UTMD working Paper

The University of Tokyo
Market Design Center

UTMD-095

Endowment manipulations involving population

variations in object exchange problems

Yuji Fujinaka
Kansai University

Takuma Wakayama
Ryukoku University

October 26, 2025




Endowment manipulations
involving population variations
in object exchange problems*

Yuji Fujinaka® Takuma Wakayama?

October 26, 2025

Abstract

This study examines the object exchange problem introduced by Shap-
ley and Scarf (1974). We focus on two properties of allocation rules that
require robustness to endowment manipulations involving population vari-
ations: withdrawal-proofness and pre-delivery-proofness (Thomson, 2014). We
tirst show that no rule satisfies individual rationality and withdrawal-proofness.
This impossibility result holds not only on the strict preference domain but
also on well-studied restricted domains. However, this negative finding can
be avoided by weakening withdrawal-proofness. We characterize the Top Trad-
ing Cycles rule (TTC) using individual rationality, strategy-proofness, and weak
withdrawal-proofness under a richness condition on the domain. In contrast
to withdrawal-proofness, several individually rational rules satisfy pre-delivery-
proofness. Furthermore, a stronger version of pre-delivery-proofness, combined
with individual rationality, uniquely characterizes TTC. Notably, this charac-
terization holds on many natural restricted domains.
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1 Introduction

We consider the object exchange problem introduced by Shapley and Scarf (1974),
where each agent initially owns one indivisible object and has strict preferences
over all objects. A “rule” maps each economy (which consists of a set of agents, a
set of objects, their preferences, and individual endowments) to a feasible alloca-
tion that assigns exactly one object to each agent.

We study the immunity of a given rule to manipulation via endowments.
Various forms of such manipulation have been explored in different models.!
This paper focuses on two types of pairwise endowment manipulations involv-
ing changes in population. The first is “withdrawal”: an agent withdraws with
his endowment before the rule is applied; after the rule is applied without him,
the withdrawing agent and one of the agents who participated exchange the first
agent’s endowment and the object allocated to the second agent in such a way
that both agents are at least as well off as they would have been without the ma-
nipulation, and at least one is strictly better off. Withdrawal-proofness, introduced
by Thomson (2014), requires that such manipulation be impossible. We derive an
impossibility result: no rule satisfies both individual rationality (no agent is made
strictly worse off after the reallocation) and withdrawal-proofness (Theorem 1). It
is important to note that this impossibility result holds even when the preference
domain is restricted to well-studied domains, such as the single-peaked (Bade,
2019), single-dipped (Tamura, 2023), and common-ranking preference (Nicolo
and Rodriguez-Alvarez, 2017) domains.

To address this impossibility result, we weaken withdrawal-proofness. Weak
withdrawal-proofness rules out any withdrawal manipulation that makes the with-
drawing agent and one of the remaining participants strictly better off. Several
rules, including the Top Trading Cycles rule (TTC), satisty both individual ratio-
nality and weak withdrawal-proofness (Proposition 1 and Example 3). Moreover,
these two axioms, together with strategy-proofness (no agent can benefit from mis-
representing his preferences), characterize TTC under a richness condition on the
domain of preferences (Theorem 2).

The second manipulation is “pre-delivery”: before the rule is applied, an
agent pre-delivers to another agent the object that the second agent would receive

'Examples include destruction (Aumann and Peleg, 1974; Gale, 1974), withholding and hiding
(Postlewaite, 1979), transfer (Gale, 1974), and augmentation of endowments (Thomson, 2024b).
See Thomson (2023) for a comprehensive survey on endowment manipulations and the normative
principles underlying these concepts.



if all agents participated, inducing that agent to withdraw; once the rule is ap-
plied without the agent who withdrew, the first agent ends up with a strictly pre-
ferred object compared to what he would have received otherwise. Pre-delivery-
proofness, introduced by Thomson (2014), precludes this behavior. This property
is relatively weak here, since it applies only when the pre-delivering agent ini-
tially owns the object that the withdrawing agent would receive under full par-
ticipation. In fact, not only TTC but also many other rules satisfy this property
(Proposition 2 and Example 4).

The incentive to withdraw may persist (or even intensify) when the with-
drawing agent is pre-delivered an object that he finds at least as desirable as the
one he would receive under full participation. We therefore introduce a stronger
concept, strict pre-delivery-proofness, which eliminates pre-delivery manipulation
where the withdrawing agent is weakly better off and the pre-delivering agent
is strictly better off. TTC is characterized by individual rationality and strict pre-
delivery-proofness (Theorem 3). Notably, this characterization holds on several
natural restricted domains, including the single-peaked and single-dipped pret-
erence domains.

Our main axioms are relevant to kidney exchange, a real-world application
of our model (Roth, Sénmez, and Unver, 2004). Consider a hospital managing
multiple patient-donor pairs. The hospital may strategically withdraw a pair
from the centralized exchange pool and, after the centralized mechanism is ex-
ecuted, arrange an internal exchange between the withdrawn pair and another
pair matched through the mechanism.? A similar concern arises with pre-delivery-
proofness: two patients might exploit legal loopholes (e.g., fake marriage or adop-
tion) to coordinate a pre-delivery scheme involving withdrawal, thereby obtain-
ing higher-quality kidneys. Our results provide new insights into the design of

mechanisms that are robust against such manipulations.

Related literature Both withdrawal-proofness and pre-delivery-proofness were first
introduced by Thomson (2014) in the context of pure exchange economies. In that
context, the Walrasian rule satisfies pre-delivery-proofness but violates withdrawal-
proofness, whereas certain egalitarian and dictatorial rules violate both proper-

ties (Thomson, 2014, 2024a). These two axioms have also been applied to the

2 Ashlagi and Roth (2012) observe a related form of strategic behavior in multi-hospital kidney
exchange: hospitals withhold easily matchable donor-patient pairs for internal matching while
enrolling only hard-to-match pairs (e.g., highly sensitized recipients) in the centralized pool.



problem of reallocating an infinitely divisible commodity among agents with
single-peaked preferences (Bonifacio, 2024). For this problem, a certain class
of reallocation rules, including the well-known uniform reallocation rule, satisfy
weak withdrawal-proofness but not pre-delivery-proofness.> Our findings are consis-
tent with these results: Theorem 1 and Proposition 2 parallel Thomson’s conclu-
sions for the Walrasian rule; and similar to Bonifacio (2024), Proposition 1 and
Example 3 indicate the existence of weak withdrawal-proof rules in the object ex-
change problem. In addition, we provide characterizations of TTC based on weak
withdrawal-proofness and strict pre-delivery-proofness. To the best of our knowl-
edge, no characterization results based on withdrawal-proofness and pre-delivery-
proofness (or their variants) have been established, even in other models.

Absence-proofness, first introduced by Dogan (2013) in the context of cooper-
ative game theory, is considered a coalitional version of withdrawal-proofness be-
cause it concerns manipulation through withdrawal and reallocation by groups
of arbitrary size. Dogan applies this axiom to the object exchange problem and
shows that no rule satisfies it. Since both individual rationality and withdrawal-
proofness are weaker than absence-proofness, Theorem 1 implies that Dogan’s im-
possibility result continues to hold when absence-proofness is replaced with these
two axioms.

Withdrawal-proofness and its weaker version may be related to pair-efficiency
(Ekici, 2024) (or reallocation-proofness).* This is because, although the former is
a variable-population property and the latter a fixed-population one, they share
the underlying idea that no pair can benefit from reallocating their own objects
after the rule is applied. Similarly, pre-delivery-proofness (and its variants) and
endowments-swapping-proofness (Fujinaka and Wakayama, 2018) share the idea that
no pair can benefit from swapping their own endowments before the rule is ap-
plied. Several studies have examined the implications of pair-efficiency, reallocation-
proofness, or endowments-swapping-proofness.> TTC is characterized by individual
rationality, pair-efficiency, and strategy-proofness (Ekici, 2024); it is also character-

3Bonifacio (2024) refers to weak withdrawal-proofness as “withdrawal-proofness.”

“More precisely, the original definition of reallocation-proofuess (e.g., Papai (2000) and Fujinaka
and Wakayama (2018, 2024)) incorporates preference manipulations into a form of strategic be-
havior.

5Gee, for example, Papai (2000), Fujinaka and Wakayama (2018, 2024, 2025a), Chen and Zhao
(2021), Tamura (2023), Ekici (2024), and Hu and Zhang (2024). Extensions to more general ob-
ject reallocation problems include Atlamaz and Klaus (2007), Feng (2023), and Fujinaka and
Wakayama (2025b). Additionally, Tamura (2022) introduces an invariance axiom on endowments-
swapping to characterize the crawler (Bade, 2019) on the single-peaked preference domain.



ized by individual rationality, strategy-proofness, and endowments-swapping-proofness
(Fujinaka and Wakayama, 2018). Theorem 2 and Theorem 3 serve as counterparts
to the characterizations by Ekici (2024) and Fujinaka and Wakayama (2018), re-
spectively. Notably, unlike the characterization involving endowments-swapping-
proofness, Theorem 3 does not require strategy-proofness.

Since Ma (1994) characterizes TTC by means of individual rationality, efficiency,
and strategy-proofness, several alternative characterizations, such as those by Ekici
(2024) and Fujinaka and Wakayama (2018), have been proposed in the fixed-
population setting.® Our theorems extend this literature by providing new char-
acterizations of TTC in the variable-population setting.

