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Abstract

This study examines the object exchange problem introduced by Shap-
ley and Scarf (1974). We focus on two properties of allocation rules that
require robustness to endowment manipulations involving population vari-
ations: withdrawal-proofness and pre-delivery-proofness (Thomson, 2014). We
first show that no rule satisfies individual rationality and withdrawal-proofness.
This impossibility result holds not only on the strict preference domain but
also on well-studied restricted domains. However, this negative finding can
be avoided by weakening withdrawal-proofness. We characterize the Top Trad-
ing Cycles rule (TTC) using individual rationality, strategy-proofness, and weak
withdrawal-proofness under a richness condition on the domain. In contrast
to withdrawal-proofness, several individually rational rules satisfy pre-delivery-
proofness. Furthermore, a stronger version of pre-delivery-proofness, combined
with individual rationality, uniquely characterizes TTC. Notably, this charac-
terization holds on many natural restricted domains.
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1 Introduction

We consider the object exchange problem introduced by Shapley and Scarf (1974),
where each agent initially owns one indivisible object and has strict preferences
over all objects. A “rule” maps each economy (which consists of a set of agents, a
set of objects, their preferences, and individual endowments) to a feasible alloca-
tion that assigns exactly one object to each agent.

We study the immunity of a given rule to manipulation via endowments.
Various forms of such manipulation have been explored in different models.1

This paper focuses on two types of pairwise endowment manipulations involv-
ing changes in population. The first is “withdrawal”: an agent withdraws with
his endowment before the rule is applied; after the rule is applied without him,
the withdrawing agent and one of the agents who participated exchange the first
agent’s endowment and the object allocated to the second agent in such a way
that both agents are at least as well off as they would have been without the ma-
nipulation, and at least one is strictly better off. Withdrawal-proofness, introduced
by Thomson (2014), requires that such manipulation be impossible. We derive an
impossibility result: no rule satisfies both individual rationality (no agent is made
strictly worse off after the reallocation) and withdrawal-proofness (Theorem 1). It
is important to note that this impossibility result holds even when the preference
domain is restricted to well-studied domains, such as the single-peaked (Bade,
2019), single-dipped (Tamura, 2023), and common-ranking preference (Nicolò
and Rodrı́guez-Álvarez, 2017) domains.

To address this impossibility result, we weaken withdrawal-proofness. Weak
withdrawal-proofness rules out any withdrawal manipulation that makes the with-
drawing agent and one of the remaining participants strictly better off. Several
rules, including the Top Trading Cycles rule (TTC), satisfy both individual ratio-
nality and weak withdrawal-proofness (Proposition 1 and Example 3). Moreover,
these two axioms, together with strategy-proofness (no agent can benefit from mis-
representing his preferences), characterize TTC under a richness condition on the
domain of preferences (Theorem 2).

The second manipulation is “pre-delivery”: before the rule is applied, an
agent pre-delivers to another agent the object that the second agent would receive

1Examples include destruction (Aumann and Peleg, 1974; Gale, 1974), withholding and hiding
(Postlewaite, 1979), transfer (Gale, 1974), and augmentation of endowments (Thomson, 2024b).
See Thomson (2023) for a comprehensive survey on endowment manipulations and the normative
principles underlying these concepts.
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if all agents participated, inducing that agent to withdraw; once the rule is ap-
plied without the agent who withdrew, the first agent ends up with a strictly pre-
ferred object compared to what he would have received otherwise. Pre-delivery-
proofness, introduced by Thomson (2014), precludes this behavior. This property
is relatively weak here, since it applies only when the pre-delivering agent ini-
tially owns the object that the withdrawing agent would receive under full par-
ticipation. In fact, not only TTC but also many other rules satisfy this property
(Proposition 2 and Example 4).

The incentive to withdraw may persist (or even intensify) when the with-
drawing agent is pre-delivered an object that he finds at least as desirable as the
one he would receive under full participation. We therefore introduce a stronger
concept, strict pre-delivery-proofness, which eliminates pre-delivery manipulation
where the withdrawing agent is weakly better off and the pre-delivering agent
is strictly better off. TTC is characterized by individual rationality and strict pre-
delivery-proofness (Theorem 3). Notably, this characterization holds on several
natural restricted domains, including the single-peaked and single-dipped pref-
erence domains.

Our main axioms are relevant to kidney exchange, a real-world application
of our model (Roth, Sönmez, and Ünver, 2004). Consider a hospital managing
multiple patient–donor pairs. The hospital may strategically withdraw a pair
from the centralized exchange pool and, after the centralized mechanism is ex-
ecuted, arrange an internal exchange between the withdrawn pair and another
pair matched through the mechanism.2 A similar concern arises with pre-delivery-
proofness: two patients might exploit legal loopholes (e.g., fake marriage or adop-
tion) to coordinate a pre-delivery scheme involving withdrawal, thereby obtain-
ing higher-quality kidneys. Our results provide new insights into the design of
mechanisms that are robust against such manipulations.

Related literature Both withdrawal-proofness and pre-delivery-proofness were first
introduced by Thomson (2014) in the context of pure exchange economies. In that
context, the Walrasian rule satisfies pre-delivery-proofness but violates withdrawal-
proofness, whereas certain egalitarian and dictatorial rules violate both proper-
ties (Thomson, 2014, 2024a). These two axioms have also been applied to the

2Ashlagi and Roth (2012) observe a related form of strategic behavior in multi-hospital kidney
exchange: hospitals withhold easily matchable donor–patient pairs for internal matching while
enrolling only hard-to-match pairs (e.g., highly sensitized recipients) in the centralized pool.
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problem of reallocating an infinitely divisible commodity among agents with
single-peaked preferences (Bonifacio, 2024). For this problem, a certain class
of reallocation rules, including the well-known uniform reallocation rule, satisfy
weak withdrawal-proofness but not pre-delivery-proofness.3 Our findings are consis-
tent with these results: Theorem 1 and Proposition 2 parallel Thomson’s conclu-
sions for the Walrasian rule; and similar to Bonifacio (2024), Proposition 1 and
Example 3 indicate the existence of weak withdrawal-proof rules in the object ex-
change problem. In addition, we provide characterizations of TTC based on weak
withdrawal-proofness and strict pre-delivery-proofness. To the best of our knowl-
edge, no characterization results based on withdrawal-proofness and pre-delivery-
proofness (or their variants) have been established, even in other models.

Absence-proofness, first introduced by Doğan (2013) in the context of cooper-
ative game theory, is considered a coalitional version of withdrawal-proofness be-
cause it concerns manipulation through withdrawal and reallocation by groups
of arbitrary size. Doğan applies this axiom to the object exchange problem and
shows that no rule satisfies it. Since both individual rationality and withdrawal-
proofness are weaker than absence-proofness, Theorem 1 implies that Doğan’s im-
possibility result continues to hold when absence-proofness is replaced with these
two axioms.

Withdrawal-proofness and its weaker version may be related to pair-efficiency
(Ekici, 2024) (or reallocation-proofness).4 This is because, although the former is
a variable-population property and the latter a fixed-population one, they share
the underlying idea that no pair can benefit from reallocating their own objects
after the rule is applied. Similarly, pre-delivery-proofness (and its variants) and
endowments-swapping-proofness (Fujinaka and Wakayama, 2018) share the idea that
no pair can benefit from swapping their own endowments before the rule is ap-
plied. Several studies have examined the implications of pair-efficiency, reallocation-
proofness, or endowments-swapping-proofness.5 TTC is characterized by individual
rationality, pair-efficiency, and strategy-proofness (Ekici, 2024); it is also character-

3Bonifacio (2024) refers to weak withdrawal-proofness as “withdrawal-proofness.”
4More precisely, the original definition of reallocation-proofness (e.g., Pápai (2000) and Fujinaka

and Wakayama (2018, 2024)) incorporates preference manipulations into a form of strategic be-
havior.

5See, for example, Pápai (2000), Fujinaka and Wakayama (2018, 2024, 2025a), Chen and Zhao
(2021), Tamura (2023), Ekici (2024), and Hu and Zhang (2024). Extensions to more general ob-
ject reallocation problems include Atlamaz and Klaus (2007), Feng (2023), and Fujinaka and
Wakayama (2025b). Additionally, Tamura (2022) introduces an invariance axiom on endowments-
swapping to characterize the crawler (Bade, 2019) on the single-peaked preference domain.
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ized by individual rationality, strategy-proofness, and endowments-swapping-proofness
(Fujinaka and Wakayama, 2018). Theorem 2 and Theorem 3 serve as counterparts
to the characterizations by Ekici (2024) and Fujinaka and Wakayama (2018), re-
spectively. Notably, unlike the characterization involving endowments-swapping-
proofness, Theorem 3 does not require strategy-proofness.

Since Ma (1994) characterizes TTC by means of individual rationality, efficiency,
and strategy-proofness, several alternative characterizations, such as those by Ekici
(2024) and Fujinaka and Wakayama (2018), have been proposed in the fixed-
population setting.6 Our theorems extend this literature by providing new char-
acterizations of TTC in the variable-population setting.

Organization of the paper The rest of the paper is organized as follows. Sec-
tion 2 introduces the preliminary notation and definitions. Section 3 examines
the implications of withdrawal-proofness. Section 4 analyzes pre-delivery-proofness
and its variants. Section 5 concludes by discussing remaining issues for future
research. Omitted proofs of the main results are provided in the appendix.

2 Preliminaries

Let I = {1, 2, . . . , |I|} and O =
{

o1, o2, . . . , o|O|

}
be a finite set of potential agents

and a finite set of potential objects, respectively.7

An “economy” is formalized as follows. Let (I, O) be a pair of I ⊆ I and
O ⊆ O with 1 ≤ |I| = |O| < +∞. Each agent i ∈ I has a strict preference relation
Âi over O. Given Âi, we denote the induced weak preference relation by %i; that
is, for each {o, o′} ⊆ O, if o %i o′, then either o Âi o′ or o = o′. Let PO be the set
of strict preferences over O. For each i ∈ I, let ωi ∈ O be agent i’s endowment.
An economy is a list e = (I, O,Â, ω), where

• I ⊆ I is a set of agents;

• O ⊆ O is a set of objects such that 1 ≤ |I| = |O| < +∞;

• Â = (Âi)i∈I ∈ P I
O is a preference profile; and

• ω = (ωi)i∈I ∈ OI is an endowment profile such that for each {i, j} ⊆ I with
i 6= j, ωi 6= ωj.

6See also, for example, Svensson (1999), Takamiya (2001), and Miyagawa (2002).
7Given a set A, we denote the cardinality of A by |A|.
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Let E be the set of all economies.
Given (I, O) with I ⊆ I , O ⊆ O, and 1 ≤ |I| = |O| < +∞, an assignment for

(I, O) is a function x : I → O such that for each {i, j} ⊆ I with i 6= j, x(i) 6= x(j).
We write xi for x(i). Let X(I, O) be the set of assignments for (I, O). Let

X =
⋃

I⊆I ,O⊆O:
1≤|I|=|O|<+∞

X(I, O).

