

UTMD-094
[Appendix]

Robust Exchange

 Yuichiro Kamada
University of California, Berkeley

Yosuke Yasuda

The University of Osaka

September 17, 2025

For Online Publication

Online Appendix

Robust Exchange

Yuichiro Kamada† Yosuke Yasuda‡

September 17, 2025

This Online Appendix consists of four sections. Appendix C provides a formal

proof of Theorem 1. Appendix D presents a modification of the k-greedy algorithm

and examines the relationship of its outcome to the notion of k-robust core that

we introduce there. Appendix E provides an additional discussion on the k-greedy

mechanism. In Appendix F, we consider various alternative specifications for the

simulations in Section 4 of the main text. Appendix G discusses potential reasons

why we observe the TTC mechanism being used in school choice contexts.

C Proof of Theorem 1

Since the core idea of the proof is explained via the 3-agent example in the main text

after the statement of Theorem 1, we did not provide the formal extension of that

argument. For completeness, we provide the formal argument here.

Proof of Theorem 1. Consider a subset of agents, denoted by S ⊆ I, which consists

of k + 1 agents: S = {1, 2, . . . , k + 1}. Such a subset can be taken because k <

|I|. Suppose for a contradiction that there exists a k-robust mechanism that is k-

unanimous and strategy-proof. Let ψ be such a mechanism. Suppose that the agents’

preferences are as follows.

≻1 : 2, k + 1, 1; ≻k: k + 1, 1, k; ≻k+1: 1, 2, k + 1;

≻l : l + 1, l for all l ̸= 1, k, k + 1.

†Haas School of Business, University of California Berkeley, 2220 Piedmont Avenue, Berkeley, CA
94720-1900, USA, and University of Tokyo, Faculty of Economics, 7-3-1 Hongo, Bunkyoku, Tokyo,
113-0033, Japan. E-mail: y.cam.24@gmail.com

‡Osaka University, Department of Economics, 1-7 Machikaneyama, Toyonaka, Osaka 560-0043
Japan. E-mail: yosuke.yasuda@gmail.com

1

Figure 8: The counterexample for the general case in the proof of Theorem 1.

Figure 8 provides a graphical representation of these preferences.

We start with two observations. First, Lemma 1 implies that ψ must always re-

turn an individually rational exchange. Second, if a given agent i has two acceptable

objects besides object i, then agent i must receive an object. This is because, oth-

erwise, she could misreport to say that her true second choice was her first choice,

thereby creating a unanimous trading cycle of size no greater than k. This second

observation implies that agents k, k+1, and 1 must receive an object. Since the only

agent besides k who regards object k as acceptable is k − 1, agent k − 1 receives an

object as well. In the same way, all agents from 2 to k− 2 receive an object. Overall,

all agents from 1 to k + 1 must receive an object. But there is no k-robust exchange

in which every agent receives an object. This contradicts the assumption that ψ is

k-robust.

D Modified k-Greedy Algorithm and k-Robust Core

Round 0 of the k-greedy algorithm ensures that the resulting exchange is k-unanimous.

One could imagine a modification of this algorithm where Round 0 is expanded so

that, after eliminating the unanimous trading cycles with size k or fewer, top trading

cycles with size k or fewer are iteratively implemented until no such cycles exist. For-

mally, themodified k-greedy algorithm is the same algorithm as the k-greedy algorithm

except that it replaces Round 0 with the following:

Round 0: Define µ0 as follows:

Round 0-1: Implement every unanimous trading cycle with size k or fewer. We define

an exchange µ0,1 as follows. Let I0,1 be the set of agents who are involved in an

2

implemented cycle. If agent j is in I0,1, then µ0,1
j is set to be agent j’s first-choice

object according to ≻j. Otherwise, µ0,1
j = j. Define S0,1 := I \ I0,1. If S0,1 = I, let

S0 = S0,1 and go to Round 1. Otherwise, go to Round 0-2.

For any n ≥ 2 such that the algorithm was determined to proceed to Round 0-n

in Round 0-(n− 1), we define Round 0-n as follows.

Round 0-n: Implement every cycle with size k or fewer such that each agent in

S0,n−1 involved in a cycle receives the first-choice object among S0,n−1. We define

an exchange µ0,n as follows. Let I0,n be the set of agents who are involved in an

implemented cycle. If agent j is in I0,n, then µ0,n
j is set to be agent j’s first-choice

object according to ≻j among S0,n−1. If agent j is in S0,n−1 \ I0,n, µ0,n
j = j. If agent

j is not in S0,n−1, set µ0,n
j = µ0,n−1

j . Define S0,n := S0,n−1 \ I0,n. If S0,n = S0,n−1, let

S0 = S0,n and go to Round 1. Otherwise, go to Round 0-(n+ 1).

Define the modified k-greedy mechanism to be the one that outputs the out-

come of the modified k-greedy algorithm for any input. A result analogous to Theo-

rem 3 holds:

Proposition 4. The modified k-greedy mechanism is a k-robust mechanism, and it

is individually rational, k-unanimous, and k-efficient.

