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Abstract

This study examines bidder competition over price and quality in procure-

ment auctions in which subjective quality evaluation creates uncertainty. We

derive the symmetric Bayesian Nash equilibrium for a first-score auction, in

which bidders submit cautious bids because the determination of a winner de-

pends on chance. In a second-score auction, a truth-telling equilibrium exists

and evaluation uncertainty does not affect bidding behavior. As the quality

evaluation becomes more precise, the expected score and quality improve and

expected price decreases. Moreover, the second-score auction is more efficient

and achieves a better expected score, price, and quality than the first-score

auction.
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1 Introduction

In public-works procurement which amounts to tens of billions of dollars or more

annually, governments are concerned not only about project cost but also nonmon-

etary attributes including noise reduction, time to completion, design, and quality

of materials1. Consequently, an innovative contract design called a scoring auction

has started to take hold worldwide to deal with these complex conditions. In a

scoring auction, the government first announces the scoring rule by which they will

rank the offers made by bidders. Bidders then submit not only price bids but also

quality proposals, which include information on the technology used to perform the

work, time to completion, and other work performance attributes. In the auction,

the government evaluates the proposals made by bidders and assigns quality scores.

Then, the winner is the bidder with the best combination of price and quality score.

This type of multidimensional-bid auction is also used in cash-royalty auctions for

oil lease contracts and bank resolution auctions and so has broader applicability.

The outcomes of scoring auctions are heavily influenced by the auctioneer’s sub-

jective quality evaluation. For example, in public procurement, suppose that a mu-

nicipality desires an expedited completion of a street project that requires working at

night. In this case, bidders might be asked to submit ideas that not only accelerate

the completion timeline but also ensure pedestrian safety. To prevent pedestrians

from falling, one firm might suggest laying steel plates on the ground, while another

might suggest installing lighting equipment. Since there is no objective criterion to

determine which idea is superior and to what degree, these ideas must be evaluated

subjectively by reviewers. From the bidder perspective, this subjective evaluation

generates uncertainty regarding the final evaluation score, which causes the allo-

cation of contracts to occur at least to some degree by chance (Takahashi, 2018).

Similar phenomena arise within markets other than public procurement (Krasnokut-

skaya, Song and Tang, 2020, Kong, Perrigne and Vuong, 2022, and Allen, Clark,

Hickman and Richert, 2023), so it is important to incorporate such uncertainty into

1Public-works spending typically accounts for 2.3 percent of GDP annually on average in the

US, 5 percent in European countries, and about 8 percent in China. See https://www.brookings.

edu/articles/how-federal-infrastructure-investment-can-put-america-to-work.
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the analysis of scoring auctions.

In this study, we theoretically analyze scoring auctions in which quality evalua-

tion is uncertain, a situation that we formalize by introducing random noise into the

assessment of quality bids. Building on Che (1993), we consider multi-dimensional-

bid procurement auctions in which bidders select their price and quality in the face of

this uncertainty and examine bidding behavior and auction outcomes for two auction

mechanisms: first-score (FS) and second-score (SS) auctions. These auction formats

are analogous to first- and second-price auctions in standard price-only auctions. In

an FS auction, the winning bidder delivers quality at the price specified in its bid.

In an SS auction, the winning bidder delivers the quality promised in its bid at the

price that matches the score of the most-competitive rival.2

The contribution of our paper is two-fold. First, we characterize the symmetric

Bayesian Nash equilibrium in both FS and SS auctions in the presence of uncertain

quality evaluation. We show that the bidders’ optimal quality bid is determined in-

dependently of the auction formats and score, which is consistent with Che (1993).

We then show that under fairly general conditions, a truth-telling equilibrium exists

in the SS auction so that uncertain quality evaluation does not influence the bidding

incentive. As for the FS auction format, we present an explicit equilibrium under

certain specifications for quality evaluation uncertainty and find that when evalu-

ation uncertainty exists, bidders shade their score bids for all types, including the

least efficient type. This is because the determination of the winner depends to some

extent on chance, which reduces the incentive for bidders to submit aggressive bids

and which, in turn, weakens competition among bidders.

The second contribution of our paper is to demonstrate that the equivalence

theorem between FS and SS auctions fails even though our model has an independent

private value setting. Specifically, we show that the SS auction performs better

than the FS auction in terms of efficiency, expected score, expected quality, and

expected price. To show this, we first examine the comparative statics of the auction

performance regarding the precision of the quality evaluation. In the FS auction,

2The SS auction here is an identical mechanism to the generalized second-price auction employed

in sponsored search advertising.
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as the evaluation of quality becomes more precise, bidders become more aggressive

and submit lower price bids. This occurs because the increased precision reduces

the degree of chance involved in determining the winner, which increases bidding

competition. Additionally, increased precision in the evaluation of quality increases

the expected social surplus and the expected score (the buyer’s payoff). Although

the quality bids are not directly affected by evaluation uncertainty, the expected

quality also increases with precision because the more precise evaluation chooses the

efficient bidder as the winner, which improves the expected quality.

The effect of evaluation uncertainty on the expected price is characterized under

an additional condition. More precise evaluations cause auctions to be more com-

petitive which lowers price bids, but the win by a more efficient bidder increases

payments as quality improves. The relative magnitude of these two effects deter-

mines the effect on the expected price. We show that when the virtual cost, which

is the cost taking into account the bidder’s optimal quality and information rent,

is monotone in their type, then the expected price decreases as the efficiency of

allocation improves. These properties can be similarly established in the SS auction.

Based on the comparative statics on uncertainty in quality evaluation, we show

that under a regularity condition, the SS auction improves social surplus, expected

score, expected price, and expected quality as compared with the FS auction. The

intuition behind this is that while bidders bid truthfully in the SS auction, they shade

score bids in the FS auction. Under the specification in which we obtain an explicit

equilibrium for the FS auction, the bids are closer to each other in the FS auction

than in the SS auction. The closer bids imply that the determination of the winner is

affected more by evaluation uncertainty, and the allocation is more random in the FS

auction than the SS auction. Thus, even with the same evaluation uncertainty, the

SS auction is more efficient than the FS auction in equilibrium. Hence, analogous to

the comparative statics regarding the precision of quality evaluation, the SS auction

achieves a higher expected score and quality than the FS auction. The expected

price is also lower in the SS than the FS auction under the condition that virtual

cost function is monotone. These results imply that when uncertainty in quality

evaluation is inevitable, the SS auction is the better mechanism for both social
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welfare and buyer payoff.

1.1 Related Literature

This paper contributes to the theoretical analysis on scoring auctions introduced

by Che (1993) which to date has focused on quasilinear scoring auctions in which

price and quality are additively separable and the scoring rule is linear in price.

While Che (1993)’s seminal work has been extended to cases of interdependent cost

(Branco, 1997), multidimensional signals (Asker and Cantillon, 2008), multidimen-

sional quality (Nishimura, 2015), and non-quasilinear scoring rules (Dastidar, 2014;

Hanazono, Hirose, Nakabayashi and Tsuruoka, 2020, Hanazono, Nakabayashi, Sano

and Tsuruoka, 2024), and researchers have compared the equilibrium outcomes of

scoring auctions and alternative mechanisms (see, for example, Asker and Cantillon,

2008, 2010; Awaya, Fujiwara and Szabo, 2025; and Sano, 2023), all these studies

assume quality evaluation that is certain, through “known scoring rules”. Despite

the importance of uncertain scoring rules in real-world situations, the theoretical

literature remains scarce to date. To the best of our knowledge, this is the first

study to characterize the equilibrium of scoring auctions when quality evaluation is

uncertain and then compare the performance between FS and SS auctions.

There are a few studies on scoring auctions with uncertain quality evaluation. A

closely related study is Takahashi (2018), who develops a structural scoring auction

model where bidders face uncertainty through noises on quality bids. The paper em-

pirically examines procurement auctions that utilize a price per quality ratio as the

scoring rule and, using scoring auction data from the Florida Department of Trans-

portation (FDOT), evidence is shown of substantial differences in the quality scores

among reviewers for a given quality bid, which implies the existence of evaluation

uncertainty. A numerical exercise shows that as the degree of evaluation uncertainty

increases, the equilibrium price and quality bids rise on average. In another related

paper, Ortner, Chassang, Kawai and Nakabayashi (2025) consider repeated procure-

ment auctions and examine the effect of subjective quality evaluation in scoring

auctions on bidder collusion.

