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Abstract

We study how school choice mechanisms shape wealth segregation in the long term

by endogenizing residential choice. Families buy houses in school zones that determine

admission priority, experience shocks to school preferences, and participate in one of

three mechanisms: neighborhood assignment (N), Deferred Acceptance (DA), or Top

Trading Cycles (TTC). Neighborhood segregation increases from N to DA to TTC.

DA and TTC reduce school-level segregation relative to neighborhoods but typically

not enough to reverse this ranking, and housing prices in oversubscribed zones rise in

the same order. Two desegregation policies further illustrate how short- and long-term

perspectives can differ. (JEL C78, D47, D63, I21, I28, R31)
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1 Introduction

A substantial premium for housing in zones of desirable schools is well documented in the

empirical literature.1 This premium reflects priority access to local school seats. The value of

this access depends on the school assignment mechanism—particularly on the extent to which

seats are available to out-of-zone applicants—and can influence residential location decisions.

Yet most theoretical analyses of school assignment mechanisms treat residential locations—

or priorities they confer—as fixed (see, e.g., a review by Abdulkadiroğlu and Andersson,

2023). Treating residential locations as fixed is appropriate for short-term analysis, but does

not account for assignment mechanisms’ impact on long-term residential wealth segregation

(or sorting).

To provide a long-term analysis, we endogenize families’ location choices in a two-stage

model: families first purchase a house in one of the school zones and then participate in

school assignment. In-zone housing gives residents priority at their local school, which we

assume to be the sole reason families purchase in-zone housing.

In our model, families’ preferences over schools are heterogeneous—there is no uniformly

best school—but there exists an undersubscribed school that is second best for most families.

This assumption makes the matching problem tractable while preserving the key differences

in school assignments under the mechanisms we study: Neighborhood Assignment (N), De-

ferred Acceptance (DA), and Top Trading Cycles (TTC). Assignment mechanisms matter

in our model because families experience a school-preference shock after purchasing a house.

The shock reflects the fact that, in practice, families choose when and where to buy housing

based on factors outside our model, and may find it too costly to relocate once preferences

change. Under the flexible mechanisms, DA and TTC, families who no longer wish to attend

the in-zone school may be assigned elsewhere, freeing local seats for out-of-zone enrollments

(Section 3.1 explains how DA and TTC operate in our model).2

1Many studies estimate a premium of 2–4% in housing prices per standard deviation increase in test
scores (see Black (1999) for a seminal contribution; Nguyen-Hoang and Yinger (2011) for a review; Moon
(2018) for a recent study exploiting policy variation; and Eshaghnia et al. (2023) for a study employing an
alternative methodology). La (2015) finds an even higher premium of about 7% for family housing, where
school considerations are most salient, though the aggregate effect is consistent with prior estimates.

2Heterogeneity of school preferences—the importance students place on different school characteristics—
is well documented in the education policy literature (see, e.g., Glazerman and Dotter, 2017; Harris and
Larsen, 2023). If instead there were a universally preferred school, our framework could readily accommodate
it (see Section 5). Our model can also incorporate, at the cost of extra notation, families who do not
experience a preference shock and instead purchase houses with complete information (see Section 5). Finally,
while preferences for neighborhood amenities can also drive out-of-zone enrollment, we abstract from this
channel to focus on uncertainty about school preferences.
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Out-of-zone enrollments help DA and TTC reduce school-level segregation relative to N

in the short term—when neighborhood segregation is held constant—by allowing students

from poorer out-of-zone neighborhoods to access schools in richer ones.

In the long term, neighborhoods become segregated because families with different wealth

levels resolve the tradeoff between the higher cost of in-zone housing and the expected benefit

of a better school assignment by making different housing choices. Obtaining priority at an

oversubscribed school improves the expected assignment quality under any mechanism with

local priority. DA and TTC further improve the expected quality by providing out-of-

zone assignment options, which, as we explain next, lead to different location choices across

mechanisms: N produces the least, and TTC the most, segregated neighborhoods (Theorem

1). As in the short term, DA and TTC continue to reduce school-level segregation relative

to neighborhood-level one; yet, this reduction is usually insufficient to offset the increase in

neighborhood segregation that arises under these mechanisms, resulting in more segregated

schools than N (Theorem 2).

At the time of housing decisions, families differ only in wealth and their “signals:” their

expected values for schools. Because disutility from housing expenditure is lower for wealthier

families, two families with identical signals but differing wealth may make different housing

decisions. As wealthier families choose in-zone housing more often than poorer families,

neighborhoods are segregated under any mechanism that grants in-zone priority. Yet, the

level of segregation varies among the three mechanisms.

As DA and TTC provide an out-of-zone assignment option, signals play less of a role in

housing decisions, compared to N. Consequently, under DA and TTC, wealthier families with

weaker signals may outbid those poorer families with strong signals who buy in-zone housing

under N. Thus, at the population level, as the importance of signals declines, wealth becomes

the primary determinant of housing competition, increasing neighborhood-level segregation

under flexible mechanisms compared to N.

Between the two flexible mechanisms, TTC results in higher segregation because resi-

dents of oversubscribed schools’ zones have a higher probability of obtaining an out-of-zone

assignment under TTC than under DA. This probability is identical for all out-of-zone appli-

cants under DA, implying no residential advantage. Under TTC, an out-of-zone assignment

requires finding a partner willing to exchange seats, and such partners always exist for stu-

dents residing in the zones of oversubscribed schools. Hence, out-of-zone assignments are

more accessible under TTC, leading to greater segregation.

The argument connecting neighborhood segregation to the probability of obtaining an
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out-of-zone assignment ignores the housing price changes induced by the mechanisms, but

we show that the price-driven effect only strengthens our argument. We also show that,

under general conditions, housing prices increase from N to DA to TTC (Theorem 3). This

finding may be of independent interest, as prices capture externalities present in the school

choice problem and are a persistent worry among residents of popular school zones in public

debates.

Neighborhood segregation does not directly translate to segregation at the school level.

Relative to N, two offsetting forces operate under DA: it increases residential segregation, as

discussed above, but decreases segregation at each school relative to its own neighborhood.

This decrease arises because residents of oversubscribed school zones are, on average, wealth-

ier. When they forgo seats at their local school, these seats are filled by poorer students.

Theorem 2 quantifies these forces and provides conditions under which one dominates the

other. The shape of the signal distribution plays an important role: under a natural param-

eter restriction, we identify the shape that minimizes the forces driving segregation under

DA (Lemma 5) and establish a condition under which DA yields higher neighborhood seg-

regation than N for the segregation-minimizing—and hence any—distribution (Proposition

1). Finally, using this segregation-minimizing distribution, we numerically examine cases

in which this condition is violated and show that, even then, DA typically produces more

segregated schools. Overall, DA results in higher school-level segregation than N in most

cases.

TTC results in the highest school-level segregation (Theorem 2 and Proposition 1). This

follows from its high residential segregation, which is only weakly offset at the school level:

residents of oversubscribed zones predominantly exchange seats with residents of other over-

subscribed zones, making these exchanges effectively segregation-neutral. As a result, school

segregation largely mirrors neighborhood segregation.

While the benefits of DA and TTC are well documented (see, e.g., Pathak, 2011) and

remain in our setting (see Section 5.1 for an example3), our segregation results may help

explain the hesitation of some policymakers to adopt flexible school-choice mechanisms.

Policymakers should weigh these benefits against the potential for rising segregation and

design desegregation policies to mitigate it.

Desegregation policies, like assignment mechanisms, should be evaluated not only by

3The example also considers two hypothetical benchmarks without neighborhood priority. DA/TTC
without neighborhood priority yields full integration but lower match quality than DA or TTC with priority.
Auctioning school seats achieves higher match quality but, perhaps unexpectedly, produces segregation levels
comparable to N and DA and well below TTC.
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their short-term outcomes but also by their long-term effects. To illustrate, we construct an

environment where giving priority access to poor families from a less desirable school zone

is highly effective in the short term but increases neighborhood segregation and, to a small

extent, school segregation in the long term. By contrast, extending priority to all families

from that zone—an intuitively inferior policy—achieves less desegregation when locations are

fixed but becomes increasingly effective once families relocate in response to its incentives.

While early empirical contributions (see footnote 1) identified the housing premium us-

ing discontinuity at the school boundaries, recent papers are closer to our setting, as they

use structural models that incorporate neighborhood priority, detailed housing supply, and

residential sorting, taking the models closer to the one considered here (Caetano, 2019;

Agostinelli et al., 2024; Park and Hahm, 2023; Pietrabissa, 2024; Greaves and Turon, 2024).

These papers do not allow for a preference shock after the neighborhood choice except for

Park and Hahm (2023). The latter estimates a structural model similar to ours in the con-

text of New York school choice that uses DA. It does not compare DA to other assignment

mechanisms and, naturally, focuses on quantitative rather than qualitative comparisons.

Recent theoretical contributions have significantly advanced our understanding of how

school choice mechanisms interact with housing markets when access to schools is rationed,

but, to our knowledge, only Grigoryan (2021) models housing choices at the level of indi-

vidual school zones. He allows for general preferences over neighborhoods and schools, but

unlike our model, families do not experience preference shocks after housing decisions. He

establishes that DA (with neighborhood priorities, as in our setting) generates higher welfare

than N, but does not consider segregation. Thus, the two papers can be considered comple-

mentary, highlighting a tradeoff between welfare improvements of flexible school choice and

negative consequences in terms of segregation.

Gonczarowski et al. (2024) analyze a school assignment problem that involves multiple

school districts. They extend the analysis of Pathak and Sönmez (2008) of sincere and

sophisticated players to introduce additional “constrained”—those who must be assigned

within the district—and “unconstrained’ types who can hop between districts. They show

that multiple school districts may overturn classical results. Even though the focus and the

models of that paper and our work are very different, the two share the main message that

additional school enrollment constraints may play an important role in the analysis.

Jeong (2022) studies a multi-district school system with multiple schools per district. He

compares regimes with and without inter-district enrollment and analyzes how families sort

by income and school preferences under Immediate Acceptance (IA) and DA mechanisms.
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He assumes that school quality is linked to housing prices. The main case in the paper is

when preferences and wealth are correlated; when they are not, as in our model, schools

become vertically differentiated, with complete segregation.

More generally, our paper contributes to the literature examining joint schooling and

housing choices, often embedding education into broader models of residential sorting. Foun-

dational work by Tiebout (1956) and Nechyba (2000) introduced the idea of families “vot-

ing with their feet,” embedding schools in general-equilibrium models with housing mar-

kets, vouchers, and taxation, but assumed simple school assignment rules. Later theoretical

work, including Epple and Romano (2003), De Fraja and Mart́ınez-Mora (2014), Barseghyan

et al. (2019), and Avery and Pathak (2021), explores stratification through mechanisms like

peer effects, school effort, and competitive outside options, treating school assignments as

neighborhood-based or open enrollment rather than those involving rationing.

Other work on school choice studies segregation without modeling endogenous housing

choices. Calsamiglia and Miralles (2023) define “access to better schools” as the number of

students assigned to a school they prefer over their in-zone option, showing higher access

under TTC than DA. Although this may seem related to segregation, the concepts differ:

access can increase without any change in segregation—for example, when students from one

desirable zone attend a school in another. Their analysis also assumes stratification, whereas

in our model preferences over schools are highly heterogeneous (see Section 5 for a discussion

on introducing a universally top-ranked school). Calsamiglia et al. (2021) propose the notion

of “cardinal segregation,” arising when students with identical ordinal but different cardinal

preferences submit different rank-order lists under IA. They show that IA creates more

segregation than DA due to risk preferences.4 Their framework differs from ours in both the

mechanisms studied and the definition of segregation.

The rest of the paper is organized as follows. Section 2 introduces an example that

captures the main intuition behind our results. It focuses on signals drawn from a uniform

distribution and provides a numerical illustration for other distributions. Section 3 introduces

the model, describes the mechanisms, and derives equilibria. Section 4 presents the main

results: the ranking of mechanisms by neighborhood segregation, school segregation, and

housing prices. Section 5 discusses possible extensions of the model. It then returns to

the example from Section 2 to examine a partial welfare measure—match quality—under

N, DA, and TTC, and to compare them with two additional mechanisms that do not grant

4They consider endogenous location choice in Section 5, but this only increases transportation costs
rather than creating new sorting incentives.
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neighborhood priority, which serve as alternative benchmarks. The section also explores two

possible desegregation policies. We conclude in Section 6.

2 Example

There are three schools, c−1, c0, and c1, each located in a neighborhood n−1, n0, and n1, and

each granting priority to local residents. The total mass of agents is 2, split evenly between

poor (ωP = 9/8) and rich (ωR = 7/8) families, so that the average wealth index is normalized

to 1.

First, each agent i receives a signal si ∈ [−1, 1] representing their expected idiosyncratic

value for schools. To draw a signal, Nature first selects either [−1, 0] or [0, 1] with equal

probability, and then draws si from the chosen interval. Let F (·) denote the cdf on [0, 1],

extended symmetrically to [−1, 0]. This setup facilitates generalization to more than three

schools. After receiving a signal, each agent chooses a neighborhood nk and pays a housing

price pk, with p0 normalized to zero.

After choosing a neighborhood but before school assignment, agent i experiences a pref-

erence shock εi ∈ {−1, 0, 1}, each with probability 1/3. After observing εi, agents submit

preferences over schools c−1, c0, and c1 and are assigned via a mechanism φ. This timing ab-

stracts from agents’ full relocation decisions, which typically involve decisions on when and

where to move based on multiple factors, including local school suitability. By condensing

these multiple factors into a single housing decision under uncertainty, we isolate the effects

of school choice.

When agent i buys a house in neighborhood nk and attends school c, i’s utility is

ui(nk, c, pk|si + εi, ωi) =


si + εi − ωipk if c = c1

−ωipk if c = c0

−(si + εi)− ωipk if c = c−1

Note that, ex ante, c1 is the best school for any agent with si > 0, but ex post, with

probability 1/3, c−1 becomes i’s most preferred school.5 Thus, allowing agents to attend

schools outside their neighborhood increases efficiency. Poor agents (with ωi = ωP = 9/8)

incur greater disutility from housing costs than rich agents (with ωi = ωR = 7/8).

