UTMD working Paper

The University of Tokyo
Market Design Center

UTMD-096

Uncertain Quality Evaluation

in Procurement Auctions

Ryuji Sano
Yokohama National University

Masanori Tsuruoka
Yokohama National University

October 29, 2025




Uncertain Quality Evaluation in Procurement Auctions*

Ryuji Sano! Masanori Tsuruokat

October 29, 2025

Abstract
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ment auctions in which subjective quality evaluation creates uncertainty. We
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which bidders submit cautious bids because the determination of a winner de-
pends on chance. In a second-score auction, a truth-telling equilibrium exists
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1 Introduction

In public-works procurement which amounts to tens of billions of dollars or more
annually, governments are concerned not only about project cost but also nonmon-
etary attributes including noise reduction, time to completion, design, and quality
of materialsﬂ Consequently, an innovative contract design called a scoring auction
has started to take hold worldwide to deal with these complex conditions. In a
scoring auction, the government first announces the scoring rule by which they will
rank the offers made by bidders. Bidders then submit not only price bids but also
quality proposals, which include information on the technology used to perform the
work, time to completion, and other work performance attributes. In the auction,
the government evaluates the proposals made by bidders and assigns quality scores.
Then, the winner is the bidder with the best combination of price and quality score.
This type of multidimensional-bid auction is also used in cash-royalty auctions for
oil lease contracts and bank resolution auctions and so has broader applicability.
The outcomes of scoring auctions are heavily influenced by the auctioneer’s sub-
jective quality evaluation. For example, in public procurement, suppose that a mu-
nicipality desires an expedited completion of a street project that requires working at
night. In this case, bidders might be asked to submit ideas that not only accelerate
the completion timeline but also ensure pedestrian safety. To prevent pedestrians
from falling, one firm might suggest laying steel plates on the ground, while another
might suggest installing lighting equipment. Since there is no objective criterion to
determine which idea is superior and to what degree, these ideas must be evaluated
subjectively by reviewers. From the bidder perspective, this subjective evaluation
generates uncertainty regarding the final evaluation score, which causes the allo-
cation of contracts to occur at least to some degree by chance (Takahashi, 2018).
Similar phenomena arise within markets other than public procurement (Krasnokut-
skaya, Song and Tang] [2020, [Kong, Perrigne and Vuong| 2022, and [Allen, Clark,

Hickman and Richert|, 2023)), so it is important to incorporate such uncertainty into

!Public-works spending typically accounts for 2.3 percent of GDP annually on average in the
US, 5 percent in European countries, and about 8 percent in China. See https://www.brookings.

edu/articles/how-federal-infrastructure-investment-can-put-america-to-work.
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the analysis of scoring auctions.

In this study, we theoretically analyze scoring auctions in which quality evalua-
tion is uncertain, a situation that we formalize by introducing random noise into the
assessment of quality bids. Building on |Che (1993), we consider multi-dimensional-
bid procurement auctions in which bidders select their price and quality in the face of
this uncertainty and examine bidding behavior and auction outcomes for two auction
mechanisms: first-score (FS) and second-score (SS) auctions. These auction formats
are analogous to first- and second-price auctions in standard price-only auctions. In
an FS auction, the winning bidder delivers quality at the price specified in its bid.
In an SS auction, the winning bidder delivers the quality promised in its bid at the
price that matches the score of the most-competitive rival 7]

The contribution of our paper is two-fold. First, we characterize the symmetric
Bayesian Nash equilibrium in both FS and SS auctions in the presence of uncertain
quality evaluation. We show that the bidders’ optimal quality bid is determined in-
dependently of the auction formats and score, which is consistent with (Che| (1993)).
We then show that under fairly general conditions, a truth-telling equilibrium exists
in the SS auction so that uncertain quality evaluation does not influence the bidding
incentive. As for the F'S auction format, we present an explicit equilibrium under
certain specifications for quality evaluation uncertainty and find that when evalu-
ation uncertainty exists, bidders shade their score bids for all types, including the
least efficient type. This is because the determination of the winner depends to some
extent on chance, which reduces the incentive for bidders to submit aggressive bids
and which, in turn, weakens competition among bidders.

The second contribution of our paper is to demonstrate that the equivalence
theorem between F'S and SS auctions fails even though our model has an independent
private value setting. Specifically, we show that the SS auction performs better
than the FS auction in terms of efficiency, expected score, expected quality, and
expected price. To show this, we first examine the comparative statics of the auction

performance regarding the precision of the quality evaluation. In the FS auction,

2The SS auction here is an identical mechanism to the generalized second-price auction employed

in sponsored search advertising.



as the evaluation of quality becomes more precise, bidders become more aggressive
and submit lower price bids. This occurs because the increased precision reduces
the degree of chance involved in determining the winner, which increases bidding
competition. Additionally, increased precision in the evaluation of quality increases
the expected social surplus and the expected score (the buyer’s payoff). Although
the quality bids are not directly affected by evaluation uncertainty, the expected
quality also increases with precision because the more precise evaluation chooses the
efficient bidder as the winner, which improves the expected quality.

The effect of evaluation uncertainty on the expected price is characterized under
an additional condition. More precise evaluations cause auctions to be more com-
petitive which lowers price bids, but the win by a more efficient bidder increases
payments as quality improves. The relative magnitude of these two effects deter-
mines the effect on the expected price. We show that when the virtual cost, which
is the cost taking into account the bidder’s optimal quality and information rent,
is monotone in their type, then the expected price decreases as the efficiency of
allocation improves. These properties can be similarly established in the SS auction.

Based on the comparative statics on uncertainty in quality evaluation, we show
that under a regularity condition, the SS auction improves social surplus, expected
score, expected price, and expected quality as compared with the FS auction. The
intuition behind this is that while bidders bid truthfully in the SS auction, they shade
score bids in the F'S auction. Under the specification in which we obtain an explicit
equilibrium for the FS auction, the bids are closer to each other in the FS auction
than in the SS auction. The closer bids imply that the determination of the winner is
affected more by evaluation uncertainty, and the allocation is more random in the F'S
auction than the SS auction. Thus, even with the same evaluation uncertainty, the
SS auction is more efficient than the F'S auction in equilibrium. Hence, analogous to
the comparative statics regarding the precision of quality evaluation, the SS auction
achieves a higher expected score and quality than the FS auction. The expected
price is also lower in the SS than the FS auction under the condition that virtual
cost function is monotone. These results imply that when uncertainty in quality

evaluation is inevitable, the SS auction is the better mechanism for both social



welfare and buyer payoff.

1.1 Related Literature

This paper contributes to the theoretical analysis on scoring auctions introduced
by |Che (1993)) which to date has focused on quasilinear scoring auctions in which
price and quality are additively separable and the scoring rule is linear in price.
While (Che| (1993))’s seminal work has been extended to cases of interdependent cost
(Branco, 1997)), multidimensional signals (Asker and Cantillon) 2008)), multidimen-
sional quality (Nishimural 2015), and non-quasilinear scoring rules (Dastidar}, 2014;
Hanazono, Hirose, Nakabayashi and Tsuruoka), [2020, [Hanazono, Nakabayashi, Sano
and Tsuruoka, 2024), and researchers have compared the equilibrium outcomes of
scoring auctions and alternative mechanisms (see, for example, |Asker and Cantillon,
2008, 2010; Awaya, Fujiwara and Szabol 2025; and [Sano, 2023)), all these studies
assume quality evaluation that is certain, through “known scoring rules”. Despite
the importance of uncertain scoring rules in real-world situations, the theoretical
literature remains scarce to date. To the best of our knowledge, this is the first
study to characterize the equilibrium of scoring auctions when quality evaluation is
uncertain and then compare the performance between FS and SS auctions.