Organization of the paper The rest of the paper is organized as follows. Sec-
tion 2 introduces the preliminary notation and definitions. Section 3 examines
the implications of withdrawal-proofness. Section 4 analyzes pre-delivery-proofness
and its variants. Section 5 concludes by discussing remaining issues for future

research. Omitted proofs of the main results are provided in the appendix.

2 Preliminaries

LetZ ={1,2,...,|Z|}and O = {01, 02,..,0|0] } be a finite set of potential agents
and a finite set of potential objects, respectively.”

An “economy” is formalized as follows. Let (I,O) be a pair of I C Z and
O C Owith1 < |I| = |O| < +oco. Each agent i € [ has a strict preference relation
>; over O. Given >;, we denote the induced weak preference relation by 77;; that
is, for each {0,0’'} C O, if 0 7; 0/, then either 0 >; 0’ or 0 = 0’. Let & be the set
of strict preferences over O. For each i € I, let w; € O be agent i's endowment.
An economy is aliste = (I, 0O, >, w), where

e [ C 7 is a set of agents;
e O C Oisasetof objects such that 1 < |I| = |O| < +o0;
o = = (>)ic] € P} is a preference profile; and

e w = (w;)je; € O is an endowment profile such that for each {i,j} C I with
i #j, wi # wj.
®See also, for example, Svensson (1999), Takamiya (2001), and Miyagawa (2002).
’Given a set A, we denote the cardinality of A by |A|.




Let & be the set of all economies.

Given (I,O) withI CZ,0 C O,and 1 < |I| = |O| < 400, an assignment for
(I,O) is a function x: I — O such that for each {i,j} C I withi # j, x(i) # x(j).
We write x; for x(i). Let X(I,O) be the set of assignments for (I,0). Let

X = U X(I,0).
ICZ,0C0:
1<|I|=[0]<+e0
Let 2 C & be the set of admissible economies, which we call a domain. A rule
on 7 is a function f: 9 — X thatmapse = (I,0,>,w) € P to f(e) € X(I,0).
We denote the object assigned to agent i at e by f;(e).
The Top Trading Cycles rule (TTC) on &, denoted by TTC: ¥ — X, is central
in the literature on object exchange problems. For each e = (1,0, >,w) € 2,
TTC(e) € X(I,0) is obtained by the following TTC algorithm:

e Round 1. Each agent points to the agent who owns his most preferred ob-
ject. At least one “cycle” exists since the number of agents is finite. A cy-
cle is a sequence of agents (i1(= in+1),02,...,iNn) such that for each n €
{1,2,...,N}, i, points to i, 1. Each agent in a cycle is assigned the object
along the cycle and is removed from the economy with the assigned object.
If any agent remains, the algorithm proceeds with the next round; other-

wise, it terminates.

e Round t > 2. Each remaining agent points to the agent who owns his most
preferred object among the remaining objects. At least one cycle exists. Each
agent in a cycle is assigned the object along the cycle and is removed from
the economy with the assigned object. If any agent remains, the algorithm

proceeds to the next round; otherwise, it terminates.

The following two axioms are standard in the literature: no agent is strictly
worse off after the reallocation; the chosen assignment cannot be changed to make

some agent strictly better off without making another agent strictly worse off.

Individual rationality: For eache = (I,0,>,w) € Z and eachi € I, fi(e) 7Z; w;.

~J

Efficiency: For eache = (I,0,>,w) € %, there isno x € X(I,0) such that for
eachi € I, x; Z; fi(e) and for some j € I, x; =; fi(e).



3 Withdrawal-proofness

This section considers the following manipulation scenario: an agent withdraws
from a given rule, taking his endowment with him; the rule is then applied to the
subeconomy involving the remaining agents; afterward, the agent who withdrew
and one of the agents who participated exchange the withdrawn endowment and
the object assigned to that participant. Withdrawal-proofness rules out the possi-
bility that this arrangement makes both agents at least as well off as they would
have been without manipulation, and at least one of them strictly better off.

To formally define withdrawal-proofness, we introduce some notation. For each
e=(1,0,>,w) € &and eachi € I, let

e i = (I\{i}, 0\ {wi}, -2 w ),
where
e I\ {i} is aset of agents;

e O\ {w;} is a set of objects such that |I \ {i}| = |0\ {w;}|;

O\{wi} _ (O\{wi} I\ {i}
* i N <> >keI\{i} € Zo\(w)
eachk € T\ {i} and each {0,0'} C O\ {w;} with o # ¢/,

is a preference profile such that for

0 >g\{wi} 0 <= 0> 0;

and
o w_ ;= (wi)rep\(iy € X(I\{i},O0\ {w;}) is an endowment profile.

That is, given an economy e € &, e_; is the “reduced economy” obtained by

having agent i withdraw with his endowment w;.

Withdrawal-proofness: There arenoe = (I,0,>,w) € Z,{i,j} C I withi # j,
and {y;,y;} € Osuchthate ; € 7, {y;,y;} = {w, file_;)}, for each k €
{i,7}, vk Zk fi(e), and for some k € {i, ]}, yx =« fr(e).

We present an impossibility theorem on domains that satisfy the following

two conditions.

D1. Foreache = (I,0,>,w) € 2 with |I| >2and eachi € I,e_; € 2.



D2. There is an economy ¢* = (1,0, >*,w*) € Z such that I = {i, ], k} and

* * *
s’
w,’(‘ w;‘ w;
w; w;(" w;-‘

* * *
wi Wi wg

D1 states that the domain includes all reduced economies obtained by the with-
drawal of a single agent. D2 is a richness condition: the domain includes a three-
agent economy in which agents j and k rank agent i’s endowment as their most
preferred and each prefers the other’s endowment to his own, while agent i ranks
one of j's and k’s endowments as the most preferred and the other as the least pre-

ferred.

Theorem 1. Let ¥ C & be a domain satisfying D1 and D2. Then, no rule on & satisfies
individual rationality and withdrawal-proofness.

Before proving this theorem, we present a lemma.

Lemma 1. Let 2 C & be a domain satisfying D1. If a rule f on & satisfies individual
rationality and withdrawal-proofness, then for each e = (1,0, >,w) € 2 with |I| =
O] =2, f(e) = TTC(e).

Proof. Since |I| = |O| = 2, each e € Z falls into one of the following three cate-

gories:
i i i
0 w w i) w; w; (i)  w; wj

In cases (ii) and (iii), individual rationality implies f(e) = w = TTC(e). We con-
sider case (i) below. Suppose on the contrary that

(file), fi(e)) = (wi,wj) # (wj,w;) = (TTCi(e), TTCj(e)) .
Consider e_; € &. Since ¥ satisties D1,e_; € 2. By fj(e_;) = wj,
f]'(e_i) = W — Ww; = fi(e) and wj >-]‘ wj = f]-(e),

in violation of withdrawal-proofness. Hence, f(e) = TTC((e). O



Proof of Theorem 1. Suppose on the contrary that there exists a rule f: ¥ — X
satisfying the two axioms. Since Z satisfies D2, there is ¢* = (1,0, ", w*) € Z
such that I = {i,j,k} and

* * *
s s,
wp wi wf
w? cufc‘ w;‘

* * *
wi Wi wg

There are two cases.

e Case 1: fj(e*) = w;}. Then, fi(e*) # w;. Consider the pair {7, k} and e*, € &.
Since ¥ satisfies D1, ¢* | € . By Lemma 1,

(file" ), filem ) = (TTCi(e"), TTC;(e7) = (wf,w} ).
Hence,
wp Zi file") and - fi(e'y) = wi = fi(e"),
in violation of withdrawal-proofness.

e Case 2: fj(e*) # wy. Consider the pair {i,j} and e*; € &. Since Z satisfies D1,
e’ € 9. By Lemmall,

(fi(e") file)) = (TTCi(e"), TTCk(e")) = (wj,wj ).
Hence,
filely) = wp Zi file") and  w; =} fi(e"),
in violation of withdrawal-proofness. O

Before proceeding, we introduce some notation. For each i € Z, each >~; €
P, and each O C O, let =;|p € P be the restriction of >; over O; that is, the
preference relation defined by setting for each {0,0'} C O with o # ¢/,

0>=ilp0 < o0=;0.

In other words, -;|o represents the induced preference relation over O C O from
- € Zp.



Remark 1. If 2 violates D2, Theorem 1 no longer holds. Precisely, TTC and at
least one rule that differs from TTC satisfy the two axioms. Let = € 2§ be such
that

=1 =2 73 k>4

02 03 01 Ok
01 02 03

03 01 02

and w = (ol,oz, .. .,0|I‘>. In addition, let
2(-,w)={e=(1,0,~" W) e&:Viel, = =+ioand wj = w;}.

This domain Z(>,w) satisfies D1 but not D2. We denote the no-trade rule on
9(-,w) by NT: 9(>,w) — X; thatis, for each e = (I,0,>', ') € 9(>,w),
NT(e) = «'. Note that for each e = (I,0,>',¢') € 2(>-,w), if {1,2,3} ¢ 1,
TTC(e) = NT(e) = w’; otherwise, for each k € I\ {1,2,3}, TTCi(e) = NTi(e) =
or but

(TTCq(e), TTCy(e), TTC3(e)) = (02,03,01)
7 (01,02,03)

= (NTi(e), NTz(e), NTs(e)).

