,...,b,), and the mechanism determines an
allocation rule g : V' — [0,1]™" and a payment rule p : V' — R". Here, g,;(b) denotes the
probability that bidder i receives item j given bid profile b, and p;(b) is the payment made
by bidder 4.

2.2 Desirable Properties of Mechanisms

An auction mechanism (g, p) should ideally satisfy the following properties:

e Feasibility: No item is allocated to more than one bidder: for any item 57 € M and
any bid profile b € V, >,y g;;(b) < 1. For a unit-demand utility, the allocation
probability is normalized for each bidder so that the total allocation probability to

each bidder is at most one.

e Dominant-Strategy Incentive Compatibility (DSIC): Truthful reporting is an
optimal strategy for each bidder, regardless of other bidders’ reports. For all i« € N,
v € V, and any misreport b; € V;:

Z 0339ij (Vi, V=) — pi(vi, v—;) > Z i 9i5 (bi, v—i) — pi(bs, v_y).

JEM JEM

e Individual Rationality (IR): Each bidder’s utility from participating truthfully is



non-negative:

Z 0;;9ij(v) —pi(v) >0 forallie N,velV.

JEM

The seller’s objective is to design a mechanism (g, p) satisfying Feasibility, DSIC, and IR

that maximizes their expected revenue: E,[> "\ pi(v)].

2.3 RegretNet

Proposed by Diitting et al. (2019), RegretNet employs two neural networks: a parameterized
allocation network ¢g* : R™ — [0, 1]" and a parametrized payment fraction network p*

R™ — [0, 1]™.

e Feasibility is enforced by applying a softmax function across bidders for each item’s

allocation probabilities output by g*.
e IR is enforced by computing payment for bidder i as p}’(b) = py’(b) >_ ¢, biz i (D).
e DSIC is approximated by minimizing an expected regret term for each bidder i:

glea\%{ (Z Uijg;;(bi? U—i> - P?(bu U—i)> - (Z VijGij (Ulv l) b; (U% Z))] .

jeEM jeM

rgt; = E,

The training objective is to maximize revenue subject to small regret, using an aug-

mented Lagrangian method with a loss function:
L(w, A\, p) = sz—l—Z)\rgt—i- ngt

(where p; and rAg/tZ are empirical payment and regret estimated over mini-batches).

Instead of the original augmented Lagrangian training with manually tuned \; and p (which
is described in Appendix B), we adopt the regret budget method for training, as detailed in
Section 2.4.

A key challenge is estimating rgt;. This involves finding the optimal misreport b for each
sampled (v;, v_;), approximated using multiple (e.g., I' = 25 in the original paper) gradient
ascent steps on bidder ¢’s utility with respect to b;. This procedure is computationally

intensive and a major bottleneck in training RegretNet.



2.4 Regret budget

The original RegretNet training employs an augmented Lagrangian method involving mul-
tiple per-bidder Lagrange multipliers A\; and a shared quadratic penalty coefficient p. These
hyperparameters often require careful, setting-specific tuning and can make the revenue-
regret trade-off difficult to interpret directly (?). To provide a more robust and interpretable
way to manage this trade-off, especially when dealing with potentially different scales or char-
acteristics of local regret measures introduced later, we adapt the ‘regret budget’ method
from Ivanov et al. (2022). This approach aims to maximize revenue subject to an explicit
constraint that the average regret does not exceed a predefined budget R,qz-

The constrained optimization problem is formulated as:

Zpﬁ“(v)] st Y 7gti < Ronga.

€N €N

min —F,,
w

The Lagrangian for this problem is:

> pi(v)

€N

Lbudget(w 7 = _E

(Z Tgtz - Rmax) ;

€N

where v > 0 is the single Lagrange multiplier associated with the aggregate regret constraint.