There are a few studies on scoring auctions with uncertain quality evaluation. A
closely related study is |Takahashi (2018]), who develops a structural scoring auction
model where bidders face uncertainty through noises on quality bids. The paper em-
pirically examines procurement auctions that utilize a price per quality ratio as the
scoring rule and, using scoring auction data from the Florida Department of Trans-
portation (FDOT), evidence is shown of substantial differences in the quality scores
among reviewers for a given quality bid, which implies the existence of evaluation
uncertainty. A numerical exercise shows that as the degree of evaluation uncertainty
increases, the equilibrium price and quality bids rise on average. In another related
paper, |Ortner, Chassang, Kawai and Nakabayashi| (2025) consider repeated procure-
ment auctions and examine the effect of subjective quality evaluation in scoring
auctions on bidder collusion.

Unlike standard auctions, the bidder with the highest bid does not always win



in our model, which makes it difficult to provide a general characterization of the
FS auction equilibrium. Despite the vast literature on auction theory, there remains
very little theoretical analysis of cases in which the highest bidder may not win. A
notable exception is that of an average-bid auction in which the bidder closest to

the average bid wins. In this setup, there exists an equilibrium in which all bids are

tied, and the winner is chosen randomly (Decarolis|, 2018). Another auction where

random allocation occurs is a standard auction with a ceiling price, and [Lopomo,

Persico and Villa (2023) demonstrate its optimality in a procurement auction with

adverse selection. Board| (2007) and Engelmann, Frank, Koch and Valente| (2023])

analyze situations where the highest bidder in a standard auction defaults, causing
the good to be sold to the second-highest bidder, and shows that
a second-price auction performs better than a first-price auction under a certain
specification. Beyond these auction examples, random determination of a winner is
often analyzed in the contest theory literature, and the formulation of the winning
probability employed in our FS auction is identical to the success function analyzed

in |Che and Gale| (2000).

In contrast to theoretical treatments, empirical research on scoring auctions with
uncertain scoring rules is growing, ranging from Florida DOT public-work auctions

(Takahashi, [2018), to Federal Deposit Insurance Corporation (FDIC) bank resolu-

tion procedures (Allen, Clark, Hickman and Richert|, 2023)) , procurement auctions

for computer programming services (Krasnokutskaya, Song and Tang, 2020), and

cash-royalty auctions for oil lease contracts (Kong, Perrigne and Vuong |2022[)E|
Kong, Perrigne and Vuong| (2022) consider unknown allocation rules, while
(Clark, Hickman and Richert| (2023), using FDIC bank resolution data, structurally

analyze auctions where weights on bid components are not known to bidders. Their

findings suggest that the FDIC reduces its resolution cost by alleviating uncertainty

3Previous empirical research on scoring auctions using known scoring rules includes
[Bajari| (2011)), [Andreyanov] (2018]), [Huang) (2019), and |Andreyanov, Decarolis, Pacini and Spagnolo|

(2024). Further, to develop structural auction models in which firms submit unit price bids for

each item needed to carry out a project, [Bajari, Houghton and Tadelis| (2014) and [Bolotnyy and|

(2023)) use an approach analogous to the theoretical analyses of scoring auctions in
(I1993|) and |Asker and Cantillon| (I2008[).




about the scoring rule. Similar to Allen, Clark, Hickman and Richert| (2023)), Kras-
nokutskaya, Song and Tang) (2020)) and [Takahashi| (2018) allow for uncertain scoring
rules, with [Krasnokutskaya, Song and Tang (2020) considering the quality bid to
be exogenous whereas Takahashi| (2018) treats it as endogenous. The counterfactual
simulations presented by Takahashi (2018)) suggest that a sharp increase in the num-
ber of reviewers leads to a lower winning price and quality. The broad scope of these
empirical studies motivates us to deepen our theoretical understanding of uncertain
quality evaluation in scoring auctions.

The remainder of the paper is organized as follows. Section [2| formulates a scor-
ing auction model in which subjective quality evaluation is incorporated as a noisy
scoring rule. Then, in Section [3, we transform multi-dimensional-bid auctions into
a unidimensional score-bid auction, following |Che| (1993)). In Section 4l we present
the main results, characterizing the symmetric equilibria of FS and SS auctions, ex-
amining the effect of evaluation precision on equilibrium outcomes, and comparing
the performance of the two auction formats. Section [5] discusses the robustness of

our results, and Section [6] concludes the paper.

2 Model

A procurement buyer auctions off a procurement contract to 2 risk-neutral bidders
who are ex ante symmetric. A type of bidder ¢ € {1,2} is denoted by 6; and is
independently and identically drawn from a distribution over [§,0] C R,. Let F
be the cumulative distribution of #; with density f > 0. Non-monetary attributes
(quality) of the good are represented by a unidimensional variable ¢ € R;. A contract

is a price-quality pair, (p,q). When the procurement buyer signs a contract (p,q),
they earn a payoff

q—Dp.
When bidder ¢ wins the auction and signs a contract (p, q), their payoff is given by

pb— C(Qa 61)7

where C(q, 6;) is their production cost. The losing bidder’s payoff is zero.



We assume that the cost function C is strictly increasing in both ¢ and 6 (Cy > 0,
Cy > 0), strictly convex in quality (Cyq > 0), and exhibits non-decreasing differences
(Cqo > 0)E| Both the production cost and marginal cost are increasing in type so
that a bidder of a lower type is more efficient.

A procurement contract is determined through a scoring auction, in which each
bidder i submits a proposal (p;, ¢;), where p; < pis a price bid and ¢; > ¢ is a quality
bid, with reserve price and minimum quality denoted by p > 0 and ¢ > 0. For a
bidder’s quality bid ¢;, the buyer reviews the proposal and assigns a quality score.
The evaluated quality is given by ¢; = ¢; + €;, where g; represents the buyer’s noisy
subjective evaluation. We assume that for each i € {1,2}, ¢; is a random variable
independently distributed from (pl,Ql,pQ,qQ)H There is a pre-announced scoring
rule S : [0,p] x [¢,00) — R, which maps price and evaluated quality bids (p;, ¢;) into

a unidimensional score §; = S(p;, §;). We focus on a simple quasilinear scoring rule
S(pi,4i) = ¢ — pis

where the bidder with the highest score wins.

We examine first-score (F'S) and second-score (SS) auctions, which are the scoring
auction counterparts of the familiar first-price and second-price auctions. In both
FS and SS auctions, the bidder with the highest evaluated score §; = ¢; — p; wins.
In an FS auction, the winner’s proposal (p;, ;) is finalized as a contract. In an SS
auction, however, the winner is required to meet the loser’s evaluated score. Because
it is difficult in practice to change quality after the auction, we suppose that quality
is fixed and only the price is adjusted in order to fulfill the loser’s score. Suppose
that bidder 4 submits a bid (p;, ¢;) and wins at the score §;, and that bidder j’s bid is
scored as §; < §;. Then, the price p* that gives score 5; given the evaluated quality
q; is

Gi—p =5 & p=4aq—3

Thus, bidder ¢ signs a contract (¢; — §;,¢;) in an SS auctionﬁ

“Note that Cy = 8C/06 and that the other subscripts are defined in the same manner.
®We allow £; and &2 to be correlated.
5In reality, bidders submit not a number ¢; but contract details, i.e., specific construction plans

and details of goods specifications. When we write a contract (p;,q;), this represents the contract