Unlike standard auctions, the bidder with the highest bid does not always win
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in our model, which makes it difficult to provide a general characterization of the

FS auction equilibrium. Despite the vast literature on auction theory, there remains

very little theoretical analysis of cases in which the highest bidder may not win. A

notable exception is that of an average-bid auction in which the bidder closest to

the average bid wins. In this setup, there exists an equilibrium in which all bids are

tied, and the winner is chosen randomly (Decarolis, 2018). Another auction where

random allocation occurs is a standard auction with a ceiling price, and Lopomo,

Persico and Villa (2023) demonstrate its optimality in a procurement auction with

adverse selection. Board (2007) and Engelmann, Frank, Koch and Valente (2023)

analyze situations where the highest bidder in a standard auction defaults, causing

the good to be sold to the second-highest bidder, and Board (2007) shows that

a second-price auction performs better than a first-price auction under a certain

specification. Beyond these auction examples, random determination of a winner is

often analyzed in the contest theory literature, and the formulation of the winning

probability employed in our FS auction is identical to the success function analyzed

in Che and Gale (2000).

In contrast to theoretical treatments, empirical research on scoring auctions with

uncertain scoring rules is growing, ranging from Florida DOT public-work auctions

(Takahashi, 2018), to Federal Deposit Insurance Corporation (FDIC) bank resolu-

tion procedures (Allen, Clark, Hickman and Richert, 2023) , procurement auctions

for computer programming services (Krasnokutskaya, Song and Tang, 2020), and

cash-royalty auctions for oil lease contracts (Kong, Perrigne and Vuong, 2022).3

Kong, Perrigne and Vuong (2022) consider unknown allocation rules, while Allen,

Clark, Hickman and Richert (2023), using FDIC bank resolution data, structurally

analyze auctions where weights on bid components are not known to bidders. Their

findings suggest that the FDIC reduces its resolution cost by alleviating uncertainty

3Previous empirical research on scoring auctions using known scoring rules includes Lewis and

Bajari (2011), Andreyanov (2018), Huang (2019), and Andreyanov, Decarolis, Pacini and Spagnolo

(2024). Further, to develop structural auction models in which firms submit unit price bids for

each item needed to carry out a project, Bajari, Houghton and Tadelis (2014) and Bolotnyy and

Vasserman (2023) use an approach analogous to the theoretical analyses of scoring auctions in Che

(1993) and Asker and Cantillon (2008).
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about the scoring rule. Similar to Allen, Clark, Hickman and Richert (2023), Kras-

nokutskaya, Song and Tang (2020) and Takahashi (2018) allow for uncertain scoring

rules, with Krasnokutskaya, Song and Tang (2020) considering the quality bid to

be exogenous whereas Takahashi (2018) treats it as endogenous. The counterfactual

simulations presented by Takahashi (2018) suggest that a sharp increase in the num-

ber of reviewers leads to a lower winning price and quality. The broad scope of these

empirical studies motivates us to deepen our theoretical understanding of uncertain

quality evaluation in scoring auctions.

The remainder of the paper is organized as follows. Section 2 formulates a scor-

ing auction model in which subjective quality evaluation is incorporated as a noisy

scoring rule. Then, in Section 3, we transform multi-dimensional-bid auctions into

a unidimensional score-bid auction, following Che (1993). In Section 4, we present

the main results, characterizing the symmetric equilibria of FS and SS auctions, ex-

amining the effect of evaluation precision on equilibrium outcomes, and comparing

the performance of the two auction formats. Section 5 discusses the robustness of

our results, and Section 6 concludes the paper.

2 Model

A procurement buyer auctions off a procurement contract to 2 risk-neutral bidders

who are ex ante symmetric. A type of bidder i ∈ {1, 2} is denoted by θi and is

independently and identically drawn from a distribution over [θ, θ̄] ⊂ R+. Let F

be the cumulative distribution of θi with density f > 0. Non-monetary attributes

(quality) of the good are represented by a unidimensional variable q ∈ R+. A contract

is a price-quality pair, (p, q). When the procurement buyer signs a contract (p, q),

they earn a payoff

q − p.

When bidder i wins the auction and signs a contract (p, q), their payoff is given by

p− C(q, θi),

where C(q, θi) is their production cost. The losing bidder’s payoff is zero.

7



We assume that the cost function C is strictly increasing in both q and θ (Cq > 0,

Cθ > 0), strictly convex in quality (Cqq > 0), and exhibits non-decreasing differences

(Cqθ ≥ 0).4 Both the production cost and marginal cost are increasing in type so

that a bidder of a lower type is more efficient.

A procurement contract is determined through a scoring auction, in which each

bidder i submits a proposal (pi, qi), where pi ≤ p̄ is a price bid and qi ≥ q is a quality

bid, with reserve price and minimum quality denoted by p̄ > 0 and q > 0. For a

bidder’s quality bid qi, the buyer reviews the proposal and assigns a quality score.

The evaluated quality is given by q̂i = qi + εi, where εi represents the buyer’s noisy

subjective evaluation. We assume that for each i ∈ {1, 2}, εi is a random variable

independently distributed from (p1, q1, p2, q2).
5 There is a pre-announced scoring

rule S : [0, p̄]× [q,∞) → R, which maps price and evaluated quality bids (pi, q̂i) into

a unidimensional score ŝi = S(pi, q̂i). We focus on a simple quasilinear scoring rule

S(pi, q̂i) = q̂i − pi,

where the bidder with the highest score wins.

We examine first-score (FS) and second-score (SS) auctions, which are the scoring

auction counterparts of the familiar first-price and second-price auctions. In both

FS and SS auctions, the bidder with the highest evaluated score ŝi = q̂i − pi wins.

In an FS auction, the winner’s proposal (pi, qi) is finalized as a contract. In an SS

auction, however, the winner is required to meet the loser’s evaluated score. Because

it is difficult in practice to change quality after the auction, we suppose that quality

is fixed and only the price is adjusted in order to fulfill the loser’s score. Suppose

that bidder i submits a bid (pi, qi) and wins at the score ŝi, and that bidder j ’s bid is

scored as ŝj < ŝi. Then, the price p∗ that gives score ŝj given the evaluated quality

q̂i is

q̂i − p∗ = ŝj ⇔ p∗ = q̂i − ŝj .

Thus, bidder i signs a contract (q̂i − ŝj , qi) in an SS auction.6

4Note that Cθ = ∂C/∂θ and that the other subscripts are defined in the same manner.
5We allow ε1 and ε2 to be correlated.
6In reality, bidders submit not a number qi but contract details, i.e., specific construction plans

and details of goods specifications. When we write a contract (pi, qi), this represents the contract
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Remark 1 This remark about quality bids has two components. First, in scoring

auctions for public-works procurement, the evaluation by procurers of the various

non-monetary attributes included in a quality bid is inherently subjective and thus

affected by chance, creating uncertainty for bidders at the time of bidding. This

uncertainty is verified by Takahashi (2018), who finds a substantial difference in the

reviewers’ scores of a given quality bid by using the Florida Department of Trans-

portation (FDOT) public-works data.7 A variance decomposition of the reviewers’

quality evaluation scores finds that the within-bidder between-reviewer variation ac-

counts for about half of the total variation, and the within-auction between-bidder

variation also contributes substantially to the total variation. Thus the presence

of uncertainty in the evaluation of quality bids from the perspective of bidders is

confirmed empirically.8

The second point about quality bids is that we interpret qi as a true quality

whereas the evaluated quality q̂i is a noisy and imprecise evaluation. In reality,

bidders submit not a number qi but contract details, i.e., specific construction plans

and details of goods specifications. Bidder i knows that the true quality of its own

contract is qi, whereas the buyer evaluates it as q̂i. Note that in the procurement

of public works or high-tech equipment, the buyer may be relatively less informed

about quality than the suppliers. Hence, we suppose that εi is just an error. Based

on this interpretation, the buyer’s payoff for a contract (p, q) is given by q − p, not

by q̂ − p, and the buyer observes the true quality q after the delivery of the good.

This interpretation is consistent with previous studies such as Takahashi (2018) and

Ortner, Chassang, Kawai and Nakabayashi (2025).

as perceived from the bidder’s point of view. See Remark 1 as well.
7FDOT scoring auction data used by Takahashi (2018) was mostly for procuring large-scale

projects including bridge and building construction projects, and FDOT reviewers were chosen

from among a pool of skilled civil engineers in the department. In the auctions, upon receiving price

bids and quality bids, each reviewer independently assessed and assigned a score to each quality

bid, and the final quality bid score was the average of the scores of all reviewers.
8Another interpretation of uncertainty in quality evaluation is the incompleteness of scoring rules.