Then, both TTC and NT satisfy individual rationality and withdrawal-proofness.®
See Online Appendix B for the proof of this fact. O

Below, we provide examples of natural restricted domains that satisfy both
D1 and D2.

Example 1. Let < be a linear order on O such that
01 op -+ 00|

Given an agent i € 7 and a set of objects O C O, agent i’s preference relation
—; € Po is single-peaked with respect to < if there exists an object p(>-;) € O
such that

80bviously, TTC on 2 (>, w) satisfies efficiency, while NT on 2(,w) violates efficiency.

10



e foreacho € O\ {p(>~i)}, p(>;) =i 0; and

e for each {0,0'} C O\ {p(>;)}, if eithero < 0o’ < p(>;) or p(>;) <0 <o,
then o’ =, o,

and >; € Py is single-dipped with respect to < if there is an object d(>~;) € O
such that

e foreacho € O\ {d(>;)}, 0 >; d(>;); and

e for each {0,0'} C O\ {d(>;)}, if eithero < o’ < d(>;) ord(>;) <0 <o,
theno =; 0.

We denote the set of single-peaked preference relations over O with respect to <
by .70,4. Let

In={e=(L,0,=w)e&:NViel, - € So4}

be the single-peaked domain. The single-dipped domain %, is defined anal-
ogously. Obviously, 7, and 2 satisty D1. To see that they satisfy D2, let I =
{1,2,3}, 0 = {o01,02,03}, w* = (01,02,03), and {>*, =**} C L be such that

=sslisiils e
* * * * * *
Wy Wy Wy | w3 Wy Wy
* * * * * *
W, W3 Wy | Wy W3 W
* * * * * *
wp wWp W3 | W, W, Wy

Lete* = (1,0, >*,w*) and e** = (1,0, =**,w*). Then, ¢* € I, and e** € 2,. A

Remark 2. On the single-peaked domain, not only TTC but also many other rules
satisfy desirable properties such as individual rationality, efficiency, and strategy-
proofness. Examples include the crawler (Bade, 2019), the neighborhood TTC rules
(Liu, 2025), and the r-neighborhood rules (Huang and Tian, 2023). Theorem 1
implies that none of these rules satisfy withdrawal-proofness. O

Example 2. Given an agent i € Z, a set of objects O C O, and his endowment
w; € O, agent i’s preference relation ~; € &g is a common ranking preference
relation over O with respect to w; if for each {0;,0r} C O such that o; ~; w; and
Ok =i Wi,

j<k < 0j ;o0

11



That is, a common ranking preference relation orders “acceptable” objects ac-
cording to a ranking shared by all agents. Let 23" C Z( be the set of common
ranking preferences over O with respect to w;. Let

Do ={e=(,0,-,w) e &:NViel, - € 5}

be the common ranking domain. Obviously, %, satisfies D1. To see that Z.,
satisfies D2, let I = {1,2,3}, O = {01,03,03}, w* = (01,02,03), and >* € P be
such that

* * *
~1 72 73
* * *
Wy W Wy
* * *
w; wi w}
* * *
Wy, W, Wy
Lete* = (1,0, >*,w*). Then, * € P¢,. [ |

In light of the above negative result, we consider a weaker version of withdrawal-
proofness that pertains to manipulations in which both agents in the manipulating

pair are strictly better off.

Weak withdrawal-proofness: There arenoe = (I,0,>,w) € 2, {i,j} C I with
i #j,and {y;,y;} € Osuchthate_; € Z,{y;,y;} = {wi, file-i)}, yi =i fi(e)
and y; =; f(e).

Weak withdrawal-proofness allows us to escape the negative result: TTC is weakly
withdrawal-proof regardless of whether the domain Z satisfies D1 or D2.

Proposition 1. Let  C &. TTC on 2 satisfies weak withdrawal-proofness.
Proof. See Appendix A. O

The following example shows that, in addition to TTC, several other rules

satisfy individual rationality and weak withdrawal-proofness.
Example 3. Suppose that |Z| = |O|. Let = € 27 be such that

=1 72 73 k>4

03 01 01 Ok

01 03 02
02 02 03

12



and w = (ol,oz,. . "OII\>' Let e’ = (Z,0, -, w). Letfb: & — X be the rule such
that for each e € &,

) (03,01,02,04, .. -10|I|> ife=¢

(e) = .
TTC(e) otherwise.

Note that
TTC(e") = (03,02,01,04,...,0|Z|> #* (03/01/021041---10|I\) = £2(e").

Obviously, f” is individually rational. It also satisfies weak withdrawal-proofness. To

see why, lete € &. If e = e

, since all agents except agent 3 receive their most pre-
ferred objects under f b, no pair has an incentive to manipulate; otherwise, since
f’(e) = TTC(e) and for each i € I, f’(e_;) = TTC(e_;), the claim immediately

follows from the weak withdrawal-proofness of TTC. |

Additionally, f* in Example 3 obviously satisfies efficiency. Hence, individual
rationality and weak withdrawal-proofness combined with efficiency cannot charac-
terize TTC. On the other hand, it is noteworthy that agent 3 benefits from mis-
representing his preferences under rule f* in Example 3. Let =4 € % be such
that

3

01

03
02

and e’ = (Z,0, (~5,>_3),w). Then,
fi(e) = TTCs(¢') = 01 =3 00 = f3(€’).

We can show that this is the case for any rule that differs from TTC satisfying
individual rationality and weak withdrawal-proofness.
We consider the following incentive condition on preference revelation, which

states that no agent can benefit from misrepresentation of his preferences.

Strategy-proofness: For each e = (I,0,>,w) € 2, eachi € I, and each ¢ =
(LO, (=}, =-i),w) € 2, fi(e) Zi file').

13



We characterize TTC in terms of individual rationality, strategy-proofness, and
weak withdrawal-proofness on any domain satisfying D1 and the following richness
condition on its domain of definition:

D3. Foreache = (I,0,>,w) € Z,eachi € I,each {0,0'} C O\ {w;} witho # o,
there is a pair of preferences {>/, >~} C &0 such that

!/ 1
-
0o 0
o' w;
wi

and {(1,O, (-}, >_),w), (1O, (~/,~_;),w)} C 2.

D3 states that for any pair of objects 0 and o, each agent can rank o as the most
preferred, o’ as the second most preferred, and his endowment as the third most
preferred; and also rank o as the most preferred and his endowment as the second
most preferred.

Theorem 2. Let ¥ C & be a domain satisfying D1 and D3. Then, a rule on & satisfies
individual rationality, weak withdrawal-proofness, and strategy-proofness if and only if
it is TTC.

Proof. See Appendix A. O

Remark 3. D3 requires the domain of preferences to be sufficiently rich. In fact,
many natural restricted domains, such as the single-peaked domain, the single-
dipped domain, and the common ranking domain, violate D3. O

Remark 4. Although Theorem 2 does not rely on any efficiency-related axioms,
the proof of its “only if” part employs techniques developed by Ekici and Sethu-
raman (2024), who provide an alternative proof of Ekici’s (2024) pair-efficiency
characterization of TTC. See Appendix A for details. O

4 Pre-delivery-proofness

This section considers the following type of manipulation: agent j pre-delivers
to agent i the object w; that i would receive under full participation; upon re-

ceiving this object, agent i withdraws; agent j, now holding i’s endowment w;,

14



participates; if the rule assigns j an object he strictly prefers to his original assign-
ment, the manipulation is successful. We focus on rules that are immune to such
manipulations, that is, pre-delivery-proof rules.

To formally define pre-delivery-proofness, we introduce some notation. For each
e=(I,0,>,w) € &and each {i,j} C I withi # j, let

where
e [\ {i}is asetof agents;
e O\ {wj} is a set of objects such that [T\ {i}| = |O\ {wj}|;
. >?>{w]'}: (>l(<)\{%})

kel\{i} € (@é\\{{iij} is a preference profile such that for

eachk € I'\ {i} and each {o,0'} C O\ {w;} witho # 0/,

O\{w;
o>k\{ i} o <= o0 0;

and

o wi;ji € X(I'\{i},O\ {wj}) is an endowment profile such that w;’j = w; and
foreachk € T\ {i,j}, w]i’j = Wy.

That is, given an economy e € &, ei;ji denotes the “reduced swapping economy”
in which agents i and j first exchange their endowments, and then agent i with-

draws.

Pre-delivery-proofness: There are noe = (I,0,>,w) € 2 and {i,j} C I with
i # jsuchthate”, € 2, w; = fi(e), and f;(e"”,) = fi(e).

The next result shows that TTC satisfies pre-delivery-proofness on any domain.
Proposition 2. Let 9 C &. TTC on  satisfies pre-delivery-proofness.

Proof. See Appendix A. O

This result may seem appealing, but only because pre-delivery-proofness is quite
weak in our setting. In fact, several rules that differ from TTC satisfy this prop-
erty. For example, the no-trade rule satisfies pre-delivery-proofness. Moreover, the
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no-trade rule also satisfies strategy-proofness, so a characterization of TTC simi-
lar to Theorem 2 does not hold if weak withdrawal-proofness is replaced with pre-
delivery-proofness. The following example shows that a rule that differs from TTC
can satisfy pre-delivery-proofness even when both individual rationality and efficiency
are imposed.

Example 4. Suppose that |Z| = |O|. Let - € 2] be such that

=1 72 73 k>4

02 01 01 Ok
03 02 02
01 03 03

and w = (01,02,. . "OII\)' Let ¢! = (Z,0,=,w). Letfh: & — X be the rule such
that for each e € &,

fh(e) _ { (03,02,01,04,...,0|Z|) if e = éf

TTC(e) otherwise.