Remark 1 This remark about quality bids has two components. First, in scoring
auctions for public-works procurement, the evaluation by procurers of the various
non-monetary attributes included in a quality bid is inherently subjective and thus
affected by chance, creating uncertainty for bidders at the time of bidding. This
uncertainty is verified by |Takahashi| (2018), who finds a substantial difference in the
reviewers’ scores of a given quality bid by using the Florida Department of Trans-
portation (FDOT) public-works datam A variance decomposition of the reviewers’
quality evaluation scores finds that the within-bidder between-reviewer variation ac-
counts for about half of the total variation, and the within-auction between-bidder
variation also contributes substantially to the total variation. Thus the presence
of uncertainty in the evaluation of quality bids from the perspective of bidders is
confirmed empiricallyﬁ

The second point about quality bids is that we interpret ¢; as a true quality
whereas the evaluated quality ¢; is a noisy and imprecise evaluation. In reality,
bidders submit not a number ¢; but contract details, i.e., specific construction plans
and details of goods specifications. Bidder i knows that the true quality of its own
contract is ¢;, whereas the buyer evaluates it as ¢;. Note that in the procurement
of public works or high-tech equipment, the buyer may be relatively less informed
about quality than the suppliers. Hence, we suppose that €; is just an error. Based
on this interpretation, the buyer’s payoff for a contract (p, q) is given by ¢ — p, not
by ¢ — p, and the buyer observes the true quality g after the delivery of the good.
This interpretation is consistent with previous studies such as Takahashi (2018) and

Ortner, Chassang, Kawai and Nakabayashi (2025).

as perceived from the bidder’s point of view. See Remark 1 as well.
"FDOT scoring auction data used by Takahashi| (2018) was mostly for procuring large-scale

projects including bridge and building construction projects, and FDOT reviewers were chosen
from among a pool of skilled civil engineers in the department. In the auctions, upon receiving price
bids and quality bids, each reviewer independently assessed and assigned a score to each quality

bid, and the final quality bid score was the average of the scores of all reviewers.
8 Another interpretation of uncertainty in quality evaluation is the incompleteness of scoring rules.

It is difficult for reviewers to anticipate all possible proposals for various non-monetary attributes
and to prescribe scores for all of them a priori. Hence, the scoring rule must be incomplete and

thus, there is much room for reviewer discretion.



Remark 2 Although we generally follow |Che| (1993), we define the SS auction in
a slightly different manner. Under the original SS auction rule in |Che| (1993), the
winner is free to choose a contract (p,q) such that the associated score fulfills the
highest rejected score; that is, the winner can change both price and quality. Instead,
we suppose that quality cannot be changed after bidding because of the nature of
the quality score which depends on noisy subjective evaluation. This assumption
is reasonable in public procurements such as construction projects due to the ad-
justment costs associated with changing construction plans in a short time. |[Che
(1993) shows that the optimal quality is independent of score and that bidders have
no incentive to change quality after winning under the original SS auction rule, so
the equilibrium properties provided in |Chel (1993)) do not change even if quality is
fixed ex post. Our analysis in the next section also implies that bidders have no
incentive to change quality after winning even if evaluation uncertainty exists and

quality were adjustable.

Remark 3 To the best of our knowledge, the FS auction is the prevailing format
in public procurement, and there are no cases in which the SS auction has been
employed. However, the SS auction is an identical mechanism to the generalized
second-price auction, which is often used in sponsored search advertising on the web
(Edelman, Ostrovsky and Schwarz, 2007). A mechanism that adjusts only the price
according to the second-highest score is straightforward to implement and therefore

warrants analytical attention.

3 Score-Bid Auctions

Chel(1993) shows that scoring auctions are analyzed by transforming a multidimensional-
bidding game into a unidimensional score-bidding game. In this section, we show
that scoring auctions are transformed into a score-bid auction form even with the
presence of evaluation uncertainty.

Let A be the cumulative distribution of € = €9 — £1. To maintain symmetry

between the two bidders, we suppose that A is symmetrically distributed with zero

10



mean. Thus, we suppose A(0) = 1/2 and
Alx) +A(—z) =1

for all x € R.

Bidder i’s strategy is a mapping from each 6; to a proposal (p;(60;), q;(6;)), and the
bidder’s strategy generates its score strategy, which is denoted by s;(6;) = ¢;(0;) —
pi(0;). Suppose that bidder 1 is of type #; and submits a proposal (p1,q1). Let
$1 = q1 — p1 be the bidder’s intended score, whereas the evaluated score made by the
buyer is §; = ¢1 — p1 = s1 + 1. Given a score strategy by bidder 2, let 7! (py, q1,61)
be bidder 1’s expected payoff in an FS auction when submitting (p1,¢1). Then, we

have
™ (p1,q1,61) = Pr{si + &1 > s5(62) + e2}(p1 — Cqu1,61))
= Ep,[A(s1 — s2(02))](p1 — C(q1,61)).
The winning probability is a function of s1, and given s, it is independent of the

choice of (pl,ql)ﬂ Hence, given a bidder’s intended score s, they determine an

optimal contract (p,q) that solves

max p — C(q,0)
(.q)

st.q—p=s, (1)
PP, q=4¢

Throughout the analysis, we assume that the reserve price p is sufficiently high and
not binding at . By substituting the score constraint into the objective function,

the profit maximization problem is written as
maxq — C(q,0) — s. (2)

q>q

A similar argument applies to the SS auction. Suppose that bidder 2 submits an
intended score s9 and that the subjective evaluation is realized as € = €9 —e1. When

bidder 1 wins the auction with an intended score s; > so + €, their ex post payoff is

g1 — 52 —C(q1,61) =q1 — C(q1,01) — (s2 +¢).

9As we will assume in Assumption [I| we ignore the possibility that the evaluated quality §; falls

below g and the proposal is rejected.

11



Hence, given winning at an intended score s, the winner’s profit is maximized by the
optimal contract that solves or .
We assume that the maximization problem has an interior solution. That is,

the optimal quality ¢*(6) is determined by the first order condition

Cqlq™(0),0) = 1. (3)

Note that ¢*(#) is non-increasing in 6 by the non-decreasing differences Cyg > 0. We
further assume that the optimal quality ¢*(¢) is sufficiently higher than ¢, so that
the buyer never evaluates quality lower than the reservation ¢ when a bidder submits
a quality bid ¢*().

Assumption 1 It holds that Cy(gq,f) < 1. In addition, ¢*() is sufficiently higher

than ¢ and Pr{¢*(0) +&; < ¢} = 0.

Assumption [If and the first order condition show that the winning profit is
maximized by making quality ¢*(6) regardless of the intended or evaluated score.
Thus, this is the optimal quality bid in both FS and SS auctions. This is similar
to (Che| (1993)), in which there is no evaluation uncertainty, and a useful property of

quasilinear scoring rules.

Lemma 1 Under Assumption[1], it is optimal for each bidder to submit quality bid
q*(0) in both FS and SS auctions.

Let us define the pseudo-valuation v(6) by

v(0) = q7(0) — C(q°(0),0). (4)

Note that v is decreasing in 6. The equilibrium of the scoring auction is derived
by solving auctions in terms of score bid s, where each bidder has a valuation v(6).
Hence, it is sometimes convenient to treat the pseudo-valuation v(6) rather than 6
as a typeH Bidder ¢’s pseudo-value is denoted by v; = v(6;) € [v, 0], where v = v(0)

and v = v(0). Also, by abusing notations, bidder strategy is sometimes denoted by

s(v;) rather than s(6;). Suppose that bidder ¢ with a pseudo-value v; submits a score

10The pseudo-valuation is called pseudotype in|Asker and Cantillon| (2008) and productive potential
in |Chel (1993).