Let D ⊆ E be the set of admissible economies, which we call a domain. A rule
on D is a function f : D → X that maps e = (I, O,Â, ω) ∈ D to f (e) ∈ X(I, O).
We denote the object assigned to agent i at e by fi(e).

The Top Trading Cycles rule (TTC) on D , denoted by TTC : D → X , is central
in the literature on object exchange problems. For each e = (I, O,Â, ω) ∈ D ,
TTC(e) ∈ X(I, O) is obtained by the following TTC algorithm:

• Round 1. Each agent points to the agent who owns his most preferred ob-
ject. At least one “cycle” exists since the number of agents is finite. A cy-
cle is a sequence of agents (i1(= iN+1), i2, . . . , iN) such that for each n ∈
{1, 2, . . . , N}, in points to in+1. Each agent in a cycle is assigned the object
along the cycle and is removed from the economy with the assigned object.
If any agent remains, the algorithm proceeds with the next round; other-
wise, it terminates.

• Round t ≥ 2. Each remaining agent points to the agent who owns his most
preferred object among the remaining objects. At least one cycle exists. Each
agent in a cycle is assigned the object along the cycle and is removed from
the economy with the assigned object. If any agent remains, the algorithm
proceeds to the next round; otherwise, it terminates.

The following two axioms are standard in the literature: no agent is strictly
worse off after the reallocation; the chosen assignment cannot be changed to make
some agent strictly better off without making another agent strictly worse off.

Individual rationality: For each e = (I, O,Â, ω) ∈ D and each i ∈ I, fi(e) %i ωi.

Efficiency: For each e = (I, O,Â, ω) ∈ D , there is no x ∈ X(I, O) such that for
each i ∈ I, xi %i fi(e) and for some j ∈ I, xj Âj f j(e).
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3 Withdrawal-proofness

This section considers the following manipulation scenario: an agent withdraws
from a given rule, taking his endowment with him; the rule is then applied to the
subeconomy involving the remaining agents; afterward, the agent who withdrew
and one of the agents who participated exchange the withdrawn endowment and
the object assigned to that participant. Withdrawal-proofness rules out the possi-
bility that this arrangement makes both agents at least as well off as they would
have been without manipulation, and at least one of them strictly better off.

To formally define withdrawal-proofness, we introduce some notation. For each
e = (I, O,Â, ω) ∈ E and each i ∈ I, let

e−i =
(

I \ {i}, O \ {ωi},ÂO\{ωi}
−i , ω−i

)
,

where

• I \ {i} is a set of agents;

• O \ {ωi} is a set of objects such that |I \ {i}| = |O \ {ωi}|;

• ÂO\{ωi}
−i =

(
ÂO\{ωi}

k

)
k∈I\{i}

∈ P
I\{i}
O\{ωi}

is a preference profile such that for

each k ∈ I \ {i} and each {o, o′} ⊆ O \ {ωi} with o 6= o′,

o ÂO\{ωi}
k o′ ⇐⇒ o Âk o′;

and

• ω−i = (ωk)k∈I\{i} ∈ X(I \ {i}, O \ {ωi}) is an endowment profile.

That is, given an economy e ∈ E , e−i is the “reduced economy” obtained by
having agent i withdraw with his endowment ωi.

Withdrawal-proofness: There are no e = (I, O,Â, ω) ∈ D , {i, j} ⊆ I with i 6= j,
and {yi, yj} ⊆ O such that e−i ∈ D , {yi, yj} = {ωi, f j(e−i)}, for each k ∈
{i, j}, yk %k fk(e), and for some k ∈ {i, j}, yk Âk fk(e).

We present an impossibility theorem on domains that satisfy the following
two conditions.

D1. For each e = (I, O,Â, ω) ∈ D with |I| ≥ 2 and each i ∈ I, e−i ∈ D .
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D2. There is an economy e∗ = (I, O,Â∗, ω∗) ∈ D such that I = {i, j, k} and

Â∗
i Â∗

j Â∗
k

ω∗
k ω∗

i ω∗
i

ω∗
i ω∗

k ω∗
j

ω∗
j ω∗

j ω∗
k

D1 states that the domain includes all reduced economies obtained by the with-
drawal of a single agent. D2 is a richness condition: the domain includes a three-
agent economy in which agents j and k rank agent i’s endowment as their most
preferred and each prefers the other’s endowment to his own, while agent i ranks
one of j’s and k’s endowments as the most preferred and the other as the least pre-
ferred.

Theorem 1. Let D ⊆ E be a domain satisfying D1 and D2. Then, no rule on D satisfies
individual rationality and withdrawal-proofness.

Before proving this theorem, we present a lemma.

Lemma 1. Let D ⊆ E be a domain satisfying D1. If a rule f on D satisfies individual
rationality and withdrawal-proofness, then for each e = (I, O,Â, ω) ∈ D with |I| =
|O| = 2, f (e) = TTC(e).

Proof. Since |I| = |O| = 2, each e ∈ D falls into one of the following three cate-
gories:

(i)
Âi Âj

ωj ωi

ωi ωj

(ii)
Âi Âj

ωi ωi

ωj ωj

(iii)
Âi Âj

ωi ωj

ωj ωi

In cases (ii) and (iii), individual rationality implies f (e) = ω = TTC(e). We con-
sider case (i) below. Suppose on the contrary that

(
fi(e), f j(e)

)
=

(
ωi, ωj

)
6=

(
ωj, ωi

)
=

(
TTCi(e), TTCj(e)

)
.

Consider e−i ∈ E . Since D satisfies D1, e−i ∈ D . By f j(e−i) = ωj,

f j(e−i) = ωj Âi ωi = fi(e) and ωi Âj ωj = f j(e),

in violation of withdrawal-proofness. Hence, f (e) = TTC(e).
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Proof of Theorem 1. Suppose on the contrary that there exists a rule f : D → X
satisfying the two axioms. Since D satisfies D2, there is e∗ = (I, O,Â∗, ω∗) ∈ D

such that I = {i, j, k} and

Â∗
i Â∗

j Â∗
k

ω∗
k ω∗

i ω∗
i

ω∗
i ω∗

k ω∗
j

ω∗
j ω∗

j ω∗
k

There are two cases.

• Case 1: fj(e∗) = ω∗
i . Then, fk(e∗) 6= ω∗

i . Consider the pair {i, k} and e∗−k ∈ E .
Since D satisfies D1, e∗−k ∈ D . By Lemma 1,

(
fi(e∗−k), f j(e∗−k)

)
=

(
TTCi(e∗−k), TTCj(e∗−k)

)
=

(
ω∗

i , ω∗
j

)
.

Hence,
ω∗

k %∗
i fi(e∗) and fi(e∗−k) = ω∗

i Â∗
k fk(e∗),

in violation of withdrawal-proofness.

• Case 2: fj(e∗) 6= ω∗
i . Consider the pair {i, j} and e∗−i ∈ E . Since D satisfies D1,

e∗−i ∈ D . By Lemma 1,

(
f j(e∗−i), fk(e∗−i)

)
=

(
TTCj(e∗−i), TTCk(e∗−i)

)
=

(
ω∗

k , ω∗
j

)
.

Hence,
f j(e∗−i) = ω∗

k %∗
i fi(e∗) and ω∗

i Â∗
j f j(e∗),

in violation of withdrawal-proofness.

Before proceeding, we introduce some notation. For each i ∈ I , each Âi ∈
PO, and each O ⊂ O, let Âi|O ∈ PO be the restriction of Âi over O; that is, the
preference relation defined by setting for each {o, o′} ⊆ O with o 6= o′,

o Âi|O o′ ⇐⇒ o Âi o′.

In other words, Âi|O represents the induced preference relation over O ⊂ O from
Âi ∈ PO.
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Remark 1. If D violates D2, Theorem 1 no longer holds. Precisely, TTC and at
least one rule that differs from TTC satisfy the two axioms. Let Â ∈ PI

O be such
that

Â1 Â2 Â3 Âk≥4

o2 o3 o1 ok

o1 o2 o3
...

o3 o1 o2
...

...
...

and ω =
(

o1, o2, . . . , o|I|
)

. In addition, let

D(Â, ω) =
{

e = (I, O,Â′, ω′) ∈ E : ∀ i ∈ I, Â′
i = Âi|O and ω′

i = ωi
}

.

This domain D(Â, ω) satisfies D1 but not D2. We denote the no-trade rule on
D(Â, ω) by NT : D(Â, ω) → X ; that is, for each e = (I, O,Â′, ω′) ∈ D(Â, ω),
NT(e) = ω′. Note that for each e = (I, O,Â′, ω′) ∈ D(Â, ω), if {1, 2, 3} 6⊂ I,
TTC(e) = NT(e) = ω′; otherwise, for each k ∈ I \ {1, 2, 3}, TTCk(e) = NTk(e) =
ok but

(TTC1(e), TTC2(e), TTC3(e)) = (o2, o3, o1)

6= (o1, o2, o3)

= (NT1(e), NT2(e), NT3(e)).

Then, both TTC and NT satisfy individual rationality and withdrawal-proofness.8

See Online Appendix B for the proof of this fact. ♦

Below, we provide examples of natural restricted domains that satisfy both
D1 and D2.

Example 1. Let C be a linear order on O such that

o1 C o2 C · · · C o|O|.

Given an agent i ∈ I and a set of objects O ⊆ O, agent i’s preference relation
Âi ∈ PO is single-peaked with respect to CCC if there exists an object p(Âi) ∈ O
such that

8Obviously, TTC on D(Â, ω) satisfies efficiency, while NT on D(Â, ω) violates efficiency.
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• for each o ∈ O \ {p(Âi)}, p(Âi) Âi o; and

• for each {o, o′} ⊆ O \ {p(Âi)}, if either o C o′ C p(Âi) or p(Âi) C o′ C o,
then o′ Âi o,

and Âi ∈ PO is single-dipped with respect to CCC if there is an object d(Âi) ∈ O
such that

• for each o ∈ O \ {d(Âi)}, o Âi d(Âi); and

• for each {o, o′} ⊆ O \ {d(Âi)}, if either o C o′ C d(Âi) or d(Âi) C o′ C o,
then o Âi o′.