The effective loss for updating w is thus:

Lbudget w ’7 Zpl + Y (Z ;.\g_%z - Rmam) ) (1>

1EN

The training process alternates between updating the network parameters w by mini-
mizing f}budget (primal update via gradient descent) and updating the Lagrange multiplier -y

(dual update via gradient ascent on (1) with respect to ). The update rule for ~ is:

7 ¢ max (0,7 + 1), <log (Z rAthl> log <Z pz> log( max))) , (2)

where 7, is the learning rate for the dual variable . In (2), we normalize the regret estimate
by revenue, following Ivanov et al. (2022). To further guide the learning process, an annealing
schedule for R, is also employed. Training can start with a relatively high RS to

max

encourage exploration for high-revenue solutions, even if they initially violate the target



regret. R, is then gradually annealed towards a desired final budget Re" during training:

d
Rmax — maX(Ren Rmult : Rmaz)a

max?

where R, < 1 is a multiplicative factor controlling the annealing speed. This strategy
allows the network to first prioritize revenue and then increasingly focus on satisfying the
regret constraint.

The regret budget method alleviates the burden of tuning multiple, often interdependent,
A; and p parameters with the more interpretable setting of R,,., (and its schedule) and the
single dual learning rate n,. This can lead to a more straightforward hyperparameter tuning

process.

3 Proposed Method: Accelerating RegretNet via Suf-
ficiency of LIC

Our approach aims to reduce the computational cost of enforcing IC in RegretNet by lever-
aging the concept of Local Incentive Compatibility (LIC) and its sufficiency for DSIC under

certain conditions.

3.1 Local Incentive Compatibility (LIC)

LIC is a weaker notion of incentive compatibility. A mechanism (g,p) is LIC if for every
bidder 7, true valuation v;, and valuations of others v_;, there exists some neighborhood
N (v;) around v; such that bidder ¢ has no incentive to misreport to any b; € N (v;). More
formally, as defined in the context of this work: a mechanism (g, p) is LIC if for all v € V,
i € N, there exists an € > 0 such that for all b; € B.(v;) = {b; € V;|d(v;,b}) < €} (where d is

Euclidean distance):
Lo ienr Vi i (Vi v—i) — pivi, v—i) = 3~ iens VijGij (bis v—i) — pi(bi, v-i).
2. ZjeM bij9ij (i, v—i) — pi(bi, v—i) > ZjeM bij9ij (Vi, v—i) — pi(vi, v_;).

The first condition states that truthful reporting is locally optimal for the true type v;. The

second condition ensures that the reported type b; also (locally) prefers its outcome over the

outcome of v;. !

! Although this reciprocal condition that the neighboring type also prefers its own allocation and payment
is not included in the more common definition of LIC, it is necessary for Carroll (2012)’s result.



3.2 Sufficiency of LIC

LIC is ’sufficient’ for DSIC if any mechanism satisfying LIC also satisfies DSIC.

Proposition 1 (Corollary of Proposition 1 from Carroll, 2012). For auctions where bidders
have additive valuations and the support of their valuation distributions V; is convex for all

1 € N, any mechanism satisfying LIC is also DSIC.

This result is pivotal: if these conditions (additive valuations #, convex support) hold,

ensuring LIC is equivalent to ensuring DSIC.

3.3 Accelerating Regret Estimation with Local Regret

Given the sufficiency of LIC under the specified conditions, we propose to modify RegretNet
to target LIC instead of global DSIC directly during training. We define empirical “local
regret” (Irgt;) as:

Irgt, = %Z [ max (Z v 91 (bi v5) — pi(bi, UZ)) - <Z vi9i3 (V") —Pi(vk)>] :

b;€local search from vf et

where L is the batch size. Our proposed modification to RegretNet’s training is twofold:

1. Replace the global regret fﬁl with this local regret lr/\g/tl in the augmented Lagrangian

loss function (1).

2. To estimate l?g/ti, we perform only a single gradient ascent step to find a poten-
tially profitable misreport b;. This gradient step is initialized at the bidder’s true

valuation v;.

This contrasts with standard RegretNet, which uses multiple (usually 25) gradient steps.

The expected benefit is a multiplicative reduction in computational cost.

4 Experiments

4.1 Experimental Setup

We implemented our proposed method and the baseline RegretNet using Tensorflow. The
neural network architecture for both allocation and payment networks consisted of three

to six hidden layers with 100 ReLU units each. Training was conducted for 80 epochs

2Note that this additive formulation includes unit-demand settings.



using the Adam optimizer with a learning rate of 10™® and a batch size of 128. The total
number of training samples was 640,000. Training was conducted using the regret budget
method described in Section 2.4. R,,.; was chosen such that R,,.. converges to Rﬁ,?gx in
approximately two-thirds of the training iterations, following Ivanov et al. (2022). Evaluation
is based on 10000 samples, and optimal misreports are estimated using 1000 gradient descent
steps from 1000 random initial values, reporting the one that achieves the largest regret.