12



bid s;. Given the other bidder’s score strategy s;(-), the expected payoff 7! (s;,v;)

in an FS auction is given by

! (si,v1) = By, [A(si — 5(05))](vi = 84)- (5)
When bidder ¢ wins an SS auction with intended score bids (s;,s;) and € = ¢ — ¢,
their ex post payoff is given by

I _Jui—sj—e ifsi>site
u (Si,Sj,&?,UZ‘)—

: (6)

0 if S < 85 + €
When bidder i wins an FS auction, the proposal made by the winner is the final

contract, so that the buyer’s payoff is equal to s;. In an SS auction, the winner i

signs a contract (¢; — 8j,¢;), so that the buyer’s payoff is given by

A

qi—(qi—:§j):sj+€.

Thus, the “score revenues” in FS and SS auctions correspond to the buyer’s payoffs.
It is also convenient to consider the pseudo-valuation distribution instead of the

type distribution. Let G be the cumulative distribution of pseudo-valuation; that is,
G(x) = Pr{v(d) <2} =1— F(v ! (x)).

Let g be the associated density of G. We impose a standard regularity condition of

non-decreasing hazard rate.

Assumption 2 The distribution G possesses the non-decreasing hazard rate: that

: gv) _ s
I8, TGy 1s non decreasmg

4 Main Results

4.1 Equilibrium

First, we examine the equilibrium of SS and FS auctions. Despite the presence of
evaluation uncertainty, in the SS auction, it is weakly dominant for each bidder to

submit their truthful pseudo-value v(6) as the score bid.

"The associated condition on the type distribution F is that f(6)/(Cas(g*(0),0)F(0)) is non-

increasing in 6.

13



Theorem 1 In the SS auction, it is a weakly dominant strateqy for each bidder to

submit a score bid s™(0;) = v(6;).

All proofs are provided in the Appendix.

The truthfulness of the SS auction is shown in the following manner. Fix bidder
1’s optimal quality bid ¢j (@), and consider an arbitrary intended score sy = g2 — p2
of bidder 2 and realized noise term . Then, bidder 1 wins when s; > s9 +c. When
bidder 1 wins, their ex post payoff is given by v(6;1) — (s2 + €). Thus, given so
and ¢, bidder 1 wins the auction whenever their intended score is higher than a
threshold ss + €, and the associated “score cost” is equal to the threshold. This
allocation and payment rules are identical to the standard second-price auction and
other strategy-proof allocation mechanisms. In other words, the noise term ¢ is a
handicap or a fixed bid credit on bidders, and bidders play a second-price auction
with this handicap. Because the handicap is calculated inside the mechanism, truth-
telling is weakly dominant for any handicap so that the strategy-proofness still holds
even when the handicap is random and hidden.

The dominant strategy property of the SS auction is identical to the case without
evaluation uncertainty provided by Che| (1993) and |Asker and Cantillon (2008), and
is also similar to the case of non-quasilinear scoring rules by |[Hanazono, Nakabayashi,
Sano and Tsuruoka, (2024). The uncertainty in quality evaluation does not influence
bidders’ incentives at all, and the equilibrium is invariant to arbitrary noise structure
A and number of bidders.

As for the FS auction, however, the bidding incentive depends on the noise
structure A, and in general it is difficult to have an explicit equilibrium because the
winning probability in equilibrium is not reduced to the probability of order statistics
of types. In what follows, we focus on a uniform distribution of € under which we
are able to obtain an explicit equilibrium of the FS auction. The specification of A
below is the same as the success function used by |(Che and Gale (2000) in a contest

model.

Assumption 3 There exists 8 > 0 and the subjective evaluation term ¢ = g9 — €

14



is uniformly distributed over [—1/23,1/24]; that is,

A(x) :%—i-ﬂw

for —1/28 < x < 1/24. Further, it holds that
Bu(@) —v(0)) < 1. (7)

Note that § represents the precision of the quality evaluation, with a higher
indicating that the buyer evaluates the quality more precisely. Condition requires
that the precision not be too high. This is imposed for |s/(6;) — s?(62)| < % in
equilibrium for all type profiles; that is, both bidders have a chance to win for all
type profiles.

In addition, we impose the following technical condition which guarantees that

any off-path score bid is not profitable.

Assumption 4 For all z € [v(0),v(0)], it holds that

L Bo(6:) | o(0:) <] <2 (®)

Under these assumptions, the symmetric Bayesian Nash equilibrium of the FS

auction is derived by the first-order approach.

Theorem 2 Suppose that Assumptions[1], [3, and[]] hold. Then there exists a sym-
metric Bayesian Nash equilibrium of the FS auction in which the score-bid strategy
s given by
1
s (0;) = 3 <U(9z‘) +p— 5) ; (9)
where p = Elv(0)].

Note that condition in Assumption |3 implies v(8) — 1/8 < v(#). Hence, by

p < v(f), the equilibrium score bid satisfies

16 < 5 (0060 +00) - ) <

This implies that even when bidders have the highest (the least efficient) type 0,

they shade score bids from their true pseudo-valuation v(6). This is because unlike
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standard auctions in which bidders of the worst type never win in equilibrium, bid-
ders here even of the worst type can win due to the evaluation uncertainty. Hence,
even these bidders shade their bids to enjoy a positive profit in case they do win.
A similar property holds for the lowest (the most efficient) type . If there were
no evaluation uncertainty and evaluated quality was always equal to the intended
quality, or ¢; = ¢;, then bidders would submit the expected pseudo-valuation of the
rival given that the rival has a higher (worse) type. Hence, when a bidder has the
lowest type 6, they submit a score bid equal to the average pseudo-valuation p. In

contrast, in equilibrium @, the bidder of the lowest type submits

sf<e>:§<v<e>+u—;> <t0xe

Thus, bidders have little incentive to submit aggressive bids, as the winner determi-
nation depends not only on the bid but also on chance. The presence of evaluation
uncertainty thus leads to more cautious bids.

Assumption [l is imposed for any off-path score bid being unprofitable. Although
bidders have a standard quasilinear payoff structure, the first order condition and the
monotonicity of the score bid function may not be sufficient for payoff maximization
in an F'S auction. This is because a score bid lower or higher than the equilibrium bid
range may be profitable due to the evaluation uncertainty. This is in contrast with
a standard first-price auction, in which a bid lower or higher than the equilibrium
bid range is clearly unprofitable. Note that Assumption [4]is mild, and it holds when
the density g of the pseudo-valuation does not drastically increase around some wv.
A sufficient condition for Assumption [4]is that G possesses a non-increasing reverse
hazard rate. Indeed, let A(z) = g(z)/G(x) be the reverse hazard rate of G, and
suppose X' < 0. Let v; be distributed by G and let

v(x) = %E[vl | vi <z] = XNx)(z — Elv; | v < z)).

By differentiation, we have
() = N(2)(z = Elv; | v < 2]) + Az)(1 = 7(2)).

Hence, by M (z) < 0, we have y(z) > 1 = +/(x) < 0. Also, we should have v(v) < 1E

Hence, we conclude that vy(z) <1 for all z € [v, v].

Elvi|vi<v+6]—
&

2Tf v(v) > 1, then for a sufficiently small § > 0, we have £ >14 Elv | v <uv+6] >
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4.2 Quality Evaluation Precision

In the SS auction, bidders have a truthful dominant strategy and the random quality
evaluation does not affect the bidding incentive but in the F'S auction, the equilibrium
score strategy is influenced by the quality evaluation. The equilibrium score bid

!'is increasing in 8, which indicates that bidders behave more competitively

function s
and submit bids aggressively as the quality evaluation gets more precise. Because
the optimal quality bid is determined only by bidder type, this means that bidders

lower their price bid as S becomes higher.