We denote the set of single-peaked preference relations over O with respect to C
by SO,C. Let

D∧ = {e = (I, O,Â, ω) ∈ E : ∀ i ∈ I, Âi ∈ SO,C}

be the single-peaked domain. The single-dipped domain D∨ is defined anal-
ogously. Obviously, D∧ and D∨ satisfy D1. To see that they satisfy D2, let I =
{1, 2, 3}, O = {o1, o2, o3}, ω∗ = (o1, o2, o3), and {Â∗,Â∗∗} ⊂ PO be such that

Â∗
2 Â∗

1 Â∗
3 Â∗∗

1 Â∗∗
2 Â∗∗

3

ω∗
3 ω∗

2 ω∗
2 ω∗

3 ω∗
1 ω∗

1

ω∗
2 ω∗

3 ω∗
1 ω∗

1 ω∗
3 ω∗

2

ω∗
1 ω∗

1 ω∗
3 ω∗

2 ω∗
2 ω∗

3

Let e∗ = (I, O,Â∗, ω∗) and e∗∗ = (I, O,Â∗∗, ω∗). Then, e∗ ∈ D∧ and e∗∗ ∈ D∨. ¥

Remark 2. On the single-peaked domain, not only TTC but also many other rules
satisfy desirable properties such as individual rationality, efficiency, and strategy-
proofness. Examples include the crawler (Bade, 2019), the neighborhood TTC rules
(Liu, 2025), and the r-neighborhood rules (Huang and Tian, 2023). Theorem 1
implies that none of these rules satisfy withdrawal-proofness. ♦

Example 2. Given an agent i ∈ I , a set of objects O ⊆ O, and his endowment
ωi ∈ O, agent i’s preference relation Âi ∈ PO is a common ranking preference
relation over O with respect to ωi if for each {oj, ok} ⊆ O such that oj Âi ωi and
ok Âi ωi,

j < k ⇐⇒ oj Âi ok.

11



That is, a common ranking preference relation orders “acceptable” objects ac-
cording to a ranking shared by all agents. Let Pωi

O ⊂ PO be the set of common
ranking preferences over O with respect to ωi. Let

Dcr =
{

e = (I, O,Â, ω) ∈ E : ∀ i ∈ I, Âi ∈ Pωi
O

}
be the common ranking domain. Obviously, Dcr satisfies D1. To see that Dcr

satisfies D2, let I = {1, 2, 3}, O = {o1, o2, o3}, ω∗ = (o1, o2, o3), and Â∗ ∈ PO be
such that

Â∗
1 Â∗

2 Â∗
3

ω∗
3 ω∗

1 ω∗
1

ω∗
1 ω∗

3 ω∗
2

ω∗
2 ω∗

2 ω∗
3

Let e∗ = (I, O,Â∗, ω∗). Then, e∗ ∈ Dcr. ¥

In light of the above negative result, we consider a weaker version of withdrawal-
proofness that pertains to manipulations in which both agents in the manipulating
pair are strictly better off.

Weak withdrawal-proofness: There are no e = (I, O,Â, ω) ∈ D , {i, j} ⊆ I with
i 6= j, and {yi, yj} ⊆ O such that e−i ∈ D , {yi, yj} = {ωi, f j(e−i)}, yi Âi fi(e)
and yj Âj f j(e).

Weak withdrawal-proofness allows us to escape the negative result: TTC is weakly
withdrawal-proof regardless of whether the domain D satisfies D1 or D2.

Proposition 1. Let D ⊆ E . TTC on D satisfies weak withdrawal-proofness.

Proof. See Appendix A.

The following example shows that, in addition to TTC, several other rules
satisfy individual rationality and weak withdrawal-proofness.

Example 3. Suppose that |I| = |O|. Let Â ∈ PI
O be such that

Â1 Â2 Â3 Âk≥4

o3 o1 o1 ok

o1 o3 o2
...

o2 o2 o3
...

...
...
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and ω =
(

o1, o2, . . . , o|I|
)

. Let e[ = (I ,O,Â, ω). Let f [ : E → X be the rule such
that for each e ∈ E ,

f [(e) =


(

o3, o1, o2, o4, . . . , o|I|
)

if e = e[

TTC(e) otherwise.

Note that

TTC(e[) =
(

o3, o2, o1, o4, . . . , o|I|
)
6=

(
o3, o1, o2, o4, . . . , o|I|

)
= f [(e[).

Obviously, f [ is individually rational. It also satisfies weak withdrawal-proofness. To
see why, let e ∈ E . If e = e[, since all agents except agent 3 receive their most pre-
ferred objects under f [, no pair has an incentive to manipulate; otherwise, since
f [(e) = TTC(e) and for each i ∈ I, f [(e−i) = TTC(e−i), the claim immediately
follows from the weak withdrawal-proofness of TTC. ¥

Additionally, f [ in Example 3 obviously satisfies efficiency. Hence, individual
rationality and weak withdrawal-proofness combined with efficiency cannot charac-
terize TTC. On the other hand, it is noteworthy that agent 3 benefits from mis-
representing his preferences under rule f [ in Example 3. Let Â′

3 ∈ PO be such
that

Â′
3

o1

o3

o2
...

and e′ = (I ,O, (Â′
3,Â−3), ω). Then,

f [
3(e′) = TTC3(e′) = o1 Â3 o2 = f [

3(e[).

We can show that this is the case for any rule that differs from TTC satisfying
individual rationality and weak withdrawal-proofness.

We consider the following incentive condition on preference revelation, which
states that no agent can benefit from misrepresentation of his preferences.

Strategy-proofness: For each e = (I, O,Â, ω) ∈ D , each i ∈ I, and each e′ =
(I, O, (Â′

i,Â−i), ω) ∈ D , fi(e) %i fi(e′).
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We characterize TTC in terms of individual rationality, strategy-proofness, and
weak withdrawal-proofness on any domain satisfying D1 and the following richness
condition on its domain of definition:

D3. For each e = (I, O,Â, ω) ∈ D , each i ∈ I, each {o, o′} ⊆ O \ {ωi} with o 6= o′,
there is a pair of preferences {Â′

i,Â′′
i } ⊂ PO such that

Â′
i Â′′

i

o o
o′ ωi

ωi
...

...

and {(I, O, (Â′
i,Â−i), ω), (I, O, (Â′′

i ,Â−i), ω)} ⊂ D .

D3 states that for any pair of objects o and o′, each agent can rank o as the most
preferred, o′ as the second most preferred, and his endowment as the third most
preferred; and also rank o as the most preferred and his endowment as the second
most preferred.

Theorem 2. Let D ⊆ E be a domain satisfying D1 and D3. Then, a rule on D satisfies
individual rationality, weak withdrawal-proofness, and strategy-proofness if and only if
it is TTC.

Proof. See Appendix A.

Remark 3. D3 requires the domain of preferences to be sufficiently rich. In fact,
many natural restricted domains, such as the single-peaked domain, the single-
dipped domain, and the common ranking domain, violate D3. ♦

Remark 4. Although Theorem 2 does not rely on any efficiency-related axioms,
the proof of its “only if” part employs techniques developed by Ekici and Sethu-
raman (2024), who provide an alternative proof of Ekici’s (2024) pair-efficiency
characterization of TTC. See Appendix A for details. ♦

4 Pre-delivery-proofness

This section considers the following type of manipulation: agent j pre-delivers
to agent i the object ωj that i would receive under full participation; upon re-
ceiving this object, agent i withdraws; agent j, now holding i’s endowment ωi,
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participates; if the rule assigns j an object he strictly prefers to his original assign-
ment, the manipulation is successful. We focus on rules that are immune to such
manipulations, that is, pre-delivery-proof rules.

To formally define pre-delivery-proofness, we introduce some notation. For each
e = (I, O,Â, ω) ∈ E and each {i, j} ⊆ I with i 6= j, let

ei,j
−i =

(
I \ {i}, O \ {ωj},ÂO\{ωj}

−i , ω
i,j
−i

)
,

where

• I \ {i} is a set of agents;

• O \ {ωj} is a set of objects such that |I \ {i}| = |O \ {ωj}|;

• ÂO\{ωj}
−i = (ÂO\{ωj}

k )k∈I\{i} ∈ P
I\{i}
O\{ωj}

is a preference profile such that for

each k ∈ I \ {i} and each {o, o′} ⊆ O \ {ωj} with o 6= o′,

o ÂO\{ωj}
k o′ ⇐⇒ o Âk o′;

and

• ω
i,j
−i ∈ X(I \ {i}, O \ {ωj}) is an endowment profile such that ω

i,j
j = ωi and

for each k ∈ I \ {i, j}, ω
i,j
k = ωk.

That is, given an economy e ∈ E , ei,j
−i denotes the “reduced swapping economy”

in which agents i and j first exchange their endowments, and then agent i with-
draws.

Pre-delivery-proofness: There are no e = (I, O,Â, ω) ∈ D and {i, j} ⊆ I with
i 6= j such that ei,j

−i ∈ D , ωj = fi(e), and f j(ei,j
−i) Âj f j(e).

The next result shows that TTC satisfies pre-delivery-proofness on any domain.

Proposition 2. Let D ⊆ E . TTC on D satisfies pre-delivery-proofness.

Proof. See Appendix A.

This result may seem appealing, but only because pre-delivery-proofness is quite
weak in our setting. In fact, several rules that differ from TTC satisfy this prop-
erty. For example, the no-trade rule satisfies pre-delivery-proofness. Moreover, the
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no-trade rule also satisfies strategy-proofness, so a characterization of TTC simi-
lar to Theorem 2 does not hold if weak withdrawal-proofness is replaced with pre-
delivery-proofness. The following example shows that a rule that differs from TTC
can satisfy pre-delivery-proofness even when both individual rationality and efficiency
are imposed.

Example 4. Suppose that |I| = |O|. Let Â ∈ PI
O be such that

Â1 Â2 Â3 Âk≥4

o2 o1 o1 ok

o3 o2 o2
...

o1 o3 o3
...

...
...

and ω =
(

o1, o2, . . . , o|I|
)

. Let e\ = (I ,O,Â, ω). Let f \ : E → X be the rule such
that for each e ∈ E ,

f \(e) =


(

o3, o2, o1, o4, . . . , o|I|
)

if e = e\

TTC(e) otherwise.

Note that

TTC(e\) =
(

o2, o1, o3, o4, . . . , o|I|
)
6=

(
o3, o2, o1, o4, . . . , o|I|

)
= f \(e\).

Obviously, f \ satisfies individual rationality and efficiency. To see that f \ satisfies
pre-delivery-proofness, let e ∈ E . There are two cases.

• Case 1: e 6= e\. Then, f \(e) = TTC(e). Since for each {i, j} ⊆ I with i 6= j,
ei,j
−i 6= e\, we have f \(ei,j

−i) = TTC(ei,j
−i). By Proposition 2, f \(e) satisfies pre-

delivery-proofness in this case.

• Case 2: e = e\. Since for each k /∈ {1, 3}, f \
k (e) = ωk and agent 3 receives

his most preferred object, it suffices to consider the case j = 1 and i = 3. Then,
ω1 = f \

3(e) and f \
1(e1,3

−3) = TTC1(e1,3
−3) = ω3 = f \

1(e). Hence, f \(e) satisfies pre-
delivery-proofness in this case. ¥

Pre-delivery-proofness addresses only manipulations in which the withdrawing
agent is pre-delivered the object he would receive if all agents participated. Ob-
viously, the agent may still choose to withdraw if he is pre-delivered an object he
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strictly prefers. To account for such manipulations, we propose a strengthening
of pre-delivery-proofness.

Strict pre-delivery-proofness: There are no e = (I, O,Â, ω) ∈ D and {i, j} ⊆ I
with i 6= j such that ei,j

−i ∈ D , ωj %i fi(e), and f j(ei,j
−i) Âj f j(e).