Note that
TTC(e%) = (02,01,03,04,...,0|Z|> #+ <03,02,01,04,...,0|1‘> = F(e).

Obviously, f° satisfies individual rationality and efficiency. To see that f! satisfies
pre-delivery-proofness, let e € &. There are two cases.

e Case 1: e # €. Then, f%(e) = TTC(e). Since for each {i,j} C I withi # j,
ei;jz. # ¢, we have f”(eiji) = TTC(ei;ji). By Proposition 2, fi(e) satisfies pre-
delivery-proofness in this case.

e Case 2: ¢ = el Since for each k ¢ {1,3}, flf(e) = wy and agent 3 receives
his most preferred object, it suffices to consider the case j = 1 and i = 3. Then,
w1 = fg(e) and flu(el_%) = TTCl(eEg) = w3 = flb(e) Hence, fi(e) satisfies pre-
delivery-proofness in this case. |

Pre-delivery-proofness addresses only manipulations in which the withdrawing
agent is pre-delivered the object he would receive if all agents participated. Ob-

viously, the agent may still choose to withdraw if he is pre-delivered an object he
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strictly prefers. To account for such manipulations, we propose a strengthening
of pre-delivery-proofness.

Strict pre-delivery-proofness: There are no e = = (,O,>,w) € Zand {i,j} C I
with i #]suchthate’] € 9,wj Zi file),and fj(e ’]) =i fi(e).

The conjunction of this axiom with individual rationality characterizes TTC on

any domain that includes all reduced swapping economies.

D4. Foreache = (I,0,>,w) € 2 with |I| > 2 and each {i,j} C [ withi # j,
e c9
_1 .

Theorem 3. Let ¥ C & be a domain satisfying D4. Then, a rule f on & satisfies
individual rationality and strict pre-delivery-proofness if and only if it is TTC on 9.

Proof. See Appendix A. O

Remark 5. It is worth noting that Theorem 3 characterizes TTC without assum-
ing either efficiency or strategy-proofness, which are often required in the fixed-
population setting. Moreover, TTC satisfies strict pre-delivery-proofness regardless
of whether the domain 7 satisfies D4. See the proof of the “if” part for details. <

Remark 6. Strict pre-delivery-proofness can be weakened to the following;:

Endowments-swapping-and-withdrawal-proofness: There are no e = (1,0, >,
w) € 2 and {i,j} C [ withi # jsuch that ¢”. € 2, w; =; fi(e), and

—1
fi(e) = fi(e).
Both pre-delivery-proofness and endowments-swapping-and-withdrawal-proofness are
weaker than strict pre-delivery-proofness, but there is no logical relationship be-

tween the two axioms.” We note that Theorem 3 does not hold if strict pre-
delivery-proofness is replaced with endowments-swapping-and-withdrawal-proofness.

9The no-trade rule NT satisfies pre-delivery-proofness but violates endowments-swapping-and-
withdrawal-proofness. To see that NT violates endowments-swapping-and-withdrawal-proofness, let
e = (ILH, > ,w) € 2 be such that {i,j} C I withi # j, wj =i wj, and w; +; wj. Then,
w; =; w;i = NT;(e) and NT]'(el;]i) = w; =j wj = NTj(e). Rule f defined in Example 5 be-
low satisfies endowments-swapping-and-withdrawal-proofness but violates pre-delivery-proofness. To
see that fviolates pre-delivery-proofness, consider economy ¢ and a pair of agents {1,3}. Then,

ws =03 = f1(€) and f3(€"3) = w3 = 01 =3 02 = f3(e).
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As shown in Example 5 below, a rule that differs from TTC satisfies individual
rationality and endowments-swapping-and-withdrawal-proofness.'0:11 &

Example 5. Suppose that |Z| = |O|. Let = € 2 be such that

=1 =2 73 k>4

03 01 01 Ok
02 02 02
01 03 03

and w = (01,02, .. -10|I\>- In addition, let
2(-)={e=(1,0,-,0)e&:Viel, j=+ilo}.

This domain Z(>) satisfies D4. Let ¢ = (Z,0, >, w). Let f: 2(>) — X be the
rule such that for each e € 2(>),

N (03,01,02,04, .. .,0|I|> ife=¢e

(e) =
TTC(e) otherwise.

Note that

~

TTC(?) = <03,02,01,04,...,0|I|> 7é <03101/02/04/---r0|1\> :f(é\)

Obviously, j?is individually rational. For the proof of the endowments-swapping-and-
withdrawal-proofness of this rule, see Online Appendix B. [ |

The single-peaked and single-dipped domains satisfy D4. We provide another

example of a domain that satisfies this condition. Thus, we characterize TTC as

the unique rule satisfying the two axioms even on these restricted domains.!?

10Rule fin Example 5 satisfies efficiency. This implies that individual rationality and endowments-
swapping-and-withdrawal-proofness cannot characterize TTC even under efficiency.

1 Endowments-swapping-and-withdrawal-proofness does not cover situations in which the remain-
ing participant is indifferent between the outcomes with and without manipulation. To ad-
dress such cases, we define a stronger axiom, strict endowments-swapping-and-withdrawal-proofness,
which requires immunity to manipulations where the withdrawing agent strictly benefits, while
the participating agent may be indifferent. Unlike strict pre-delivery-proofness, this axiom leads
to an impossibility result: no individually rational rule satisfies strict endowments-swapping-and-
withdrawal-proofness. The proof is provided in Online Appendix C.

12The common ranking domain %, violates D4. To see this, suppose Z = {1,2,3,4} and O =
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Example 6. Suppose that |Z| = |O|. Fix a preference profile =* = (>=%);c7 € £5.
Let
2(-")={e=(1,0,=,w)e&:Viel, = =>7|o}.

Roughly speaking, Z(>~*) is the set of economies obtained by reducing an econ-
omy where each agent i has the preference relation >7*. Importantly, for each i,
each -7 is arbitrary. Obviously, Z(-*) satisfies D4. [

5 Concluding remarks
We conclude by highlighting three directions for future research.

1. Weak withdrawal-proofness. We have characterized TTC by individual ra-
tionality, weak withdrawal-proofness, and strategy-proofness. Whether this char-
acterization holds on natural restricted domains, such as the single-peaked
preference domain, is an open question. Another direction is to characterize
the class of rules that satisty individual rationality, weak withdrawal-proofness,

and additional punctual properties such as efficiency.

2. Pre-delivery-proofness. As stated above, pre-delivery-proofness is relatively
weak in our model. Consequently, both TTC and the no-trade rule satisfy
individual rationality, pre-delivery-proofness, and strategy-proofness. Character-
izing the full set of rules that satisfy these three axioms is open. It would
also be worthwhile to identify rules that satisfy individual rationality, effi-

ciency, and pre-delivery-proofness.

3. Multiple-object reallocation. To the best of our knowledge, the implica-
tions of withdrawal-proofness and pre-delivery-proofness have not been exam-
ined in the context of multi-object reallocation problems. Since our model
assumes each agent initially owns exactly one object, these axioms are not
directly applicable. Extending them to multi-object settings is an open and
important area for future work. Bu, Chen, and Thomson (2014) examine
two related axioms—endowments-splitting-proofness and endowments-merging-
proofness—introduced by Thomson (2014) in the context of pure exchange
economies. They show that no rule satisfies individual rationality, efficiency,

{01,02,03,04} and let e = (Z,0,,w) € P be such that w = (01,02,03,04) and 03 >4 04 >4
0y »4 01. Then, e&‘i & Der.
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and either of these. It would be worth exploring whether similar impossibil-
ity results hold for extended versions of withdrawal-proofness or pre-delivery-

proofness.

A Appendix: Proofs of our main results

A.1 Additional notation and definitions

This appendix provides the proofs of our main results. Before proceeding, we in-
troduce some additional notation and definitions. We begin with notation related
to the TTC algorithm. Lete = (1,0, >,w) € Zandr € N = {1,2,... }. For each

{j, k} C I, we write
. (er)

]—)

to indicate that agent j points to agent k in Round r at e. Let C(e,r) C 2! denote
the set of groups of agents involved in cycles in Round r at e. We denote the set

of agents involved in cycles in Round r at e by

I(e,7) = U C,

CeC(er)
and the set of objects assigned to agents in Round r at e by

O(e,r) ={0o€ O:3Jiecller), o=TTCi(e)}
={o€O:3i€l(er), o =w}.
Additionally, define I"(¢) and O"(e) as
T r
I'(e) = |J I(e,t) and O7(e) = | J Ofe,t).

=1 t=1

For convenience, let [°(e) = O%e) = @. With abuse of notation, C = {i;(=
iNt+1),12,...,in} € C(e, 1) also represents the sequence (i1, 1y, ..., iN) of agents in
the cycle C. That s, for each i, € C,

e iy €I\I"!(e)and w;, € O\ O (e); and

e for eacho c O\ (Or_l(e) U {win+1})/ TTCin (e) = win+1 >_in 0.
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We also use the following notion in our proofs. For each i € I, each ~; € #,
and eacho € O, let U (>;,0) = {0’ € O: 0’ =; 0} be the strict upper contour set
of o0 according to >;.