Corollary 1 Bidders submit their score bid more aggressively in an FS auction as
the precision of quality evaluation § becomes higher by lowering their price bid and
not changing their quality bid. In contrast, the equilibrium bid is invariant to the

precision of quality evaluation B in an SS auction.

In an FS auction, an increase in evaluation uncertainty increases the element
of chance in the determination of the winner and leads to less aggressive bidding.
This is consistent with the revenue equivalence theorem. Under ex ante symmetry
and Assumption [2] achieving an efficient allocation leads to increasing the auction-
eer’s expected revenue. Under random quality evaluation, efficient allocation is not
realized but an inefficient bidder wins with a positive probability. Thus, the ex-
pected score with uncertainty in quality evaluation is lower than the mechanism
that achieves efficient allocation without uncertainty.

Although the precision 8 of the quality evaluation does not affect the quality
bids, it does affect the final quality because the random evaluation affects the choice
of the winner in the auction. When the quality evaluation is highly random (5 is
low), the bidder of the higher (less efficient) type is more likely to win, which reduces
the final quality. As precision rises (/5 becomes higher), the bidder of the lower type
is more likely to win, which leads to the efficient quality level.

While the evaluation precision does not affect the bidding incentive in an SS

auction, similar comparative statics arise because improved allocative efficiency leads

v + §, which is a contradiction.
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to higher quality and scores. These observations are summarized in the following

theorem.

Theorem 3 In the FS auction under Assumptions|[1], [3, and[4, the expected social
surplus ¢ — C(q,0), expected score, and expected quality increase with the precision
of quality evaluation B. Similarly, in the SS auction under Assumptions (1], [4, and

[3, the expected social surplus, expected score, and expected quality increase with 3.

In contrast with the score and quality, the effect on the final price under random
quality evaluation is relatively uncertain. In an F'S auction, the price bid is decreasing
in 8. Thus, given a winner’s type, the price decreases as the quality evaluation
becomes more precise. However, higher precision leads to a more efficient winner
being chosen, which increases average quality, so the associated price might increase
due to this quality improvement. Thus, the effect of quality evaluation precision on
the final price depends on a tradeoff between the effects of promotion on competition
and quality improvement.

To see the effect of evaluation precision S on the final price, let us treat pseudo-

valuation v as bidder type instead of 6, and let

C*(x)=C (q* (vil(x)) ,vil(az))

be the cost of supplying the optimal quality ¢* for a bidder of pseudo-value v = z.
The effect of evaluation precision on the expected price strongly depends on the
form of C*. When the total cost C* of the optimal quality is non-increasing in
pseudo-valuation v, the more efficient bidder supplies the optimal quality at a lower
cost, which implies that the competition promotion effect dominates the quality
improvement effect.

Let k = I,II indicate the FS and SS auctions, respectively. Let A¥(vq,v2) be
the winning probability of bidder i for any pseudo-value pair (v1,v2) in equilibrium
of auction k € {I,II}, and A*(v) = E,,[A¥(v,v2)]. In addition, let TI¥(v) be the
equilibrium interim expected payoff of a bidder with pseudo-value v in auction k.
Then, the expected revenue P* (v) of a bidder with pseudo-value v in the equilibrium

of auction k is

PE(v) = IT* () + A% (v)C* (v).
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By the standard envelope argument and calculations, the expected price for the

buyer, denoted by P, is expressed by
Pk =2E [Hk(u) + Ak(v)C*(v)}

= 201" 4 2F [A’“(v) <C*(“) + 1215)(@))}

=2"+ B | > Ao, m)e(vi) | (10)
1€{1,2}

where IT¥ = I1¥(v) and

1-G

1-Gl) (11)
9(v)

is the wvirtual cost function. When C* is non-increasing, the virtual cost v is non-

increasing by the regularity Assumption [2l Hence, indicates that the expected

) =C*(v) +

price decreases as the winner determination becomes more efficient. Thus, the more

precise evaluation decreases the expected price.

Theorem 4 Suppose that all the assumptions stated above hold and that Cq/Cy
is non-decreasing in q. Then, the expected price in both FS and SS auctions is

decreasing in evaluation precision 5.

The condition that C,;/Cy is non-decreasing in ¢ guarantees that C* is non-
increasing. When the marginal cost is less sensitive to changes in type 0 (i.e., Cyp is
small), the optimal quality is less sensitive to changes in type 6. In this situation,
the cost reduction effect of type improvement is larger than the cost increase effect
of quality improvement so that the cost of producing the optimal quality decreases
as type 0 improves; that is, C(¢*(0), ) is increasing in type 6, which means C* is

decreasing.

Remark 4 Our comparative static of quality on 3 is not consistent with [Takahashi
(2018), who provides a numerical analysis of scoring auctions with random quality
evaluation and finds that bidders’ quality improves as evaluation uncertainty in-
creases. This property may be due to the difference in the scoring rules between the
two studies. Takahashi| (2018)) considers the PQR scoring rule in which scores are

evaluated in terms of price per quality ratio p/q. Under that rule, bidders offer a
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higher quality bid as the score increases (becomes worse) (Hanazono, Nakabayashi,
Sano and Tsuruokal 2024). As Corollary |1 shows, as uncertainty in quality evalua-
tion increases, the selection of the winning bidder becomes more random and thus
competition among bidders decreases. Hence, under the PQR scoring rule, making
a less aggressive score bid means proposing a higher quality at a higher price. In
contrast, in our quasilinear scoring rule, the quality bid is independent of score and
is determined solely by bidder type. Under our rule, an increase in evaluation un-
certainty lowers expected quality because an inefficient bidder is more likely to be

chosen as the winner.

4.3 Comparing SS and FS Auctions

Next, we compare the performance of SS and FS auctions. Although our model
is built on a standard independent private value setting, the equivalence between
the two auction formats fails to hold. Our first main result is that the SS auction

achieves a higher expected social surplus and quality than the FS auction.

Theorem 5 Suppose that all assumptions stated above hold. The expected social

surplus and expected quality are higher in the SS auction than in the FS auction.

The intuition behind the welfare ranking is simple. While bidders submit truth-
fully in the SS auction, they shade their bids in the F'S auction, and the magnitude of
the bid shading is larger for a higher valuation. The equilibrium score bid in the FS
auction has the slope ds’ /dv =1/2 < 1. Hence, given an arbitrary pseudo-valuation
profile (v1,v2), bids are closer to each other in the F'S than in the SS auctions, which
makes the determination of the winning bidder more random in the FS auction.
Hence, the SS auction is more efficient than the FS auction.

The derivation of the quality ranking is analogous to that of the social welfare.
The optimal quality is determined solely by the winner’s type, and a bidder with a
better (lower) type supplies a weakly higher quality. Because the more lower-type
bidder is more likely to be chosen as the winner in the SS auction, the expected
quality is higher for the SS auction than the F'S auction.

The comparisons with respect to the expected score (the buyer’s expected payoff)
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and final price are also analogous to the comparative statics of the score and price

on B3. For an auction format k = I, I, the expected score S* is expressed as

SP=E| Y AF(vi,v)é(v;)| — 200",
1€{1,2}

where
1-G(v)
ov) =v - —=
g(v)
is the virtual valuation function. By the monotone virtual valuation, the more effi-

cient allocation induces the higher expected score. Similarly, the expected final price

PF is expressed as

Pk =F Z A?(Ul, Ug)l/)(’ui) + QHk.
i€{1,2}

When the virtual cost function ¢ is decreasing, the more efficient allocation induces
the lower expected price.