5In the main model, we allow c0 to be the most preferred school for some agents.
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Schools c−1 and c1 have capacities q = 0.4 each, and school c0 has unlimited capacity.

Neighborhood sizes are assumed to be equal to their respective school capacities. n−1 and

n1 are overdemanded at zero price (we omit the qualifier “at zero price” hereafter), while

n0 is not, serving as an “outside option.” Because of symmetry in signals, shocks, and

capacities, it is sufficient to focus on n1 and c1, and we write pφ as the price of overdemanded

neighborhoods under mechanism φ (i.e., pφ = pφ−1 = pφ1 ).

We study three assignment mechanisms φ: Neighborhood (N), Deferred Acceptance with

neighborhood priority (DA), and Top Trading Cycles with neighborhood priority (TTC).

Under N, agents in neighborhood nk are assigned to school ck; there is no school choice.

Under DA, agents in n1 are guaranteed seats at c1, but if c−1 is their top choice, they face

the same probability of assignment to c−1 as any other non-local applicant due to a random

tie-breaker. Under TTC, if agent i in n1 prefers c−1, by symmetry, i can always find an agent

in n−1 who prefers c1, forming a cycle that guarantees i’s assignment to c−1. Thus, a house

in n1 secures a seat at the school of the agent’s choice. In turn, all seats in c1 freed up by

n1 residents go to agents from n−1 and all agents in n0 are assigned to c0 under TTC.6

2.1 Agent’s optimal housing decision

We focus on a symmetric equilibrium strategy σ, which determines the probability rφ that an

applicant from n0 is rejected by c1 due to a random tie-breaker. To simplify notation in the

example, we omit σ. Agent i chooses to live in n1 if the expected utility gain relative to n0 is

non-negative: ∆uφ(rφ, pφ|si, ωi) = Eϵiu
φ
i (n1, r

φ, pφ|si+ ϵi, ωi)−Eϵiu
φ
i (n0, r

φ, pφ|si+ ϵi, ωi) ≥
0, where uφ

i denotes the expected utility under mechanism φ, given truth-telling and the

induced rφ. Under N, rN = 1 because out-of-zone applicants are never assigned to c1. In

this example, rTTC = 1 as well, since all seats in c1 vacated by n1 residents are taken by n−1

residents.

For si > 0, ∆uφ(rφ, pφ|si, ωi) is increasing in si, as higher signals increase the expected

benefit of living in n1 (Lemma 1). Therefore, for each mechanism φ and wealth index ωi,

there is a cutoff sφωi
solving ∆uφ(rφ, pφ|sφωi

, ωi) = 0, such that i with (si, ωi) buys in n1 if and

only if si ≥ sφωi
. We next find cutoffs under N, TTC, and DA.

Under N, all agents are assigned to their neighborhood schools. If agent i resides

in n1, i’s expected value of the assignment is si, and it is 0 if i resides in n0. Hence,

∆uN(rN , pN |si, ωi) = rNsi − ωip
N . The cutoff is sNωi

= ωi
pN

rN
.

6In the main model, some agents from n0 are assigned to c−1 or c1 under TTC, which complicates the
analysis but preserves the intuition.
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Under TTC, n1 residents are assigned to their most preferred school. If εi ∈ {0, 1}, the
most preferred school is c1, with utility si + εi; if εi = −1, it is c−1 with utility 1− si. Thus,

∆uTTC(rTTC , pTTC |si, ωi) = rTTC((si + 1)/3 + si/3 + (1− si)/3)− ωip
TTC and the cutoff is

sTTC
ωi

= 3ωi
pTTC

rTTC − 2.

Under DA, agents in n0 and n1 have an equal chance to be assigned to c−1, and c0 accepts

all rejected students. Hence, the only benefit of buying in n1 is an increase in probability

of getting c1 when it is the top choice, from (1 − rDA) to 1. Hence, ∆uDA(pφ|si, ωi) =

rDA((si + 1)/3 + si/3)− ωip
DA, and sDA

ωi
= 3

2
ωi

pDA

rDA − 1
2
.

The cutoff values for each mechanism φ and wealth index ωP , ωR are summarized below.

φ = N φ = DA φ = TTC

sφ
ωP = ωP pφ

rφ
ωP 3

2

pφ

rφ
− 1

2
ωP 3

pφ

rφ
− 2 (1)

sNωR = ωR pφ

rφ
ωR 3

2

pφ

rφ
− 1

2
ωR 3

pφ

rφ
− 2 (2)

We map these cutoffs into neighborhood-level segregation in the next section.

2.2 Neighborhood-level wealth segregation

Using equations (1) and (2), we quantify segregation under each mechanism. Since the

example has only two wealth indices, we measure segregation by the share of poor agents

in n1. In the main model, we use the average wealth index as a more general metric. Both

measures are linear transformations of the difference in masses of rich and poor agents in

n1: (1 − F (sφ
ωR)) − (1 − F (sφ

ωP )) = F (sφ
ωP ) − F (sφ

ωR). Although we focus on the uniform

distribution here, the ranking of mechanisms in terms of neighborhood-level segregation is

the same for other weakly concave distributions.

With uniform distribution, we have F (sφ
ωP )− F (sφ

ωR) = sφ
ωP − sφ

ωR . This difference could

be readily calculated from equations (1) and (2), but it must also account for endogenous pφ

rφ
.

Equations (1) and (2) and an observation that the total mass of agents in n1, (1− sφ
ωR)/2 +

(1 − sφ
ωP )/2, must be equal to n1’s capacity, q, means that pφ

rφ
must solve (sφ

ωP + sφ
ωR)/2 =

9



1− q = 0.6. That, and equations (1) and (2), with ωP = 9/8, ωR = 7/8, give us:

φ = N φ = DA φ = TTC

(sφ
ωP + sφ

ωR)

2
=

pφ

rφ
3

2

pφ

rφ
− 1

2
3
pφ

rφ
− 2 (3)

pφ

rφ
=

9

15

11

15

13

15
(4)

(sφ
ωP − sφ

ωR) =
1

4
× pφ

rφ
3

2

pφ

rφ
3
pφ

rφ
(5)

% poor agents in n1 = 41% 33% 9%, (6)

Line (6) shows that segregation increases from N to DA to TTC. The multipliers in line

(5)—1, 3/2, and 3—reflect decreasing sensitivity of the utility from school assignment to the

agent’s signal, as the chance of being assigned to a non-local school increases across mecha-

nisms. Even if pφ

rφ
were the same, these multipliers alone would lead to higher segregation.

The increases in pφ

rφ
from N to DA to TTC, as shown in line (4), further amplify segrega-

tion. This term captures the “option value” of buying a house in n1: the utility gain of an

n1 resident relative to an n0 resident rejected from c1.

Our observations so far can be summarized in Figure 1, which shows cutoffs for poor and

rich families (which are intersections of solid and dashed lines), and the population living

in n1, which is to the right of these cutoffs. In perfectly unsegregated neighborhoods—such

as those produced by a school assignment mechanism without neighborhood priorities7—

the cutoffs would be at exactly one minus half of n1’s capacity for each population. The

lower the slope of the line connecting the cutoffs for rich and poor families, the higher the

segregation. Theorem 1 shows that this result holds in our general model that allows for m

schools, preferences that allow c0 to be the best school for some agents, and more than two

wealth indices (in which case we use the average wealth index as a measure of segregation).

2.3 School-level wealth segregation

Under N, there is no school choice: all agents in n1 attend c1. Under TTC, reassignment

does not reduce segregation in this example, as no agents from n0 are ever assigned to c1.
8

Figure 2 illustrates this: the green areas represent agents who prefer a school in the opposite

7We provide an example of such mechanisms in Section 5.1.
8In the general model, c0 is the most-preferred school for some agents from n1, who exchange their seats

with agents from n0. Although this reduces school-level segregation, the reduction is small.
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N DA TTC

Agents
living in n1

n1 capacity
2

Exp.value of c1

ωi, wealth index

poor

rich

si = 0 si = 1

Figure 1: Segregation in neighborhood n1 increases across the school assignment mechanisms,
from Neighborhood (N) to Deferred Acceptance (DA) to Top Trading Cycles (TTC).

Notes: Dashed lines labeled “poor” and “rich” represent two populations of mass 1, each with signals uniformly distributed on
[−1, 1]. Agent i’s signal, si, corresponds to i’s expected utility from attending school c1 at the time of the housing decision.
The intersections of the dashed line poor with the solid lines labeled by assignment mechanisms—N, DA, and TTC—indicate
the cutoffs for poor agents under each mechanism. The same applies to the rich dashed line. Agents to the right of each cutoff,
with higher signals, choose n1. For each mechanism, the average of the poor and rich agents’ cutoffs—the point of intersection
of three solid lines—equals half of the total capacity of neighborhood n1.

neighborhood and exchange seats with their counterparts in the green area on the other side

of si = 0. As neither mechanism affects segregation that existed on the neighborhood level,

schools are less segregated under N than under TTC.

Under DA, school choice unambiguously reduces segregation at the school level. Since n1

comprises 33% poor and 67% rich agents, the population outside n1 must be majority poor.

Because agents outside n1 have an equal chance to be assigned to c1, DA replaces agents

who are more likely to be rich with agents who are more likely to be poor, narrowing the

wealth gap. Figure 3 provides an illustration analogous to the TTC case. Here, agents in

the green area free up seats in c1, and agents in the blue area to the left of the solid DA

line are assigned to c1. By comparing the relative lengths of blue lines capturing rich and

poor families to the corresponding lengths of the green lines, we see that, on average, the

green-area agents are richer than those in the blue area.

In general, whether DA results in lower school-level segregation than N depends on the

signal distribution. Under a uniform distribution, both mechanisms yield identical segrega-

tion in c1. For non-uniform cases, it suffices to consider single-kink cdfs: any weakly concave

distribution has a linearized single-kink version that yields a weakly greater increase (or

smaller decrease) in the share of poor agents at c1 from N to DA (Lemma 5). That is, the

11



Exp.value of c1

ωi, wealth index

poor

rich

si = 0 si = 1

=,→
←

=,→
←

=,←
→

=,←
→

Students in n−1 and n1 exchange their seats

TTC

Figure 2: School-level segregation is equal to neighborhood-level segregation under TTC.

Notes: Agents in the box labeled =,→ have shocks of 0 or +1, while those in the box labeled =,← have shocks of 0 or −1. Red
boxes with slanted fill show agents in n−1 and n1 attending their local schools, c−1 and c1, respectively. Green boxes labeled
← contain agents in n1 with a −1 shock whose most preferred school is c−1. Conversely, green boxes labeled → contain agents
in n−1 with a +1 shock whose most preferred school is c1. These agents trade seats: those in the left green box give up a seat
in c−1 in exchange for a seat in c1, and vice versa. Intersections of solid red lines labeled TTC and the dashed lines indicate
the cutoffs for rich and poor families and show the resulting neighborhood-level segregation, as shown in Figure 1.

Exp.value of c1

ωi, wealth index

poor

rich

si = 0 si = 1

DA

=,→
←

=,→
←

→

→

Out-of-zone applicants
assigned to c1

In-zone
applicants
leaving c1

In-zone
applicants
assigned to c1

Figure 3: Segregation on the school level is lower than on the neighborhood level under DA.

Notes: Red boxes with slanted fill labeled =,← show agents n1 with shocks of 0 or +1 who attend their local school c1. Green
boxes labeled ← contain agents in n1 with a −1 shock whose preferences are c−1c0c1. Blue boxes with crosshatch fill show
agents outside of n1 with a shock +1 whose preferences are c1c0c−1 and who are assigned to c1. The sizes of the two green
boxes and the two blue boxes are equal. The agents in the green boxes are, on average, richer than agents in the blue boxes.
A solid green line labeled DA indicates neighborhood-level segregation, as shown in Figure 1.
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Figure 4: The difference in shares of poor agents in school c1 under N and DA for all one-kink
distribution of signals.

Notes: Each point (x, y) above the 45-degree line corresponds to the kink of a one-kink signal distribution with F (x) = y.
The color shading indicates which mechanism yields greater school segregation: green regions correspond to cases where DA
generates higher segregation than N, while red regions correspond to the opposite.

distributions most favorable to DA are single-kink.

To illustrate how often N results in lower segregation than DA, we compute the share

of poor agents in c1 across all single-kink distributions for one set of parameters. Figure 4

shows the difference between these shares under N and DA. Each point (x, y) corresponds

to the kink of a one-kink signal distribution. Because we consider only weakly concave

functions, the area below the 45-degree line is empty. The color scale shows the difference

between school segregation under DA and N. Negative values, where DA results in higher

segregation, are shown in green; positive values are shown in red. When the kink lies on

the 45-degree line, the distribution is uniform, and segregation under N and DA is identical.

The only region where DA yields lower segregation than N is a narrow horizontal red strip,

where the neighborhood segregation gap between N and DA is small and the desegregating

effect of DA is large.

In summary, TTC always produces more segregation than N, while the comparison be-
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tween N and DA is more nuanced. Although N can be more segregated than DA for some

distributions, most lead to the reverse ranking. These points are formally established in

Theorem 2 for the general model.

3 Model

Consider m + 1 schools C = {c0, c1, . . . , cm}, and corresponding neighborhoods (or zones)

N = {n0, n1, . . . , nm}. Each neighborhood nk ∈ N \ {n0} has a fixed supply of housing

q ∈ [0, 1], the same for each such nk, whereas the housing supply of n0 is sufficient to

accommodate demand for n0 (e.g., unlimited). In the main model, we assume that the

capacity of each school ck ∈ C equals the housing supply of the corresponding neighborhood

nk ∈ N . We discuss an extension where ck’s capacity is greater than the housing supply of

nk in Section 4.4. In either scenario, enrollment in the neighborhood school is guaranteed,

which reflects a common feature in many school districts (see, e.g., Musset, 2012).