We considered four valuation settings:

e (a): 2 bidders, 2 items, additive valuation; v;; ~ i.i.d. Uniform(0,1).

(b): 2 bidders, 5 items, additive valuation; v;; ~ i.i.d. Uniform(0, 1).

(c): 3 bidders, 10 items, additive valuation; v;; ~ i.i.d. Uniform(0, 1).

(d): 1 bidder, 2 items, additive valuation; vy; ~ i.i.d. Uniform(4, 16), vi5 ~ i.i.d. Uniform(4,7).

(e): 2 bidders, 2 items, unit-demand valuation; v;; ~ i.i.d. Uniform(0,1).
For (a), (b), (c), (e), the theoretical optimal is unknown; for (d), it was found by Daskalakis
et al. (2017).

4.2 Baselines and Proposed Method

e Baseline (RegretNet-Standard): Original RegretNet; I' = 25 gradient ascent steps

for regret estimation.
e Proposed (RegretNet-Local): Modified RegretNet; I' = 1 gradient ascent step for

local regret estimation, initialized at v;.

4.3 Evaluation Metrics

e Expected Seller Revenue.

e Average Regret: Calculated post-training using an extensive search (2,000 gradient

steps from 1,000 random starts).

e Training Time: Total wall-clock time for 80 epochs.



Table 1: Performance Comparison of RegretNet-Standard and RegretNet-Local

Setting Method Revenue Avg. Regret Time (h)
(a) RegretNet-Standard 0.887 0.0004 2.94
RegretNet-Local 0.882 0.0007 0.58
(b) RegretNet-Standard 2.310 0.0015 3.41
RegretNet-Local 2.257 0.0016 0.68
(c) RegretNet-Standard 5.635 0.0022 6.51
RegretNet-Local 5.675 0.0061 1.27
(d) RegretNet-Standard 9.896 0.0072 1.87
RegretNet-Local 9.826 0.0077 0.52
Optimal 9.781 0 -
(e) RegretNet-Standard 0.717 0.0004 2.94
RegretNet-Local 0.720 0.0009 0.57
4.4 Results

The results in Table 1 demonstrate the effectiveness of RegretNet-Local. RegretNet-Local
significantly reduced training time, approximately five times accelerating it across all set-
tings. Revenue generated by RegretNet-Local is comparable to, and in some instances slightly
higher than, RegretNet-Standard. Average regret values for RegretNet-Local remain very
small (on the order of 107* to 1073 fraction of the revenue), indicating good approximate
DSIC properties. Overall, RegretNet-Local successfully accelerates training while maintain-

ing strong performance.

5 Conclusion

This paper addressed the computational challenge in training RegretNet. We proposed
RegretNet-Local, leveraging the sufficiency of LIC for DSIC in settings with additive val-
uations and convex valuation supports. Our modification involves estimating local regret
using a single gradient ascent step initialized at the true valuation. Experiments showed
that RegretNet-Local reduces training time greatly while maintaining comparable seller rev-
enue and low regret levels. This work demonstrates that incorporating theoretical insights
can lead to more efficient deep learning algorithms for economic problems, making the deep
learning approach to auction design more computationally feasible.

Future research could explore applicability to more general valuation settings or investi-

gate theoretical guarantees of the single gradient step for local regret estimation.
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A  Proof Theorem 1

The proof follows the logic presented by Carroll (2012). We include this for completeness.
Let (g, p) be an arbitrary mechanism satisfying LIC, and consider any v € V| i € N, and
b; € V;. We need to show that

Z 0339ij (Vi, v—) — pi(vi, ) > Z Vi3 Gij (biy v—i) — pi(bi, v-s). (3)
jeM jeM
For any « € [0, 1], let v¢* = (1 — a)v; + ab;. By convexity of V;, we have v¢ € V;. (Note:
In the following, we will denote vj; as the j-th component of vf*, and for brevity, when v_; is
fixed, we write g;;(v") for g;;(v¥, v_;) and p;(v$) for p;(v{,v_;).)