A.2 Two lemmas

In this subsection, we present two lemmas concerning TTC. These lemmas state
that if an agent receives an object in a round of the TTC algorithm at e that occurs
before both of the rounds in which the manipulating agents i and j receive their
objects, then the agent receives the same object in the same round at all three

economies, ¢, e_;, and e ] 13

Lemma 2. Lete = (1,0, -, w) € 2, {i,j} C Twithi # j, and (r;,r;) € N? be such
thati € I(e,r;) and j € I(e,rj). Suppose that e_; € 2 and min{r;,r;} > 2. Then, for
each t € {1,2,...,min{r;,r;} —1},

Cle, t) CCle_it);
Vk e I(et), TTCx(e_;) = TTC(e).

Lemma 3. Lete = (I,O0, -, w) € 2,{i,j} C I with i # j, and (r;,r;) € IN? be such
that i € I(e,r;) and j € (e, rj). Suppose that ¢”, € 9 and min{r;,r;} > 2. Then, for
each t € {1,2,...,min{ri,r]-} -1},

Cle,t) C C(e", 1);
Vk € I(e,t), TTC(e"”.) = TTCi(e).

Proofs of Lemma 2 and Lemma 3. The proofs of Lemma 2 and Lemma 3 are identi-
cal, differing only in whether the reduced economy is ¢_; or ei’j . depending on the
manipulation. Therefore, we present a single proof that applies to both cases.

Givene = (I,0,~,w) € 7, let w" = (wk])kel € X(I,0) be such that v,/ =
wj, w]] = w;, and for each k € I\ {i,j}, w;) = wy. Let

0 € fem 000 10380}

13This result also holds when replacing e_; or e’ w1th e’l. Fujinaka and Wakayama (2025b)
prove the corresponding lemma in the context of ob]ect exchange problems with private and
social endowments.
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Thus, when ¢/ = ¢,
= (10N (o =01 ) = (10 (), 00\ ), =01 wi) =

when ¢/ = e/,
::(1\{@A9\{wg,>0¥””¢¢4>::(1\{@A9\{wg,>oﬁwﬁﬂu%)::e”f

By the supposition of Lemma 2 (resp. Lemma 3), e_; € Z (resp. ¢”. € 2).
Let r = min{r;, r]} > 2. We show the claim by induction on ¢ E {1,2,...,r—

1.

BASE STEP. Lett = 1. Let C = {i1(=in11),i2,...,iN} € C(e,1). Pick any i, € C.
Then,
YoeO \ {a),-nH }, TTCin (e) = Wi, =i 0. (1)

n

Byi, € I(e,1)andt =1 <r—1,i, ¢ {i,j}, which implies that
in € I\{i} and w; =wj;, €0\ {w;}. ()
Thus,

Ccn\{i} and [J{wf) = Ufw) CO\{w)}.

keC keC
In addition, by (1) and (2),

O\ !
Vo € O\ {w/ )\ {wi, .} wiy,, =1 o
This implies that C € C(e’ ;, 1) and
TTCZ'” (e’_i) = TTCin (8) = winH.

INDUCTION HYPOTHESIS. Lett € {2,3,...,r —1}. Foreachs € {1,2,...,t — 1},
the following claim holds:

ces >/g)c< 9) “

Vk e I(es), TTCk( TTC(e).
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INDUCTION STEP. Lett € {2,3,...,r —1} and C = {i1(=iNn+1),i2,...,iN} €
C(e,t). Pick any i, € C. Then,

TTC;,(e) = wj, ;- 4)
Byi, € I(e,t) and t <r—1,i, & {i,j}, which implies that
in e I\{i} and w] =w;, €0\ {w}}. (5)
Let r;, € IN be such that i, € I(¢’ ;,r;,). We proceed in four steps.

Step 1: Foreach i, € C, w;, ., i, TTC;,(e’_;). Letiy € Cando € Ut (>, wj, ).
By iy € I(e,t) and (4), 0 € O'~1(e). Then, there are s’ € {1,2,...,t — 1} and
¢ € I(e,s") with TTCy(e) = 0. By the induction hypothesis, (3) holds for s’ and
thus,

tel( ;,s) and TTC,(¢" ;) =TTCy(e) = o.

Hence, TTC;, (¢’ ;) # o. Thatis, w;, ,, Zi, TTC;, (e’ ;).

Step 2: There is r* € IN such that for each i, € C, r* = r{n. By Step 1 and (5),

(0] 4
= win+1 il’n\{a%} TTCin (el—i)' (6)

. /
Vi, € C, Wi .,

This implies

Then, there is r* € IN such that for each i, € C, r* = rfn.

Step 3: C € C(e’_;,r*) and TTC;, (¢’ ;) = TTC;,(e) = wj,,,- By (5), Step 2
implies that

CCN{N\I ' (¢) and U{wi} = U{wd € (0O\{wH)\ O™ ().

keC keC

O\{w! ; i
in\{w,} TTC;, (¢ ;), theni, does not receive

el

Leti, € C. Recall (6). If w! .\

iy 1__anH ~

the most preferred object among (O \ {w!}) \ o (e ;) according to >2
Round r* = rl’.n of the TTC algorithm at e’ ., which is a contradiction. Hence,

TTG;, (¢ ;) =wi = wj,,, = TTC;,(e).

Z‘n+1
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Then, C € C(e" ;,1").

Step 4: t = r*. Suppose on the contrary that ¢ # r*. There are two cases.

e Case 1: t+ < r*. Then, for each i, € C, i, € (I\{i})\I'"!(¢",). This to-
gether with C ¢ C(¢’_;, t) and Step 3 implies that there are i, € C, k € (I'\ {i}) \
I'"}(' ), and 0 € (O \ {w!}) \ O'~1(¢" ;) such that

!t i’
im (e;l>) k and w]I( =0 >O\{wl} wim+1 - (U/ 1 - TTClm (e) = TTClm (eii)'

im I+

By {0,w;,.,} C O\ {w]} €O,
0 >i, Wi, = TTCim (e)

Further, by iy, € C € C(e, t), 0 € O'~1(e). Then, thereares’ € {1,2,...,t—1} and
¢ € I(e,s") with TTCy(e) = 0. By the induction hypothesis, (3) holds for s’ and
thus,

¢el(e ,s) and TTCy(e' ;) =TTCy(e) =0 € O(e ;).
This contradicts 0 € (O '\ {w!}) \ O'1(¢" ).

e Case2: r* < t. By C ¢ C(e,t — 1) and C € C(e, t), Step 3 implies that there are
im€C,kelI(e,t—1),and o € O(e,t — 1) such that

-1
im (e,t—> ) k and W =20 >_im wierl = wl/'m+1 - TTCim (e) = TTCim(el_i).

By o € O(e,t — 1), there is £ € I(e,t — 1) with TTC,(e) = 0. By the induction
hypothesis, (3) holds for t — 1 and thus,

telle ,t—1) and TTCy(e' ;) =TTCyle) =0 O(e ;,t—1).

Byo € O(e,t —1)and t —1 < 7,0 ¢ {w;,w;}. Thus, {o,w;, ..} C O\ {w;} and

0 =i, Wi,., together imply o >—Sn\{wi} w;, .- Considering that
O\{wi} o / d i Ik
0= Wi, = w;  =TTC;,(e_;) and iy € CeCle ;1)
it holds that

0e 0" 1),

—1

which contradicts 0 € O(¢’_;,t —1) where r* <t —1. O
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A.3 Proof of Proposition 1
Suppose on the contrary that there aree = (1,0, >, w) € 2, {i,j} C I withi # |,
and {y;,y;} € Osuchthate ; € 2, {y;,y;} = {w;, TTC;(e_;)}, and

Yi > TTCi(e) and URali TTC]‘(e).

Since TTC is individually rational, y; =; TTC;(e) ;i w;, which implies y; # w;.
Thus,
TTC]-(e_,-) i TTCi(e) and w; ~j TTC]'(e).

Since w; >-]' TTC]'(B),
ri < Tis (7)

where (r;,7j) € N?is such that i € I(e,7;) and j € I(e,7j). Let o = TTCj(e_;).
Since 0 =; TTC;(e), r; > 2 and o € O"i"!(e). Then, there are s’ € {1,2,...,r; — 1}
and ¢ € I(e,s’) such that TTCy(e) = 0. By Lemma 2 and (7),

¢el(e_;,s’) and TTCy(e_;) = TTCy(e) = o.
Since s’ < r; < rj, £ # j, which contradicts TTC;(e_;) = o. O
A4 Proof of Theorem 2

We prove only the “only if” part. Let f be a rule on ¥ satisfying the three axioms.
Suppose on the contrary that f # TTC. Foreache = (1,0, >, w) € 2, let

o(e) =Y Hoe€O0:0zwil.

iel
Fix an economy é = (1,0, *,w) € Z such that f (&) # TTC(¢) and for eache € 2,
o(e) <o(é) = f(e) = TTC(e). (8)
Let

I ={icl: fi(&) =i TTC;(¢)} and O;={ocO:3iecl;0=uw};
It:{ZEITTCZ(é) ;'zfz(é)} and Ot:{OGOZHiEIt,O:a)i}.
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By f(&) # TTC(¢), ;UL # @. Let
T:I\(IfUIt) and 520\(OfUOt)

Note that for each i € I, f;(¢) = TTC;(¢) because =; is strict. The next claim
follows from the proof in Sethuraman (2016) or Ekici and Sethuraman (2024). For
completeness, we provide the proof.