The conjunction of this axiom with individual rationality characterizes TTC on
any domain that includes all reduced swapping economies.

D4. For each e = (I, O,Â, ω) ∈ D with |I| ≥ 2 and each {i, j} ⊆ I with i 6= j,
ei,j
−i ∈ D .

Theorem 3. Let D ⊆ E be a domain satisfying D4. Then, a rule f on D satisfies
individual rationality and strict pre-delivery-proofness if and only if it is TTC on D .

Proof. See Appendix A.

Remark 5. It is worth noting that Theorem 3 characterizes TTC without assum-
ing either efficiency or strategy-proofness, which are often required in the fixed-
population setting. Moreover, TTC satisfies strict pre-delivery-proofness regardless
of whether the domain D satisfies D4. See the proof of the “if” part for details. ♦

Remark 6. Strict pre-delivery-proofness can be weakened to the following:

Endowments-swapping-and-withdrawal-proofness: There are no e = (I, O,Â,
ω) ∈ D and {i, j} ⊆ I with i 6= j such that ei,j

−i ∈ D , ωj Âi fi(e), and
f j(ei,j

−i) Âj f j(e).

Both pre-delivery-proofness and endowments-swapping-and-withdrawal-proofness are
weaker than strict pre-delivery-proofness, but there is no logical relationship be-
tween the two axioms.9 We note that Theorem 3 does not hold if strict pre-
delivery-proofness is replaced with endowments-swapping-and-withdrawal-proofness.

9The no-trade rule NT satisfies pre-delivery-proofness but violates endowments-swapping-and-
withdrawal-proofness. To see that NT violates endowments-swapping-and-withdrawal-proofness, let
e = (I, H,Â, ω) ∈ D be such that {i, j} ⊆ I with i 6= j, ωj Âi ωi, and ωi Âj ωj. Then,

ωj Âi ωi = NTi(e) and NTj(ei,j
−i) = ωi Âj ωj = NTj(e). Rule f̂ defined in Example 5 be-

low satisfies endowments-swapping-and-withdrawal-proofness but violates pre-delivery-proofness. To
see that f̂ violates pre-delivery-proofness, consider economy ê and a pair of agents {1, 3}. Then,
ω3 = o3 = f̂1(ê) and f̂3(ê1,3

−1) = ω1,3
3 = o1 Â3 o2 = f̂3(ê).
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As shown in Example 5 below, a rule that differs from TTC satisfies individual
rationality and endowments-swapping-and-withdrawal-proofness.10,11 ♦

Example 5. Suppose that |I| = |O|. Let Â ∈ PI
O be such that

Â1 Â2 Â3 Âk≥4

o3 o1 o1 ok

o2 o2 o2
...

o1 o3 o3
...

...
...

and ω =
(

o1, o2, . . . , o|I|
)

. In addition, let

D(Â) =
{

e = (I, O,Â′, ω′) ∈ E : ∀ i ∈ I, Â′
i = Âi|O

}
.

This domain D(Â) satisfies D4. Let ê = (I ,O,Â, ω). Let f̂ : D(Â) → X be the
rule such that for each e ∈ D(Â),

f̂ (e) =


(

o3, o1, o2, o4, . . . , o|I|
)

if e = ê

TTC(e) otherwise.

Note that

TTC(ê) =
(

o3, o2, o1, o4, . . . , o|I|
)
6=

(
o3, o1, o2, o4, . . . , o|I|

)
= f̂ (ê).

Obviously, f̂ is individually rational. For the proof of the endowments-swapping-and-
withdrawal-proofness of this rule, see Online Appendix B. ¥

The single-peaked and single-dipped domains satisfy D4. We provide another
example of a domain that satisfies this condition. Thus, we characterize TTC as
the unique rule satisfying the two axioms even on these restricted domains.12

10Rule f̂ in Example 5 satisfies efficiency. This implies that individual rationality and endowments-
swapping-and-withdrawal-proofness cannot characterize TTC even under efficiency.

11Endowments-swapping-and-withdrawal-proofness does not cover situations in which the remain-
ing participant is indifferent between the outcomes with and without manipulation. To ad-
dress such cases, we define a stronger axiom, strict endowments-swapping-and-withdrawal-proofness,
which requires immunity to manipulations where the withdrawing agent strictly benefits, while
the participating agent may be indifferent. Unlike strict pre-delivery-proofness, this axiom leads
to an impossibility result: no individually rational rule satisfies strict endowments-swapping-and-
withdrawal-proofness. The proof is provided in Online Appendix C.

12The common ranking domain Dcr violates D4. To see this, suppose I = {1, 2, 3, 4} and O =
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Example 6. Suppose that |I| = |O|. Fix a preference profile Â? = (Â?
i )i∈I ∈ PI

O.
Let

D(Â?) = {e = (I, O,Â, ω) ∈ E : ∀ i ∈ I, Âi = Â?
i |O}.

Roughly speaking, D(Â?) is the set of economies obtained by reducing an econ-
omy where each agent i has the preference relation Â?

i . Importantly, for each i,
each Â?

i is arbitrary. Obviously, D(Â?) satisfies D4. ¥

5 Concluding remarks

We conclude by highlighting three directions for future research.

1. Weak withdrawal-proofness. We have characterized TTC by individual ra-
tionality, weak withdrawal-proofness, and strategy-proofness. Whether this char-
acterization holds on natural restricted domains, such as the single-peaked
preference domain, is an open question. Another direction is to characterize
the class of rules that satisfy individual rationality, weak withdrawal-proofness,
and additional punctual properties such as efficiency.

2. Pre-delivery-proofness. As stated above, pre-delivery-proofness is relatively
weak in our model. Consequently, both TTC and the no-trade rule satisfy
individual rationality, pre-delivery-proofness, and strategy-proofness. Character-
izing the full set of rules that satisfy these three axioms is open. It would
also be worthwhile to identify rules that satisfy individual rationality, effi-
ciency, and pre-delivery-proofness.

3. Multiple-object reallocation. To the best of our knowledge, the implica-
tions of withdrawal-proofness and pre-delivery-proofness have not been exam-
ined in the context of multi-object reallocation problems. Since our model
assumes each agent initially owns exactly one object, these axioms are not
directly applicable. Extending them to multi-object settings is an open and
important area for future work. Bu, Chen, and Thomson (2014) examine
two related axioms—endowments-splitting-proofness and endowments-merging-
proofness—introduced by Thomson (2014) in the context of pure exchange
economies. They show that no rule satisfies individual rationality, efficiency,

{o1, o2, o3, o4} and let e = (I ,O,Â, ω) ∈ Dcr be such that ω = (o1, o2, o3, o4) and o3 Â4 o4 Â4

o2 Â4 o1. Then, e1,4
−1 /∈ Dcr.
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and either of these. It would be worth exploring whether similar impossibil-
ity results hold for extended versions of withdrawal-proofness or pre-delivery-
proofness.

A Appendix: Proofs of our main results

A.1 Additional notation and definitions

This appendix provides the proofs of our main results. Before proceeding, we in-
troduce some additional notation and definitions. We begin with notation related
to the TTC algorithm. Let e = (I, O,Â, ω) ∈ D and r ∈ N = {1, 2, . . . }. For each
{j, k} ⊆ I, we write

j
(e,r)→ k

to indicate that agent j points to agent k in Round r at e. Let C(e, r) ⊂ 2I denote
the set of groups of agents involved in cycles in Round r at e. We denote the set
of agents involved in cycles in Round r at e by

I(e, r) =
⋃

C∈C(e,r)

C,

and the set of objects assigned to agents in Round r at e by

O(e, r) = {o ∈ O : ∃ i ∈ I(e, r), o = TTCi(e)}
= {o ∈ O : ∃ i ∈ I(e, r), o = ωi}.

Additionally, define Ir(e) and Or(e) as

Ir(e) =
r⋃

t=1

I(e, t) and Or(e) =
r⋃

t=1

O(e, t).

For convenience, let I0(e) = O0(e) = ∅. With abuse of notation, C = {i1(=
iN+1), i2, . . . , iN} ∈ C(e, r) also represents the sequence (i1, i2, . . . , iN) of agents in
the cycle C. That is, for each in ∈ C,

• in ∈ I \ Ir−1(e) and ωin ∈ O \ Or−1(e); and

• for each o ∈ O \
(
Or−1(e) ∪ {ωin+1}

)
, TTCin(e) = ωin+1 Âin o.
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We also use the following notion in our proofs. For each i ∈ I, each Âi ∈ PO,
and each o ∈ O, let U+(Âi, o) = {o′ ∈ O : o′ Âi o} be the strict upper contour set
of o according to Âi.

A.2 Two lemmas

In this subsection, we present two lemmas concerning TTC. These lemmas state
that if an agent receives an object in a round of the TTC algorithm at e that occurs
before both of the rounds in which the manipulating agents i and j receive their
objects, then the agent receives the same object in the same round at all three
economies, e, e−i, and ei,j

−i.
13

Lemma 2. Let e = (I, O,Â, ω) ∈ D , {i, j} ⊆ I with i 6= j, and (ri, rj) ∈ N2 be such
that i ∈ I(e, ri) and j ∈ I(e, rj). Suppose that e−i ∈ D and min{ri, rj} ≥ 2. Then, for
each t ∈

{
1, 2, . . . , min{ri, rj} − 1

}
,

C(e, t) ⊆ C(e−i, t);

∀ k ∈ I(e, t), TTCk(e−i) = TTCk(e).

Lemma 3. Let e = (I, O,Â, ω) ∈ D , {i, j} ⊆ I with i 6= j, and (ri, rj) ∈ N2 be such
that i ∈ I(e, ri) and j ∈ I(e, rj). Suppose that ei,j

−i ∈ D and min{ri, rj} ≥ 2. Then, for
each t ∈

{
1, 2, . . . , min{ri, rj} − 1

}
,

C(e, t) ⊆ C(ei,j
−i, t);

∀ k ∈ I(e, t), TTCk(ei,j
−i) = TTCk(e).

Proofs of Lemma 2 and Lemma 3. The proofs of Lemma 2 and Lemma 3 are identi-
cal, differing only in whether the reduced economy is e−i or ei,j

−i depending on the
manipulation. Therefore, we present a single proof that applies to both cases.

Given e = (I, O,Â, ω) ∈ D , let ωi,j = (ω
i,j
k )k∈I ∈ X(I, O) be such that ω

i,j
i =

ωj, ω
i,j
j = ωi, and for each k ∈ I \ {i, j}, ω

i,j
k = ωk. Let

e′ =
(

I, O,Â, ω′) ∈
{

e = (I, O,Â, ω) , ei,j =
(

I, O,Â, ωi,j
)}

.