There is a massm of agents who choose their residential areas fromN and then participate

in a school choice mechanism.9 An agent type is defined as (t1i , t
2
i , si, εi, ωi) ∈ {1, . . . ,m}2 ×

[0, 1] × {−e, 0, e} × Ω, where e ∈ R>0, and Ω ⊆ R>0 is a finite set. t1i and t2i (̸= t1i ) are the

indices of i’s primary and secondary “fit schools,” respectively, si is a signal of i’s fit to these

two schools, εi is a random shock to the fit, and ωi is i’s wealth type. The type (t1i , t
2
i , si, εi, ωi)

determines the utility of an agent who chooses neighborhood nk and is assigned to school cl

as follows:

ui(nk, cl,p|t1i , t2i , si + εi, ωi) =



si + εi − ωipk if l = t1i

−(si + εi)− ωipk if l = t2i

g − ωipk if l = 0

−∞ otherwise,

where p := (p0, . . . , pm) is the vector of housing prices determined in equilibrium. Agent i

receives utility of si+εi from their primary-fit school ct1i , whereas the secondary-fit school ct2i
gives i the negative of that value, −(si+εi). School c0 gives fixed utility g ≥ 0 irrespective of

the student’s type, and utility from all other schools is negative infinity.10 Schools c1, . . . , cm

9An “agent” refers to a family with one child. Typically, the parents decide their residential location,
and the child attends one of the schools, but we treat the family as a single decision-maker.

10This preference structure ensures that c0 is always the first- or second-most preferred school, which
keeps the model tractable.
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can be interpreted as schools with distinguished features, such as schools focusing on science,

arts, or sports. ct1i (or c0) is the most suitable school for agent i ex ante, but ct2i may become

the most suitable school ex post when si + εi is small (negative) enough. c0 is interpreted as

a collection of schools that do not have such distinguished features and are underdemanded.

ωi denotes agent i’s (constant) marginal value of money. A higher ωi indicates a greater

burden of housing payments at a given price, which can be interpreted as lower wealth or a

tighter financial constraint.

The four components of i’s type, (t1i , t
2
i ), si, εi, and ωi, are mutually independent.11 t1i is

uniformly distributed over {1, . . . ,m}, and t2i is uniformly distributed over {1, . . . ,m} \ {t1i }
conditional on t1i . This allows us to maintain symmetry among schools and neighborhoods

indexed by k ∈ {1, . . . ,m}. Let F denote the cumulative distribution function of si on [0, 1],

which is weakly concave and continuous. As we elaborate in Section 4, the weak concavity

of F is a crucial assumption for our main results. This restriction is natural, as it implies

that signals are not concentrated at the extremes. Let η denote the probability distribution

of εi on {−e, 0, e}. We assume symmetry: η(e) = η(−e) = π ∈ [0, 1
2
).12 Let ρ denote the

probability distribution of ωi on Ω, where E[ωi] = 1 without loss of generality. We assume

e+ g ≤ 1 without loss of generality, as we allow F (si) = 1 for some si < e+ g.

We consider a two-stage game of housing and school choice, where εi is not realized in

the first stage:

1. Each agent i observes their (t1i , t
2
i , si, ωi) and decides on a neighborhood n ∈ N to live

in.

2. Preference shocks εi are realized. Given their chosen neighborhood and the realization

of εi, each agent participates in a school choice mechanism, which determines their

assignment to one of the schools in C.

In reality, housing choice and its timing depend on many other factors and vary across agents.

However, our two-stage model is a good approximation of reality because we can interpret

preference shocks ϵi as uncertainty about school fit that remains after the agents settle in

their neighborhoods.

This paper studies three school choice mechanisms: the neighborhood assignment rule

(N), Deferred Acceptance with neighborhood priority (DA), and Top Trading Cycles with

11We take the Borel σ-algebra on the type space {1, . . . ,m}2 × [0, 1] × {−e, 0, e} × Ω to define the type
distribution.

12Throughout the analysis, we focus on e > 0 and π > 0 because otherwise all agents would attend their
neighborhood school under any school choice mechanism, and school choice would play no role in the model.
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neighborhood priority (TTC). N assigns an agent to school ck if and only if they live in

neighborhood nk. DA and TTC compute assignments by taking the agents’ rank-order lists

of schools and schools’ priority rankings as inputs (see Abdulkadiroğlu and Sönmez (2003)

for the algorithms defined for finite sets of students and schools). In our model, we apply the

DA algorithm of Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016) and the TTC

algorithm of Leshno and Lo (2021), which are formally defined in a model with a continuum

of students and a finite set of schools. Under either mechanism, we consider random tie-

breaking for those with the same priority level. We illustrate how DA and TTC work in our

setting in Section 3.1.

Since DA and TTC are strategy-proof for agents, we assume truth-telling in the school

choice mechanisms. Consequently, the outcomes of school choice mechanisms are computed

using agents’ true preferences and priorities. This allows us to focus on the static housing

choice game. Define a (pure) strategy profile of agents (where all agents use the same Bayesian

strategy) as a measurable function σ : {1, . . . ,m}2×[0, 1]×Ω→ N . Let φ(t1i , t
2
i , si, εi, ωi, σ) ∈

∆C be the stochastic school outcome of an agent with type (t1i , t
2
i , si, εi, ωi) under a school

choice mechanism φ when all agents play strategy σ. With a slight abuse of notation, we

use ui to denote the expected utility derived from a stochastic school outcome. Dn(σ) :=∑
(t1i ,t

2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)

∫ 1

0
1l{σ(t1i ,t2i ,si,ωi)=n}dF (si) denotes the demand for neighborhood

n under strategy σ. Let Σ denote the set of strategies σ that satisfy Dnk
(σ) ≤ q for each

nk ∈ N \ {n0}; that is, the housing supply constraint is not violated. Combined with a

condition on prices, given below, Σ will form our housing market-clearing condition.

Definition 1. (σ,p) is a symmetric equilibrium of the neighborhood choice game induced

by a school choice mechanism φ if

1. (Optimality) Given p, for each (t1i , t
2
i , si, ωi) ∈ {1, . . . ,m}2 × [0, 1]× Ω,

σ(t1i , t
2
i , si, ωi) ∈ arg max

n∈N
Eϵi

[
ui(n, φ(t

1
i , t

2
i , si, εi, ωi, σ),p|t1i , t2i , si + εi, ωi)

]
.

2. (Housing market clearing) σ ∈ Σ, and for each nk ∈ N \ {n0}, Dnk
(σ) < q ⇒ pk = 0.

3. (Symmetry) pk = pl for any k, l ∈ {1, . . . ,m}.13

The optimality condition involves two types of uncertainty. First, ui is the expected utility

from a stochastic school assignment φ(t1i , t
2
i , si, εi, ωi, σ), where uncertainty is generated by

13We normalize p0 = 0 without loss of generality.
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the tie-breaker of mechanism φ. Second, since each agent i chooses their neighborhood

before learning their own preference shock, each agent i evaluates their expected utility with

respect to εi. Note that the aggregate uncertainty about the preference shocks of other

agents disappears because the agent set is a continuum. By the symmetry of all indices in

{1, . . . ,m}, our analysis focuses on agents with t1i = 1 without loss of generality.

We next define our key measure of interest: segregation by wealth at both neighborhood

and school levels. A residential matching is defined as a measurable function ν : {1, . . . ,m}2×
[0, 1] × Ω → N that satisfies

∑
(t1i ,t

2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)

∫ 1

0
1l{ν(t1i ,t2i ,si,ωi)=n}dF (si) ≤

q for all n ∈ N \ {n0}. Similarly, a school matching is defined as a mea-

surable function µ : {1, . . . ,m}2 × [0, 1] × {−e, 0, e} × Ω → C that satisfies∑
(t1i ,t

2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)

∑
εi∈{−e,0,e} η(εi)

∫ 1

0
1l{µ(t1i ,t2i ,si,εi,ωi)=c}dF (si) ≤ q for all c ∈ C \

{c0}. The average wealth parameters of a neighborhood n ∈ N and a school c ∈ C, denoted

ω̄(·, ·), are given respectively by:

ω̄(ν, n) :=

∑
(t1i ,t

2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)ωi

∫ 1

0
1l{ν(t1i ,t2i ,si,ωi)=n}dF (si)∑

(t1i ,t
2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)

∫ 1

0
1l{ν(t1i ,t2i ,si,ωi)=n}dF (si)

, and

ω̄(µ, c) :=

∑
(t1i ,t

2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)ωi

∑
εi∈{−e,0,e} η(εi)

∫ 1

0
1l{µ(t1i ,t2i ,si,εi,ωi)=c}dF (si)∑

(t1i ,t
2
i ):t

1
i ̸=t2i

1
m−1

∑
ωi∈Ω ρ(ωi)

∑
εi∈{−e,0,e} η(εi)

∫ 1

0
1l{µ(t1i ,t2i ,si,εi,ωi)=c}dF (si)

.

Definition 2. A residential matching ν has greater segregation by wealth than another

residential matching ν ′ if |ω̄(ν, n)−1| > |ω̄(ν ′, n)−1| for all n ∈ N . Two residential matchings

ν and ν ′ have the same level of segregation by wealth if |ω̄(ν, n) − 1| = |ω̄(ν ′, n) − 1| for all
n ∈ N .

Definition 3. A school matching µ has greater segregation by wealth than another school

matching µ′ if |ω̄(µ, c) − 1| > |ω̄(µ′, c) − 1| for all c ∈ C. Two school matchings µ and µ′

have the same level of segregation by wealth if |ω̄(µ, c)− 1| = |ω̄(µ′, c)− 1| for all c ∈ C.

These definitions measure across-neighborhood or across-school variations of the wealth

types. Intuitively, a neighborhood or school is more segregated in one matching than in

another if its average wealth parameter deviates further from the population average, which

is equal to one. When this holds for every neighborhood or school, we say that the matching

is more segregated. When all neighborhoods in N \{n0} are symmetric and overdemanded, it

is sufficient to focus on one neighborhood, such as n0 or n1: one matching is more segregated

than another if and only if the average wealth parameter at n0 or n1 deviates more from one.
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Similarly, when schools in C \{c0} are symmetric and oversubscribed—have more applicants

than they can accept—one can focus on a single school.

Lemma 2 establishes that in the class of symmetric equilibria we focus on, the equilibrium

is unique under all three mechanisms. Then, we can naturally extend the definitions of segre-

gation from matchings to mechanisms.14 For a school choice mechanism φ ∈ {N,DA, TTC},
let (σφ, pφ) denote its unique symmetric equilibrium.15 We say that a mechanism φ results in

greater neighborhood segregation (resp., greater school segregation) than φ′ if the residential

(resp., school) matching achieved under (σφ, pφ) has greater segregation by wealth than that

under (σφ′
, pφ

′
). Similarly, we say that φ and φ′ result in the same level of neighborhood seg-

regation (resp., school segregation) if the respective matchings under (σφ, pφ) and (σφ′
, pφ

′
)

have the same level of segregation by wealth.

Throughout the paper, we assume the following condition:

Assumption 1. F (g) < 1− q < F (e− g) < 1.

This essentially means that, given q, g is small enough and e is large enough. This

condition allows us to focus on cases where nk and ck with k ∈ {1, . . . ,m} are oversubscribed,
but some students residing in nk may prefer another oversubscribed school cl ∈ C \ {c0, ck}.
We elaborate on the equilibrium under this assumption in Section 3.2.

3.1 How DA and TTC work in our model

Neighborhood priority guarantees admission to a local school under both DA and TTC, but

it has different implications for admission to other oversubscribed schools. Since school c0,

which can accommodate all students, is no lower than the second choice for any agent, only

the following cases can arise under either mechanism: the agent is

1. assigned to their neighborhood school (as their first choice),

2. assigned to c0 (as their first choice), or

3. “applies” (in DA) or “points” (in TTC) to an oversubscribed school outside their zone

and is assigned either to that school (as their first choice), or to c0 (as their second

choice) if rejected by the first choice.

14Although tie-breakers are embedded in the mechanisms, the outcome of each mechanism is deterministic
almost surely because of the continuum of agents. Thus, we can apply our segregation measure defined for
deterministic matchings to mechanisms.

15Note that, due to symmetry, housing prices under mechanism φ are equal across all n ∈ N \ {n0}, so
we use the scalar pφ to denote this common price.
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The only difference between DA and TTC arises in the third case. Under DA, an agent

in nk ∈ N \ {n0} who applies to cl ∈ C \ {c0, ck} is treated like any other out-of-zone

applicant, including residents of n0, via a tie-breaking lottery. As a result, they may be

rejected from cl; we denote the probability of rejection by rDA(σ) when all agents play a

market-clearing strategy σ ∈ Σ. By contrast, under the symmetric equilibrium of TTC, an

agent in nk whose top choice is cl always finds a cycle to be assigned to cl because the quotas

of all oversubscribed schools are filled simultaneously. In this case, only agents in n0 may

be rejected from cl; we denote the rejection probability by rTTC(σ), for σ ∈ Σ. Note that

under both DA and TTC, these rejection probabilities are identical across all oversubscribed

schools due to symmetry.

3.2 Cutoff structure of the equilibrium

Under any of the three mechanisms, an agent i with t1i = 1 never strictly prefers neighborhood

nk ∈ N \ {n0, n1} to n1 because housing prices are identical across these neighborhoods and

the expected benefit of living in n1 is not lower than nk. Thus, we suppose that such

agents choose between n1 and n0.
16 We first show that their incentive to live in n1 increases

with si for all three mechanisms. Focusing on agents with t1i = 1, let Euφ
i (n, r, p|si, ωi) be

the expected utility of an agent i with (si, ωi) when i chooses n, the rejection probability

under mechanism φ is r > 0, and the housing price in every n ∈ N \ {n0} is p.17 Define

∆uφ(rφ, pφ|si, ωi) = Eϵiu
φ
i (n1, r

φ, pφ|si + ϵi, ωi) − Eϵiu
φ
i (n0, r

φ, pφ|si + ϵi, ωi) ≥ 0 to be the

utility gain from living in n1 relative to living in n0.