It is difficult for reviewers to anticipate all possible proposals for various non-monetary attributes

and to prescribe scores for all of them a priori. Hence, the scoring rule must be incomplete and

thus, there is much room for reviewer discretion.
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Remark 2 Although we generally follow Che (1993), we define the SS auction in

a slightly different manner. Under the original SS auction rule in Che (1993), the

winner is free to choose a contract (p, q) such that the associated score fulfills the

highest rejected score; that is, the winner can change both price and quality. Instead,

we suppose that quality cannot be changed after bidding because of the nature of

the quality score which depends on noisy subjective evaluation. This assumption

is reasonable in public procurements such as construction projects due to the ad-

justment costs associated with changing construction plans in a short time. Che

(1993) shows that the optimal quality is independent of score and that bidders have

no incentive to change quality after winning under the original SS auction rule, so

the equilibrium properties provided in Che (1993) do not change even if quality is

fixed ex post. Our analysis in the next section also implies that bidders have no

incentive to change quality after winning even if evaluation uncertainty exists and

quality were adjustable.

Remark 3 To the best of our knowledge, the FS auction is the prevailing format

in public procurement, and there are no cases in which the SS auction has been

employed. However, the SS auction is an identical mechanism to the generalized

second-price auction, which is often used in sponsored search advertising on the web

(Edelman, Ostrovsky and Schwarz, 2007). A mechanism that adjusts only the price

according to the second-highest score is straightforward to implement and therefore

warrants analytical attention.

3 Score-Bid Auctions

Che (1993) shows that scoring auctions are analyzed by transforming a multidimensional-

bidding game into a unidimensional score-bidding game. In this section, we show

that scoring auctions are transformed into a score-bid auction form even with the

presence of evaluation uncertainty.

Let A be the cumulative distribution of ε ≡ ε2 − ε1. To maintain symmetry

between the two bidders, we suppose that A is symmetrically distributed with zero
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mean. Thus, we suppose A(0) = 1/2 and

A(x) +A(−x) = 1

for all x ∈ R.

Bidder i ’s strategy is a mapping from each θi to a proposal (pi(θi), qi(θi)), and the

bidder’s strategy generates its score strategy, which is denoted by si(θi) ≡ qi(θi) −

pi(θi). Suppose that bidder 1 is of type θ1 and submits a proposal (p1, q1). Let

s1 ≡ q1−p1 be the bidder’s intended score, whereas the evaluated score made by the

buyer is ŝ1 = q̂1 − p1 = s1 + ε1. Given a score strategy by bidder 2, let πI(p1, q1, θ1)

be bidder 1’s expected payoff in an FS auction when submitting (p1, q1). Then, we

have

πI1(p1, q1, θ1) = Pr{s1 + ε1 ≥ s2(θ2) + ε2}(p1 − C(q1, θ1))

= Eθ2 [A(s1 − s2(θ2))](p1 − C(q1, θ1)).

The winning probability is a function of s1, and given s1, it is independent of the

choice of (p1, q1).
9 Hence, given a bidder’s intended score s, they determine an

optimal contract (p, q) that solves

max
(p,q)

p− C(q, θ)

s.t. q − p = s,

p ≤ p̄, q ≥ q.

(1)

Throughout the analysis, we assume that the reserve price p̄ is sufficiently high and

not binding at (1). By substituting the score constraint into the objective function,

the profit maximization problem is written as

max
q≥q

q − C(q, θ)− s. (2)

A similar argument applies to the SS auction. Suppose that bidder 2 submits an

intended score s2 and that the subjective evaluation is realized as ε = ε2−ε1. When

bidder 1 wins the auction with an intended score s1 > s2 + ε, their ex post payoff is

q̂1 − ŝ2 − C(q1, θ1) = q1 − C(q1, θ1)− (s2 + ε).

9As we will assume in Assumption 1, we ignore the possibility that the evaluated quality q̂i falls

below q and the proposal is rejected.
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Hence, given winning at an intended score s, the winner’s profit is maximized by the

optimal contract that solves (1) or (2).

We assume that the maximization problem (2) has an interior solution. That is,

the optimal quality q∗(θ) is determined by the first order condition

Cq(q
∗(θ), θ) = 1. (3)

Note that q∗(θ) is non-increasing in θ by the non-decreasing differences Cqθ ≥ 0. We

further assume that the optimal quality q∗(θ) is sufficiently higher than q, so that

the buyer never evaluates quality lower than the reservation q when a bidder submits

a quality bid q∗(θ).

Assumption 1 It holds that Cq(q, θ̄) < 1. In addition, q∗(θ̄) is sufficiently higher

than q and Pr{q∗(θ̄) + εi < q} = 0.

Assumption 1 and the first order condition (3) show that the winning profit is

maximized by making quality q∗(θ) regardless of the intended or evaluated score.

Thus, this is the optimal quality bid in both FS and SS auctions. This is similar

to Che (1993), in which there is no evaluation uncertainty, and a useful property of

quasilinear scoring rules.

Lemma 1 Under Assumption 1, it is optimal for each bidder to submit quality bid

q∗(θ) in both FS and SS auctions.

Let us define the pseudo-valuation v(θ) by

v(θ) ≡ q∗(θ)− C(q∗(θ), θ). (4)

Note that v is decreasing in θ. The equilibrium of the scoring auction is derived

by solving auctions in terms of score bid s, where each bidder has a valuation v(θ).

Hence, it is sometimes convenient to treat the pseudo-valuation v(θ) rather than θ

as a type.10 Bidder i’s pseudo-value is denoted by vi ≡ v(θi) ∈ [v, v̄], where v̄ ≡ v(θ)

and v ≡ v(θ̄). Also, by abusing notations, bidder strategy is sometimes denoted by

s(vi) rather than s(θi). Suppose that bidder i with a pseudo-value vi submits a score

10The pseudo-valuation is called pseudotype in Asker and Cantillon (2008) and productive potential

in Che (1993).
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bid si. Given the other bidder’s score strategy sj(·), the expected payoff πI(si, vi)

in an FS auction is given by

πI(si, vi) ≡ Evj [A(si − sj(vj))](vi − si). (5)

When bidder i wins an SS auction with intended score bids (si, sj) and ε = εj − εi,

their ex post payoff is given by

uII (si, sj , ε, vi) =

vi − sj − ε if si > sj + ε

0 if si < sj + ε
. (6)

When bidder i wins an FS auction, the proposal made by the winner is the final

contract, so that the buyer’s payoff is equal to si. In an SS auction, the winner i

signs a contract (q̂i − ŝj , qi), so that the buyer’s payoff is given by

qi − (q̂i − ŝj) = sj + ε.

Thus, the “score revenues” in FS and SS auctions correspond to the buyer’s payoffs.

It is also convenient to consider the pseudo-valuation distribution instead of the

type distribution. Let G be the cumulative distribution of pseudo-valuation; that is,

G(x) = Pr{v(θ) ≤ x} = 1− F (v−1(x)).

Let g be the associated density of G. We impose a standard regularity condition of

non-decreasing hazard rate.

Assumption 2 The distribution G possesses the non-decreasing hazard rate: that

is, g(v)
1−G(v) is non-decreasing.11

4 Main Results

4.1 Equilibrium

First, we examine the equilibrium of SS and FS auctions. Despite the presence of

evaluation uncertainty, in the SS auction, it is weakly dominant for each bidder to

submit their truthful pseudo-value v(θ) as the score bid.

11The associated condition on the type distribution F is that f(θ)/ (Cθ(q
∗(θ), θ)F (θ)) is non-

increasing in θ.
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Theorem 1 In the SS auction, it is a weakly dominant strategy for each bidder to

submit a score bid sII (θi) = v(θi).

All proofs are provided in the Appendix.

The truthfulness of the SS auction is shown in the following manner. Fix bidder

1’s optimal quality bid q∗1(θ), and consider an arbitrary intended score s2 = q2 − p2

of bidder 2 and realized noise term ε. Then, bidder 1 wins when s1 ≥ s2 + ε. When

bidder 1 wins, their ex post payoff is given by v(θ1) − (s2 + ε). Thus, given s2

and ε, bidder 1 wins the auction whenever their intended score is higher than a

threshold s2 + ε, and the associated “score cost” is equal to the threshold. This

allocation and payment rules are identical to the standard second-price auction and

other strategy-proof allocation mechanisms. In other words, the noise term ε is a

handicap or a fixed bid credit on bidders, and bidders play a second-price auction

with this handicap. Because the handicap is calculated inside the mechanism, truth-

telling is weakly dominant for any handicap so that the strategy-proofness still holds

even when the handicap is random and hidden.