13This result also holds when replacing e−i or ei,j
−i with ei,j. Fujinaka and Wakayama (2025b)

prove the corresponding lemma in the context of object exchange problems with private and
social endowments.
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Thus, when e′ = e,

e′−i =
(

I \ {i}, O \ {ω′
i},ÂO\{ω′

i}
−i , ω′

−i

)
=

(
I \ {i}, O \ {ωi},ÂO\{ωi}

−i , ω−i

)
= e−i;

when e′ = ei,j,

e′−i =
(

I \ {i}, O \ {ω′
i},ÂO\{ω′

i}
−i , ω′

−i

)
=

(
I \ {i}, O \ {ωj},ÂO\{ωj}

−i , ω
i,j
−i

)
= ei,j

−i.

By the supposition of Lemma 2 (resp. Lemma 3), e−i ∈ D (resp. ei,j
−i ∈ D).

Let r = min{ri, rj} ≥ 2. We show the claim by induction on t ∈ {1, 2, . . . , r −
1}.

BASE STEP. Let t = 1. Let C = {i1(= iN+1), i2, . . . , iN} ∈ C(e, 1). Pick any in ∈ C.
Then,

∀ o ∈ O \ {ωin+1}, TTCin(e) = ωin+1 Âin o. (1)

By in ∈ I(e, 1) and t = 1 ≤ r − 1, in /∈ {i, j}, which implies that

in ∈ I \ {i} and ω′
in = ωin ∈ O \ {ω′

i}. (2)

Thus,
C ⊆ I \ {i} and

⋃
k∈C

{ω′
k} =

⋃
k∈C

{ωk} ⊆ O \ {ω′
i}.

In addition, by (1) and (2),

∀ o ∈ (O \ {ω′
i}) \ {ωin+1}, ωin+1 Â

O\{ω′
i}

in o.

This implies that C ∈ C(e′−i, 1) and

TTCin(e′−i) = TTCin(e) = ωin+1 .

INDUCTION HYPOTHESIS. Let t ∈ {2, 3, . . . , r − 1}. For each s ∈ {1, 2, . . . , t − 1},
the following claim holds:

C(e, s) ⊆ C(e′−i, s);

∀ k ∈ I(e, s), TTCk(e′−i) = TTCk(e).
(3)
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INDUCTION STEP. Let t ∈ {2, 3, . . . , r − 1} and C = {i1(= iN+1), i2, . . . , iN} ∈
C(e, t). Pick any in ∈ C. Then,

TTCin(e) = ωin+1 . (4)

By in ∈ I(e, t) and t ≤ r − 1, in /∈ {i, j}, which implies that

in ∈ I \ {i} and ω′
in = ωin ∈ O \ {ω′

i}. (5)

Let r′n ∈ N be such that in ∈ I(e′−i, r′n). We proceed in four steps.

Step 1: For each in ∈ C, ωin+1 %in TTCin(e′
−i). Let in ∈ C and o ∈ U+(Âin , ωin+1).

By in ∈ I(e, t) and (4), o ∈ Ot−1(e). Then, there are s′ ∈ {1, 2, . . . , t − 1} and
` ∈ I(e, s′) with TTC`(e) = o. By the induction hypothesis, (3) holds for s′ and
thus,

` ∈ I(e′−i, s′) and TTC`(e′−i) = TTC`(e) = o.

Hence, TTCin(e′−i) 6= o. That is, ωin+1 %in TTCin(e′−i).

Step 2: There is r∗ ∈ N such that for each in ∈ C, r∗ = r′
in

. By Step 1 and (5),

∀ in ∈ C, ω′
in+1

= ωin+1 %O\{ω′
i}

in TTCin(e′−i). (6)

This implies
r′i1 ≤ r′iN

≤ · · · ≤ r′i2 ≤ r′i1 .

Then, there is r∗ ∈ N such that for each in ∈ C, r∗ = r′in .

Step 3: C ∈ C(e′
−i, r∗) and TTCin(e′

−i) = TTCin(e) = ωin+1 . By (5), Step 2
implies that

C ⊆ (I \ {i}) \ Ir∗−1
(e′−i) and

⋃
k∈C

{ω′
k} =

⋃
k∈C

{ωk} ⊆
(
O \ {ω′

i}
)∖

Or∗−1
(e′−i).

Let in ∈ C. Recall (6). If ω′
in+1

= ωin+1 Â
O\{ω′

i}
in TTCin(e′−i), then in does not receive

the most preferred object among (O \ {ω′
i}) \ Or∗−1(e′−i) according to ÂO\{ω′

i}
in in

Round r∗ = r′in of the TTC algorithm at e′−i, which is a contradiction. Hence,

TTCin(e′−i) = ω′
in+1

= ωin+1 = TTCin(e).
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Then, C ∈ C(e′−i, r∗).

Step 4: t = r∗. Suppose on the contrary that t 6= r∗. There are two cases.

• Case 1: t < r∗. Then, for each in ∈ C, in ∈ (I \ {i}) \ It−1(e′−i). This to-
gether with C /∈ C(e′−i, t) and Step 3 implies that there are im ∈ C, k ∈ (I \ {i}) \
It−1(e′−i), and o ∈ (O \ {ω′

i}) \ Ot−1(e′−i) such that

im
(e′−i,t)→ k and ω′

k = o ÂO\{ω′
i}

im ωim+1 = ω′
im+1

= TTCim(e) = TTCim(e′−i).

By {o, ωim+1} ⊂ O \ {ω′
i} ⊂ O,

o Âim ωim+1 = TTCim(e).

Further, by im ∈ C ∈ C(e, t), o ∈ Ot−1(e). Then, there are s′ ∈ {1, 2, . . . , t − 1} and
` ∈ I(e, s′) with TTC`(e) = o. By the induction hypothesis, (3) holds for s′ and
thus,

` ∈ I(e′−i, s′) and TTC`(e′−i) = TTC`(e) = o ∈ O(e′−i, s′).

This contradicts o ∈ (O \ {ω′
i}) \ Ot−1(e′−i).

• Case 2: r∗ < t. By C /∈ C(e, t − 1) and C ∈ C(e, t), Step 3 implies that there are
im ∈ C, k ∈ I(e, t − 1), and o ∈ O(e, t − 1) such that

im
(e,t−1)→ k and ωk = o Âim ωim+1 = ω′

im+1
= TTCim(e) = TTCim(e′−i).

By o ∈ O(e, t − 1), there is ` ∈ I(e, t − 1) with TTC`(e) = o. By the induction
hypothesis, (3) holds for t − 1 and thus,

` ∈ I(e′−i, t − 1) and TTC`(e′−i) = TTC`(e) = o ∈ O(e′−i, t − 1).

By o ∈ O(e, t − 1) and t − 1 < r, o /∈ {ωi, ωj}. Thus, {o, ωim+1} ⊂ O \ {ω′
i} and

o Âim ωim+1 together imply o ÂO\{ω′
i}

im ωim+1 . Considering that

o ÂO\{ω′
i}

im ωim+1 = ω′
im+1

= TTCim(e′−i) and im ∈ C ∈ C(e′−i, r∗),

it holds that
o ∈ Or∗−1(e′−i),

which contradicts o ∈ O(e′−i, t − 1) where r∗ ≤ t − 1.
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A.3 Proof of Proposition 1

Suppose on the contrary that there are e = (I, O,Â, ω) ∈ D , {i, j} ⊆ I with i 6= j,
and {yi, yj} ⊆ O such that e−i ∈ D , {yi, yj} = {ωi, TTCj(e−i)}, and

yi Âi TTCi(e) and yj Âj TTCj(e).

Since TTC is individually rational, yi Âi TTCi(e) %i ωi, which implies yi 6= ωi.
Thus,

TTCj(e−i) Âi TTCi(e) and ωi Âj TTCj(e).

Since ωi Âj TTCj(e),
ri < rj, (7)

where (ri, rj) ∈ N2 is such that i ∈ I(e, ri) and j ∈ I(e, rj). Let o = TTCj(e−i).
Since o Âi TTCi(e), ri ≥ 2 and o ∈ Ori−1(e). Then, there are s′ ∈ {1, 2, . . . , ri − 1}
and ` ∈ I(e, s′) such that TTC`(e) = o. By Lemma 2 and (7),

` ∈ I(e−i, s′) and TTC`(e−i) = TTC`(e) = o.

Since s′ < ri < rj, ` 6= j, which contradicts TTCj(e−i) = o. ¤

A.4 Proof of Theorem 2

We prove only the “only if” part. Let f be a rule on D satisfying the three axioms.
Suppose on the contrary that f 6= TTC. For each e = (I, O,Â, ω) ∈ D , let

σ(e) =
∑
i∈I

∣∣{o ∈ O : o %i ωi}
∣∣.

Fix an economy ě = (I, O, Â̌, ω) ∈ D such that f (ě) 6= TTC(ě) and for each e ∈ D ,

σ(e) < σ(ě) =⇒ f (e) = TTC(e). (8)

Let

I f = {i ∈ I : fi(ě) Â̌i TTCi(ě)} and O f =
{

o ∈ O : ∃ i ∈ I f , o = ωi
}

;

It = {i ∈ I : TTCi(ě) Â̌i fi(ě)} and Ot = {o ∈ O : ∃ i ∈ It, o = ωi} .
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By f (ě) 6= TTC(ě), I f ∪ It 6= ∅. Let

I = I \
(

I f ∪ It
)

and O = O \
(
O f ∪ Ot

)
.

Note that for each i ∈ I, fi(ě) = TTCi(ě) because Â̌i is strict. The next claim
follows from the proof in Sethuraman (2016) or Ekici and Sethuraman (2024). For
completeness, we provide the proof.

Claim 1 (Sethuraman (2016); Ekici and Sethuraman (2024)).

(i) For each i ∈ It, fi(ě) = ωi and for each o ∈ O \ {TTCi(ě), ωi},

TTCi(ě) Â̌i fi(ě) = ωi Â̌i o.

(ii) I f = ∅ and It 6= ∅.

(iii) For each i ∈ It, TTCi(ě) ∈ Ot.

Proof of Claim 1. We first prove (i). Let i ∈ It. By the individual rationality of f ,

TTCi(ě) Â̌i fi(ě) %̌i ωi.

Suppose on the contrary that there is o ∈ O \ {TTCi(ě)} such that o Â̌i ωi. Since
D satisfies D3, there is Â↑

i ∈ PO such that

Â↑
i

TTCi(ě)
ωi
...

and
(

I, O,
(
Â↑

i , Â̌−i

)
, ω

)
∈ D . Let e↑ =

(
I, O,

(
Â↑

i , Â̌−i

)
, ω

)
. Note that σ(e↑) <

σ(ě). Then, by (8),
f (e↑) = TTC(e↑). (9)

Also, we have TTCi(e↑) = TTCi(ě); otherwise, TTCi(ě) Â↑
i TTCi(e↑), in vio-

lation of the strategy-proofness of TTC. Further, fi(e↑) 6= TTCi(ě); otherwise,
fi(e↑) = TTCi(ě) Â̌i fi(ě), in violation of the strategy-proofness of f . That is,
f (e↑) 6= TTC(e↑), which contradicts (9). Hence, Â̌i is such that
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Â̌i

TTCi(ě)
fi(ě) = ωi

...