Lemma 1. For any φ ∈ {N,DA, TTC}, r > 0, p ≥ 0, and ωi ∈ Ω, ∆uφ
i (r, p|si, ωi) is (i)

increasing in si weakly for si ∈ [0, g], (ii) strictly for si ∈ [g, 1], and (iii) ∆uφ
i (r, 0|g, ωi) ≥ 0.

Statements (i)-(ii) imply that any strategy σ that is a best response to r > 0 and p ≥ 018

under φ has a semi-cutoff structure: σ(si, ωi) = n1 for some si ∈ (g, 1] implies σ(s′i, ωi) = n1

16Under N and DA, agents with t1i = 1 never choose nk with k ∈ {2, . . . ,m} in equilibrium. Under
TTC, agents are indifferent between all neighborhoods in N \ {n0} in a symmetric equilibrium. To simplify
our analysis, we focus on an equilibrium in which agents with primary type t1i do not choose nk with
k ∈ {2, . . . ,m}.

17Although there is no school choice under N, we use a general rejection probability r > 0 for notational
consistency. We model N as a school choice mechanism in which all nk (k ∈ {1, . . . ,m}) residents are
assigned to ck for sure, and all n0 residents are assigned to their primary-fit schools with probability 1− r.
In equilibrium, we always consider r = 1.

18Although we slightly abuse the notion of best response when we use this wording, note that the strategies
of agents other than i affect that payoff of i via aggregate variables r and p. Thus, this wording should be
taken as saying that other players use strategies that lead to rejection probability r and price p.
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for any s′i ∈ [si, 1]. Statements (ii)-(iii) and Assumption 1 imply that n1 is overdemanded

when p = 0, and thus, any symmetric equilibrium (σ, p) must satisfy Dn1(σ) = q and p > 0.

Given the original problem, consider its “reduced problem,” in which Ω = {1} and

all other parameters are unchanged. While the reduced problem is uninteresting for our

research questions, it is useful for clarifying our next assumption. Lemma 1 immediately

implies the existence of a unique (except for the strategies of agents with measure zero),

symmetric equilibrium in the reduced problem. To see this, consider a strategy σ̂ such that

σ̂(si, 1) = n0 for any agent i with si ∈ [0, F−1(1− q)) and σ̂(si, 1) = n1 for any agent i with

si ∈ (F−1(1 − q), 1]. Note that F−1(1 − q) > g by Assumption 1. Since there is only one

wealth type, σ̂ is the only candidate for the equilibrium strategy, as any other strategy would

violate either housing market clearing condition or monotonicity with respect to si. Consider

the associated rejection probability r̂φ: 1 for φ = N , rDA(σ̂) for φ = DA, and rTTC(σ̂) for

φ = TTC. Since ∆uφ
i (r̂

φ, p|si, 1) is continuous and strictly decreasing in p, there exists a

unique p̂φ > 0 such that ∆uφ
i (r̂

φ, p|si, 1) = 0, implying that σ̂ is the best response to (r̂φ, p̂φ).

This proves that (σ̂, p̂φ) is a unique equilibrium of the reduced problem under φ.

We next impose the key assumption on Ω. Let p̄φ be the upper bound of the price

range defined as follows: p̄N := r̂N(1 − q − g), p̄DA := r̂DA[(1 − π)(1 − q − g) + πe], and

p̄TTC := r̂TTC [(1− 2π)(1− q) + 2πe− g].19

Assumption 2. For any φ ∈ {N,DA, TTC}, ωi ∈ Ω, and p ∈ [p̂φ, p̄φ], ∆uφ
i (r̂

φ, p|g, ωi) <

0 < ∆uφ
i (r̂

φ, p|e− g, ωi).

Lemma 2. For any φ ∈ {N,DA, TTC}, there exists a symmetric equilibrium (σφ, pφ) of

the original problem, in which for any ωi ∈ Ω, there is a cutoff signal type sφωi
∈ (g, e − g)

such that σφ(si, ωi) = n0 for any si ∈ [0, sφωi
) and σφ(si, ωi) = nt1i

for any si ∈ (sφωi
, 1]. When

all equilibrium cutoff signal types are in (g, e− g), they are unique.

By Assumption 1, the cutoff signal type F−1(1−q) of the reduced problem is in (g, e−g).

We focus on such cases because some agents residing in n1 prefer another oversubscribed

school with a positive probability, which allows us to study the differentiated effects of the

three mechanisms. Assumption 2 restricts the upper and lower bounds of Ω in a way that we

can still find the cutoff signal type within the same interval, (g, e− g), for any ωi ∈ Ω. We

leave the cases with larger wealth disparities outside the scope of our analysis because, in

such cases, some wealth types may be entirely displaced from overdemanded neighborhoods

or may fully occupy their housing supply.

19p̄φ coincides with the equilibrium price of the reduced model for uniform F .
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Lemma 2 follows from Assumption 2, Lemma 1, and the capacity constraint (i.e., the

housing market clearing condition)∑
ωi∈Ω

ρ(ωi)F (sφωi
) = 1− q. (7)

The equilibrium price pφ of the original problem can be found in [p̂φ, p̄φ] to satisfy the

capacity constraint.20

Since {sφωi
}ωi∈Ω are characterized by ∆uφ

i (r
φ, pφ|sφωi

, ωi) = 0 for each φ ∈ {N,DA, TTC},
where rN := 1, rDA := rDA(σDA) and rTTC := rTTC(σTTC), the proof of Lemma 1 provides

the closed-form solutions for the cutoff signal types sφωi
∈ (g, e− g):

sNωi
− g = ωi

pN

rN
,

(1− π)(sDA
ωi
− g) + πe = ωi

pDA

rDA
,

(1− 2π)sTTC
ωi

+ 2πe− g = ωi
pTTC

rTTC
,

(8)

for each ωi ∈ Ω. We will exploit these equations to derive our main results.

4 Main results

4.1 Neighborhood-level wealth segregation

First, we establish an unambiguous ranking of the three mechanisms by their levels of neigh-

borhood segregation. A mechanism induces greater segregation when the differences in

cutoffs across wealth levels are larger; this is summarized by dispersion dφ in the following

expression:

sφωi
− sφωj

= dφ(ωi − ωj). (9)

For each mechanism φ ∈ {N,DA, TTC}, the corresponding value of dispersion follows from

the equilibrium conditions in (8): dN := pN , dDA := 1
1−π ·

pDA

rDA , and dTTC := 1
1−2π ·

pTTC

rTTC . To

rank these values, we take the weighted average over wealth indices ωi in equations (8)—using

20The rejection probability of the original problem coincides with that of the reduced problem, r̂, because
only the weighted average of F (sφωi

) matters. See Appendix A.6 for the derivation of the rejection probabilities
under DA and TTC.
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the expectation symbol E to denote this average—to obtain:

E[sNωi
]− g = dN ,

E[sDA
ωi

]− g +
πe

1− π
= dDA,

E[sTTC
ωi

] +
2πe− g

1− 2π
= dTTC .

(10)

Equations (7), (9), and (10) jointly determine dφ and E[sφωi
] in equilibrium. The concavity

of F , the capacity constraint (7), and equations (9) imply Lemma 3.

Lemma 3. For each mechanism φ ∈ {N,DA, TTC}, E[sφωi
] is weakly increasing in dφ.

Further, Lemma 3 and equations (10) determine the unique pair of E[sφωi
] and dφ for each

φ, which establishes the ranking of these values across the three mechanisms.

Lemma 4. E[sNωi
] ≤ E[sDA

ωi
] ≤ E[sTTC

ωi
] ≤ 1− q and dN < dDA < dTTC.

Figure 5 provides the intuition for Lemma 4. Three thin, slanted black lines represent

the linear restrictions from equations (10) and the thick red curve represents the restriction

derived in Lemma 3 (i.e., equations (7) and (9)). When dφ = 0, all cutoffs are the same

(equation (9)) and E[sφωi
] solves F

(
E[sφωi

]
)
= 1 − q. As dφ increases, the average cutoff

E[sφωi
] =

∑
ωi∈Ω ρ(ωi)s

φ
ωi

must weakly increase to maintain
∑

ωi∈Ω ρ(ωi)F (sφωi
) = 1 − q, due

to the weak concavity of F . Under the uniform distribution F , the red curve becomes

a vertical blue line, as would have been obtained in the example in Section 2. In that

case,
∑

ωi∈Ω ρ(ωi)s
φ
ωi

=
∑

ωi∈Ω ρ(ωi)F (sφωi
) = 1− q and equations (10) entirely determine dφ

because the black slanted lines are parallel and the blue line is vertical. The equilibrium

values of E[sφωi
] and dφ for each mechanism φ correspond to the intersections of the black

lines and the red curve (for a general weakly concave F ) or the blue line (for uniform F ).

Lemma 4 implies that the dispersion dφ grows from N to DA to TTC, which proves our

first main result.

Theorem 1. The following ranking holds for neighborhood segregation by wealth:

1. DA results in greater neighborhood segregation by wealth than N.

2. TTC results in greater neighborhood segregation by wealth than DA.

Theorem 1 establishes an unambiguous ranking of the three mechanisms by

neighborhood-level segregation. We next discuss segregation at the school level.
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F−1(1− q) = 0.36 1− q = 0.6

0.6

1.1

2.6
1

1−2π
pTTC

rTTC

1
1−π

pDA

rDA

pN

(10)

(7) and (9)

uniform

E[sωi
]

dφ

Figure 5: Equilibrium E[sφωi
] and dφ for each φ

Notes: The figure shows the equilibrium values of dφ for mechanisms φ ∈ {N,DA, TTC}. Three thin, slanted black lines
represent the linear restrictions from equations (10) for each mechanism. They are 45-degree lines, showing with a lower slope
in the figure due to scaling. The red curve represents the solutions to equations (7) and (9) for different values of dφ. The
vertical blue line indicates the position of the red curve in the special case where F is uniform. The intersections of the black
lines with the red curve show the equilibrium values of dφ for the three mechanisms for a general weakly concave F , while their
intersections with the blue line show the corresponding values for the uniform distribution. The parameters in the picture are
as in our leading numeric example with F (x) =

√
x.

4.2 School-level wealth segregation

School-level segregation is shaped by two forces: segregation “inherited” from neighborhoods

and desegregation generated by flexible school choice mechanisms. Figure 5 from the previous

section hints at the importance of the comparison of F−1(1 − q) with the averaged cutoffs.

Our school segregation results will depend on these related quantities, which we define below.

Recall that, in a perfectly unsegregated neighborhood, the mass of agents with ωi in n1 would

be ρ(ωi)q, while the actual mass under mechanism φ is ρ(ωi)
(
1 − F (sφωi

)
)
. The difference

between these values measures the extent to which agents of type ωi are “over-” or “under-

represented” in n1. For the richest agents, the difference q −
(
1 − F (sφωi

)
)
is negative for

all mechanisms; for the poorest agents, it is positive. We define Ω̃(φ, φ′) ⊂ Ω as the set of

wealth types for which the signs of q−
(
1−F (sφωi

)
)
and q−

(
1−F (sφ

′
ωi
)
)
are the same. This

identifies the wealth types that are treated “similarly” by the two mechanisms φ and φ′.

For any ωi ∈ Ω̃(φ, φ′), we define
|q−(1−F (sφ

′
ωi

))|
|q−(1−F (sφωi

))| as the “neighborhood segregation expansion

rate” for ωi when moving from mechanism φ to φ′. Comparing school segregation between

mechanisms thus reduces to comparing this expansion rate, which effectively measures how

far neighborhood segregation is from the unsegregated benchmark, against how much each
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mechanism desegregates schools, a measure quantified in the theorem below.

Theorem 2. The following ranking holds for school segregation by wealth:

1. DA results in greater (resp., smaller) school segregation by wealth than N if the neigh-

borhood segregation expansion rate from N to DA is greater (resp., smaller) than 1
rDA(1−π)

for every ωi ∈ Ω̃(N,DA).

2. TTC results in greater (resp., smaller) school segregation by wealth than N if the

neighborhood segregation expansion rate from N to TTC is greater (resp., smaller) than 1
rTTC

for every ωi ∈ Ω̃(N, TTC).

3. TTC results in greater school segregation by wealth than DA if the neighborhood segre-

gation expansion rate from DA to TTC is greater than rDA(1−π)
rTTC for every ωi ∈ Ω̃(DA, TTC).

We know from Theorem 1 that the expansion rate from N to TTC is higher than that

from N to DA. Furthermore, the inequalities 1
rDA(1−π) >

1
rTTC ≥ 1 always hold. Thus, while

the condition in statement 2 for when N results in lower school segregation than TTC is

weak, the comparison of N and DA (statement 1) is more nuanced, because the expansion

rate is lower and the force reducing school segregation, captured by 1
rDA(1−π) , is stronger.

The sufficient condition of statement 3 holds in most standard cases. For instance, when

TTC moves the cutoffs “outward” from F−1(1 − q) compared to DA, i.e., all cutoffs above

F−1(1−q) increase while those below it decrease, Theorem 1 implies that the expansion rate

is greater than 1 for every ωi ∈ Ω̃(DA, TTC) = Ω, which, in turn, is greater than rDA(1−π)
rTTC .

While Theorem 2 provides key conditions, they are expressed in terms of equilibrium

cutoff types and are not straightforward to relate to the model primitives. To provide further

results, we specialize the model to a uniform distribution for any number of wealth indices

(Corollary 1) and to an arbitrary distribution with two wealth indices, given by Proposition

1 and Figure 6.