The dominant strategy property of the SS auction is identical to the case without

evaluation uncertainty provided by Che (1993) and Asker and Cantillon (2008), and

is also similar to the case of non-quasilinear scoring rules by Hanazono, Nakabayashi,

Sano and Tsuruoka (2024). The uncertainty in quality evaluation does not influence

bidders’ incentives at all, and the equilibrium is invariant to arbitrary noise structure

A and number of bidders.

As for the FS auction, however, the bidding incentive depends on the noise

structure A, and in general it is difficult to have an explicit equilibrium because the

winning probability in equilibrium is not reduced to the probability of order statistics

of types. In what follows, we focus on a uniform distribution of ε under which we

are able to obtain an explicit equilibrium of the FS auction. The specification of A

below is the same as the success function used by Che and Gale (2000) in a contest

model.

Assumption 3 There exists β > 0 and the subjective evaluation term ε = ε2 − ε1
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is uniformly distributed over [−1/2β, 1/2β]; that is,

A(x) =
1

2
+ βx

for −1/2β ≤ x ≤ 1/2β. Further, it holds that

β(v(θ)− v(θ̄)) ≤ 1. (7)

Note that β represents the precision of the quality evaluation, with a higher β

indicating that the buyer evaluates the quality more precisely. Condition (7) requires

that the precision not be too high. This is imposed for |sI(θ1) − sI(θ2)| ≤ 1
2β in

equilibrium for all type profiles; that is, both bidders have a chance to win for all

type profiles.

In addition, we impose the following technical condition which guarantees that

any off-path score bid is not profitable.

Assumption 4 For all x ∈ [v(θ̄), v(θ)], it holds that

d

dx
E[v(θi) | v(θi) < x] ≤ 2. (8)

Under these assumptions, the symmetric Bayesian Nash equilibrium of the FS

auction is derived by the first-order approach.

Theorem 2 Suppose that Assumptions 1, 3, and 4 hold. Then there exists a sym-

metric Bayesian Nash equilibrium of the FS auction in which the score-bid strategy

is given by

sI(θi) =
1

2

(
v(θi) + µ− 1

β

)
, (9)

where µ = E[v(θ)].

Note that condition (7) in Assumption 3 implies v(θ) − 1/β ≤ v(θ̄). Hence, by

µ < v(θ), the equilibrium score bid satisfies

sI(θi) <
1

2

(
v(θi) + v(θ)− 1

β

)
≤ v(θi) + v(θ̄)

2
≤ v(θi).

This implies that even when bidders have the highest (the least efficient) type θ̄,

they shade score bids from their true pseudo-valuation v(θ̄). This is because unlike
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standard auctions in which bidders of the worst type never win in equilibrium, bid-

ders here even of the worst type can win due to the evaluation uncertainty. Hence,

even these bidders shade their bids to enjoy a positive profit in case they do win.

A similar property holds for the lowest (the most efficient) type θ. If there were

no evaluation uncertainty and evaluated quality was always equal to the intended

quality, or q̂i = qi, then bidders would submit the expected pseudo-valuation of the

rival given that the rival has a higher (worse) type. Hence, when a bidder has the

lowest type θ, they submit a score bid equal to the average pseudo-valuation µ. In

contrast, in equilibrium (9), the bidder of the lowest type submits

sI(θ) =
1

2

(
v(θ) + µ− 1

β

)
≤ v(θ̄) + µ

2
< µ.

Thus, bidders have little incentive to submit aggressive bids, as the winner determi-

nation depends not only on the bid but also on chance. The presence of evaluation

uncertainty thus leads to more cautious bids.

Assumption 4 is imposed for any off-path score bid being unprofitable. Although

bidders have a standard quasilinear payoff structure, the first order condition and the

monotonicity of the score bid function may not be sufficient for payoff maximization

in an FS auction. This is because a score bid lower or higher than the equilibrium bid

range may be profitable due to the evaluation uncertainty. This is in contrast with

a standard first-price auction, in which a bid lower or higher than the equilibrium

bid range is clearly unprofitable. Note that Assumption 4 is mild, and it holds when

the density g of the pseudo-valuation does not drastically increase around some v.

A sufficient condition for Assumption 4 is that G possesses a non-increasing reverse

hazard rate. Indeed, let λ(x) ≡ g(x)/G(x) be the reverse hazard rate of G, and

suppose λ′ ≤ 0. Let vi be distributed by G and let

γ(x) ≡ d

dx
E[vi | vi < x] = λ(x)(x− E[vi | vi < x]).

By differentiation, we have

γ′(x) = λ′(x)(x− E[vi | vi < x]) + λ(x)(1− γ(x)).

Hence, by λ′(x) ≤ 0, we have γ(x) ≥ 1 ⇒ γ′(x) ≤ 0. Also, we should have γ(v) ≤ 1.12

Hence, we conclude that γ(x) ≤ 1 for all x ∈ [v, v̄].

12If γ(v) > 1, then for a sufficiently small δ > 0, we have E[vi|vi<v+δ]−v
δ

> 1 ⇔ E[vi | vi < v+δ] >
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4.2 Quality Evaluation Precision

In the SS auction, bidders have a truthful dominant strategy and the random quality

evaluation does not affect the bidding incentive but in the FS auction, the equilibrium

score strategy is influenced by the quality evaluation. The equilibrium score bid

function sI is increasing in β, which indicates that bidders behave more competitively

and submit bids aggressively as the quality evaluation gets more precise. Because

the optimal quality bid is determined only by bidder type, this means that bidders

lower their price bid as β becomes higher.

Corollary 1 Bidders submit their score bid more aggressively in an FS auction as

the precision of quality evaluation β becomes higher by lowering their price bid and

not changing their quality bid. In contrast, the equilibrium bid is invariant to the

precision of quality evaluation β in an SS auction.

In an FS auction, an increase in evaluation uncertainty increases the element

of chance in the determination of the winner and leads to less aggressive bidding.

This is consistent with the revenue equivalence theorem. Under ex ante symmetry

and Assumption 2, achieving an efficient allocation leads to increasing the auction-

eer’s expected revenue. Under random quality evaluation, efficient allocation is not

realized but an inefficient bidder wins with a positive probability. Thus, the ex-

pected score with uncertainty in quality evaluation is lower than the mechanism

that achieves efficient allocation without uncertainty.

Although the precision β of the quality evaluation does not affect the quality

bids, it does affect the final quality because the random evaluation affects the choice

of the winner in the auction. When the quality evaluation is highly random (β is

low), the bidder of the higher (less efficient) type is more likely to win, which reduces

the final quality. As precision rises (β becomes higher), the bidder of the lower type

is more likely to win, which leads to the efficient quality level.

While the evaluation precision does not affect the bidding incentive in an SS

auction, similar comparative statics arise because improved allocative efficiency leads

v + δ, which is a contradiction.
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to higher quality and scores. These observations are summarized in the following

theorem.

Theorem 3 In the FS auction under Assumptions 1, 3, and 4, the expected social

surplus q − C(q, θ), expected score, and expected quality increase with the precision

of quality evaluation β. Similarly, in the SS auction under Assumptions 1, 2, and

3, the expected social surplus, expected score, and expected quality increase with β.

In contrast with the score and quality, the effect on the final price under random

quality evaluation is relatively uncertain. In an FS auction, the price bid is decreasing

in β. Thus, given a winner’s type, the price decreases as the quality evaluation

becomes more precise. However, higher precision leads to a more efficient winner

being chosen, which increases average quality, so the associated price might increase

due to this quality improvement. Thus, the effect of quality evaluation precision on

the final price depends on a tradeoff between the effects of promotion on competition

and quality improvement.

To see the effect of evaluation precision β on the final price, let us treat pseudo-

valuation v as bidder type instead of θ, and let

C∗(x) ≡ C
(
q∗
(
v−1(x)

)
, v−1(x)

)
be the cost of supplying the optimal quality q∗ for a bidder of pseudo-value v = x.