We next prove (ii) and (iii) in the following six steps.

Step 1: For each i ∈ I f , TTCi(ě) = ωi and for each o ∈ O \ { fi(ě), ωi},
fi(ě) Â̌i TTCi(ě) = ωi Â̌i o. It follows from the similar argument to (i).

Step 2: For each i ∈ I, fi(ě) = TTCi(ě) ∈ O. Let i ∈ I. For each j ∈ I f , by
TTCj(ě) = ωj (Step 1), TTCi(ě)(= fi(ě)) 6= ωj. For each j ∈ It, by (i), f j(ě) = ωj,
which implies fi(ě)(= TTCi(ě)) 6= ωj. Hence, fi(ě) = TTCi(ě) ∈ O.

Step 3: For each i ∈ I f , fi(ě) ∈ O f . Let i ∈ I f . For each j ∈ It, by (i), f j(ě) = ωj,
which implies fi(ě) 6= ωj. Since for each j ∈ I, f j(ě) ∈ O (Step 2) and |I| = |O|,
fi(ě) /∈ O. Hence, fi(ě) ∈ O f .

Step 4: I f = ∅. Suppose on the contrary that I f 6= ∅. Let i1 ∈ I f . By fi1(ě) 6=
ωi1 (Step 1) and fi1(ě) ∈ O f (Step 3), there is i2 ∈ I f \ {i1} such that fi1(ě) = ωi2 .
Similarly, there is i3 ∈ I f \ {i2} such that fi2(ě) = ωi3 , and so on. Since |I f | is
finite, there is a set of agents {i1(= iS+1), i2, . . . , iS} ⊆ I f such that S ≥ 2, for
each {s, s′} ⊆ {1, 2, . . . , S} with s 6= s′, is 6= is′ , and fis(ě) = ωis+1 . Since for
each s ∈ {1, 2, . . . , S}, fis(ě)(= ωis+1) is is’s most preferred object according to Â̌is

(Step 1), TTCis(ě) = ωis+1 = fis(ě), a contradiction.

Step 5: It 6= ∅. By I f ∪ It 6= ∅ and I f = ∅ (Step 4), It 6= ∅.

Step 6: For each i ∈ It, TTCi(ě) ∈ Ot. Let i ∈ It. By I f = ∅ (Step 4), TTCi(ě) /∈
O f . Since for each j ∈ I, TTCj(ě) ∈ O (Step 2) and |I| = |O|, TTCi(ě) /∈ O. Hence,
TTCi(ě) ∈ Ot.

By It 6= ∅ (Claim 1(ii)), there is i1 ∈ It. By TTCi1(ě) 6= ωi1 and TTCi1(ě) ∈
Ot (Claim 1(iii)), there is i2 ∈ It \ {i1} such that TTCi1(ě) = ωi2 . Similarly, there is
i3 ∈ It \ {i2} such that TTCi2(ě) = ωi3 , and so on. Since |It| is finite, there is a set of
agents {i1(= iS+1), i2, . . . , iS} ⊆ It such that S ≥ 2, for each {s, s′} ⊆ {1, 2, . . . , S}
with s 6= s′, is 6= is′ , and TTCis(ě) = ωis+1 . There are two cases.

• Case 1: S = 2. Then, by Claim 1(i), (Â̌i1 , Â̌i2) is such that
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Â̌i1 Â̌i2

TTCi1(ě) = ωi2 TTCi2(ě) = ωi1
fi1(ě) = ωi1 fi2(ě) = ωi2

...
...

Consider ě−i1 ∈ E . Since D satisfies D1, ě−i1 ∈ D . By the individual rationality of
f , fi2(ě−i1) = ωi2 . Hence,

fi2(ě−i1) = ωi2 Â̌i1 ωi1 = fi1(ě) and ωi1 Â̌i2 ωi2 = fi2(ě),

in violation of weak withdrawal-proofness.

• Case 2: S ≥ 3. Then, by Claim 1(i), (Â̌is)
S
s=1 is such that

Â̌i1 Â̌i2 · · · Â̌iS−1 Â̌iS

TTCi1(ě) = ωi2 TTCi2(ě) = ωi3 · · · TTCiS−1(ě) = ωiS TTCiS(ě) = ωi1
fi1(ě) = ωi1 fi2(ě) = ωi2 · · · fiS−1(ě) = ωiS−1 fiS(ě) = ωiS

...
...

...
...

Since D satisfies D3, there is Â̂i1 ∈ PO such that

Â̂i1

ωi2

ωi3

ωi1
...

and (I, O, (Â̂i1 , Â̌−i1), ω) ∈ D . Let ê = (I, O, (Â̂i1 , Â̌−i1), ω). Then, fi1(ê) 6= ωi2 ;
otherwise, fi1(ê) = ωi2 Â̌i1 ωi1 = fi1(ě), in violation of the strategy-proofness of f .
By the individual rationality of f , fi1(ê) ∈ {ωi3 , ωi1}. There are two subcases.

◦ Subcase 2-1: fi1(ê) = ωi3 . By fi2(ê) 6= ωi3 and the individual rationality of f ,
fi2(ê) = ωi2 .

◦ Subcase 2-2: fi1(ê) = ωi1 . By fiS(ê) 6= ωi1 and the individual rationality of f ,
fiS(ê) = ωiS . Similarly, fiS−1(ê) = ωiS−1 , and so on. Hence, fi2(ê) = ωi2 .

In both subcases, we have fi2(ê) = ωi2 .
Now consider

ê−i2 =
(

I \ {i2}, O \ {ωi2},
(
Â̂O\{ωi2}

i1
, Â̌O\{ωi2}

−{i1,i2}

)
, ω−i2

)
.

Since D satisfies D1, ê−i2 ∈ D . Note that
(
Â̂O\{ωi2}

i1
, Â̌O\{ωi2}

−{i1,i2}

)
is such that
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Â̂O\{ωi2}
i1

Â̌O\{ωi2}
i3

· · · Â̌O\{ωi2}
iS−1

Â̌O\{ωi2}
iS

ωi3 ωi4 · · · ωiS ωi1
ωi1 ωi3 · · · ωiS−1 ωiS

...
...

...
...

Since σ(ê−i2) = σ(ě) − 2 < σ(ě), by (8), f (ê−i2) = TTC(ê−i2), which implies
fi1(ê−i2) = TTCi1(ê−i2) = ωi3 . Hence, by fi1(ê) ∈ {ωi3 , ωi1} and fi2(ê) = ωi2 ,

ωi2 Â̂i1 fi1(ê) and fi1(ê−i2) = ωi3 Â̌i2 ωi2 = fi2(ê),

in violation of weak withdrawal-proofness. ¤

A.5 Proofs of Proposition 2 and Theorem 3

Since Proposition 2 follows from the “if” part of Theorem 3, we provide the proof
of Theorem 3.

A.5.1 The “if” part

Since TTC clearly satisfies individual rationality, we only need to show the strict
pre-delivery-proofness of TTC. Suppose on the contrary that there are e = (I, O,Â,
ω) ∈ D and {i, j} ⊆ I with i 6= j such that ei,j

−i ∈ D ,

ωj %i TTCi(e) and TTCj(ei,j
−i) Âj TTCj(e).

Let (ri, rj) ∈ N2 be such that i ∈ I(e, ri) and j ∈ I(e, rj). By ωj %i TTCi(e),

rj ≤ ri. (10)

Let TTCj(ei,j
−i) = o ∈ O \ {ωj}. Since o Âj TTCj(e), rj ≥ 2 and o ∈ Orj−1(e). Then,

there are s′ ∈ {1, 2, . . . , rj − 1} and ` ∈ I(e, s′) with TTC`(e) = o. By Lemma 3
and (10),

` ∈ I(ei,j
−i, s′) and TTC`(ei,j

−i) = TTC`(e) = o.

Since s′ < rj, ` 6= j, which contradicts TTCj(ei,j
−i) = o.
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A.5.2 The “only if” part

We first prove an additional lemma, which states the following: if a set of agents
C = {i1, i2, . . . , iN} forms a cycle in Round r of the TTC algorithm at e, then the
reduced set C \ {im−1} forms a cycle in an earlier round than Round r at eim−1,im

−im−1
,

where im’s endowment is ωim−1 .

Lemma 4. Let e = (I, O,Â, ω) ∈ D , r ∈ N, C = {i1(= iN+1), i2, . . . , iN} ∈ C(e, r),
and m ∈ {1, 2, . . . , N}. Suppose that N ≥ 2 and eim−1,im

−im−1
∈ D . Then,

• there is r′im ≤ r such that

im ∈ I
(

eim−1,im
−im−1

, r′im
)

and C−im−1 = C \ {im−1} ∈ C
(

eim−1,im
−im−1

, r′im
)

;

and

• for each in ∈ C−im−1 , TTCin(eim−1,im
−im−1

) = TTCin(e) = ωin+1 .

Proof. For simplicity of notation, let

e′ = eim−1,im
−im−1

=
(

I \ {im−1}, O \ {ωim},ÂO\{ωim}
−im−1

, ω
im−1,im
−im−1

)
∈ D .

Note that

• for each in ∈ C−im−1 , TTCin(e) = ωin+1 ;

• C−im−1 ⊆ I \ {im−1};

• for each in ∈ C−im−1 \ {im}, ω
im−1,im
in = ωin ∈ O \ {ωim}; and

• ω
im−1,im
im = ωim−1 ∈ O \ {ωim}.

There are two cases.

• Case 1: r = 1. By C ∈ C(e, 1),

∀ in ∈ C−im−1 \ {im−2}, ∀ o ∈ O \ {ωin+1}, ω
im−1,im
in+1

= ωin+1 = TTCin(e) Âin o;

∀ o ∈ O \ {ωim−1}, ω
im−1,im
im = ωim−1 = TTCim−2(e) Âim−2 o.

Note that ⋃
k∈C−im−1

{
ω

im−1,im
k

}
⊆ O \ {ωim}.
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Hence,

∀ in ∈ C−im−1 \ {im−2}, ∀ o ∈ (O \ {ωim}) \ {ωin+1}, ω
im−1,im
in+1

= ωin+1 Â
O\{ωim}
in o;

∀ o ∈ (O \ {ωim}) \ {ωim−1}, ω
im−1,im
im = ωim−1 Â

O\{ωim}
im−2

o.

This implies that C−im−1 ∈ C(e′, 1) and

∀ in ∈ C−im−1 \ {im−2}, TTCin(e′) = ω
im−1,im
in+1

= ωin+1 = TTCin(e);

TTCim−2(e′) = ω
im−1,im
im = ωim−1 = TTCim−2(e).

• Case 2: r ≥ 2. By C ∈ C(e, r),

{im−1, im} ⊆ I(e, r). (11)

Then, (11) and Lemma 3 together imply that for each t ∈ {1, 2, . . . , r − 1} and
each i ∈ I(e, t),

i ∈ I(e′, t) and TTCi(e′) = TTCi(e). (12)

For each in ∈ C−im−1 , let r′in ∈ N be such that in ∈ I(e′, r′in). We proceed in four
steps.