Corollary 1. Suppose F (si) = si. Then,

1. N and DA result in the same level of school segregation by wealth, and

2. TTC results in greater school segregation by wealth than N and DA.

We next focus on cases with two wealth types, i.e., Ω = {ωP , ωR}, where ωP > ωR. Two

wealth types simplify the problem because any change for one wealth type has a one-to-

one reflection in the change for the other, since there are no “intermediate” wealth types

to absorb these changes. Let ρP := ρ(ωP ). Given a parameter vector Π of the model, let

F(Π) denote the set of all concave cdfs of si such that Assumption 2 is satisfied under Π.
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Similarly, let F(Π, sNωP , s
N
ωR) denote the set of all concave cdf’s of si such that Assumption

2 is satisfied under Π and the cutoff signal types under N are (sNωP , s
N
ωR). The next lemma

provides a powerful result in finding the distribution that is “most favorable to the school

choice mechanisms (compared to N)” in terms of school segregation.

Lemma 5. Suppose Ω = {ωP , ωR}, where ωP > ωR, g = 0, and e = 1. For any (Π, sNωP , s
N
ωR)

such that F(Π, sNωP , s
N
ωR) ̸= ∅, type ωP ’s population change from N to φ ∈ {DA, TTC} at

school c1 is maximized by G ∈ F(Π, sNωP , s
N
ωR) which is piece-wise linear and has only one

kink at si = sNωP .

By exploiting Lemma 5, we can characterize the school segregation ranking between N

and the other two mechanisms under the binary wealth environments.

Proposition 1. Suppose Ω = {ωP , ωR}, where ωP > ωR, g = 0, and e = 1. Consider any

Π such that F(Π) ̸= ∅.
1. DA results in greater school segregation by wealth than N for all F ∈ F(Π) if 1−q < ρP .

2. TTC results in greater school segregation by wealth than N for all F ∈ F(Π).
3. TTC results in greater school segregation by wealth than DA for all F ∈ F(Π).

Note that whenever 1 − q ≥ ρP , the comparison between N and DA depends on F , but

we argue below that DA often leads to greater school segregation in this case as well. One

example, with parameters π = 1/3, q = 0.4, and equal shares of poor and rich families, is

shown in Figure 4 of Section 2, where a narrow red strip marks the cases in which DA yields

lower school-level segregation than N. We extend this analysis across parameter configura-

tions and compute the share of the red strip in the total area. Specifically, we compute school

segregation under N and DA for all single-kink distributions—which, as argued in Lemma

5, represent the most favorable case for DA—and find that DA yields lower segregation only

in a small minority of cases. These occur mainly when the share of rich agents is high,

specialized schools have limited capacity, and uncertainty about school fit is large.

The calculations are presented in Figure 6. We partition the parameter space (ρP , q, π) ∈
[0.2, 0.8] × [0.2, 0.8] × [0.1, 0.4] into 196 boxes. The (ρP , q)-plane is divided into 7 × 7 large

boxes; within each large box, π takes four values, yielding four small boxes. Thus, each

large box corresponds to a (ρP , q) pair, and each small box to one of the four π values. For

the parameters of each element of the partition, we calculate school segregation under N

and DA for all single-kink distributions defined by points (x, y) on the 0.1 grid with y ≥ x

(so that F (x) = y). We then report the fraction of such distributions that result in lower
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Figure 6: The percentage of single-kink cdfs that result in DA being less segregated at the
school level than N for (π, ρP , q) ∈ [0.1, 0.4]× [0.2, 0.8]2

Notes: There are 7×7 large boxes, with each large box containing 2×2 small boxes. Each large box show the results for (ρP , q)
parameters within {0.2, . . . , 0.8}2, and each small box show the results for π ∈ {0.1, 0.2, 0.3, 0.4}. Each small box shows the
percentage of times when a single-kink distribution results in DA being strictly less segregated than N, and each box is colored
according to the legend above.

segregation under DA, out of all instances where the solutions to both problems exist within

our restrictions.

4.3 Housing prices

Although the paper’s main focus is on segregation by wealth induced by the mechanisms,

policy debates on school choice often involve a much broader segment of the population,

particularly those concerned about potential changes in housing prices. However, the ranking

of housing prices does not follow directly from the previous results, since Lemma 4 only

establishes the ranking of dφ, namely pN < 1
1−π

pDA

rDA < 1
1−2π

pTTC

rTTC . In this section, we derive

the corresponding ranking for housing prices.
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Let rDA
uniform be the equilibrium rejection probability of DA under the uniform distribution

of signals.

Theorem 3. The housing prices satisfy the following inequalities:

1. pN ≤ pDA if rDA ≥ rDA
uniform.

2. pDA < pTTC if e− g > 1− q.

Corollary 2. Suppose F (si) = si. Then, p
N = pDA < pTTC.

These rankings imply that, under mild sufficient conditions (rDA ≥ rDA
uniform and e− g >

1 − q), the housing prices are unambiguously ranked: pN ≤ pDA < pTTC . These conditions

hold for a wide range of parameters of interest, particularly for sufficiently small g and

sufficiently large e.21

4.4 The role of rφ and school capacity greater than housing supply

The rejection probability rφ plays a central role in our analysis but affects neighborhood- and

school-level segregation differently. Consider a situation where rDA and rTTC both decrease,

while the equilibrium ratio pφ

rφ
remains constant across all mechanisms φ. In this case,

neighborhood segregation would remain unchanged, as it depends solely on the equilibrium

value of pφ

rφ
. However, the ranking of prices and school segregation could reverse. Prices may

be lower under DA and TTC than under N because pφ

rφ
is fixed, but rDA and rTTC are lower,

implying lower prices. School segregation may be lower under DA and TTC because lower

rejection probabilities allow oversubscribed schools to admit more out-of-zone applicants,

thus reducing school-level segregation.

This difference helps explain the effects of expanding school capacity. While we previ-

ously assumed that each school’s capacity equals the housing supply of its corresponding

neighborhood, we now extend the model to allow a school ck ∈ C \ {c0} to have capacity

exceeding the housing supply of nk by an amount ∆q ≥ 0. As ∆q increases, the rejection

probability rφ decreases for φ ∈ {DA, TTC}, yet the equilibrium ratio pφ

rφ
remains constant.

Consequently, increases in ∆q generate the same qualitative effects discussed above.

5 Discussions

In this section, we discuss several possible extensions of our model and their implications.

We then turn to two numerical examples: the first introduces benchmarks for interpreting

21More precisely, rDA ≥ rDA
uniform holds when F (g)− g and F (e+ g)− (e+ g) are small enough.
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segregation levels, and the second highlights how the relative effectiveness of desegregation

policies depends on the time horizon.

Our baseline model does not allow for a school that all families strictly prefer. In some

contexts, this may be unrealistic. Suppose instead there exists a small-capacity “universally

preferred” school, which every family prefers to any other school. Some agents would buy

houses in its neighborhood and attend that school, leaving no seats available for others. The

remaining agents would then play the game described in our main model. In this setting,

wealth and signals would no longer be independent, but the logic of our results does not rely

on that assumption.

Another possible extension would allow a fraction of families to choose their housing

after observing their school fit. Our model can partially capture this case by lowering π,

which increases the share of agents who receive a zero shock. For the analysis of school

segregation, these families and zero-shock agents are indistinguishable. For the analysis

of neighborhood segregation, however, they must be treated separately, as they no longer

choose under uncertainty. The intuition for our main results would still apply.

Finally, many empirical models, following reality, incorporate preferences over peers.

Our baseline model abstracts from such preferences, but we can readily accommodate two

common versions: preference for homophily by wealth and uniform preference for wealthy

peers, which may arise due to the associated resources they bring. Peer preference may

expand the set of equilibria, but in the equilibrium we study, it would only reinforce our

results: even without peer preference, n1 and c1 are wealthier. With peer preference, the

willingness of families to pay for access would be even higher. In the homophily case, it

comes only from rich families; under uniform preference for wealthy peers, it comes from

all families. As wealthier families are less responsive to price changes, this would further

increase segregation.

5.1 Student-school match quality and other benchmarks

In this paper we focus on segregation induced by the three widely used mechanisms. Much of

the existing literature emphasizes the welfare gains of DA and TTC relative to neighborhood

assignment (N), and policymakers also take these gains into account when deciding whether

to adopt a mechanism. We do not attempt a full welfare comparison here, because we assume,

in line with widespread practice, that families residing near a school receive priority. Such

priority may reflect positive externalities of local enrollment, the costs of long commutes,

or political considerations. Because we do not model these factors, we cannot offer a full

28



welfare analysis and instead focus on one of its components: the quality of student-school

matches. While match quality is often taken in the literature as the sole measure of welfare,

this interpretation is less suitable in our setting, since neighborhood priority is a policy goal

in its own right.

Once we focus on match quality, two benchmarks that do not provide neighborhood

priority become relevant. The first is DA (or TTC) without neighborhood priority. In this

case the two mechanisms coincide: families whose top choice is ck are randomly assigned

either to ck or to their second choice, c0. This benchmark eliminates segregation but one

may expect it to reduce match quality, since admission does not depend on how strongly

families value the oversubscribed school. The second benchmark is an ex post auction, in

which school seats are allocated to the highest bidders once preference shocks are realized.

One may expect this mechanism to maximize match quality but also to produce highly

segregated outcomes.

Table 1 reports segregation and match quality under five mechanisms: N, DA, TTC,

DA/TTC without neighborhood priority, and Auction for the example considered in Sec-

tion 2 with uniform distribution of signals. For N, DA, and TTC we previously reported

segregation; here we add match quality for poor families, rich families, the total, and the

poor families’ share in match quality, as percentage. DA and TTC improve match quality

relative to N in the short term (rows 2-3 vs. 1), when locations are fixed as under N, with

both groups benefiting (cols. b-d). In the long term, relocation slightly reduces total match

quality (within rounding) and shifts the gains decisively toward the rich (rows 2 vs. 4 and 3

vs. 5, cols. d-e).22

We now turn to the two benchmark mechanisms without neighborhood priority. DA (or

TTC) without neighborhood priority produces completely integrated schools and an equal

division of match quality, but total match quality is lower than under DA and TTC with

priority (col. d, row 6 vs. 2-3), since even families with low value for an oversubscribed

school have an equal chance of admission. As expected, Auction delivers the highest total

match quality (col. d, row 7). More surprising is that it generates school-level segregation

comparable to N and DA (col. a) and gives the poor families a larger share of match quality

than under those mechanisms (col. e, row 7 vs. 1 and 4). One way to understand this is to

view N as an ex ante auction, conducted before preference shocks are realized, in contrast to

the ex post auction described above. From this perspective, the ranking of segregation and

22Our assumption that c0 is always ranked first or second favors DA relative to TTC. Under DA, allowing
families to have orderings such as c2c1c0 would instead keep families from n1 in c1 if they are unsuccessful
at c2, thus reducing DA match quality.
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the poor families’ share is not obvious, and, in the example, Auction performs slightly better

in both measures (within rounding for the percentage of poor families in c1). In other words,

neighborhood priority effectively turns school choice into an auction through the housing

market, and mechanisms designed to offset preference uncertainty amplify segregation—

even relative to an ex post auction. Finally, although Auction looks desirable in the table,

it should be viewed only as a benchmark, not a policy recommendation, since our example

abstracts from many other considerations.

poor
families
in c1

Student-school match quality × 100

poor rich total poor
total

(a) (b) (c) (d) (e)

Short-term effect:
locations are fixed

as under N
(41% poor families)

(1) N 41% (=) 14 (=) 18 (=) 32 (=) 43% (=)

(2) DA 45% (+4) 19 (+5) 24 (+6) 43 (+11) 45% (+2)

(3) TTC 41% (=) 15 (+1) 22 (+4) 37 (+5) 41% (−2)

Long-term effect:
endogenous locations

(4) DA 41% (=) 17 (+3) 26 (+8) 43 (+11) 40% (−3)
(5) TTC 9% (−32) 4 (−10) 32 (+14) 36 (+4) 10% (−33)

No neighborhood
priorities

(6) DA/TTC 50% (+9) 17 (+3) 17 (−1) 33 (+1) 50% (+7)

(7) Auction 41% (+0) 25 (+11) 31 (+13) 56 (+24) 44% (+1)

Table 1: Segregation and match quality under different mechanisms.

Notes: The table reports the percentage of poor families in school c1, match quality for poor, rich, and all families, and the
poor families’ share of the total. Match quality is the sum of ex post school fits for all students assigned to c1. Rows correspond
to: (1-3) N, DA, and TTC with locations fixed as under N (short-term effect of flexible school choice); (4-5) DA and TTC after
relocation in response to the incentives created by these mechanisms; (6) DA and TTC—which are equivalent here—without
neighborhood priority; and (7) Auction, which finds a market-clearing price for school seats.

5.2 Direct and indirect desegregation policies: short vs. long term

Our main model shows that endogenizing location choices can reverse the segregation-based

ranking of school choice mechanisms compared to models with fixed locations. In this subsec-

tion, we further contrast short- and long-term effects by considering a desegregation policy.

Suppose a policymaker aims to desegregate neighborhoods in a DA-based school assignment

system with neighborhood priorities, as in the main model, and considers two policies in-

tended to increase the share of poor agents in the oversubscribed schools. These are schools

c1 and c−1 in our example; by symmetry, we focus on n1 and c1. The first, a location-based

(DA+L) policy, prioritizes residents of n0 over other non-local applicants for seats in c1 va-

cated by n1 residents who opt out of their local school. Under the parameters we consider,
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demand from n0 residents is sufficient to fill all such seats. Since agents in n0 are, on av-

erage, poorer than those in n1, this policy targets the poor families indirectly. The second,

a wealth-and-location-based (DA+WL) policy, builds on the first by adding a direct wealth

criterion: it prioritizes poor residents of n0, who again fill all the vacant seats in our example.

These two policies are motivated by—though not intended as direct analogues of—recent

shifts from explicit to implicit race-based affirmative action in admissions (see, e.g., Dur

et al., 2018; Carlson et al., 2020; Ellison and Pathak, 2021; Bleemer, 2023; Pathak et al.,

2023). While our model focuses on segregation by wealth rather than race—and wealth

is typically a legitimate basis for affirmative action—the contrast between short-term and

long-term effects of direct and indirect targeting may remain relevant for a broader range of

policies. In our example, the short-term effects align with existing findings: indirect targeting

is much less effective at reducing segregation. In the long term, however, this conclusion may

be reversed.