The effect of evaluation precision on the expected price strongly depends on the

form of C∗. When the total cost C∗ of the optimal quality is non-increasing in

pseudo-valuation v, the more efficient bidder supplies the optimal quality at a lower

cost, which implies that the competition promotion effect dominates the quality

improvement effect.

Let k = I, II indicate the FS and SS auctions, respectively. Let Ak
i (v1, v2) be

the winning probability of bidder i for any pseudo-value pair (v1, v2) in equilibrium

of auction k ∈ {I, II }, and Ak(v) = Ev2 [A
k
1(v, v2)]. In addition, let Πk(v) be the

equilibrium interim expected payoff of a bidder with pseudo-value v in auction k.

Then, the expected revenue P k(v) of a bidder with pseudo-value v in the equilibrium

of auction k is

P k(v) = Πk(v) +Ak(v)C∗(v).
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By the standard envelope argument and calculations, the expected price for the

buyer, denoted by P k, is expressed by

P k = 2E
[
Πk(v) +Ak(v)C∗(v)

]
= 2Πk + 2E

[
Ak(v)

(
C∗(v) +

1−G(v)

g(v)

)]

= 2Πk + E

 ∑
i∈{1,2}

Ak
i (v1, v2)ψ(vi)

 , (10)

where Πk ≡ Πk(v) and

ψ(v) ≡ C∗(v) +
1−G(v)

g(v)
(11)

is the virtual cost function. When C∗ is non-increasing, the virtual cost ψ is non-

increasing by the regularity Assumption 2. Hence, (10) indicates that the expected

price decreases as the winner determination becomes more efficient. Thus, the more

precise evaluation decreases the expected price.

Theorem 4 Suppose that all the assumptions stated above hold and that Cq/Cθ

is non-decreasing in q. Then, the expected price in both FS and SS auctions is

decreasing in evaluation precision β.

The condition that Cq/Cθ is non-decreasing in q guarantees that C∗ is non-

increasing. When the marginal cost is less sensitive to changes in type θ (i.e., Cqθ is

small), the optimal quality is less sensitive to changes in type θ. In this situation,

the cost reduction effect of type improvement is larger than the cost increase effect

of quality improvement so that the cost of producing the optimal quality decreases

as type θ improves; that is, C(q∗(θ), θ) is increasing in type θ, which means C∗ is

decreasing.

Remark 4 Our comparative static of quality on β is not consistent with Takahashi

(2018), who provides a numerical analysis of scoring auctions with random quality

evaluation and finds that bidders’ quality improves as evaluation uncertainty in-

creases. This property may be due to the difference in the scoring rules between the

two studies. Takahashi (2018) considers the PQR scoring rule in which scores are

evaluated in terms of price per quality ratio p/q. Under that rule, bidders offer a
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higher quality bid as the score increases (becomes worse) (Hanazono, Nakabayashi,

Sano and Tsuruoka, 2024). As Corollary 1 shows, as uncertainty in quality evalua-

tion increases, the selection of the winning bidder becomes more random and thus

competition among bidders decreases. Hence, under the PQR scoring rule, making

a less aggressive score bid means proposing a higher quality at a higher price. In

contrast, in our quasilinear scoring rule, the quality bid is independent of score and

is determined solely by bidder type. Under our rule, an increase in evaluation un-

certainty lowers expected quality because an inefficient bidder is more likely to be

chosen as the winner.

4.3 Comparing SS and FS Auctions

Next, we compare the performance of SS and FS auctions. Although our model

is built on a standard independent private value setting, the equivalence between

the two auction formats fails to hold. Our first main result is that the SS auction

achieves a higher expected social surplus and quality than the FS auction.

Theorem 5 Suppose that all assumptions stated above hold. The expected social

surplus and expected quality are higher in the SS auction than in the FS auction.

The intuition behind the welfare ranking is simple. While bidders submit truth-

fully in the SS auction, they shade their bids in the FS auction, and the magnitude of

the bid shading is larger for a higher valuation. The equilibrium score bid in the FS

auction has the slope dsI/dv = 1/2 < 1. Hence, given an arbitrary pseudo-valuation

profile (v1, v2), bids are closer to each other in the FS than in the SS auctions, which

makes the determination of the winning bidder more random in the FS auction.

Hence, the SS auction is more efficient than the FS auction.

The derivation of the quality ranking is analogous to that of the social welfare.

The optimal quality is determined solely by the winner’s type, and a bidder with a

better (lower) type supplies a weakly higher quality. Because the more lower-type

bidder is more likely to be chosen as the winner in the SS auction, the expected

quality is higher for the SS auction than the FS auction.

The comparisons with respect to the expected score (the buyer’s expected payoff)
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and final price are also analogous to the comparative statics of the score and price

on β. For an auction format k = I, II , the expected score Sk is expressed as

Sk = E

 ∑
i∈{1,2}

Ak
i (v1, v2)ϕ(vi)

− 2Πk,

where

ϕ(v) ≡ v − 1−G(v)

g(v)

is the virtual valuation function. By the monotone virtual valuation, the more effi-

cient allocation induces the higher expected score. Similarly, the expected final price

P k is expressed as

P k = E

 ∑
i∈{1,2}

Ak
i (v1, v2)ψ(vi)

+ 2Πk.

When the virtual cost function ψ is decreasing, the more efficient allocation induces

the lower expected price.

However, the worst-type payoff Πk differs across the auction formats, which re-

quires an additional condition to obtain a clear ranking between the FS and SS

auctions. In the second main theorem below, we suppose

β(v(θ)− v(v̄)) ≤ 1√
2

(12)

to guarantee that the worst-type payoff in the FS auction is higher than that in the

SS auction.13

Theorem 6 Suppose that all assumptions stated above hold with (12). Then, the

expected score is higher in the SS auction than in the FS auction. In addition, if

Cq/Cθ is non-decreasing in q, the expected price in the SS auction is lower than that

in the FS auction.

Overall, when uncertainty in quality evaluation is inevitable, the SS auction

achieves more efficient allocation than the FS auction, and the SS auction performs

better than the FS auction in terms of buyer’s expected payoff, quality, and price.

13Appendix B provides other sufficient conditions under which the expected score and price are

ranked.
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5 General Noise Structure

Much of the analysis in the previous section relies on the specific noise structure,

so it is natural to question whether our results are sustained under a more general

noise structure and a general number of bidders. In this section, we discuss how the

results in the previous section are robust to a general noise structure.

First, it should be emphasized that the dominant strategy property of the SS

auction is robust to noise structure and the number of bidders. It is weakly dominant

for bidders to bid their true pseudo-valuation for any noise structure A and any

number of rival bidders. As the precision of the quality evaluation increases and an

efficient bidder becomes more likely to win, both social surplus and expected quality

improve. Furthermore, if the worst-type payoff is non-increasing in the evaluation

precision, the winning score (i.e., the buyer’s payoff) increases and the expected price

decreases, given the monotonicity of the virtual cost.

As for the FS auction, the existence of an equilibrium can be guaranteed from the

standard argument. The expected payoff of the FS auction at bidder i ’s pseudo-value

vi and intended score si is expressed by (5). If A is smooth and strictly increasing

(in the domain played in equilibrium), then E[A′(si − s(vj))] > 0, and the expected

payoff πI clearly satisfies the single crossing property of Athey (2001). Thus, a

monotone Bayesian Nash equilibrium exists.

However, it is difficult to obtain an explicit equilibrium strategy of the FS auction

for a general noise structure. This is because, unlike the standard auction model,

the winning probability in equilibrium is not reduced to the probability distribution

of order statistics of types. Thus, the equilibrium strategy cannot be characterized

even in the form of a differential equation in s. Indeed, suppose that there exists a

symmetric monotone equilibrium sI and let

A∗(si) ≡ Evj [A(si − sI(vj))] (13)

denote the winning probability when submitting an intended score si. Then, the

first order condition of expected payoff maximization yields

(A∗)′(sI(vi))(vi − sI(vi))−A∗(sI(vi)) = 0
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and thus, we have

sI(vi) = vi −
A∗(sI(vi))

(A∗)′(sI(vi))
. (14)

It is difficult to analyze the equilibrium score bidding strategy further.

Nevertheless, it is still possible to discuss some properties of the FS auction under

a general noise structure. First, as stated in Lemma 1, that the optimal quality bid

is independent of noise and intended score and depends only on the bidder’s type.

The noise structure will affect only the price bidding.