Step 1: For each in ∈ C−im−1 , ωin+1 %in TTCin(e′). Let in ∈ C−im−1 and o ∈
U+(Âin , ωin+1). By in ∈ C ∈ C(e, r) and TTCin(e) = ωin+1 , o ∈ Or−1(e). Then,
there are s′ ∈ {1, 2, . . . , r − 1} and ` ∈ I(e, s′) with TTC`(e) = o. By (12), ` ∈
I(e′, s′) and TTC`(e′) = TTC`(e) = o. Hence, TTCin(e′) 6= o. That is, ωin+1 %in

TTCin(e′).

Step 2: There is r∗ ∈ N such that for each in ∈ C−im−1 , r∗ = r′
in

. By Step 1,

∀ in ∈ C−im−1 \ {im−2}, ω
im−1,im
in+1

= ωin+1 %in TTCin(e′);

ω
im−1,im
im = ωim−1 %im−2 TTCim−2(e′).

(13)

Note that ⋃
k∈C−im−1

{
ω

im−1,im
k

}
⊆ O \ {ωim}.
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It then follows from (13) that

∀ in ∈ C−im−1 \ {im−2}, ω
im−1,im
in+1

= ωin+1 %O\{ωim}
in TTCin(e′);

ω
im−1,im
im = ωim−1 %O\{ωim}

im−2
TTCim−2(e′).

(14)

Hence,
r′i1 ≤ r′iN

≤ · · · ≤ r′im+1
≤ r′im ≤ r′im−2

≤ · · · ≤ r′i1 .

Then, there is r∗ ∈ N such that for each in ∈ C−im−1 , r∗ = r′in .

Step 3: For each in ∈ C−im−1 , TTCin(e′) = TTCin(e) = ωin+1 and C−im−1 ∈
C(e′, r∗). Step 2 implies that

C−im−1 ⊆ (I \ {im−1}) \ Ir∗−1(e′);⋃
k∈C−im−1

{
ω

im−1,im
k

}
⊆ (O \ {ωim}) \ Or∗−1(e′).

Recall (14). If either

• for some in ∈ C−im−1 \ {im−2}, ω
im−1,im
in+1

= ωin+1 Â
O\{ωim}
in TTCin(e′), or

• ω
im−1,im
im = ωim−1 Â

O\{ωim}
im−2

TTCim−2(e′),

then there is j ∈ C−im−1 such that j does not receive the most preferred object

among (O \ {ωim}) \ Or∗−1(e′) according to ÂO\{ωim}
j in Round r∗ = r′j of the

TTC algorithm at e′, which is a contradiction. Hence,

∀ in ∈ C−im−1 \ {im−2}, TTCin(e′) = ω
im−1,im
in+1

= ωin+1 = TTCin(e);

TTCim−2(e′) = ω
im−1,im
im = ωim−1 = TTCim−2(e),

and C−im−1 ∈ C(e′, r∗ = r′im).

Step 4: r∗ = r′
im

≤ r. By Step 2, r∗ = r′im . We below show r∗ ≤ r. Suppose on the
contrary that r < r∗. Then, by C−im−1 ∈ C(e′, r∗) (Step 3),

C−im−1 ⊆ (I \ {im−1}) \ Ir−1(e′).

By C−im−1 /∈ C(e′, r), there are im′ ∈ C−im−1 , k ∈ (I \ {im−1}) \ Ir−1(e′), and o ∈
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(O \ {ωim}) \ Or−1(e′) such that

im′
(e′,r)→ k and ω

im−1,im
k = o ÂO\{ωim}

im′
TTCim′ (e′) = TTCim′ (e).

Note that by {o, TTCim′ (e′) = TTCim′ (e)} ⊆ O \ {ωim} ⊂ O,

o Âim′ TTCim′ (e). (15)

By im′ ∈ C ∈ C(e, r), o ∈ Or−1(e). Then, there are s′ ∈ {1, 2, . . . , r − 1} and
` ∈ I(e, s′) with TTC`(e) = o. This together with (12) implies that

` ∈ I(e′, s′) and TTC`(e′) = TTC`(e) = o ∈ O(e′, s′).

This contradicts o ∈ (O \ {ωim}) \ Or−1(e′).

Proof of the “only if” part of Theorem 3. Suppose that f : D → X satisfies the two
axioms. We show that for each r ∈ N, each e ∈ D , each C ∈ C(e, r), and each
i ∈ C, fi(e) = TTCi(e).14

Let r ∈ N. Suppose that

∀ t ∈ {1, 2, . . . , r − 1}, ∀ e ∈ D , ∀C ∈ C(e, t), ∀ i ∈ C, fi(e) = TTCi(e). (16)

Then,

∀ e = (I, O,Â, ω) ∈ D , Or−1(e) = {o ∈ O : ∃ i ∈ Ir−1(e), o = fi(e)}. (17)

We use induction on |C|.

BASE STEP. Let e = (I, O,Â, ω) ∈ D and C = {i} ∈ C(e, r) (that is, |C| = 1).
Then,

ωi ∈ O \ Or−1(e);

∀ o ∈ O \
(

Or−1(e) ∪ {ωi}
)

, TTCi(e) = ωi Âi o.
(18)

14To prove this claim, it is necessary to employ induction on r. Since the cases r = 1 and
r ≥ 2 share similar arguments, we present a unified proof applicable to both cases. We note
some distinctions in the case where r = 1: (16) is vacuously true when r = 1; (17) reduces to
the statement that for each e = (I, O,Â, ω) ∈ D , Or−1(e) = O0(e) = ∅; in the base step, (18)
and individual rationality immediately imply fi(e) = ωi = TTCi(e); and in the induction step, (20)
directly follows from (19), and only Case 2 occurs.
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By i ∈ I(e, r) and (17), for each o ∈ Or−1(e), fi(e) 6= o. Hence, by (18) and
individual rationality, fi(e) = ωi = TTCi(e).

INDUCTION HYPOTHESIS. Let N ∈ {2, 3, . . . , |I|}. For each e ∈ D , each C ∈
C(e, r) with |C| ≤ N − 1, and each i ∈ C, fi(e) = TTCi(e).

INDUCTION STEP. Let N ∈ {2, 3, . . . , |I|}, e = (I, O,Â, ω) ∈ D , and C = {i1(=
iN+1), i2, . . . , iN} ∈ C(e, r). Then, for each in ∈ C,

ωin+1 ∈ O \ Or−1(e);

∀ o ∈ O \ (Or−1(e) ∪ {ωin+1}), TTCin(e) = ωin+1 Âin o.
(19)

In addition, by in ∈ I(e, r) and (17), for each o ∈ Or−1(e), fin(e) 6= o. This, together
with (19), implies

TTCin(e) = ωin+1 %in fin(e). (20)

Suppose on the contrary that

∃ im ∈ C, fim(e) 6= ωim+1 = TTCim(e). (21)

Let
e′ = eim−1,im

−im−1
=

(
I \ {im−1}, O \ {ωim},ÂO\{ωim}

−im−1
, ω

im−1,im
−im−1

)
.

Since D satisfies D4, e′ ∈ D .15 By Lemma 4, TTCim(e′) = TTCim(e) = ωim+1 ,
C−im−1 ∈ C(e′, r′im), and r′im ≤ r. There are two cases.

• Case 1: r′
im

< r. By (16) and C−im−1 ∈ C(e′, r′im), fim(e′) = TTCim(e′) = ωim+1 .

• Case 2: r′
im

= r. By the induction hypothesis, C−im−1 ∈ C(e′, r′im = r) and
|C−im−1 | ≤ N − 1, fim(e′) = TTCim(e′) = ωim+1 .

That is, in both cases, fim(e′) = TTCim(e′) = ωim+1 . Hence, by (20) and (21),

ωim %im−1 fim−1(e) and fim(e′) = ωim+1 Âim fim(e).

This contradicts strict pre-delivery-proofness.

15Considering that N ≥ 2, im−1( 6= im) surely exists.
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Doğan, E. (2013) “Absence-proofness: a new cooperative stability concept,”
Working Paper, Rice University.
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B Appendix: Omitted proofs in the main text

B.1 Remark 1

Since both TTC and NT clearly satisfy individual rationality, we now show that
both rules satisfy withdrawal-proofness. Below, we show the withdrawal-proofness
of TTC, as that of NT can be established by a parallel argument.

Let e = (I, O,Â′, ω′) ∈ D(Â, ω). There are two cases.

• Case 1: {1, 2, 3} ⊆ I. Then, no pair has an incentive to manipulate, as all agents
receive their most preferred objects.

• Case 2: {1, 2, 3} 6⊂ I. Consider a pair {i, j} ⊆ I with i 6= j. Since {1, 2, 3} 6⊂ I
and {1, 2, 3} 6⊂ I \ {i}, TTC(e) = ω′ and TTC(e−i) = ω′

−i. Then,

(TTCi(e), TTCj(e)) = (oi, oj) and {ω′
i , TTCj(e−i)} = {oi, oj}.

Suppose that there are k ∈ {i, j} and yk ∈ {ω′
i , TTCj(e−i)} such that yk Â′

k ok =
TTCk(e). Then, k ∈ {1, 2, 3}; if k ≥ 4, then TTCk(e) = ok %′

k yk, a contradiction.
We only consider the case where k = 1 since we can consider the other cases
similarly. By y1 Â′

1 o1 = TTC1(e), y1 = o2 and {i, j} = {1, 2}. Then, TTC2(e) =
o2 Â′

2 o1, which implies that this pair has no incentive to manipulate.

B.2 Example 5

We now show that f̂ satisfies endowments-swapping-and-withdrawal-proofness. Let
e = (I, O,Â′, ω′) ∈ D(Â). There are two cases.

• Case 1: e 6= ê. Note that f̂ (e) = TTC(e) and for each {i, j} ⊆ I with i 6= j,
by ei,j

−i 6= ê, f̂ j(ei,j
−i) = TTCj(ei,j

−i). Since TTC satisfies strict pre-delivery-proofness,
there is no pair {i, j} ⊆ I with i 6= j such that ωj Â′

i f̂i(e)(= TTCi(e)) and
f̂ j(ei,j

−i)(= TTCj(ei,j
−i)) Â

′
j f̂ j(e)(= TTCj(e)).
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• Case 2: e = ê. Since all agents except agent 3 receive their most preferred
objects under f̂ (ê), there is no pair {i, j} ⊆ I with i 6= j such that ωj Âi f̂i(ê) and
f̂ j(êi,j

−i) Âj f̂ j(ê).

C Appendix: Impossibility result for strict endowments-

swapping-and-withdrawal-proofness

We begin by defining strict endowments-swapping-and-withdrawal-proofness.

Strict endowments-swapping-and-withdrawal-proofness: There are no e = (I, O,
Â, ω) ∈ D and {i, j} ⊆ I with i 6= j such that ei,j

−i ∈ D , ωj Âi fi(e), and
f j(ei,j

−i) %j f j(e).