Claim 1 (Sethuraman (2016); Ekici and Sethuraman (2024)).

(i) Foreachi € I}, f;(é) = w; and for each o € O\ {TTC;(¢),w;},
TTCI'(EV) ;'i ﬁ(é) = Wi ;'i 0.

(11) If = @ and Iy 7é Q.
(iii) Foreachi € I;, TTC;(é) € Oy.

Proof of Claim 1. We first prove (i). Let i € I;. By the individual rationality of f,

TTCi(?) =i fi(?) Zi wi
Suppose on the contrary that there is o € O \ {TTC;(¢) } such that o *; w;. Since
9 satisfies D3, there is >1.T € P such that

-
TTC;(¢)
Wi

and <I, O, (»J, %_i> ,w) € 2. Letel = (I, O, <>1.T, %_i) ,w). Note that o(e!) <
o (é). Then, by (8),
fleh) = TTC(e!). )

Also, we have TTC;(e!) = TTC;(¢); otherwise, TTC;(¢) >ZT TTC;(e!), in vio-
lation of the strategy-proofness of TTC. Further, fi(e!) # TTC;(&); otherwise,
fi(el) = TTC;(&) =; fi(¢), in violation of the strateqy-proofness of f. That is,
f(el) # TTC(e"), which contradicts (9). Hence, &; is such that
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We next prove (ii) and (iii) in the following six steps.

Step 1: For each i € If, TTC;(é) = w; and for each 0 € O \ {fi(¢), w;},
fi(&) =i TTC;(&) = w; *; o. It follows from the similar argument to (i).

Step 2: For eachi € I, f;(¢) = TTC;(&) € O. Leti € I. Foreachj € Iy, by
TTC;(é) = w; (Step 1), TTC;(¢)(= f( ’)) # w;. For each j € I}, by (i), fi(¢) = wj,
which implies f;(&)(= TTC;(#)) # wj. Hence, f;(&) = TTC;(&) € O.

Step 3: For each i € Iy, fi(é) € Oy. Leti € I¢. Foreachj € I, by (i), f;(é) = wj,
which implies f;(¢) # wj. Since for each j € I, f;(¢) € O (Step 2) and |I| = |5|
fi(8) ¢ O. Hence, f;(¢) € Oy.

Step 4: I = @. Suppose on the contrary that Iy # @. Leti; € If. By f; (¢) #
wj, (Step 1) and f; (¢) € Of (Step 3), there is ip € If \ {i1} such that f; (¢) = w;,.
Similarly, there is i3 € I\ {i2} such that f;,(¢é) = wj,, and so on. Since |I| is
finite, there is a set of agents {i1(= isy1),i2,...,is} C I such that S > 2, for
each {s,s'} C {1,2,...,5} withs # ¢, is # iy, and f; (¢) = w;,,. Since for
eachs € {1,2,...,5}, fi.(é)(= w;,,,) is is’s most preferred object according to =;,
(Step 1), TTC;,(¢) = w;,,, = fi,(¢), a contradiction.

Step5: I; Z D. By [ UL} # @ and [; = O (Step 4), It # ©.

Step 6: For each i € I, TTC;(é) € O¢. Leti € I. By Iy = O (Step 4), TTC;(¢) ¢
Oy. Since for each j € I, TTC;(¢) € O (Step 2) and |I| = [O], TTC;(¢) ¢ O. Hence,
TTCZ'(EV) € Oy. O

By I; # @ (Claim 1(ii)), there is iy € I;. By TTC; (¢) # w;, and TTC; (€) €
Ot (Claim 1(iii)), there is iy € I; \ {i1 } such that TTC;, (¢) = w;,. Similarly, there is
i3 € It \ {ix} such that TTC;, (¢) = wj,, and so on. Since |I;| is finite, there is a set of
agents {i1(=isi1),12,...,is} C I; such that S > 2, for each {s,s'} C {1,2,...,S5}
with's # s, is # iy, and TTC; (¢) = wj_,,. There are two cases.

e Case 1: S = 2. Then, by Claim 1(i), (*;,, *;,) is such that
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1

;_2
TTC () Wi, TTCQ()
le( ) ﬁz( )

Consider é_;, € &. Since ¥ satisties D1, ¢_;, € 2. By the individual rationality of
f, fi,(é_i,) = wj,. Hence,

fiz (é*il) = Wi, ;—il Wip = fi1 (ev) and Wiy ;iz Wi, = fiz(é)'

in violation of weak withdrawal-proofness.

e Case 2: S > 3. Then, by Claim 1(i), (¥;,)5_; is such that

v

>v—' i in . ;is 1 >V—Z'
(@ ) w, TTCIZ( ) . TTCi, . (8) = w;, TTG;
)

TTC;
fin (€

S

flz( T fisfl( ) = Wig_,4 fls(

Since Z satisfies D3, there is =; € o such that

and (1,0, (=, > _i,),w) € 2. Leté = (1,0, (=i, >_i,),w). Then, f; (&) # wi,;
otherwise, f; (6) = w;, =i, w;, = fi, (€), in violation of the strategy-proofness of f.
By the individual rationality of f, f; (é) € {w,, w;, }. There are two subcases.
o Subcase 2-1: f; (é) = wj,. By fi,(é) # wi, and the individual rationality of f,
fir (8) = wi,.
o Subcase 2-2: f; (é) = wj,. By fi.(é) # w;, and the individual rationality of f,
fis () = wj,. Similarly, f;.  (é) = wj, ,, and so on. Hence, f;, (&) = wj,.

In both subcases, we have f; (é) = w;,.

Now consider

O\{wz b~ O\{wi,}
(I \ {i2}, O\ {wzz} ( ? >_{11 122} > wiz) :

O\{wi, } ;O\{ i}

Since ¥ satisfies D1, é_;, € 2. Note that < iy}

) is such that
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~O\{wi,}  ~ O\{wi, } «O\{wi, b L O\{wj, }
~iy iy L Tig i
(UZ'3 wi4 (,dl's wil
1 3 _

Since o (é_;,) = o(é) =2 < o(é), by (8), f(é_;,) = TTC(é_;,), which implies
fi,(é—i,) = TTC;,(é—;,) = w;,. Hence, by f;, (é) € {w;,, w;, } and f;, (é) = w;,,

Wi, ;h fil (é) and fil (é—iz) = Wiy ;iZ Wiy = fiZ (é)'

in violation of weak withdrawal-proofness. O

A.5 Proofs of Proposition 2 and Theorem 3

Since Proposition 2 follows from the “it” part of Theorem 3, we provide the proof
of Theorem 3.

A.5.1 The “if” part

Since TTC clearly satisfies individual rationality, we only need to show the strict
pre-delivery-proofness of TTC. Suppose on the contrary that there are e = (1,0, >,
w) € Z and {i,j} C I withi # jsuch thate”; € 2,

w; 7 TTCi(e) and TTCj(e") =; TTC;(e).
Let (r;,7;) € N? be such thati € I(e,7;) and j € I(e,7;). By wj ;i TTC;(e),
(10)
Let TTC]-(ei;ji) =0 € O\ {wj}. Since 0 =; TTC;(e), r; > 2and o € O"i"!(e). Then,
there are s’ € {1,2,...,7; — 1} and £ € I(e,s’) with TTCy(e) = o. By Lemma 3

and (10),
tel(e”,s) and TTCi(e”.) = TTCy(e) = o.

Since s’ < r;, £ # j, which contradicts TTCj(ei;jZ.) = 0.
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A.5.2 The “only if” part

We first prove an additional lemma, which states the following: if a set of agents
C = {iy,ip,...,in} forms a cycle in Round r of the TTC algorithm at ¢, then the

reduced set C \ {i,;_1} forms a cycle in an earlier round than Round r at glm=1m

—ip_1

where i,,’s endowment is w; .

Lemma4. Lete = (1,0, -,w) € 2,1 € N, C = {ir(= int1), 2, ..., in} € C(e,7),
and m € {1,2,...,N}. Suppose that N > 2 and el’” v 9. Then,

o thereis rfm < r such that

1—1

im € I( Z’“n]’l’" r§m> and C_;  =C\{im—1}eC ( iy 11’",1’{ );
and

o foreachi, € C_; ,TTC; (e” lm ot lm) =TTC;,(e) = Wi,y

Proof. For simplicity of notation, let

e = el’” 11"’ = ( \ {im-1},0\{wi,}, >O\{w”” wi’”fl’i’”> € 9.

—ip—1
Note that

e foreachi, € C_; |, TTC; (e) = wj,,;

e C;  CI\{in1}

e foreachi, € C_; \{im}, wll-.;"fl’im = w;, € O\ {w;, };and

Im—1

Im
There are two cases.

eCasel:r=1.ByC € C(e1),

Vig € Ciy  \{ima}, Vo€ O\{w;, }, @' = w;,  =TTG, () =i, 0;

In+1

VoeO\{w; .}, w:_';:—l,im =w; , =TTC; ,(e)>; ,o0

Note that

U {ep) con{w,)
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Hence,

Vin € Ciim—l \ {imfz}’ Vo e (O \ {wlm}) \ {win+1}’ wz"mil’im =w >‘O\{Wim} 0,

Ip41 T 1 7y

Vo e (0\{wi,}) \{wi, .}, w:_‘l,fl,im w2 OMem}

Im—1 [

This implies that C_; € C(¢/,1) and

-1

Vig € Ci  \{ima}, TTC, (¢) = Wi V" = w; = TTG, (e);

In+1
TTG;, ,(¢') = w" " = w;,_, = TTC;,_,(e).
eCase2:r > 2.ByC e Cler),
{im—1,im} C I(e,1). (11)

Then, (11) and Lemma 3 together imply that for each t € {1,2,...,r — 1} and
eachi € I(e, ),
iel(e,t) and TTC;(e") = TTC;(e). (12)

For each i, € C_; ,let rfn € NN be such that i, € I(¢, rgn). We proceed in four
steps.