However, the worst-type payoff II* differs across the auction formats, which re-
quires an additional condition to obtain a clear ranking between the FS and SS

auctions. In the second main theorem below, we suppose

< 1
=
to guarantee that the worst-type payoff in the F'S auction is higher than that in the
SS auction ]

Bv(8) — v(v)) (12)

Theorem 6 Suppose that all assumptions stated above hold with (@ Then, the
expected score is higher in the SS auction than in the FS auction. In addition, if
Cyq/Cy is non-decreasing in q, the expected price in the SS auction is lower than that

in the F'S auction.

Overall, when uncertainty in quality evaluation is inevitable, the SS auction
achieves more efficient allocation than the FS auction, and the SS auction performs

better than the F'S auction in terms of buyer’s expected payoff, quality, and price.

13 Appendix [B| provides other sufficient conditions under which the expected score and price are

ranked.
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5 General Noise Structure

Much of the analysis in the previous section relies on the specific noise structure,
so it is natural to question whether our results are sustained under a more general
noise structure and a general number of bidders. In this section, we discuss how the
results in the previous section are robust to a general noise structure.

First, it should be emphasized that the dominant strategy property of the SS
auction is robust to noise structure and the number of bidders. It is weakly dominant
for bidders to bid their true pseudo-valuation for any noise structure A and any
number of rival bidders. As the precision of the quality evaluation increases and an
efficient bidder becomes more likely to win, both social surplus and expected quality
improve. Furthermore, if the worst-type payoff is non-increasing in the evaluation
precision, the winning score (i.e., the buyer’s payoff) increases and the expected price
decreases, given the monotonicity of the virtual cost.

As for the F'S auction, the existence of an equilibrium can be guaranteed from the
standard argument. The expected payoff of the F'S auction at bidder i’s pseudo-value
v; and intended score s; is expressed by . If A is smooth and strictly increasing
(in the domain played in equilibrium), then E[A’(s; — s(v;))] > 0, and the expected
payoff 7! clearly satisfies the single crossing property of |[Athey| (2001). Thus, a
monotone Bayesian Nash equilibrium exists.

However, it is difficult to obtain an explicit equilibrium strategy of the F'S auction
for a general noise structure. This is because, unlike the standard auction model,
the winning probability in equilibrium is not reduced to the probability distribution
of order statistics of types. Thus, the equilibrium strategy cannot be characterized
even in the form of a differential equation in s. Indeed, suppose that there exists a

symmetric monotone equilibrium s’ and let
A*(si) = By [A(si — 57 (v)))] (13)

denote the winning probability when submitting an intended score s;. Then, the

first order condition of expected payoff maximization yields
(A" (s" (vi) (vi = s (v3)) = A*(s" (1)) = 0
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and thus, we have
A*(s" (v3))
(A*) (s! (i)

It is difficult to analyze the equilibrium score bidding strategy further.

st (vy) = v — (14)

Nevertheless, it is still possible to discuss some properties of the F'S auction under
a general noise structure. First, as stated in Lemma [1} that the optimal quality bid
is independent of noise and intended score and depends only on the bidder’s type.
The noise structure will affect only the price bidding.

Second, our comparison of FS and SS auctions could be sustained for a more
general A. Our results are derived by the equilibrium property of the FS auction
that the score-bid difference is smaller than the pseudo-value difference. Suppose
that the F'S auction has a symmetric monotone equilibrium s’ for some distribution
A. Tf the equilibrium satisfies ds’ /dv < 1, the SS auction chooses the efficient bidder
with a higher probability than the FS auction. Thus, we can conclude that the
SS auction yields a higher expected social welfare and quality than the FS auction.
In addition, the expected score is higher and the expected price is lower in the SS
auction if II7 > I’ and the monotonicity of C* hold. Equation implies that
ds’ /dv < 1 holds if (A*)'(x)/A*(z) is non-increasing in . Thus, if A* possesses the
non-increasing reverse hazard rate property, then the SS auction performs better in
equilibrium than the FS auction@ It is difficult to obtain a primitive condition for
A* to have a non-increasing reverse hazard rate, but we explicitly state this property

as follows.

Proposition 1 Suppose that Assumptions and@ hold. If a score-bid strateqy s’
satisfies (14]), in which A* is defined by (13), and if (A*)(z)/A*(z) is non-increasing,
then s is the symmetric equilibrium of the FS auction. The expected social surplus
and quality are higher in the SS auction than in the FS auction. In addition, if
! > 107 | the SS auction yields a higher expected score than the FS auction. Also, if
o’ >0 and Cq/Cy is non-decreasing in q, the SS auction yields a lower expected

price than the FS auction.

4 The term “reverse hazard rate” is used here informally because A* is not a probability distri-

bution.
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6 Concluding Remarks

This study examines the effect of uncertainty in the evaluation of quality in scoring
auctions. In scoring auctions for public-works procurement, bids include various non-
monetary attributes, and there is much room for reviewers to use their discretion to
evaluate these quality bids. This makes it difficult for bidders to anticipate perfectly
the evaluation scores of their quality bids at the time of bidding. Similar phenomena
are prevalent in other markets.

We have shown that in an FS auction, the noisy evaluation of quality creates
an element of chance in determining winning bidders, which decreases the incentive
for bidders to make aggressive bids and thus weakens bidder competition. In an
SS auction, by contrast, the truthful weakly dominant strategy exists, so evaluation
uncertainty does not affect the bidding incentive. Further, as the precision of the
quality evaluation improves, the expected social surplus, score (the buyer’s payoff),
and quality improves. In addition, under certain conditions, the expected price
decreases through the effect of competition. As the SS auction chooses the winner
more efficiently, the SS auction achieves a higher social surplus, score, and quality at a
lower price than the FS auction. Our results imply that when evaluation uncertainty
is inevitable, the SS auction is preferable to the FS auction for both the buyer and
social welfare.

The comparative statics presented here have a practical implication for public-
works procurement, particularly for large-scale projects such as bridge construction
in which superior quality is perceived as highly desirable, causing scoring auctions to
often be used to procure such projects. Uncertainty in quality evaluation adversely
affects governments through not only the selection of the winning bidder but also
the endogenous responses of bidders. This uncertainty affects bidding behavior and
efficiency, which in turn can influence the attributes of the final products.

There are a number of potential extensions for further research. One important
extension would be a theoretical consideration of scoring rules other than the quasi-
linear scoring rule. Following |Che (1993), this study analyzed a quasilinear scoring
rule, but real-world procurement auctions often use different scoring rules such as

the price-per-quality-ratio rule (Takahashi, 2018; Hanazono, Nakabayashi, Sano and
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Tsuruoka, 2024). Such analyses of alternative models with such non-linear scoring

rules are left for future research.
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A  Proofs

A.1 Proof of Theorem [1]

Suppose that bidder 2 submits an intended score so = g2 —p2 and that the subjective

quality evaluation is realized as ¢ = e9 — ;. Bidder 1 wins the auction if their
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intended score s; > so+¢. When bidder 1 wins, they sign a contract (¢g; —s2 —¢e,q1),

and the associated payoff is
o _
u’ =q —C(q1,01) — (s2 +¢).