Second, our comparison of FS and SS auctions could be sustained for a more

general A. Our results are derived by the equilibrium property of the FS auction

that the score-bid difference is smaller than the pseudo-value difference. Suppose

that the FS auction has a symmetric monotone equilibrium sI for some distribution

A. If the equilibrium satisfies dsI/dv ≤ 1, the SS auction chooses the efficient bidder

with a higher probability than the FS auction. Thus, we can conclude that the

SS auction yields a higher expected social welfare and quality than the FS auction.

In addition, the expected score is higher and the expected price is lower in the SS

auction if ΠI ≥ ΠII and the monotonicity of C∗ hold. Equation (14) implies that

dsI/dv ≤ 1 holds if (A∗)′(x)/A∗(x) is non-increasing in x. Thus, if A∗ possesses the

non-increasing reverse hazard rate property, then the SS auction performs better in

equilibrium than the FS auction.14 It is difficult to obtain a primitive condition for

A∗ to have a non-increasing reverse hazard rate, but we explicitly state this property

as follows.

Proposition 1 Suppose that Assumptions 1 and 2 hold. If a score-bid strategy sI

satisfies (14), in which A∗ is defined by (13), and if (A∗)′(x)/A∗(x) is non-increasing,

then sI is the symmetric equilibrium of the FS auction. The expected social surplus

and quality are higher in the SS auction than in the FS auction. In addition, if

ΠI ≥ ΠII , the SS auction yields a higher expected score than the FS auction. Also, if

ΠI ≥ ΠII and Cq/Cθ is non-decreasing in q, the SS auction yields a lower expected

price than the FS auction.

14The term “reverse hazard rate” is used here informally because A∗ is not a probability distri-

bution.
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6 Concluding Remarks

This study examines the effect of uncertainty in the evaluation of quality in scoring

auctions. In scoring auctions for public-works procurement, bids include various non-

monetary attributes, and there is much room for reviewers to use their discretion to

evaluate these quality bids. This makes it difficult for bidders to anticipate perfectly

the evaluation scores of their quality bids at the time of bidding. Similar phenomena

are prevalent in other markets.

We have shown that in an FS auction, the noisy evaluation of quality creates

an element of chance in determining winning bidders, which decreases the incentive

for bidders to make aggressive bids and thus weakens bidder competition. In an

SS auction, by contrast, the truthful weakly dominant strategy exists, so evaluation

uncertainty does not affect the bidding incentive. Further, as the precision of the

quality evaluation improves, the expected social surplus, score (the buyer’s payoff),

and quality improves. In addition, under certain conditions, the expected price

decreases through the effect of competition. As the SS auction chooses the winner

more efficiently, the SS auction achieves a higher social surplus, score, and quality at a

lower price than the FS auction. Our results imply that when evaluation uncertainty

is inevitable, the SS auction is preferable to the FS auction for both the buyer and

social welfare.

The comparative statics presented here have a practical implication for public-

works procurement, particularly for large-scale projects such as bridge construction

in which superior quality is perceived as highly desirable, causing scoring auctions to

often be used to procure such projects. Uncertainty in quality evaluation adversely

affects governments through not only the selection of the winning bidder but also

the endogenous responses of bidders. This uncertainty affects bidding behavior and

efficiency, which in turn can influence the attributes of the final products.

There are a number of potential extensions for further research. One important

extension would be a theoretical consideration of scoring rules other than the quasi-

linear scoring rule. Following Che (1993), this study analyzed a quasilinear scoring

rule, but real-world procurement auctions often use different scoring rules such as

the price-per-quality-ratio rule (Takahashi, 2018; Hanazono, Nakabayashi, Sano and
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Tsuruoka, 2024). Such analyses of alternative models with such non-linear scoring

rules are left for future research.
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A Proofs

A.1 Proof of Theorem 1

Suppose that bidder 2 submits an intended score s2 = q2−p2 and that the subjective

quality evaluation is realized as ε = ε2 − ε1. Bidder 1 wins the auction if their
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intended score s1 > s2+ε. When bidder 1 wins, they sign a contract (q1−s2−ε, q1),

and the associated payoff is

uII = q1 − C(q1, θ1)− (s2 + ε).

Given that bidder 1 submits a quality bid q∗(θ1), they earn a nonnegative winning

profit if and only if v(θ1) ≥ s2+ε. Thus, by submitting an intended score s1 = v(θ1),

bidder 1 wins the auction whenever the winning payoff is nonnegative. Thus, similar

to a standard second-price auction, it is always optimal for bidder 1 to submit

s1 = v(θ1) for any (s2, ε). □

A.2 Proof of Theorem 2

Suppose that there exists a symmetric Bayesian Nash equilibrium and that the equi-

librium score bid function is sI : Θ → R. Suppose that bidder 2 takes the equilibrium

score-bid strategy sI . Suppose that bidder 1 has a pseudo-valuation v(θ1) and sub-

mits a score bid s1, where

|s1 − sI(θ2)| ≤
1

2β
(15)

for all θ2. Then, the associated expected payoff is given by

πI(s1, θ1) = Eθ2 [A(s1 − sI(θ2))](v(θ1)− s1)

=

(
1

2
+ βs1 − βE[sI(θ2)]

)
(v(θ1)− s1).

(16)

Taking the first order condition with respect to s1, we have

β(v(θ1)− s1)−
1

2
− βs1 + βE[sI(θ2)] = 0. (17)

By substituting symmetric strategy s1 = sI(θ1) into (17), we have

sI(θ1) =
v(θ1)

2
− 1

4β
+
E[sI(θ2)]

2
.

Because E[sI(θ1)] = E[sI(θ2)], we have

E[sI(θi)] = µ− 1

2β
.

Thus, we have a candidate for equilibrium score bid function

sI(θi) =
1

2

(
v(θi) + µ− 1

β

)
. (18)
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The condition (15) holds for all s1 ∈ [sI(θ̄), sI(θ)], and the expected payoff is de-

scribed as (16) if sI(θ)− sI(θ̄) ≤ 1/2β, which holds under (7).

In what follows, we show that any off-path score bid is not a best response.

Suppose that (7) holds, and that bidder 2 takes strategy (18). Note that (16) is a

quadratic function which takes the optimum in [sI(θ̄), sI(θ)]. We abuse notations and

treat pseudo-valuations vi ∈ [v, v̄] as type. Suppose that bidder 1 submits s1 > sI(v̄)

and s1 > sI(v2) +
1
2β with positive probability (case (a) in Figure 1). Then, the

winning probability E[A(s1 − sI(v2))] ≤ 1
2 + β(s1 − E[sI(v2)]), so that bidder 1’s

expected payoff is bounded from above by (16). Thus, any score bid s1 > sI(v̄) is

not a best response for any v1.

Figure 1: Expected payoff of bidder 1

Now suppose that bidder 1 submits s1 < sI(v) and s1 < sI(v2)− 1
2β with positive

probability (case (b) in Figure 1). Define ŝ ≤ sI(v) by

ŝ ≡ v̄ + µ

2
− 1

β
.

Thus, we have sI(v̄) = ŝ + 1
2β . Then, the expected payoff πI is given by (16) for

s1 ≥ ŝ. Hence, suppose s1 < ŝ. Bidder 1 loses with probability 1 if sI(v2) > s1+
1
2β ,
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and the expected payoff is given by15

πI(s1, v1) = (v1 − s1)

∫ s−1(s1+
1
2β

)

v

(
1

2
+ β(s1 − sI(v2))

)
dG(v2). (19)

By differentiating with respect to s1, we have

∂πI

∂s1
=

∫ s−1(s1+
1
2β

)

v

(
β(v1 − s1)−

1

2
− β(s1 − sI(v2))

)
dG(v2)

= G

(
s−1

(
s1 +

1

2β

))(
βv1 − 2βs1 −

1

2

)
+ β

∫ s−1(s1+
1
2β

)

v

(
v2
2

+
µ

2
− 1

2β

)
dG(v2)

= βG

(
s−1

(
s1 +

1

2β

))(
v1 +

µ+ E∗[v2 | s1]
2

− 1

β
− 2s1

)
,

(20)

where

E∗[v2 | s1] ≡ E

[
v2

∣∣∣∣ v2 < s−1

(
s1 +

1

2β

)]
.

We can conclude that sI(v1) is indeed a best response if ∂πI/∂s1 ≥ 0 for s1 ≤ ŝ.

Fix an arbitrary v1 and let

h(x) ≡ v1 +
µ+ E∗[v2 | x]

2
− 1

β
− 2x. (21)

Note that because E∗[v2 | ŝ] = µ, we have

h(ŝ) = v1 + µ− 1

β
− 2ŝ = v1 − v̄ +

1

β

≥ v1 − v

≥ 0.