Step 1: For each i, € C_;, ,, wi, , Zi, TTC;,(¢’). Leti, € C_;  ando €
Ut (-, wi,,)- Byi, € C € C(e,r) and TTC;, (e) = w;,,,, 0 € O '(e). Then,
there are s’ € {1,2,...,r—1} and ¢ € I(e,s') with TTC,(e) = o. By (12), ¢ €
I(e',s") and TTCy(e') = TTCy(e) = o. Hence, TTC; (¢') # o. Thatis, w; , Zi,
TTC; (¢').

Step 2: There is r* € N such that for each i, € C_ r* =r; .ByStep1,

in—17

Vin € Ciy \{im2}, 0" V" = w;, ., %, TG, (¢); )
W = wp v TTG, ().
Note that
U {ep) con{w,)
keC_; |
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It then follows from (13) that

Vin € Ciimfl \ {imfz}’ w?:;lllim - win+1 zg\{Wim} TTCin (e/);

e , (14)
win v — g, = OM@ind TTG,, ,(€).

Im Im—1 Nim,Z
Hence,

o< <<y o <yo<y
11 — "IN — — "yl — lm — ly—2

S"'S”z{l-

r¥ =17,

Im—17 in

Then, there is r* € IN such that for each i, € C_

Step 3: For each i, € C_;, ,, TTC;,(¢’) = TTC;,(e) = wj,,, and C_;,_, €
C(e’,r*). Step 2 implies that

Coipy € (N i DI
U {wr) oV {w,h\ o).

keC_

m—1

Recall (14). If either

. . 1,1 O\{w;
o forsomei, € C_;  \{in—2}, w?:ﬂl - — Wi, >in\{ in} TTC; (¢'), or

o imvin w; >O\{wim} TTG;, (),

im imfz

then there is j € C_; | such that j does not receive the most preferred object

among (O \ {w;,})\ O" ~1(¢') according to >-]Q\{wi’”}

TTC algorithm at ¢/, which is a contradiction. Hence,

-1
in Round r* = r} of the

Vin € Coj, y \ {im-2}, TTC;,(€)
TTCim,z (e’)

imflzim _ . _ . .
w" " = Wi, = TTGC; (e);

Im—1,1
e = Wi, = TTCim,z (6),

Im

w

andC_; , €C(e,r* =1} ).

m

Step4: r* =r] < r. ByStep2 r* =r; . Webelow show r* < r. Suppose on the
contrary that » < r*. Then, by C_; € C(¢/,r*) (Step 3),

Coip y C I\ {ima D\,

By C_; , & C(¢,r), therearei,y € C_; k€ (I\{in_1})\I" (), and 0 €
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(O\ {wi,})\ O""1(¢) such that

er)

. i1/ 0
i,y — k and w;g”‘l’lm =0 >-\

lml

ik rrC, (¢) = TTC, (e).
Note that by {o, TTC; , (¢') = TTGC; ,(e)} € O\{w;,} CO,
0 >—im, TTC,‘m, (6) (15)

By i,y € C € C(e,r), 0 € O'"1(e). Then, there are s’ € {1,2,...,r — 1} and
¢ € I(e,s") with TTCy(e) = o. This together with (12) implies that

tel(e,s) and TTCy(¢') = TTC,(e) =0 € O(€,s").

This contradicts 0 € (O \ {w;, }) \ O""1(¢'). O

Proof of the “only if” part of Theorem 3. Suppose that f: ¥ — X satisfies the two
axioms. We show that for each r € IN, each ¢ € Z, each C € C(e,r), and each
i €C, fi(e) = TTC;(e).1*

Let r € IN. Suppose that

Vte{1,2,...,r—1},Vee 2,VCeClet), VieC, file) =TTCi(e). (16)
Then,
Ve=(I,O,=,w) €2, 0 e)={oc0:Fiecl" 1 (e), o= file)}. (17)

We use induction on |C|.
BASE STEP. Lete = (I,0,>,w) € Z and C = {i} € C(e,r) (thatis, |C| = 1).
Then,

w; € 0\ 0" Le);

YoeO\ (Of—l(e) U {wi}> , TTCi(e) = w; »; o. 19

4To prove this claim, it is necessary to employ induction on 7. Since the cases ¥ = 1 and
r > 2 share similar arguments, we present a unified proof applicable to both cases. We note
some distinctions in the case where r = 1: (16) is vacuously true when r = 1; (17) reduces to
the statement that for each e = (1,0, >,w) € 2, 0" !(e) = 0%) = @; in the base step, (18)
and individual rationality immediately imply f;(e) = w; = TTC;(e); and in the induction step, (20)
directly follows from (19), and only Case 2 occurs.
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By i € I(e,r) and (17), for each 0 € O""!(e), fi(e) # o. Hence, by (18) and
individual rationality, fi(e) = w; = TTC;(e).

INDUCTION HYPOTHESIS. Let N € {2,3,...,|Z|}. Foreache € 2, each C €
C(e,r) with |C| < N —1,and eachi € C, fi(e) = TTC;(e).

INDUCTION STEP. Let N € {2,3,...,|Z|},e = (I,O,>,w) € 2,and C = {i1(=
iN+1),i2,...,iN} € C(e, 7). Then, for each i, € C,

wj,,, €0\ 0" (e);
Yoe O\ (O’_l(e) U {winﬂ}), TTC;, (e) = Wi . =i, 0.

n

(19)

In addition, by i, € I(e,7) and (17), foreacho € O"~1(e), f; (e) # o. This, together
with (19), implies
TTCI'” (6) = w,'nH zin fin (6) (20)

Suppose on the contrary that

Jiy €C, fi,(e) # w;, , = TTC;,(e). (21)

Let
¢ = = (1 {iy 1}, O\ {wy, ), =] invin).

—In-1 —ln-1

Since 7 satisfies D4, ¢/ € 2. By Lemma 4, TTC;, (¢/) = TTC;,(e) = w;, .,
C,'

i €C(e,rl ),and 7, < r. There are two cases.
m—1 Im Im

eCasel:r; <r.By(l6)andC_; , €C(¢,r; ), fi,(¢) =TTC; (¢') = wij,,,.

| € C(e’,rfm = r) and

e Case 2: r; = r. By the induction hypothesis, C_;,
’C*im—ly S N — 1’ fim(e ) - TTClm( ) wim+1'

That is, in both cases, f;, (¢) = TTC;, (¢') = w;,,,,. Hence, by (20) and (21),

wim r>\_Jim_1 fim_l (e) and fim (e/) = winz+1 >—im fim (e)

This contradicts strict pre-delivery-proofness. O

15Considering that N > 2, i,,_1(# in) surely exists.
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Online Appendix to
“Endowment manipulations involving population
variations in object exchange problems”
by Fujinaka and Wakayama (October 26, 2025)

B Appendix: Omitted proofs in the main text

B.1 Remark1

Since both TTC and NT clearly satisfy individual rationality, we now show that
both rules satisfy withdrawal-proofness. Below, we show the withdrawal-proofness
of TTC, as that of NT can be established by a parallel argument.

Lete = (I,0,*,w') € 9(>,w). There are two cases.

e Case 1: {1,2,3} C I. Then, no pair has an incentive to manipulate, as all agents

receive their most preferred objects.

e Case 2: {1,2,3} ¢ I. Consider a pair {i,j} C I withi # j. Since {1,2,3} ¢ I
and {1,2,3} ¢ I\ {i}, TTC(e) = w'and TTC(e_;) = ' .. Then,

(TTC;(e), TTCj(e)) = (0;,0;) and {w;, TTCj(e_;)} = {0;,0;}.

Suppose that there are k € {i,j} and yx € {wj, TTC;(e_;)} such that y; = o =
TTCk(e). Then, k € {1,2,3}; if k > 4, then TTC(e) = ok Z} Yk a contradiction.
We only consider the case where k = 1 since we can consider the other cases
similarly. By y; >} 01 = TTCy(e), y1 = 0 and {i,j} = {1,2}. Then, TTC;(e) =
0y =% 01, which implies that this pair has no incentive to manipulate.

B.2 Example 5

We now show that fsatisfies endowments-swapping-and-withdrawal-proofness. Let
e=(I,0,~',w") € 2(>). There are two cases.

-~

e Case 1: e # e. Note that f(e) = TTC(e) and for each {i,j} C I withi # j,
by . # g, fj(el_’]i) = TTC;(e";). Since TTC satisfies strictA pre-delivery-proofness,
there is no pair {i,j} C I with i # j such that w; >~ fi(e)(= TTC;(e)) and
fi(e?) (= TTCi(e")) = fi(e)(= TTC;(e)).
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e Case 2: e = e. Since all agents except agent 3 receive their most preferred
objects under f(2), there is no pair {i,j} C I withi # j such that w;j =i 7i(2) and

f@) =; (@)

C Appendix: Impossibility result for strict endowments-

swapping-and-withdrawal-proofness
We begin by defining strict endowments-swapping-and-withdrawal-proofness.