Our example uses the same setup as in Section 2, with two wealth levels, ωP = 9/8

and ωR = 7/8, uniformly distributed signals, capacities of 0.4 for neighborhoods n−1 and

n1 and schools c−1 and c1, unlimited capacity at n0 and c0, g = 0, and preference shocks

ϵi ∈ {−1, 0, 1} occurring with equal probability.

Under DA+L, the utility gain from living in n1 instead of n0 is:

∆uL(rL, pL | si, ωi) = −(1− rL)
1− si
3

+ rL
(
si + 1

3
+

si
3

)
− ωip

L,

where the first term reflects the fact that n0 residents can be assigned to c−1, but n1 residents

cannot.

Under DA+WL, expressions are similar to DA+L, except that rejection probabilities

differ by wealth and are equal to 1 for rich agents; thus, rWL refers to the rejection probability

for a poor agent:

∆uWL(rWL, pWL | si, ωP ) = −(1− rWL)
1− si
3

+ rWL

(
si + 1

3
+

si
3

)
− ωPpWL,

∆uWL(rWL, pWL | si, ωR) =
si + 1

3
+

si
3
− ωRpWL.

Results are presented in Table 2. The first block, rows (1)-(3), shows the short-term effects

of DA and the two desegregation policies, where residential locations are exogenously fixed

as under DA. The second block, rows (4)-(5), reports the long-term effects of introducing

each desegregation policy into a system previously operating under DA, with endogenous
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Policies
Share of poor agents in

n1 c1

Short-term effect:
Locations fixed as in DA

(1) DA, no policy 33% 41%
(2) DA+L 33% 42%
(3) DA+WL 33% 55%

Long-term effect:
Endogenous locations

(4) DA+L 36% 44%
(5) DA+WL 10% 40%

Table 2: Share of poor agents under different desegregation policies, with fixed (short-term)
or endogenous (long-term) locations.

Notes: The table shows the share of poor agents in neighborhood n1 and school c1 under five scenarios: (1) DA with no policy;
(2) location-based policy (DA+L), which restricts out-of-zone access to c1 to n0 residents, holding locations fixed as under DA;
(3) wealth-and-location policy (DA+WL), which further restricts access to c1 to poor n0 residents, again with DA locations;
and (4)-(5) the same DA+L and DA+WL policies with endogenous location choices.

residential locations.

Comparing rows (2) and (3), we see that DA+WL is highly effective in the short term,

increasing the share of poor agents in c1 from 41% to 55%. By contrast, DA+L is barely

effective, increasing the poor agents’ share by just 1 percentage point. However, in the

example, these conclusions reverse in the long term, once agents adjust their locations in

response to the new policies: DA+WL becomes counterproductive, slightly reducing the

share of poor agents in c1 (row 5), while DA+L delivers a modest increase (row 4).

The intuition for DA+L mirrors that in Section 2. By removing n1 residents’ access to

c−1, the policy slightly worsens their out-of-zone options. At the same time, it improves n0

residents’ access to c−1 by eliminating competition from n1 residents. Together these effects

reduce segregation in n1, which in turn reduces segregation in c1.

By contrast, under DA+WL, rich agents with positive signals face strong incentives to

live in n1, since this becomes their only route to c1. Poor agents, however, have weaker

incentives to be in n1, because their chances of admission to c1 from n0 improve relative

to DA. As a result, n1 becomes heavily segregated, and even the strong correction at the

school level—allocating all out-of-zone seats in c1 to poor agents—cannot offset the increase

in residential segregation, leaving c1 more segregated than under DA.
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6 Concluding remarks

Priorities shaped through neighborhood location are an important but often overlooked

aspect of evaluating school assignment mechanisms. By ignoring this channel, one adopts

a short-term perspective that leaves out the longer-term forces linking housing and school

assignment. Our analysis suggests that while flexible school choice can reduce segregation in

the short term, endogenous location choices increase segregation in neighborhoods and, in

some cases, in schools. Our examples shed light on the importance of long-term segregation

outcomes in evaluating school assignment policies.

This paper is among the first to connect two strands of literature: contests and matching

(see, e.g., Bodoh-Creed and Hickman (2018) for an alternative approach focusing on invest-

ment and market structure). Contest models allow for the endogenous formation of priority

but make restrictive assumptions on preferences, whereas matching models take priorities

as fixed but allow for rich preferences. Such settings, where contests determine priority in a

matching problem, extend well beyond housing; investing effort, or money spent on tutoring,

to improve school admission chances is one example. Segregation by wealth is a particularly

salient concern in education, labor, and housing markets, yet it remains underexplored at the

intersection of matching and contest theory. Future theoretical, empirical, and experimental

work can further illuminate how assignment mechanisms shape segregation and inequality

through the endogenous acquisition of priority.
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Appendix A Omitted proofs

Appendix A.1 Proof of Lemma 1

Take arbitrary ωi ∈ Ω, r > 0, p ≥ 0, and fix them.

For notational consistency, we model N as a school choice mechanism in which all nk

(k ∈ {1, . . . ,m}) residents are assigned to ck for sure, and all n0 residents are assigned to

their primary-fit schools with probability 1 − r. In equilibrium, we always consider r = 1.

Then, ∆uN
i (r, p|si, ωi) = r(si − g)− ωip is strictly increasing in si ∈ [0, 1] and equal to zero

when si = g and p = 0.

Eϵiu
DA
i (n0, r, p|si + ϵi, ωi)

=



π[(1− r)(si + e) + rg] + (1− 2π)g + π[(1− r)(−si + e) + rg]

for si ∈ [0, g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + π[(1− r)(−si + e) + rg]

for si ∈ [g, e− g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + πg

for si ∈ [e− g, e+ g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + π[(1− r)(si − e) + rg]

for si ∈ [e+ g, 1]

and

Eϵiu
DA
i (n1, r, p|si + ϵi, ωi)

=



π(si + e) + (1− 2π)g + π[(1− r)(−si + e) + rg]− ωip for si ∈ [0, g]

π(si + e) + (1− 2π)si + π[(1− r)(−si + e) + rg]− ωip for si ∈ [g, e− g]

π(si + e) + (1− 2π)si + πg − ωip for si ∈ [e− g, e+ g]

π(si + e) + (1− 2π)si + π(si − e)− ωip for si ∈ [e+ g, 1]
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lead to

∆uDA
i (r, p|si, ωi) =


rπ(si + e− g)− ωip for si ∈ [0, g]

r
(
π(si + e− g) + (1− 2π)(si − g)

)
− ωip for si ∈ [g, e+ g]

r(si − g)− ωip for si ∈ [e+ g, 1].

Because the utility difference between living in n1 instead of n0 only arises in the event the n0

resident is rejected by c1, the expected gain is multiplied by rejection probability r; the rest

of that term captures different submitted rank-order lists, and, correspondingly, different

assignment probabilities for agents with signals in intervals [0, g], [g, e + g], and [e + g, 1].

Since r > 0, ∆uDA
i (r, p|si, ωi) is strictly increasing in si ∈ [0, 1]. When si = g and p = 0,

∆uDA
i (r, 0|g, ωi) > 0 as πe > 0.

Eϵiu
TTC
i (n0, r, p|si + ϵi, ωi)

=



π[(1− r)(si + e) + rg] + (1− 2π)g + π[(1− r)(−si + e) + rg]

for si ∈ [0, g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + π[(1− r)(−si + e) + rg]

for si ∈ [g, e− g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + πg

for si ∈ [e− g, e+ g]

π[(1− r)(si + e) + rg] + (1− 2π)[(1− r)si + rg] + π[(1− r)(si − e) + rg]

for si ∈ [e+ g, 1]

and

Eϵiu
TTC
i (n1, r, p|si + ϵi, ωi)

=



π(si + e) + (1− 2π)g + π(−si + e)− ωip for si ∈ [0, g]

π(si + e) + (1− 2π)si + π(−si + e)− ωip for si ∈ [g, e− g]

π(si + e) + (1− 2π)si + πg − ωip for si ∈ [e− g, e+ g]

π(si + e) + (1− 2π)si + π(si − e)− ωip for si ∈ [e+ g, 1]
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lead to

∆uTTC
i (r, p|si, ωi) =



r
(
π(si + e− g) + π(−si + e− g)

)
− ωip for si ∈ [0, g]

r
(
π(si + e− g) + (1− 2π)(si − g) + π(−si + e− g)

)
−ωip

for si ∈ [g, e− g]

r
(
π(si + e− g) + (1− 2π)(si − g)

)
− ωip for si ∈ [e− g, e+ g]

r(si − g)− ωip for si ∈ [e+ g, 1].

Since r > 0, ∆uTTC
i (r, p|si, ωi) is weakly increasing in si ∈ [0, 1] and strictly increasing

in si ∈ [g, 1]; ∆uTTC
i (r, 0|g, ωi) > 0 as πe > 0.

Appendix A.2 Proof of Lemma 2

Take any φ ∈ {N,DA, TTC}. By Lemma 1 and Assumption 2, the best response strategy

to (r̂φ, p) with p ∈ [p̂φ, p̄φ] has a cutoff signal type sφωi
(r̂φ, p) ∈ (g, e − g) for any ωi ∈ Ω.

The cutoff signal type sφωi
(r̂φ, p) satisfies γφ(sφωi

(r̂φ, p)) = ωi
p
r̂φ
, where γN(x) := x − g,

γDA(x) := (1− π)(x− g) + πe, and γTTC(x) := (1− 2π)x+ 2πe− g, which are obtained by

arranging ∆uφ
i (r̂

φ, p|sφωi
(r̂φ, p), ωi) = 0. Since γφ(·) is linear, by taking the weighted average

over ωi, we have

γφ(E[sφωi
(r̂φ, p)]) =

p

r̂φ
. (11)

When p = p̂φ, since (r̂φ, p̂φ) is the equilibrium values of the reduced problem, equation (11)

implies E[sφωi
(r̂φ, p̂φ)] = F−1(1− q), which is F (E[sφωi

(r̂φ, p̂φ)]) = 1− q. By the concavity of

F , we have

E[F (sφωi
(r̂φ, p̂φ))] ≤ F (E[sφωi

(r̂φ, p̂φ)]) = 1− q. (12)

When p = p̄φ, the definition of p̄φ and equation (11) imply E[sφωi
(r̂φ, p̄φ)] = 1 − q. Since

F (x) ≥ x for any x ∈ [0, 1], we have

E[F (sφωi
(r̂φ, p̄φ))] ≥ E[sφωi

(r̂φ, p̄φ)] = 1− q. (13)

Since sφωi
(r̂φ, p) is continuous and strictly increasing in p and F (x) is continuous and strictly

increasing in x ∈ [0, e−g], by equations (12) and (13), there must exist a unique pφ ∈ [p̂φ, p̄φ]

that satisfies the capacity constraint: E[F (sφωi
(r̂φ, pφ))] = 1 − q. Since the equilibrium

rejection probability of the original problem is always equal to r̂φ when all cutoff signal

types are in (g, e− g) (irrespective of F (·) and the exact values of the cutoffs), the strategy
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σφ, characterized by the cutoff signal types {sφωi
(r̂φ, pφ)}ωi∈Ω and pφ, constitute a symmetric

equilibrium.

Appendix A.3 Proof of Lemma 3

By concavity, F (·) is strictly increasing for any si with F (si) < 1. Then, for a given d in

equation (9), the solution {sωi
(d)}ωi∈Ω ∈ [0, 1]|Ω| satisfying equations (7) and (9) is unique

because of the strict increasingness of F (·) (Assumptions 1–2 guarantee that the cutoff

solutions in our model always satisfy F (sωi
) < 1 for all ωi ∈ Ω).23

Consider d1 > d2 ≥ 0 and their associated solutions {sωi
(d1)}ωi∈Ω and {sωi

(d2)}ωi∈Ω,

respectively. We must have a partition of Ω into Ω ̸= ∅ and Ω ̸= ∅ such that ωi > ωj for any

ωi ∈ Ω and ωj ∈ Ω, and sωi
(d1) ≥ sωi

(d2) if and only if ωi ∈ Ω. This is because otherwise,

sωi
−sωj

= d(ωi−ωj) would be violated for some ωi, ωj ∈ Ω and d ∈ {d1, d2}. Then, equation
(7) implies∑

ωi∈Ω

ρ(ωi)[F (sωi
(d1))− F (sωi

(d2))] =
∑
ωi∈Ω

ρ(ωi)[F (sωi
(d2))− F (sωi

(d1))] > 0.

By concavity of F , we have

sωi
(d1)− sωi

(d2)

F (sωi
(d1))− F (sωi

(d2))
≥

sωj
(d2)− sωj

(d1)

F (sωj
(d2))− F (sωj

(d1))

for any ωi ∈ Ω and ωj ∈ Ω. Multiplying this for each ωi ∈ Ω, we obtain∑
ωi∈Ω

ρ(ωi)[sωi
(d1)− sωi

(d2)] ≥
∑
ωi∈Ω

ρ(ωi)[sωi
(d2)− sωi

(d1)],

which means E[sωi
(d)] is weakly increasing in d.

Appendix A.4 Proof of Lemma 4

Equations (10) determine a linear relationship between E[sφωi
] and dφ. The intercepts of the

three lines are −g for N, −g+ πe
1−π for DA, and 2πe−g

1−2π for TTC. It is clear that −g < −g+ πe
1−π .