Strict endowments-swapping-and-withdrawal-proofness rules out the possibility that
swapping endowments makes the agent who withdrew strictly better off, while
the agent who participated may be indifferent between the outcomes with and
without manipulation.

In contrast to strict pre-delivery-proofness, no rule satisfies both individual ratio-
nality and strict endowments-swapping-and-withdrawal-proofness. As with strict pre-
delivery-proofness, if a rule satisfies both properties, it must be TTC, and the proof
parallels the “only if” part of Theorem 3. However, if domain D satisfies the
following condition in addition to D4, TTC violates strict endowments-swapping-
and-withdrawal-proofness.

D5. There are e = (I, O,Â, ω) ∈ D , r ∈ N, C = {i1(= iN+1), i2, . . . , iN} ∈ C(e, r)
with N ≥ 2, and j ∈ I \ Ir(e) such that

• for each o ∈ O \
(
Or−1(e) ∪ {ωi1}

)
, ωi1 Âj o; and

• for each o ∈ O \
(
Or−1(e) ∪ {ωi1 , ωj}

)
, ωi1 ÂiN ωj ÂiN o.

If such a cycle C = {i1, i2, . . . , iN} and agent j exist, the pair {i1, j} can manipulate
TTC: swapping their endowments followed by withdrawal makes agent j strictly
better off since ωi1 Âj TTCj(e); C is also formed in the TTC algorithm at ei1,j

−j , and

agent i1 receives the same object ωi2 under TTC(e) and TTC(ei1,j
−j ). Thus, TTC

violates strict endowments-swapping-and-withdrawal-proofness.
We establish the following incompatibility between individual rationality and

strict endowments-swapping-and-withdrawal-proofness.
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Theorem 4. Let D ⊆ E be a domain satisfying D4 and D5. Then, no rule on D satisfies
individual rationality and strict endowments-swapping-and-withdrawal-proofness.

We prove the following two lemmas. The first lemma states that if a rule satis-
fies individual rationality and strict endowments-swapping-and-withdrawal-proofness,
it must be TTC. The second lemma shows that TTC violates strict endowments-
swapping-and-withdrawal-proofness. Theorem 4 follows from these two lemmas.

Lemma 5. Let D ⊆ E be a domain satisfying D4. If a rule f on D satisfies individual
rationality and strict endowments-swapping-and-withdrawal-proofness, it is TTC on D .

Proof. Suppose that f : D → X satisfies the two axioms. We show that for each
r ∈ N, each e ∈ D , each C ∈ C(e, r), and each i ∈ C, fi(e) = TTCi(e).16

Let r ∈ N. Suppose that

∀ t ∈ {1, 2, . . . , r − 1}, ∀ e ∈ D , ∀C ∈ C(e, t), ∀ i ∈ C, fi(e) = TTCi(e). (22)

Then,

∀ e = (I, O,Â, ω) ∈ D , Or−1(e) = {o ∈ O : ∃ i ∈ Ir−1(e), o = fi(e)}. (23)

We use induction on |C|.

BASE STEP. Let e = (I, O,Â, ω) ∈ D and C = {i} ∈ C(e, r) (that is, |C| = 1).
Then,

ωi ∈ O \ Or−1(e);

∀ o ∈ O \ (Or−1(e) ∪ {ωi}), TTCi(e) = ωi Âi o.
(24)

By i ∈ I(e, r) and (23), for each o ∈ Or−1(e), fi(e) 6= o. Hence, by (24) and
individual rationality, fi(e) = ωi = TTCi(e).

INDUCTION HYPOTHESIS. Let N ∈ {2, 3, . . . , |I|}. For each e ∈ D , each C ∈
C(e, r) with |C| ≤ N − 1, and each i ∈ C, fi(e) = TTCi(e).

INDUCTION STEP. Let N ∈ {2, 3, . . . , |I|}, e = (I, O,Â, ω) ∈ D , and C = {i1(=

16The proof of this claim follows the same lines as the proof of the corresponding claim in the
“only if” part of Theorem 3. As in the “only if” part of Theorem 3, we present a unified proof
applicable to the cases r = 1 and r ≥ 2.
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iN+1), i2, . . . , iN} ∈ C(e, r). Then, for each in ∈ C,

ωin+1 ∈ O \ Or−1(e);

∀ o ∈ O \ (Or−1(e) ∪ {ωin+1}), TTCin(e) = ωin+1 Âin o.
(25)

In addition, by in ∈ I(e, r) and (23), for each o ∈ Or−1(e), fin(e) 6= o. This, together
with (25), implies

TTCin(e) = ωin+1 %in fin(e). (26)

Suppose on the contrary that

∃ im ∈ C, fim(e) 6= ωim+1 = TTCim(e). (27)

Let
e′ = eim,im+1

−im =
(

I \ {im}, O \ {ωim+1},Â
O\{ωim+1

}
−im , ω

im,im+1
−im

)
.

Since D satisfies D4, e′ ∈ D .17 By Lemma 4, TTCim+1(e′) = TTCim+1(e) = ωim+2 ,
C−im = {i1, . . . , im−1, im+1, . . . , iN} ∈ C(e′, r′im+1

), and r′im+1
≤ r. There are two

cases.

• Case 1: r′
im+1

< r. By (22) and C−im ∈ C(e′, r′im+1
), fim+1(e′) = TTCim+1(e′) =

ωim+2 .

• Case 2: r′
im+1

= r. By the induction hypothesis, C−im ∈ C(e′, r′im+1
= r) and

|C−im | ≤ N − 1, fim+1(e′) = TTCim+1(e′) = ωim+2 .

That is, in both cases, fim+1(e′) = TTCim+1(e′) = ωim+2 . Hence, by (26) and (27),

ωim+1 Âim fim(e) and fim+1(e′) = ωim+2 %im+1 fim+1(e).

This contradicts strict endowments-swapping-and-withdrawal-proofness.

Lemma 6. Let D ⊆ E be a domain satisfying D4 and D5. Then, TTC on D violates
strict endowments-swapping-and-withdrawal-proofness.

Proof. Since D satisfies D5, there are e = (I, O,Â, ω) ∈ D , r ∈ N, C = {i1(=
iN+1), i2, . . . , iN} ∈ C(e, r), and j ∈ I \ Ir(e) such that

• for each o ∈ O \
(
Or−1(e) ∪ {ωi1}

)
, ωi1 Âj o; and

• for each o ∈ O \
(
Or−1(e) ∪ {ωi1 , ωj}

)
, ωi1 ÂiN ωj ÂiN o.

17Considering that N ≥ 2, im+1( 6= im) surely exists.
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By C ∈ C(e, r), for each in ∈ C,

• in ∈ I \ Ir−1(e) and ωin ∈ O \ Or−1(e); and

• for each o ∈ O \
(
Or−1(e) ∪ {ωin+1}

)
, TTCin(e) = ωin+1 Âin o.

By j ∈ I \ Ir(e) and ωi1 ∈ O(e, r),

• j ∈ I \ Ir−1(e) and ωj ∈ O \ Or−1(e); and

• ωi1 Âj TTCj(e).

Let rj ∈ N be such that j ∈ I(e, rj). By j /∈ Ir(e), r < rj.
Let

e′ = ej,i1
−j =

(
I \ {j}, O \ {ωi1},ÂO\{ωi1}

−j , ω
j,i1
−j

)
.

Since D satisfies D4, e′ ∈ D . There are two cases.

• Case 1: r = 1. By C ∈ C(e, 1) and Or−1(e) = O0(e) = ∅,

∀ in ∈ C \ {iN}, ∀ o ∈ O \ {ωin+1}, ω
j,i1
in+1

= ωin+1 = TTCin(e) Âin o;

∀ o ∈ O \ {ωi1 , ωj}, ω
j,i1
j = ωi1 = TTCiN (e) ÂiN ω

j,i1
i1

= ωj ÂiN o.
(28)

Note that
C ⊆ I \ {j} and

⋃
k∈C

{
ω

j,i1
k

}
⊆ O \ {ωi1}.

By (28),

∀ in ∈ C \ {iN}, ∀ o ∈ (O \ {ωi1}) \ {ωin+1}, ω
j,i1
in+1

= ωin+1 Â
O\{ωi1

}
in o;

∀ o ∈ (O \ {ωi1}) \ {ωj}, ω
j,i1
i1

= ωj Â
O\{ωi1

}
iN

o.

These imply that C ∈ C(e′, 1) and for each in ∈ C \ {iN}, TTCin(e′) = ω
j,i1
in+1

=

ωin+1 and TTCiN (e′) = ω
j,i1
i1

= ωj.

• Case 2: r ≥ 2. For each o ∈ Or−1(e), there are s′ ∈ {1, 2, . . . , r − 1} and ` ∈
I(e, s′) with TTC`(e) = o. By Lemma 3 and r < rj, ` ∈ I(e′, s′) and TTC`(e′) =
TTC`(e) = o. Hence, for each in ∈ C, TTCin(e′) 6= o. Additionally, by TTCiN(e′) ∈
O \ {ωi1}, TTCiN(e′) 6= ωi1 . These imply that

∀ in ∈ C \ {iN}, TTCin(e) = ωin+1 = ω
j,i1
in+1

%in TTCin(e′);

TTCiN (e) = ωi1 = ω
j,i1
j ÂiN ωj = ω

j,i1
i1

%iN TTCiN (e′).
(29)
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Note that ⋃
k∈C

{
ω

j,i1
k

}
⊆ O \ {ωi1}.

It then follows from (29) that

∀ in ∈ C \ {iN}, ωin+1 = ω
j,i1
in+1

%O\{ωi1}
in TTCin(e′);

ωj = ω
j,i1
i1

%O\{ωi1}
iN

TTCiN(e′).
(30)

For each in ∈ C, let r′in ∈ N be such that in ∈ I(e′, r′in). By (30),

r′i1 ≤ r′iN
≤ r′iN−1

≤ · · · ≤ r′i2 ≤ r′i1 ,

that is, there is r′ ∈ N such that for each in ∈ C, r′ = r′in . This also implies that

C ⊆ (I \ {j}) \ Ir′−1(e′) and
⋃

k∈C

{
ω

j,i1
k

}
⊆ (O \ {ωi1}) \ Or′−1(e′).

Recall (30). If there is in ∈ C such that ω
j,i1
in+1

ÂO\{ωi1
}

in TTCin(e′), then in does

not receive the most preferred object among (O \ {ωi1}) \ Or′−1(e′) according to

ÂO\{ωi1}
in in Round r′ = r′in of the TTC algorithm at e′, which is a contradiction.

Hence, C ∈ C(e′, r′) and for each in ∈ C \ {iN}, TTCin(e′) = ω
j,i1
in+1

= ωin+1 and

TTCiN(e′) = ω
j,i1
i1

= ωj.

In both cases, we obtain TTCi1(e′) = ωi2 . Hence,

ωi1 Âj TTCj(e) and TTCi1(e′) = ωi2 = TTCi1(e).

This implies that TTC violates strict endowments-swapping-and-withdrawal-proofness.
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