Strict endowments-swapping-and-withdrawal-proofness: Therearenoe = (I,0,
-, w) € P and {i,j} C Iwithi # jsuchthate”, € 2, w; ~; fi(e), and

fie”) Zj file).

Strict endowments-swapping-and-withdrawal-proofness rules out the possibility that
swapping endowments makes the agent who withdrew strictly better off, while
the agent who participated may be indifferent between the outcomes with and
without manipulation.

In contrast to strict pre-delivery-proofness, no rule satisfies both individual ratio-
nality and strict endowments-swapping-and-withdrawal-proofness. As with strict pre-
delivery-proofness, if a rule satisfies both properties, it must be TTC, and the proof
parallels the “only if” part of Theorem 3. However, if domain Z satisfies the
following condition in addition to D4, TTC violates strict endowments-swapping-
and-withdrawal-proofness.

D5. There are e = (I,O, >,w) ey, reN,C= {il(: Z'N+1),i2,...,iN} S C(@,T’)
with N > 2,and j € I\ I"(e) such that

e foreacho € O\ (0" !(e) U{wj}), wi, >jo;and

e foreacho € O\ (0" e) U{wi,, wj}), wiy =iy wj =iy 0.

If such a cycle C = {iy, iy, ...,iN} and agent j exist, the pair {i1, j} can manipulate
TTC: swapping their endowments followed by withdrawal makes agent j strictly
better off since w;, ~; TTC;(e); C is also formed in the TTC algorithm at eli’j] ,and

agent i1 receives the same object w;, under TTC(e) and TTC (ell]] ). Thus, TTC
violates strict endowments-swapping-and-withdrawal-proofness.
We establish the following incompatibility between individual rationality and

strict endowments-swapping-and-withdrawal-proofness.
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Theorem 4. Let 7 C & be a domain satisfying D4 and D5. Then, no rule on & satisfies
individual rationality and strict endowments-swapping-and-withdrawal-proofness.

We prove the following two lemmas. The first lemma states that if a rule satis-
ties individual rationality and strict endowments-swapping-and-withdrawal-proofness,
it must be TTC. The second lemma shows that TTC violates strict endowments-
swapping-and-withdrawal-proofness. Theorem 4 follows from these two lemmas.

Lemma 5. Let 2 C & be a domain satisfying D4. If a rule f on & satisfies individual
rationality and strict endowments-swapping-and-withdrawal-proofness, it is TTC on 9.

Proof. Suppose that f: ¥ — X satisfies the two axioms. We show that for each
r €N, eache € 2,each C € C(e,r),and each i € C, f;(e) = TTC;(e).'®
Let r € IN. Suppose that

Vte{1,2,...,r—1},Vee 2,VCeClet), VieC, file) =TTCi(e). (22)
Then,
Ve=(I,O,~,w) €2, 0 He)={oc0:TicI"(e), 0= fie)}. (23)

We use induction on |C|.

BASE STEP. Lete = ([,0,>,w) € Z and C = {i} € C(e,r) (thatis, |C| = 1).
Then,

w; € 0\ 0" 1(e);

(24)
Yoe O\ (O Ye)U{w}), TTCi(e) = w; = o.

By i € I(e,r) and (23), for each 0 € O !(e), fi(e) # o. Hence, by (24) and
individual rationality, f;(e) = w; = TTC;(e).

INDUCTION HYPOTHESIS. Let N € {2,3,...,|Z|}. Foreache € %, each C €
C(e,r) with |C| < N —1,and eachi € C, fi(e) = TTC;(e).

INDUCTION STEP. Let N € {2,3,...,|Z|},e = (I,O,>,w) € 2,and C = {i1(=

16The proof of this claim follows the same lines as the proof of the corresponding claim in the
“only if” part of Theorem 3. As in the “only if” part of Theorem 3, we present a unified proof
applicable to the casesr = 1and r > 2.
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iNt1),02,.--,iN} € C(e, 7). Then, for each i, € C,

Wi, €O\ O""}(e);

(25)
Voe O\ (Orfl(e) U {win+1})’ TTC;, (e) = Wi =i, 0

n

In addition, by i, € I(e,7) and (23), for eacho € O"1(e), f;, (e) # o. This, together
with (25), implies
TTCin (e) = win+1 ’>\:in fin (6) (26)

Suppose on the contrary that
di, € C, fim (e) 75 Wi, = TTCim (8) (27)

Let

—lm

¢ =it = (1 (i}, O\ ey} S o i)

Since 7 satisfies D4, ¢’ € 2.7 By Lemma 4, TTC;, ,(¢') = TTGC;, ,(e) = wi, .,
i = {i1, - im—1, i1, - INY € C(e,rim+l), and rim+1 < r. There are two
cases.

e Case 1: r{mH < r. By(22)and C_; € C(¢, )s fina () = TTGC; () =

1+1

wim+2'
e Case 2: r; = r. By the induction hypothesis, C_;, € C(¢/,r; = r)and
’C*im| S N - 1’ fim-H (el) = TTCim-H (8/) = wim+2’

That is, in both cases, f; ., (¢') = TTC;, ., (¢') = wj,,,. Hence, by (26) and (27),

wim+1 >_im flm ((3) and fim+l (8/) = wim+2 f>\:im+1 fierl ((3)
This contradicts strict endowments-swapping-and-withdrawal-proofness. O

Lemma 6. Let 2 C & be a domain satisfying D4 and D5. Then, TTC on & violates
strict endowments-swapping-and-withdrawal-proofness.

Proof. Since & satisfies D5, there are e = (I,0,>,w) € 2,r € N, C = {i1(=
iNt1),i2,...,iN} € C(e,r),and j € T\ I"(e) such that

e foreacho € O\ (0" 1(e) U{wj}), wi, >jo0;and

e foreacho € O\ (Or’l(e) U {wil,wj}), Wiy =iy Wj =iy 0

7Considering that N > 2, i, 1(# in) surely exists.
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By C € C(e,r), foreach i, € C,
e i, €I\ I"'(e)and w;, € O\ O (e); and

e foreacho € O\ (0" (e) U{wj, ,}), TTC;, (e) = wj, , >, 0.

ByjeI\I'(e)and w;, € O(e,r),
e jeI\I"e)and wj € O\ O *(e); and
° wj >-]' TTC]-(e).

Letr; € N besuch thatj € I(e,rj). By j & I'(e), r <7},
Let

O\{w; i
¢ — (1\{]} O\ faw}, =21 wfj;>.
Since Z satisfies D4, ¢/ € 2. There are two cases.

eCasel: r=1.ByC € C(e,1) and O !(e) = O%e) = @,

Vi, € C\{in}, VOEO\{wZHH} cul+ = wj,,, = TTC;,(e) =, o;

1
(28)
Vo€ O\ {wi,w}, w].’ =w;, = TTC; (e) =i, w 111 = Wj =iy 0

Note that

ccI\{j} and U{ 711}g0\{wi1}.

keC
By (28),

Vip € C\{in}, Vo€ (O\ {w;})\ {wlnﬂ} W = wi ., >Z\{wil} 0;

ln+1

g O\{wj, }
Vo e (O\{w;,}) \{w;}, Wfll_ Wj =y 0

These imply that C € C(¢/,1) and for each i, € C\ {in}, TTC; (¢') = w{:il =
wj, ., and TTC;, (') = w] A = Wj.
e Case 2: r > 2. Foreacho € O"!(e), there are s’ € {1,2,...,r —1} and £ €
I(e,s") with TTCy(e) = 0. By Lemma 3 and r < r;, £ € I(¢/,s") and TTCy(e') =
TTCy(e) = o. Hence, foreach i, € C, TTC;,(¢’) # o. Additionally, by TTC;, (¢') €
O\ {wj}, TTC;,(€') # wj,. These imply that

Vi, € C\ {in}, TTGC; (¢) = w; ., = &/ =i TTC; (¢);

g1 ~oin

(29)
TTC;\ () = w;, = w’ Mo W = w] M TTC (¢)).
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Note that

U {w{;’il} C O\ {wy}.

keC
It then follows from (29) that

o O\wi }

Vi, € C\ {in}, Wiy = w{ 1-41-1 ~iy TTC; (e ) (30)
’ O\{ i }
C‘)] {111 ’>\:1N 1 TTC ( )

For each i, € C, let rfn € IN be such that i, € I(¢/, rfn). By (30),

/ / / / /
ri <rp <1 g---grizgril,

that is, there is ¥ € IN such that for each i, € C, v’ = rl’.n. This also implies that

cc\GHNI"() and [ {wl"} < O\ {wi D\ O,

keC

Recall (30). If there is i, € C such that w}" . O\l }

In

TTC; (¢'), then i, does
not receive the most preferred object among (O \ {w;, }) \ 0"~ (¢’) according to
>—2\{wi1} in Round " = 7] of the TTC algorithm at ¢/, which is a contradiction.
Hence, C € C(¢/,7") and for each i, € C\ {in}, TTC; (¢/) = w{ﬁl = wj,,, and
TTC;,(¢') = cu] 1= = w;.

In both cases, we obtain TTC;, (¢') = w;,. Hence,
wi, =i TTCj(e) and TTC; (') = wj;, = TTC; (e).

This implies that TTC violates strict endowments-swapping-and-withdrawal-proofness.
[
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