23We omit φ from the notation because the proof is the same for any mechanism φ.
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Further,

2πe− g

1− 2π
−

(
− g +

πe

1− π

)
=
(1− π)(2πe− g)− (1− 2π)(π(g + e)− g)

(1− 2π)(1− π)

=
(1− π)2πe− (1− 2π)π(g + e)− πg

(1− 2π)(1− π)

=
(1− π)π(g + e) + (1− π)π(e− g)− (1− 2π)π(g + e)− πg

(1− 2π)(1− π)

=
π2(g + e) + (1− π)π(e− g)− πg

(1− 2π)(1− π)

=
π(e− 2g + 2πg)

(1− 2π)(1− π)

>0,

where the final inequality holds from e − 2g > 0, implied by Assumption 1. Therefore, as

depicted in Figure 5, these three lines are parallel and the intercepts are ordered as −g <

−g + πe
1−π < 2πe−g

1−2π . Lemma 3, via equations (7) and (9), implies an additional restriction:

E[sφωi
] weakly increases in dφ and is continuous in dφ. Note that for dφ = 0, we have

E[sφωi
] = F−1(1 − q), which is greater than g by Assumption 1. Furthermore, E[sφωi

] ≤
E[F (sφωi

)] = 1 − q. Since there is a unique solution for each φ (Lemma 2), the three

intersections must satisfy F−1(1− q) ≤ E[sNωi
] ≤ E[sDA

ωi
] ≤ E[sTTC

ωi
] ≤ 1− q and dN < dDA <

dTTC . The strict inequality of the latter comes from the strict difference in the intercepts

−g < −g + πe
1−π < 2πe−g

1−2π .

Appendix A.5 Proof of Theorem 1

As proved in Lemma 3, for d1 > d2 > 0 and their associated solutions {sωi
(d1)}ωi∈Ω and

{sωi
(d2)}ωi∈Ω, there must be a partition of Ω into Ω ̸= ∅ and Ω ̸= ∅ such that ωi > ωj for

any ωi ∈ Ω and ωj ∈ Ω, and sωi
(d1) ≥ sωi

(d2) if and only if ωi ∈ Ω. This means that the

neighborhood population of Ω in n1 (and all other neighborhoods nk with k ̸= 0) is smaller

under {sωi
(d1)}ωi∈Ω than under {sωi

(d2)}ωi∈Ω, whereas the opposite holds for Ω. Since n1’s

average wealth type is lower than n0’s for any d > 0, neighborhood segregation by wealth

increases from cutoffs {sωi
(d2)}ωi∈Ω to {sωi

(d1)}ωi∈Ω. This and dN < dDA < dTTC by Lemma

4 prove the two statements of Theorem 1.
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Appendix A.6 Proof of Theorem 2

N and DA. Conditional on a wealth type, for a cutoff si ∈ (g, e− g), define D(si) to be the

ex post demand for c1, which is the mass of agents who are not n1 residents and for whom

c1 is their first choice. Similarly, for si ∈ (g, e− g), define S(si) to be the ex post supply of

c1, which is the mass of n1 residents for whom c1 is not the first choice. Note that all agents

in S(si) prefer c0 to c1 and would not apply (resp., point) to c1 under DA (resp., TTC).

Formally,

D(si) := (1− π)[F (si)− F (g)] + π[F (g) + F (e− g)],

S(si) := π[F (e+ g)− F (si)].

For any DA cutoff signal types {sDA
ωi
}ωi∈Ω, we can define the total demand D and supply S

of c1 by taking weighted sums of D(sDA
ωi

) and S(sDA
ωi

):

D :=
∑
ωi∈Ω

ρ(ωi)D(sDA
ωi

) = (1− π)[1− q − F (g)] + π[F (g) + F (e− g)],

S :=
∑
ωi∈Ω

ρ(ωi)S(s
DA
ωi

) = π[F (e+ g)− (1− q)].

Note that, for any cutoffs {sωi
}ωi∈Ω that clear the housing market, D and S do not depend

on the cutoffs because of
∑

ωi∈Ω ρ(ωi)F (sωi
) = 1− q. By definition, rDA = D−S

D
.

For calculations below, it is useful the define the following quantity: ∆ := D(si)−S(si)−
F (si). Note that si enters D(si) and S(si) as multiples of F (si) and they cancel out, so ∆

is not a function of si. This is the crucial observation for the derivation below.

For any ωi ∈ Ω, the (unweighted) population change at c1 from DA to N is

(Mass of type-ωi agents in c1 under DA−Mass of type-ωi agents in c1 under N)/ρ(ωi)

=(1− F (sDA
ωi

))− (1− F (sNωi
)) + (1− rDA)D(sDA

ωi
)− S(sDA

ωi
)

=F (sNωi
)− F (sDA

ωi
) +D(sDA

ωi
)− S(sDA

ωi
)− rDAD(sDA

ωi
)

=F (sNωi
)− F (sDA

ωi
) +D(sDA

ωi
)− S(sDA

ωi
)− rDA

{
D +D(sDA

ωi
)−D

}
=F (sNωi

)− F (sDA
ωi

) +D(sDA
ωi

)− S(sDA
ωi

)− (D − S)− rDA(1− π)[F (sDA
ωi

)− (1− q)]

=F (sNωi
)− F (sDA

ωi
) + F (sDA

ωi
) + ∆− (1− q +∆)− rDA(1− π)[F (sDA

ωi
)− (1− q)]

=F (sNωi
)− (1− q)− rDA(1− π)[F (sDA

ωi
)− (1− q)],
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where the fourth line follows from rDA = D−S
D

and equations for D(sDA
ωi

) and D above; and

the fifth from the definition of ∆, which, being independent of si, holds for aggregate demand

as well, together with
∑

ωi∈Ω ρ(ωi)F (sDA
ωi

) = 1− q.

The mass of ωi agents in c1 increases under DA if F (sNωi
)− (1− q)− rDA(1−π)[F (sDA

ωi
)−

(1− q)] is positive. If
|F (sDA

ωi
)−(1−q)|

|F (sNωi
)−(1−q)| >

1
rDA(1−π) holds for ωi ∈ Ω̃(N,DA) with both the signs

of F (sNωi
)− (1− q) and F (sDA

ωi
)− (1− q) being positive (resp., negative), the ωi-population

at c1 decreases (resp., increases).

The condition above applies to a particular wealth index ωi. To complete the proof,

we need to show that the change in our segregation measure, which aggregates the changes

across ωi. We will do so by partitioning our population in (endogenous) subgroups of poor,

middle, and rich agents and showing that the effect is “uniform” across the group; that is,

for example, there are no “sub-groups” of poor agents, such that the representation of one

subgroup increases under DA relative to N, but the other decreases.

By Lemma 3, there is a partition of Ω into two non-empty intervals, Ω ̸= ∅ and Ω ̸= ∅
with ωi > ωj for any ωi ∈ Ω and ωj ∈ Ω, such that sDA

ωi
≥ sNωi

if and only if ωi ∈ Ω.

Then, there must be a partition of Ω into three intervals, ΩP ̸= ∅, ΩM , and ΩR ̸= ∅, such
that for any (ωi, ωj, ωk) ∈ ΩP × ΩM × ΩR (i) ωi > ωj > ωk, (ii) sDA

ωi
≥ sNωi

≥ F−1(1 − q)

and sDA
ωk
≤ sNωk

≤ F−1(1 − q), and (iii) ΩP and ΩR are largest such intervals. That is, by
|F (sDA

ωi
)−(1−q)|

|F (sNωi
)−(1−q)| >

1
rDA(1−π) for all ωi ∈ Ω̃(N,DA), all wealth types in ΩP (resp., ΩR) decrease

(resp., increase) the population share at c1. Then, by condition (iii) and partitioning of Ω

into Ω and Ω, either
[
F (sNωi

) ≤ 1−q ≤ F (sDA
ωi

) for all ωi ∈ ΩM
]
or

[
F (sNωi

) ≥ 1−q ≥ F (sDA
ωi

)

for all ωi ∈ ΩM
]
holds, and thus the sign of the population change is the same for all

ωi ∈ ΩM . Combining the above with earlier observations that c1 is over-demanded—hence,

admits exactly q agents—and that all ck, for k ̸= 0, are symmetric, completes the proof that

DA results in a greater school segregation by wealth than N.

The proof is analogous when the neighborhood segregation expansion rate
|F (sDA

ωi
)−(1−q)|

|F (sNωi
)−(1−q)|

is smaller than 1
rDA(1−π) for all ωi ∈ Ω̃(N,DA).

N and TTC. Define D(si), D, S(si) and S as before. Conditional on a wealth type, for a

cutoff si ∈ (g, e − g), define X(si) as the mass of n1 residents for whom some ck with

k ∈ {2, . . . ,m} is the first choice, and X as the weighted sum of X(sTTC
ωi

):

X(si) := π[F (e− g)− F (si)],

X :=
∑
ωi∈Ω

ρ(ωi)X(sTTC
ωi

) = π[F (e− g)− (1− q)].
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By symmetry and the definition of TTC, X mass of agents are assigned to c1 from other

neighborhoods nk ∈ N \ {n0, n1} without facing competition from other out-of-zone agents.

The rejection rate is then rTTC = (D−X)−(S−X)
D−X = D−S

D−X .

The change in the (unweighted) mass of agents with wealth type ωi attending c1 from

TTC to N is

(Mass of type-ωi agents in c1 under TTC−Mass of type-ωi agents in c1 under N)/ρ(ωi)

=(1− F (sTTC
ωi

))− (1− F (sNωi
)) + (1− rTTC)(D(sTTC

ωi
)−X(sTTC

ωi
))− (S(sTTC

ωi
)−X(sTTC

ωi
))

=F (sNωi
)− F (sTTC

ωi
) +D(sTTC

ωi
)− S(sTTC

ωi
)− rTTC(D(sTTC

ωi
)−X(sTTC

ωi
))

=F (sNωi
)− F (sTTC

ωi
) +D(sTTC

ωi
)− S(sTTC

ωi
)− rTTC

{
D −X +D(sTTC

ωi
)−X(sTTC

ωi
)− (D −X)

}
=F (sNωi

)− F (sTTC
ωi

) +D(sTTC
ωi

)− S(sTTC
ωi

)− rTTC
{
D(sTTC

ωi
)−D − (X(sTTC

ωi
)−X)

}
=F (sNωi

)− F (sTTC
ωi

) +D(sTTC
ωi

)− S(sTTC
ωi

)− (D − S)

− rTTC
{
(1− π)[F (sTTC

ωi
)− (1− q)]− π[−F (sTTC

ωi
) + (1− q)]

}
=F (sNωi

)− F (sTTC
ωi

) + F (sTTC
ωi

) + ∆− (1− q +∆)− rTTC [F (sTTC
ωi

)− (1− q)]

=F (sNωi
)− (1− q)− rTTC [F (sTTC

ωi
)− (1− q)]

The equations above relate the expansion rate and inverse rejection probability for a

particular wealth type ωi. The rest of the proof is identical to the DA vs. N case.

DA and TTC.

From the two arguments above, for any ωi ∈ Ω, the change in its (unweighted) mass at

c1 from DA to TTC is

(Mass of type-ωi agents in c1 under TTC−Mass of type-ωi agents in c1 under DA)/ρ(ωi)

=rDA(1− π)[F (sDA
ωi

)− (1− q)]− rTTC [F (sTTC
ωi

)− (1− q)].

If
|F (sTTC

ωi
)−(1−q)|

|F (sDA
ωi

)−(1−q)| >
rDA(1−π)

rTTC holds for ωi ∈ Ω̃(DA, TTC) with both the signs of F (sNωi
)−

(1−q) and F (sDA
ωi

)−(1−q) being positive (resp., negative), the ωi-population at c1 decreases

(resp., increases). We then complete the proof in the same way as the DA vs. N case.

Appendix A.7 Proof of Lemma 5

Take arbitrary (Π, sNωP , s
N
ωR) such that F(Π, sNωP , s

N
ωR) ̸= ∅ and fix them. Let ∆ω := ωP −ωR.

ωP ’s population change at c1 from N to DA.
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By Theorem 2, ωP ’s population change at c1 from N to DA is

(F (sNωP )− (1− q))
[
1− rDA(1− π)

F (sDA
ωP )− (1− q)

F (sN
ωP )− (1− q)

]
.

Note that rDA = D−S
D

does not depend on F when g = 0 and e = 1 because all the terms in

rDA that depend on F , i.e., F (g), F (e − g), and F (e + g), take the values of 0 or 1. Thus,

this population change is maximized if F ∈ F(Π, sNωP , s
N
ωR) maximizes F (sNωP )− (1− q) and

minimizes the expansion rate
F (sDA

ωP )−(1−q)
F (sN

ωP )−(1−q) for ωP . Note that a symmetric argument holds

true for ωR: the population change is equal to (F (sNωR)−(1−q))
[
1−rDA(1−π)

F (sDA
ωR )−(1−q)

F (sN
ωR )−(1−q)

]
,

which is minimized if F ∈ F(Π, sNωP , s
N
ωR) maximizes (1 − q) − F (sNωR) and minimizes the

expansion rate
F (sDA

ωR )−(1−q)
F (sN

ωR )−(1−q) for ωR.

For any F ∈ F(Π, sNωP , s
N
ωR), equations (7), (9), and (10) characterize the cutoff signal

types of all three mechanisms.24 Under N, the cutoff signal types (sωR , sωP ) satisfy

ρPF (sωP ) + (1− ρP )F (sωR) = 1− q, (14)

and

sωP − sωR = ∆ω(ρP sωP + (1− ρP )sωR) ⇔ sωP =
1 + (1− ρP )∆ω

1− ρP∆ω
sωR . (15)

Similarly, under DA, the cutoff signal types (sωR , sωP ) satisfy equation (14) and

sωP −sωR = ∆ω
[
(ρP sωP +(1−ρP )sωR)+

π

1− π

]
⇔ sωP =

1 + (1− ρP )∆ω

1− ρP∆ω
sωR+

∆ω π
1−π

1− ρP∆ω
.

(16)

Only the values of F (·) at the cutoffs affect these equations; if two signal distributions are

identical at the cutoffs, the solutions to these equations would remain the same. Thus,

while we consider all F ∈ F(Π, sNωP , s
N
ωR) for which the cutoff solutions are in (g, e − g), it

is without loss of generality to focus on piece-wise linear F ’s that have at most four kinks

at si = sNωR , s
N
ωP , s

DA
ωR , sDA

ωP . Note also that equation (14) implies that the expansion rates for

the two wealth types coincide with each other.