The second line follows from (7). In addition,

h′(x) =
1

2G(s−1(x+ 1
2β ))

2
(s−1)′︸ ︷︷ ︸

=2

·

[
s−1(·)g(s−1(·))G(s−1(·))− g(s−1(·))

∫ s−1(·)

v
v2dG(v2)

]
− 2

=
g(s−1(x+ 1

2β ))

G(s−1(x+ 1
2β ))

[
s−1(x+

1

2β
)− E∗[v2 | x]

]
− 2

=
d

dy
E[vi | vi < y]

∣∣∣∣
y=s−1(x+ 1

2β
)

− 2.

Hence, we have h′(x) ≤ 0 under Assumption 4. Then, we have h(s1) ≥ 0 and

∂πI/∂s1 ≥ 0 for all s1 ≤ ŝ. □

15We assume s1 ≥ sI(v)− 1
2β

so that bidder 1 wins with positive probability.

30



A.3 Proof of Theorem 3

Consider the FS auction. By abusing notations, the optimal quality for type θ =

v−1(v) is denoted by q∗(v). Because the optimal quality is non-increasing in type θ,

q∗(v) is non-decreasing in v.

Bidders’ pseudo-valuations are independently and identically distributed with G.

Let HI be the cumulative distribution of the winner’s pseudo-valuation in the FS

auction. Then, we have

HI(x) = G(x)2 + 2

∫ x

v

∫ v̄

x

(
1−A

(v1
2

− v2
2

))
dG(v1)dG(v2)

= G(x)2 +

∫ x

v

∫ v̄

x
(1 + β(v2 − v1)) dG(v1)dG(v2).

Thus, HI(x) is clearly decreasing in β because v2 < v1 in the integrand. Hence, it is

clear that the expected social surplus increases with β by stochastic ordering. The

expected score also increases with β because of the monotonicity of the score bid sI

in both v and β and the stochastic ordering. The expected quality is EHI [q∗(v)], so

that it increases with β by the stochastic ordering.

Consider the SS auction. The proof for the expected social surplus and expected

quality is analogous to that of the FS auction, so that it is omitted. Given an

arbitrary pseudo-valuation profile (v1, v2), bidder 1 wins with probability

AII
1 (v1, v2) ≡ A(v1 − v2) =


0 if v1 − v2 < − 1

2β

1
2 + β(v1 − v2) if |v1 − v2| ≤ 1

2β

1 if v1 − v2 >
1
2β

. (22)

Let

ϕ(v) ≡ v − 1−G(v)

g(v)
(23)

be the virtual valuation function, which is strictly increasing by Assumption 2. By

the standard calculation, the expected score in the SS auction, denoted by SII , is

expressed as

SII = E

 ∑
i∈{1,2}

AII
i (vi, vj)ϕ(vi)

− 2ΠII , (24)
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where ΠII denotes the interim expected payoff of a bidder with pseudo-value v in

equilibrium. The first term in (24) is clearly increasing in β.

In the rest of the proof, we show ΠII is decreasing in β. To show this, we first

suppose

β ≤ 1

2(v̄ − v)
. (25)

Then, bidder 1 of pseudo-value v wins with probability E[12+β(v−v2)] =
1
2+β(v−µ).

The expected “score payment” is:∫ v̄

v

∫ v−v2

−1/2β
(ε+ v2)βg(v2)dεdv2 =

β

2

(
v2 − E[v2]

)
− 1

8β
+
µ

2
.

Thus, the expected payoff of pseudo-value v is:

ΠII =

(
1

2
+ β(v − µ)

)
v − β

2

(
v2 − E[v2]

)
+

1

8β
− µ

2

=
β

2
E[(v − v)2]− 1

2
(µ− v) +

1

8β
. (26)

By differentiation, we have

dΠII

dβ
=

1

2
E[(v − v)2]− 1

8β2
<

1

2
(v̄ − v)2 − 1

8β2
≤ 0. (27)

The last inequality follows from (25).

Next, we suppose
1

2(v̄ − v)
< β ≤ 1

v̄ − v
(28)

and let

v̂ ≡ v +
1

2β
.

By ε ≥ −1/2β, bidder 1 with pseudo-value v never wins if v2 ≥ v̂. Thus, the expected

payoff of the worst pseudo-value v is given by:

ΠII =
β

2

∫ v̂

v
(v − v)2g(v)dv − 1

2

∫ v̂

v
(v − v)g(v)dv +

G(v̂)

8β

=
β

2

∫ v̂

v
(v − v̂)2 g(v)dv. (29)
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By differentiation, noting that v̂ = v + 1/2β, we have

dΠII

dβ
=

1

2

∫ v̂

v
(v − v̂)2g(v)dv +

β

2
· 1

2β2

∫ v̂

v
2(v − v̂)g(v)dv

=
1

2β

∫ v̂

v
(v − v̂) (β(v − v̂) + 1) g(v)dv

< 0.

The inequality follows because β(v− v̂)+ 1 ≥ 1
2 for all v ≤ v̂, which implies that the

integrand is negative.

Therefore, the expected score SII increases with β. □

A.4 Proof of Theorem 4

Consider the FS auction. By the standard envelope argument, the equilibrium in-

terim expected payoff of a bidder with pseudo-value v satisfies

ΠI(v) = ΠI +

∫ v

v
AI(x)dx.

Thus, by the standard calculations, we have

E[P I(v)] = E
[
ΠI(v) +AI(v)C∗(v)

]
= ΠI + E

[
AI(v)

(
C∗(v) +

1−G(v)

g(v)

)]
and the expected price for the buyer in the FS auction is expressed by (10):

P I = 2ΠI + E

 ∑
i∈{1,2}

AI
i (v1, v2)ψ(vi)

 .
Suppose Cq/Cθ is non-decreasing in q; thus, it holds that

CqqCθ − CqCqθ ≥ 0.

By differentiation, we have

d

dθ
C(q∗(θ), θ) = (q∗)′(θ)Cq(q

∗(θ), θ) + Cθ(q
∗(θ), θ)

= −
Cqθ(q

∗, θ)

Cqq(q∗, θ)
Cq(q

∗, θ) + Cθ(q
∗, θ)

≥ 0,
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where the second line follows from the implicit function theorem regarding the first

order condition for the optimal quality (3). Hence, C(q∗(θ), θ) is non-decreasing in

θ. Therefore, because v(·) is decreasing in θ, C∗ is non-increasing. By Assumption

2, the virtual cost function (11) is non-increasing, and the latter term of (10) weakly

decreases with β.

By Theorem 2, we have

ΠI =
1

2
(1 + β(v − µ))

(
v − 1

2

(
v + µ− 1

β

))
=
β

4

(
µ− v − 1

β

)2

. (30)

By differentiation, we have

dΠI

dβ
=

1

4

(
(µ− v)2 − 1

β2

)
<

1

4β2
(
β2(v̄ − v)2 − 1

)
≤ 0.

The last inequality follows from (7). Therefore, the expected price (10) strictly

decreases with β.

The proof for the SS auction is analogous to that for the FS auction, so it is

omitted. □

A.5 Proof of Theorem 5

Given an arbitrary pseudo-valuation profile (v1, v2), bidder 1’s winning probability

AII
1 in the SS auction is given by (22) in the proof of Theorem 3. In the FS auction,

bidder 1 wins with probability

AI
1(v1, v2) =

1

2
(1 + β(v1 − v2)) ,

thus, we have

AII
1 (v1, v2)−AI

1(v1, v2) =


β
2 (v1 − v2) if |v1 − v2| ≤ 1

2β

1
2 − β

2 (v1 − v2) if v1 − v2 >
1
2β

−1
2 − β

2 (v1 − v2) if v1 − v2 < − 1
2β

, (31)

and

AII
1 (v1, v2)−AI

1(v1, v2)

≥ 0 if v1 ≥ v2

≤ 0 if v1 ≤ v2

(32)
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by β(v̄ − v) ≤ 1.