Given that bidder 1 submits a quality bid ¢*(;), they earn a nonnegative winning
profit if and only if v(61) > so+&. Thus, by submitting an intended score s1 = v(61),
bidder 1 wins the auction whenever the winning payoff is nonnegative. Thus, similar
to a standard second-price auction, it is always optimal for bidder 1 to submit

s1 = v(fy) for any (s9,¢). O

A.2 Proof of Theorem 2|

Suppose that there exists a symmetric Bayesian Nash equilibrium and that the equi-
librium score bid function is s’ : © — R. Suppose that bidder 2 takes the equilibrium
score-bid strategy s’. Suppose that bidder 1 has a pseudo-valuation v(f;) and sub-
mits a score bid s, where

1
ls1 — 81(02)\ <

~ 28
for all 6. Then, the associated expected payoff is given by

(15)

! (s1,01) = Eg,[A(s1 — 5" (62))](v(61) — 1)

(16)
= (3 851 - 9E1 (0] 0(00) — 1)

Taking the first order condition with respect to s1, we have
1
B(v(0r) — 1) — 5 — Bs1 + BE[s" (02)] = 0. (17)

By substituting symmetric strategy s; = s'(6;) into , we have
v(f) 1 N E[s1(65)]

2 418 2
Because E[s'(6,)] = E[s!(62)], we have

s'(6h) =

1
28"
Thus, we have a candidate for equilibrium score bid function

S (0;) = % (uei) b ;) . (18)

Bls'(6:)] =
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The condition holds for all s; € [s7(0),s(8)], and the expected payoff is de-
scribed as if s7(0) — s’(0) < 1/23, which holds under .

In what follows, we show that any off-path score bid is not a best response.
Suppose that holds, and that bidder 2 takes strategy . Note that is a
quadratic function which takes the optimum in [s?(8), s (8)]. We abuse notations and
treat pseudo-valuations v; € [v, 7] as type. Suppose that bidder 1 submits s; > s’ ()
and s1 > s'(vg) + % with positive probability (case (a) in Figure . Then, the
winning probability E[A(s; — s!(v2))] < & + B(s1 — E[s’(v2)]), so that bidder 1’s
expected payoff is bounded from above by . Thus, any score bid s; > s/(9) is

not a best response for any v;.

expected payoff !

‘*—quadratic function (15)

I

I

I

I

I

I

I

I
' I \
A Ifs H
§ sl(v) si(@) ', intended score s,

\

’ 1
case (b) case (a)

Figure 1: Expected payoff of bidder 1

Now suppose that bidder 1 submits s; < s?(v) and s1 < s!(v2) — % with positive
probability (case (b) in Figure . Define § < s/ (v) by

v+p 1

2 B

Thus, we have s/ (7) = 5 + % Then, the expected payoff 7! is given by for

3

s1 > 4. Hence, suppose s; < §. Bidder 1 loses with probability 1 if s’(ve) > 51 + %,
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and the expected payoff is given byIE

s (s1+355)
ml(s1,01) = (v — 81)/ ’ (; + B(s1 — sl(vg))> dG(va). (19)

By differentiating with respect to si, we have

or!

o Herta) (301 =500~ 3 = Bls1 = 5/ (02)) )

s (s1+55)
oo i) [ (o4

= 8G <3_1 <81+215)> <v1+/HE*2[M—;—251>,

where
v < S8 1 s1+ —
2 1 2B .

We can conclude that s!(v1) is indeed a best response if 9! /ds; > 0 for s; < .

E*lvy | s1] = F |:’U2

Fix an arbitrary v; and let

h(z) =v1 + M+E*2M - ; —2z. (21)
Note that because E*[vs | §] = p, we have
h(é):vl+u—l—2§:111—17—i—l
B B
>0 —U
>0

The second line follows from . In addition,
1

5710
M0 = et L [s%)g(sl(-))G(sl(‘)) o) [ wdG()

v
=2

e AN [ 1

~ G gy |t ) - Faal] 2
d

= @E[Ui‘vi<y] -2

y=s"1(a+35)
Hence, we have h/'(z) < 0 under Assumption Then, we have h(s;) > 0 and
ol /sy >0 for all 51 < 5. O

15We assume s1 > s’ (v) — % so that bidder 1 wins with positive probability.
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A.3 Proof of Theorem [3

Consider the FS auction. By abusing notations, the optimal quality for type 0 =
v~1(v) is denoted by ¢*(v). Because the optimal quality is non-increasing in type 6,
¢*(v) is non-decreasing in v.

Bidders’ pseudo-valuations are independently and identically distributed with G.
Let H! be the cumulative distribution of the winner’s pseudo-valuation in the FS

auction. Then, we have
H(2) = G(2)? + 2/95 /77 (1 | (% - “23)) dG (v1)dG(v2)
_ Gl + / /ﬁ (14 B(vs — v1)) dG(v1)dGC(vs).

Thus, H(z) is clearly decreasing in 3 because vy < v in the integrand. Hence, it is
clear that the expected social surplus increases with 8 by stochastic ordering. The
expected score also increases with 3 because of the monotonicity of the score bid s’
in both v and 8 and the stochastic ordering. The expected quality is Egr[¢*(v)], so
that it increases with S by the stochastic ordering.

Consider the SS auction. The proof for the expected social surplus and expected
quality is analogous to that of the FS auction, so that it is omitted. Given an

arbitrary pseudo-valuation profile (vq,v2), bidder 1 wins with probability

0 if V1 — Uy < —%
Al (v1,09) = A(v1 = v2) = § L 4 By —va)  if [oy — va] < 35 - (22)
1 if vy — w9 > %
Let
1-G(v)
V) =v— —> 23
4(v) o (23)

be the virtual valuation function, which is strictly increasing by Assumption 2l By
the standard calculation, the expected score in the SS auction, denoted by S/, is

expressed as

St = Z Al (vi,v)(v) | — 20", (24)
1€{1,2}
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where ! denotes the interim expected payoff of a bidder with pseudo-value v in
equilibrium. The first term in is clearly increasing in f.
In the rest of the proof, we show I/ is decreasing in 8. To show this, we first

suppose
1

2(0—v)’
Then, bidder 1 of pseudo-value v wins with probability E[%+ Blv—v2)] = %—l— Blv—p).

B < (25)

The expected “score payment” is:

B B Lo
£ 4+ v2)Bg(ve)dedvy = = (v2 — E[v?]) — — + =.
/U /—I/ZB( 2)B9(v2) 2735 ( [ ]) 88 " 2
Thus, the expected payoff of pseudo-value v is:
1 I5} 1 7
H[I N o _ = 2 _ E 2 - _ =
I (2+ﬁ(v u))v 5 W Bl + g5 -3
B 9 1 1
By differentiation, we have
a1 11 1
The last inequality follows from .
Next, we suppose
1 1
< 28
2(v_y)<ﬁ_6_y (28)
and let
b= 1
V=0 55

By e > —1/28, bidder 1 with pseudo-value v never wins if vo > ©. Thus, the expected

payoff of the worst pseudo-value v is given by:

1

" = [T - viswde - 5 [0 - gt +

G(0)
84

= g/vv (v — )% g(v)dv. (29)
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By differentiation, noting that v = v + 1/23, we have

a1 e I )
dﬁ=2l<v—> <>dv+§ g5 J, 20~ ol
15 / ) +1) g(v)dv

The inequality follows because (v —v)+1 > % for all v < 0, which implies that the
integrand is negative.

Therefore, the expected score S increases with 5. O

A.4 Proof of Theorem [4]

Consider the FS auction. By the standard envelope argument, the equilibrium in-
terim expected payoff of a bidder with pseudo-value v satisfies

I (v) = ' + /U Al (z)dz.

Thus, by the standard calculations, we have
E[PI(v)]=E [Hl(v) + AI(U)C*(U)]

=I'+E :A%) (O*@) + 1—9((’”)”)]

and the expected price for the buyer in the FS auction is expressed by :

Pl=oll' +E | Y Al(vi,v2)9(vy)
|ie{1,2}

Suppose C/Cy is non-decreasing in ¢; thus, it holds that
CygqCo — CqCyp > 0.