«.
G

LIC implies that for any «, o’ such that v is in a small neighborhood of v

S 0805 (00) — pi(e®) = 3 vgs (0) = pi(e)

jeEM jeM

and
D o g () = pi(vf) = > 0 gy (vf) — pi(vf).
jeM jeM
We denote this pair of local incentive compatibility conditions holding between v® and v
as a < o
Let A be the set of all & € [0, 1] such that there exists a finite sequence 0 = ap < a; <
<o+ < ag = a where ag <> agyq forall k =0,..., K — 1. If « € A and there exists an o/
such that @ < @/ <1 and a + o/, then clearly o € A (by extending the sequence for a with
o).
Let & = sup A. Since 0 <> 0 (trivially), 0 € A, so a > 0. If @ = 0, then @ € A. If
a > 0, then by the definition of LIC, for any « sufficiently close to @ (with a@ < &), we have
@ < «. Since & = sup A, there must exist such an o € A arbitrarily close to a. Thus, we
can ”chain” the local incentive compatibility from 0 to « and then from «a to & (if a # @),
implying & € A. Therefore, @ € A always holds.
Now, assume for contradiction that & < 1. By LIC, for ay > @ and sufficiently close to
@, we have & <> ay. Since a € A, this implies ay € A. But ay > @, which contradicts
a = sup A. Thus, we must have & = 1. This means 1 € A.
So, there exists a sequence 0 = oy < a1 < --+ < ag = 1 such that ap < agyq for all
k=0,..., K —1. This means for each £k =0,..., K — 1:

> 0 (gi (%) — g (01) = (i) = pa(v*1)) > 0 (4)

JEM

13



and

D v g (o) = g (o) = (i) = pa(*)) > 0. (5)

JEM

Multiply Eq. (4) by axs1 and Eq. (5) by a; and summing them leads to:

D (v = av ™) (g (o) = gi () = (@ = ) (pi0]*) = pa(v™)) 2 0.

JEM
We have
ozk+1v§;’“ - Oékviajk“ = ak+1((1 - Ozk)vij + akbij> - ak((l - Oék+1)Uij + ak+1bij)

= (y1(1 — ar) — ar(l — ags1))vij + (Qrp10n — apagi1)bi
Qg1 — Q10 — QO + Q41 ) Vi

=
= (

Qg1 — Oék)Uij-

Since agy1 — ax > 0, we can divide the inequality by (g1 — ag):

> (g (W) = g5 (W) = (i) — pi(v*1)) = 0. (6)

JjeEM

Summing Eq. (6) for k=0,..., K — 1

k=0 LjeM
K-1 K1
= v > (9 (0) = gig (i) = > (pilv™*) — piv*H)
JEM k=0 P

This is a telescoping sum:

K—

—

(965 (v7™) = gig(v;"1)) = (9i (V) = gz (V) + -+ - + (gig (v; ") = gi; (057))

= gij (V") — giz (v]'").

Similarly for the payment terms. Since og = 0, v{° = v;. Since ax = 1, v;* = b;. Thus, the
sum becomes:

D 095 (vs) = 955 (03) — (pilwi) — pi(bi)) > 0.

JEM

14



Rearranging this gives:

Z ;5955 (Vi) — pi(vs) > Z 395 (i) — pi(bi)-

jeEM jeEM

This is exactly Eq. (3), which completes the proof. ]

B RegretNet Training Algorithm

The RegretNet training algorithm involves iteratively updating network weights and La-

grange multipliers.

Algorithm 1 RegretNet Training
Input: Minibatches Sy,..., Sy of size B
Parameters: Vi, p, >0, v>0,n>0,'e N, Q e N
Initialize: w° € R?, \° € R”
fort = 0toT do
Receive minibatch S; = {v®, ... v}
Initialize misreport UIEZ) eV,Vte[B],ie N
forr = 0toI' do
V¢ e [B], i€ N:
U/Z@) +— U/EZ) + Vvvg[u;” (vm; (v} v(e»)))]

(] 1) T —1

i
end for
Compute regret gradient: V¢ € [B],i € N:
921‘ =
Vo [u (v (17, 0)) = w0 00)] |
Compute Lagrangian gradient and update wht
W — wh — nV,, L, (w, \') t

Update Lagrange multipliers once in () iterations:

if t is a multiple of )

AL N pyrgt(w't), Vie N
else

)\t+1 — )\t

end for
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