Because the equilibrium social surplus is equal to v(θ) for a winner’s type θ, it

is clear that the SS auction selects the winner more efficiently and achieves a higher

social surplus. Also, the equilibrium quality is determined solely by the winner’s

type or pseudo-valuation, and q∗(v) is non-decreasing in pseudo-valuation v. Hence,

the expected quality in the SS auction is greater than that in the FS auction. □

A.6 Proof of Theorem 6

The expected score in the SS auction is expressed by (24) in the proof of Theorem

3. Similarly, the expected score in the FS auction, denoted by SI , is given by

SI = E

 ∑
i∈{1,2}

AI
i (v1, v2)ϕ(vi)

− 2ΠI . (33)

Hence, we have

SII − SI = E
[(
AII

1 (v1, v2)−AI
1(v1, v2)

)
(ϕ(v1)− ϕ(v2))

]
+ 2(ΠI −ΠII ). (34)

The first term is positive by the monotonicity of ϕ and (32). Hence, the expected

score is higher for the SS auction than for the FS auction if ΠI ≥ ΠII holds.

As for the expected price, the expected final price in auction k ∈ {I, II } is

expressed by (10):

P k = E

 ∑
i∈{1,2}

Ak
i (v1, v2)ψ(vi)

+ 2Πk.

Hence, we have

P I − P II = E
[(
AI

1(v1, v2)−AII
1 (v1.v2)

)
(ψ(v1)− ψ(v2))

]
+ 2(ΠI −ΠII ). (35)

Given that Cq/Cθ is non-decreasing and by Assumption 2, ψ is non-increasing and

the former term of (35) is positive. Hence, the expected price is lower in the SS

auction than in the FS auction if ΠI ≥ ΠII .

In the rest of the proof, we show ΠI ≥ ΠII . We first suppose

β ≤ 1

2(v̄ − v)
.
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Then, as shown in the proof of Theorem 3, the expected payoff of the worst pseudo-

value for the SS auction is given by (26). For the FS auction, the expected payoff of

the worst pseudo-value is given by (30). Hence,

ΠI −ΠII =
β

4
(µ− v)2 − 1

2
(µ− v) +

1

4β
− β

2
E[(v − v)2] +

1

2
(µ− v)− 1

8β

=
1

8β
− β

4

(
µ2 − 2µv + v2 + 2(E[v2]− µ2)

)
=

1

8β
− β

4

(
(µ− v)2 + 2σ2

)
>

1

8β
− β

4

(
1

4β2
+

1

8β2

)
> 0,

where σ2 denotes the variance of pseudo-valuation distribution G. The inequality in

the forth line follows from (µ− v)2 < (v̄ − v)2 ≤ 1/4β2 and a fact σ2 ≤ 1
16β2 .

16

Next, we suppose
1

2(v̄ − v)
< β ≤ 1√

2(v̄ − v)

and let

v̂ ≡ v +
1

2β
.

By ε ≥ −1/2β, bidder 1 with pseudo-value v never wins if v2 ≥ v̂. The expected

payoff of the worst pseudo-value v for the SS auction is given by (29). Hence,

ΠI −ΠII =
β

4

(
µ− v − 1

β

)2

− β

2

∫ v̂

v

(
v − v − 1

2β

)2

dG(v)

=
β

4

((
µ− v − 1

β

)2

− 2

∫
(v − v − 1

2β
)2dG(v)

)
+
β

2

∫ v̄

v̂
(v − v̂)2dG(v)

=
β

4

∫ (
1

2β2
− µ2 + 2vv − v2 − 2(v2 − µ2)

)
dG(v) +

β

2

∫ v̄

v̂
(v − v̂)2dG(v)

=
β

4

(
1

2β2
+ 2

∫ v̄

v̂
(v − v̂)2dG(v)−

(
(µ− v)2 + 2σ2

))
.

Note that the variance σ2 is bounded by

σ2 ≤ (v̄ − µ)(µ− v),

16For an arbitrary distribution over [a, b], its variance σ2 is bounded by σ2 ≤ (b−a)2

4
, which is

known as the Popoviciu’s inequality on variance.
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which is known as the Bhatia-Davis inequality.17 Hence,

(µ− v)2 + 2σ2 ≤ (µ− v)2 + 2(v̄ − µ)(µ− v)

= (v̄ − v)2 − (v̄ − µ)2

< (v̄ − v)2.

By β(v̄ − v) ≤ 1/
√
2, we have

ΠI −ΠII =
β

4

(
1

2β2
+ 2

∫ v̄

v̂
(v − v̂)2dG(v)−

(
(µ− v)2 + 2σ2

))
>
β

4

(
1

2β2
− (v̄ − v)2

)
≥ 0,

which completes the proof. □

A.7 Proof of Proposition 1

Suppose that the other bidder takes the strategy sI . Then, by (5) and differentiation,

we have

∂πI(si, vi)

∂si
= (A∗)′(si)(vi − si)−A∗(si)

= (A∗)′(si)

(
vi − si −

A∗(si)

(A∗)′(si)

)
.

Because (A∗)′(x)/A∗(x) is non-increasing in x,

si +
A∗(si)

(A∗)′(si)

is strictly increasing in si. Hence, the strategy satisfying the first order condition

(14) is the best response, and sI is the symmetric equilibrium strategy.

It is straightforward to verify 0 < (sI)′(vi) ≤ 1 by differentiating (14). The

comparison with the SS auction can be made in a manner analogous to Theorems 5

and 6. □
17Note that

0 ≤ E[(v̄ − v)(v − v)] = −E[v2] + (v̄ + v)µ− v̄v.

Hence, we have

σ2 = E[v2]− µ2 ≤ −µ2 + (v̄ + v)µ− v̄v = (v̄ − µ)(µ− v).
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B Other Conditions for Score and Price Ranking

In this appendix, we provide other conditions for the expected score and price being

ranked. In what follows, we provide two sufficient conditions under which ΠI ≥ ΠII

holds.

Suppose
1

2(v̄ − v)
< β ≤ 1

v̄ − v
(36)

and let

v̂ = v +
1

2β
.

Then, as shown in the proof of Theorem 6,

ΠI −ΠII =
β

4

(
1

2β2
+ 2

∫ v̄

v̂
(v − v̂)2dG(v)−

(
(µ− v)2 + 2σ2

))
.

Let

h(β) ≡ 2

∫ v̄

v̂
(v − v̂)2dG(v) +

1

2β2
(37)

be a function of β. By differentiation, we have

h′(β) =
2

β2

(∫ v̄

v̂
(v − v̂)dG(v)− 1

2β

)
≤ 2

β2

(
(1−G(v̂)) (v̄ − v̂)− 1

2β

)
≤ −G(v̂)

β3

< 0.

The third line follows from (36), which induces v̄ − v̂ ≤ 1/2β. Hence, h(β) is

decreasing in β. Because

ΠI −ΠII =
β

4
(h(β)− (µ− v)2 − 2σ2),

we have ΠI ≥ ΠII for all β if it holds for β = 1/(v̄ − v).

Condition 1 By the fact known as the Bhatia-Davis inequality, the variance σ2 is

bounded by

σ2 ≤ (v̄ − µ)(µ− v),
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so that

(µ− v)2 + 2σ2 ≤ (µ− v)2 + 2(v̄ − µ)(µ− v)

= (v̄ − v)2 − (v̄ − µ)2.

Hence, we have

h

(
1

v̄ − v

)
− (µ− v)2 − 2σ2 ≥ (v̄ − v)2

2
− (v̄ − v)2 + (v̄ − µ)2

≥ (v̄ − µ)2 − (v̄ − v)2

2
.

We have

(v̄ − µ)2 ≥ (v̄ − v)2

2

if

µ ≤ v̄ − v̄ − v√
2

=
2−

√
2

2
v̄ +

√
2

2
v.

Condition 2 Suppose that the pseudo valuation v is symmetrically distributed:

that is, µ = v̄+v
2 and g(µ+ x) = g(µ− x) holds for all x. Then, we have

2

∫ v̄

v̂
(v − v̂)2dG(v) = 2

∫ v̄

µ
(v − µ)2dG(v) = σ2.

Hence, we have

h

(
1

v̄ − v

)
− (µ− v)2 − 2σ2 ≥ (v̄ − v)2

2
− (

v̄ + v

2
− v)2 − (v̄ − v̄ + v

2
)(
v̄ + v

2
− v)

= 0

Therefore, we have shown the following result.

Proposition 2 Suppose that all the assumptions hold with β(v̄− v) ≤ 1. Then, the

worst-type payoffs of the FS and SS auctions satisfy ΠI ≥ ΠII if either one of the

following conditions holds:

1. µ ≤ 2−
√
2

2 v̄ +
√
2
2 v holds, or

2. G is symmetrically distributed.
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