Graphically, the cutoff signal types of N and DA are found in the sωR-sωP space. Although

F (si) is not defined when si > 1, it is convenient to extend F to such values linearly with the

same slope as at si = 1, i.e.,F (si) := 1+F ′(1)(si− 1) for si > 1. In Figure 7, equations (15)

24A technical condition 1 − ρP∆ω > 0 holds by Assumption 2 because otherwise the equilibrium would
not be characterized by cutoff conditions.
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and (16) are linear lines with the same slope greater than one. Equation (14) is represented

by a convex and decreasing curve connecting (0, F−1(1−q
ρP

)) and (F−1( 1−q
1−ρP ), 0). It must be

convex because its slope − (1−ρP )F ′(s
ωR )

ρPF ′(s
ωP )

is increasing in sωR and decreasing in sωP due to the

concavity of F .

N
(15)

DA
(16)

F−1
(

1−q
ρ

)

0

(14)

F−1
(

1−q
1−ρ

)
sNωR

sNωP

sωR

sωP

Figure 7: Cutoff signal types under N and DA in the sωR-sωP space for some piece-wise linear
cdf F

Notes: Blue lines labeled N and DA represent the pairs (sωR , sωP ) that solve equations (15) and (16), respectively. Those lines
are parallel. The cyan curve shows the solutions to equation (14) for a piece-wise linear cdf F . It is a linearized version of a
curve generated by an arbitrary cdf, constrained to pass through the points (sN

ωR , sN
ωP ) and (sDA

ωR , sDA
ωP ).

Since we focus on piece-wise linear F ’s between four cutoffs, any such F ∈ F(Π, sNωP , s
N
ωR)

satisfies F ((1− ρP )sNωR + ρP sNωP ) = 1− q. Let G be the cdf of si with only one kink at sNωP

satisfying G((1 − ρP )sNωR + ρP sNωP ) = 1 − q (the green line in Figures 8–9). We will show

that G maximizes ωP ’s population change in the class of piece-wise linear cdfs between four

cutoffs in F(Π, sNωP , s
N
ωR). Since G clearly maximizes G(sNωP )− (1− q) and (1− q)−G(sNωR),

it suffices to prove that G minimizes the expansion rate (for ωP or ωR).

Since G′(si) only changes at sNωP , the slope of the line (14) for G in the sωR-sωP space is

constant between (0, G−1(1−q
ρP

)) and (sNωR , s
N
ωP ). Take any other F (the red lines in Figures 8–

9). For each ωi ∈ {ωP , ωR}, let sDA
ωi

(G) and sDA
ωi

(F ) be the cutoff types of DA under G and F ,

respectively. Since the DA cutoffs must be on line (16), we have either [1] sDA
ωi

(F ) ≤ sDA
ωi

(G)

for both ωi ∈ {ωP , ωR}, or [2] sDA
ωi

(F ) > sDA
ωi

(G) for both ωi ∈ {ωP , ωR}.
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[1] When sDA
ωi

(F ) ≤ sDA
ωi

(G) for both ωi ∈ {ωP , ωR} (Figure 8):

N
(15)

DA
(16)

0

(14)

sNωR

sNωP

sωR

sωP

1 G

F
1− q

sNωR sNωP

sDA
ωR (G)

sDA
ωR (F )

si

cdf

Figure 8: Cutoff signal types under N and DA in the sωR-sωP space: the case where sDA
ωi

(F ) ≤
sDA
ωi

(G) for both ωi ∈ {ωP , ωR}

Consider the expansion rate for ωR. For si ∈ [0, (1 − ρP )sNωR + ρP sNωP ], G(si) is linear

whereas F (si) is weakly concave. Combined with sDA
ωR (F ) ≤ sDA

ωR (G), we obtain

(1− q)−G(sDA
ωR (G))

(1− q)−G(sN
ωR)

=
((1− ρP )sNωR + ρP sNωP )− sDA

ωR (G)

((1− ρP )sN
ωR + ρP sN

ωP )− sN
ωR

≤
((1− ρP )sNωR + ρP sNωP )− sDA

ωR (F )

((1− ρP )sN
ωR + ρP sN

ωP )− sN
ωR

≤
(1− q)− F (sDA

ωR (F ))

(1− q)− F (sN
ωR)

,

where the first equality follows from the linearity of G on that interval; the second from as-

sumption sDA
ωi

(F ) ≤ sDA
ωi

(G); and the third from weak concavity of F . Overall, the inequality

means that the expansion rate under G is lower than that under F .

[2] When sDA
ωi

(F ) > sDA
ωi

(G) for both ωi ∈ {ωP , ωR} (Figure 9):25

Consider the expansion rate for ωP . By G(sNωP ) ≥ F (sNωP ), F
′(si) ≥ G′(si) must hold for

si ∈ [sNωP ,min{sDA
ωP (G), sDA

ωP (F )}] = [sNωP , s
DA
ωP (G)] because otherwise F (1) = 1 cannot hold

25Although not directly relevant to the proof, we can show that 1 − q ≤ ρP must hold in this case.
Suppose, by contradiction, that 1− q > ρP . Then, in Figure 7, the vertical intercepts of the lines (14) under
both cdf’s (F−1( 1−q

ρP ) and G−1( 1−q
ρP )) are greater than one. Let sωR(F ) and sωR(G) be the values of sωR

that satisfy the capacity constraint (14) under each cdf when sωP = 1. The convexity of the line (14) for F
and the linearity of the line (14) for G imply that 0 < sωR(G) < sωR(F ). On the other hand, the capacity

constraint (14) implies F (sωR(F )) = G(sωR(G)) = 1−q−ρP

1−ρP , which further implies sωR(G) ≥ sωR(F ) by the

concavity of F (si) for si ∈ [0, (1− ρP )sNωR + ρP sNωP ]. These inequalities contradict each other.
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N
(15)

DA
(16)

0

(14)

sNωR

sNωP

sωR

sωP

1 G

F

1− q

sNωR sNωP

sDA
ωP (G)

sDA
ωP (F )

si

cdf

Figure 9: Cutoff signal types under N and DA in the sωR-sωP space: the case where sDA
ωi

(F ) >
sDA
ωi

(G) for both ωi ∈ {ωP , ωR}

for a concave F . Then,

G(sDA
ωP (G))− (1− q)

G(sN
ωP )− (1− q)

≤
F (sDA

ωP (G))− (1− q)

F (sN
ωP )− (1− q)

<
F (sDA

ωP (F ))− (1− q)

F (sN
ωP )− (1− q)

,

where the first inequality holds by the established relation on the slopes, and the second by

sDA
ωi

(F ) > sDA
ωi

(G). Overall, the inequality means that the expansion rate under G is lower

than that under F .

ωP ’s population change at c1 from N to TTC.

Analogously, ωP ’s population change at c1 from N to TTC is

(F (sNωP )− (1− q))
[
1− rTTCF (sDA

ωP )− (1− q)

F (sN
ωP )− (1− q)

]
.

Since rTTC does not depend on F (·) under g = 0 and e = 1, this population change is

maximized if F ∈ F(Π, sNωP , s
N
ωR) maximizes F (sNωP )− (1− q) and minimizes the expansion

rate
F (sTTC

ωP )−(1−q)
F (sN

ωP )−(1−q) for ωP .

Under TTC, the cutoff signal types (sωR , sωP ) satisfy equation (14) and

sωP−sωR = ∆ω
[
(ρP sωP +(1−ρP )sωR)+

2π

1− 2π

]
⇔ sωP =

1 + (1− ρP )∆ω

1− ρP∆ω
sωR+

∆ω 2π
1−2π

1− ρP∆ω
.

(17)

The only difference between DA and TTC is the intercepts of the equations (16) and (17).

49



Therefore, the proof is analogous to the change from N to DA.

Appendix A.8 Proof of Proposition 1

N and DA. By Lemma 5, it suffices to show that for any (Π, sNωP , s
N
ωR) with F(Π, sNωP , s

N
ωR) ̸=

∅, ωP ’s population change from N to DA at c1 under the “optimal” cdf G ∈ F(Π, sNωP , s
N
ωR)

(i.e., the piece-wise linear cdf that has one kink at si = sNωP ) is negative if and only if

1− q < ρP .

Take (Π, sNωP , s
N
ωR) with F(Π, sNωP , s

N
ωR) ̸= ∅ and fix them. Let α := 1+(1−ρP )∆ω

1−ρP∆ω
, β :=

∆ω π
1−π

1−ρP∆ω
, and x := sNωR . Then by equation (15), sNωP = αx. The optimal cdfG ∈ F(Π, sNωP , s

N
ωR)

is G(si) = 1−q
(ρPα+(1−ρP ))x

si for si ∈ [0, αx] because it is linear for si ∈ [0, αx] and satisfies

G((1− ρP )sNωR + ρP sNωP ) = 1− q. Then, we obtain G(sNωR) =
1−q

ρPα+1−ρP .

We can then solve explicitly for the portion of the line (14) in Figure 7 for sωR ∈ [0, x]:

sωP = G−1
(1− q

ρP

)
−

G−1(1−q
ρP

)− αx

x
sωR .

Together with equation (16), we obtain sDA
ωR = (1− β

G−1( 1−q

ρP
)
)x. The expansion rate under G

is

|G(sDA
ωR )− (1− q)|

|G(sN
ωR)− (1− q)|

=

(1− q)− 1−q
ρPα+1−ρP (1−

β

G−1( 1−q

ρP
)
)

(1− q)− 1−q
ρPα+1−ρP

= 1 +
β

ρP (α− 1)

1

G−1(1−q
ρP

)

= 1 +

∆ω π
1−π

1−ρP∆ω

ρP (1+(1−ρP )∆ω
1−ρP∆ω

− 1)

1

G−1(1−q
ρP

)
= 1 +

1

ρPG−1(1−q
ρP

)

π

1− π
.

On the other hand,

1

rDA(1− π)
=

1
1−q

(1−π)(1−q)+π
(1− π)

= 1 +
1

1− q

π

1− π

because rDA = 1− S
D
= 1− πq

(1−π)(1−q)+π
= 1−q

(1−π)(1−q)+π
when e = 1 and g = 0. By Theorem 2,

ωP ’s population change is negative when the expansion rate is greater than 1
rDA(1−π) . Under

G, this happens if and only if ρPG−1(1−q
ρP

) < 1−q, which is 1−q
ρP

< G(1−q
ρP

). Since G is concave

and G(1) = 1, this condition is equivalent to 1−q
ρP

< 1.
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N and TTC. Under g = 0 and e = 1,

1

rTTC
=

D −X

D − S
= 1

because of S = X. By Theorem 1, the expansion rate from N to TTC is always greater

than one for both ωP and ωR. Then, Theorem 2 implies that TTC results in greater school

segregation by wealth than N for all F ∈ F(Π).

DA and TTC. By |Ω| = 2, Theorem 1, and the capacity constraint, we have sTTC
ωR < sDA

ωR <

F−1(1− q) < sDA
ωP < sTTC

ωP and Ω̃(DA, TTC) = Ω. These imply that the sufficient condition

of statement 3 of Theorem 2 is satisfied for any F ∈ F(Π).

Appendix A.9 Proof of Theorem 3

pN ≤ pDA. Recall that rDA = D−S
D

and

rDA
uniform =

1− q − g

(1− π)(1− q − g) + πe
.

When rDA ≥ rDA
uniform holds,

pDA = rDA(1− π)
{
E[sDA

ωi
]− g +

πe

1− π

}
≥ rDA

uniform(1− π)
{
E[sNωi

]− g +
πe

1− π

}
=

1− q − g

1− q − g + πe
1−π

E[sNωi
]− g + πe

1−π

E[sNωi
]− g

{
E[sNωi

]− g
}

≥ E[sNωi
]− g

= pN ,

where the first inequality follows from rDA ≥ rDA
uniform and Lemma 4, and the last inequality

follows from 1−q−g
1−q−g+ πe

1−π
≥ E[sNωi

]−g
E[sNωi

]−g+ πe
1−π

> 0.
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pDA < pTTC . First, we establish

rDA

rTTC
=

D −X

D

=
1− q − (1− 2π)F (g)

(1− π)(1− q)− (1− 2π)F (g) + πF (e− g)

=
(1− 2π)(1− q) + 2π(1− q)− (1− 2π)F (g)

(1− π)(1− q) + πF (e− g)− (1− 2π)F (g)

≤ (1− 2π)(1− q) + 2π(1− q)− (1− 2π)g

(1− π)(1− q) + πF (e− g)− (1− 2π)g

<
(1− 2π)(1− q) + 2π(e− g)− (1− 2π)g

(1− π)(1− q) + π(e− g)− (1− 2π)g

=
1− 2π

1− π

1− q − g + 2π(e−g)
1−2π

1− q − g + πe
1−π

(18)

because rDA

rTTC < 1, F (g) ≥ g, e− g > 1− q, and F (e− g) ≥ e− g. Then by equation (10),

pDA

pTTC
=

(1− π)rDA

(1− 2π)rTTC

E[sDA
ωi

]− g + πe
1−π

E[sTTC
ωi

] + 2πe−g
1−2π

≤ (1− π)rDA

(1− 2π)rTTC

E[sDA
ωi

]− g + πe
1−π + (1− q − E[sDA

ωi
])

E[sTTC
ωi

] + 2πe−g
1−2π + (1− q − E[sTTC

ωi
])

=
(1− π)rDA

(1− 2π)rTTC

1− q − g + πe
1−π

1− q + 2πe−g
1−2π

=
(1− π)rDA

(1− 2π)rTTC

1− q − g + πe
1−π

1− q − g + 2π(e−g)
1−2π

< 1,

where the first inequality holds because
E[sDA

ωi
]−g+ πe

1−π

E[sTTC
ωi

]+ 2πe−g
1−2π

< 1 and E[sDA
ωi

] ≤ E[sTTC
ωi

] ≤ 1− q by

Lemma 4, and the last inequality follows from equation (18).
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