By differentiation, we have

590( *(6),0) = (¢%)(0)Cq(q"(),0) + Co(q*(6),0)
qu(q*ae) * *
= —ch(q ,0) + Co(q", )
>0

)
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where the second line follows from the implicit function theorem regarding the first
order condition for the optimal quality (3). Hence, C(q*(6),6) is non-decreasing in
. Therefore, because v(-) is decreasing in 6, C* is non-increasing. By Assumption
the virtual cost function is non-increasing, and the latter term of weakly
decreases with .

By Theorem [2, we have

' = 5+ =) (v (v g))

By differentiation, we have
aml 1 5 1 1, o, 5
— == — - <— U — —-1) <0.
7= 1 (00— ) < g (001 <
The last inequality follows from . Therefore, the expected price strictly
decreases with .
The proof for the SS auction is analogous to that for the FS auction, so it is

omitted. [

A.5 Proof of Theorem [5

Given an arbitrary pseudo-valuation profile (v1,v2), bidder 1’s winning probability
Al in the SS auction is given by in the proof of Theorem |3} In the FS auction,
bidder 1 wins with probability

1
Af(v1,v2) = 3 (1+8(v1 —v2)),
thus, we have
B (v —v2) if |01—U2|§ﬁ
Al (v, v9) — Al (v1,v9) = % _ g(vl —vy)  ifv; — vy > % , (31)

%—g(vl—vg) ifvl—1)2<—%

and

Z 0 if V1 Z ()
A{I(Ul, 1}2) — A{(Ul, ’Ug) (32)
S 0 if V1 S V2
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by 5(v —v) < 1.

Because the equilibrium social surplus is equal to v(#) for a winner’s type 6, it
is clear that the SS auction selects the winner more efficiently and achieves a higher
social surplus. Also, the equilibrium quality is determined solely by the winner’s
type or pseudo-valuation, and ¢*(v) is non-decreasing in pseudo-valuation v. Hence,

the expected quality in the SS auction is greater than that in the FS auction. [J

A.6 Proof of Theorem

The expected score in the SS auction is expressed by in the proof of Theorem
Similarly, the expected score in the FS auction, denoted by S’, is given by

S'=E| ) Al(vr,v)p(v;)| — 20" (33)
1€{1,2}

Hence, we have
S — 5T = E[(A{ (v1,v9) — Af(v1, ) (d(v1) — d(v2))] +2(1" —T).  (34)

The first term is positive by the monotonicity of ¢ and . Hence, the expected
score is higher for the SS auction than for the FS auction if II’ > I’ holds.

As for the expected price, the expected final price in auction k € {I,II} is
expressed by :

PF=FE| Y Af(vi,v)(v)| + 210",
1€{1,2}

Hence, we have
P! — P = E [(Af(v1,02) = Al (v1.02)) ((v1) = $(v2))] + 2" —I").  (35)

Given that C;/Cy is non-decreasing and by Assumption [2| ¢ is non-increasing and
the former term of is positive. Hence, the expected price is lower in the SS
auction than in the FS auction if I > II%.

In the rest of the proof, we show II’ > IT/. We first suppose

1
5§m.
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Then, as shown in the proof of Theorem [3| the expected payoff of the worst pseudo-
value for the SS auction is given by . For the F'S auction, the expected payoff of
the worst pseudo-value is given by . Hence,

1 1 1 1
I - 1 = a0 - G0+ g5~ S Bl - 0P+ - ) -
:;8_§(M2_2MU+U +2(E[v2]—u2))
:825((#1))2+202)
1 B/1 1
>85_4(4ﬁ2+862)
>0

where o2 denotes the variance of pseudo-valuation distribution G. The inequality in
the forth line follows from (u —v)? < (v — v)? < 1/4?% and a fact 02 < 1652@

Next, we suppose

1 1
20— <= V2(0 — v)
and let
. 1

By € > —1/2p, bidder 1 with pseudo-value v never wins if vo > 0. The expected
payoff of the worst pseudo-value v for the SS auction is given by . Hence,

2 b 2
HIHI]:§<M01> ,g (UU1> dG(v)

5 25
2 I}
_8 (<H_U_ ;) _2/@—@— 215)2dG(v)> v [ (w—oaG()
/8 / <2ﬁ2 M + 2vv — v — 2(1} — 1 )) dG(v) + g ;(v _ A)QdG(U)

A\ 2 2 2
<2ﬂ2+2/( —9)?dG(v) — (p—v)* + 20 ))
Note that the variance o2 is bounded by

o? < (v p)(p—v),

1For an arbitrary distribution over [a,b], its variance o? is bounded by o2 <

%, which is

known as the Popoviciu’s inequality on variance.
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which is known as the Bhatia-Davis inequalitym Hence,

(1= 0)?+20° < (1 —0)* +2(0 — p)(p — )

=W-2v)°—(0-—p)?

< (v-v)%
By B(6 — v) < 1/v/2, we have
won =2 (ke [ apdee) - ((n- 02+ 20) )
> g (;ﬁz—(v—vV)
>0

which completes the proof. [J

A.7 Proof of Proposition

Suppose that the other bidder takes the strategy s’. Then, by and differentiation,
we have

or! (54, v; . .

W = (A7) (si) (vi — 5i) — A"(si)

54

s/ A*(s;
Because (A*)'(x)/A*(x) is non-increasing in x,
A*(s;
5 G
is strictly increasing in s;. Hence, the strategy satisfying the first order condition
is the best response, and s’ is the symmetric equilibrium strategy.
It is straightforward to verify 0 < (s)(v;) < 1 by differentiating . The
comparison with the SS auction can be made in a manner analogous to Theorems

and 6l O
"Note that

Hence, we have
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B Other Conditions for Score and Price Ranking

In this appendix, we provide other conditions for the expected score and price being
ranked. In what follows, we provide two sufficient conditions under which IIf > I/

holds.

Suppose
bt g (36)
2(v—w) TU—v
and let
b=t 1
=0 25
Then, as shown in the proof of Theorem [6]
- = BrL + 2/5(1) — 9)2dG(v) — ((p— v)? + 20’2) .
- 4 \ 232 s -
Let B
v . 1
h(B) = 2/ (v — 9)%dG(v) + 2 (37)

be a function of 5. By differentiation, we have

The third line follows from (36]), which induces v — & < 1/28. Hence, h(B) is

decreasing in 8. Because

' - 11 = 2 ((5)  (u— v)? - 20%),

we have ITI! > I/ for all 3 if it holds for 8 = 1/(7 — v).

Condition 1 By the fact known as the Bhatia-Davis inequality, the variance o is
bounded by

o? < (v p)(p—v),
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so that

(1= 0)?+20° < (1 —0)* +2(0 — p)(p — )
-0 (- )

Hence, we have

7 —u)?
h<viv>—(ﬂ—’v)2—2022(2)—(v—v)2+(v—ﬂ)2
> (5 pp - T2
o 2
We have . »
(0= )= =
) V2_ V2
o v—=v  2—v2_ 2
B0 — NG = 5 v+7y.

Condition 2 Suppose that the pseudo valuation v is symmetrically distributed:

that is, p = % and g(p + x) = g(p — ) holds for all z. Then, we have

° 12 N P v) = o2
2/{) (v—v)dG(v)—Q/H(v w)“dG(v) = o”.

Hence, we have

Therefore, we have shown the following result.

Proposition 2 Suppose that all the assumptions hold with (v —wv) < 1. Then, the
worst-type payoffs of the FS and SS auctions satisfy II' > I if either one of the

following conditions holds:

1. p < 272\/56 + @Q holds, or

2. G is symmetrically distributed.
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