The proof is omitted as it is analogous to the one for Theorem 3.

Note that, if k ≥ |I|, the modified k-greedy algorithm ends in Round 0, and it is

equivalent to the TTC algorithm. Since the outcome of the TTC algorithm is in the

core, one may hope to obtain variants of the properties of core, where we account for

the restriction on the cycle size. Formally, we define the following.

Definition 4. A subset of agents I ′ ⊆ I blocks an exchange µ via an exchange µ′ if

the following hold.

1. µ′
i ⪰ µi for all i ∈ I ′.

2. µ′
j ≻ µj for some j ∈ I ′.

3. µ′
i ∈ I ′ for all i ∈ I ′.

Definition 5. The k-robust core Ck is the set of exchanges such that µ ∈ Ck if and

only if µ is k-robust and there does not exist I ′ ⊆ I that blocks µ such that |I ′| ≤ k.

3

Notice that an equivalent definition can be obtained if we do not require |I ′| ≤ k

but instead require that the resulting exchange µ′ is k-robust. This is because if a

coalition I ′ of size greater than k induces µ′ that is k-robust, then we can take a

subset of I ′ with size no greater than k that would work as a stand-alone coalition

and block the original µ.

We note that the k-robust core may be empty, showing that the conjecture that

the modified k-greedy mechanism induces an exchange in the k-robust core is false.

One example is the preferences depicted in Figure 4 in Section 2.2 of the main text.

In that example, any k-robust exchange must entail at least one unassigned agent.

Let this agent be i and the agent who regards object i as the first choice be i′. Letting

I ′ = {i, i′} and µ′ be such that (µ′
i, µ

′
i′ , µ

′
j) = (i′, i, j) where j ∈ {1, 2, 3} \ {i, i′}, we

have that I ′ blocks the original exchange via µ′.

In fact, the emptiness of the k-robust core is general, in the sense the next result

formalizes.

Proposition 5. Fix (I, k) such that 1 < k < |I|. There exists ≻ such that the

k-robust core is empty.

Given this result, one may hope that (i) the modified k-greedy mechanism pro-

duces an exchange in the k-robust core as long as the latter is nonempty, and also

(ii) for any exchange in the k-robust core, there is a modified k-greedy mechanism

with an appropriate ordering from Round 1 onward that induces the given exchange.

Neither of these claims turns out to be true. Indeed, the k-robust core and the set of

exchanges induced by the modified k-robust mechanisms where we vary the ordering

may be disjoint even if the k-robust core is not empty, showing that both claims are

false. The following example makes this point.

Example 3 (Modified k-greedy mechanism and k-robust core). Consider the follow-

ing preferences:

≻1 : 2, 3, 4, 1;

≻2 : 3, 4, 1, 2;

≻3 : 4, 1, 2, 3;

≻4 : 1, 2, 3, 4.

Figure 9 provides a graphical representation of these preferences. Suppose that k = 2.

4

Figure 9: Example 3. Panel (a) shows the unique exchange in the k-robust core, while
panel (b) shows the exchange induced by the modified k-greedy mechanism with the
ordering such that agent 1 is the first.

One can check by inspection that the k-robust core is {µ} where (µ1, µ2, µ3, µ4) =

(3, 4, 1, 2). However, µ cannot be induced by any modified k-greedy mechanism. To

see this, notice that Round 0 of any modified k-greedy algorithm assigns no object to

anyone. Second, let i be the agent who gets the highest priority in a given modified

k-greedy algorithm (i.e., σ(i) = 1.). Let agent i’s first-choice object be j. Since

agent j deems object i as acceptable, we must have µi = j. Since j = i + 1, with

the convention that 5 = 1, we have that the outcome of the given modified k-greedy

mechanism is not µ.

This example makes another interesting point. In the standard environment,

efficiency implies that at least one agent receives her first-choice object. A proof of

this result goes as follows: if there is no such agent under a given exchange, then one

can form a top trading cycle to obtain a Pareto-dominating exchange, which means

that the original exchange was not efficient.

In our environment, such a result would not hold. Specifically, in Example 3, µ is

k-efficient, but no agent receives their first-choice object. The proof that worked in

the standard environment would not work here because the top trading cycle over µ

would result in an exchange that involves a 4-cycle, which is not k-robust.

We note that serial dictatorship (defined to account for the constraint of k-

robustness) does not induce µ, either.1

1Serial dictatorship consists of a number of steps. In the 0-th step, it identifies the set of k-robust
exchanges, denoted E0. In the l-th step, it identifies the set of all exchanges that are the best for
agent l in El−1, and we denote the set by El. This construction implies that E|I| is a singleton, and
the algorithm outputs its element.

5

Figure 10: Example 4. After removing the unanimous trading cycle in panel (a)
(just eliminating agent 4), we obtain the updated preferences as in panel (b). The k-
greedy algorithm would implement the cycle (1, 2) in its Round 1, while the modified
k-greedy algorithm would implement the cycle (2, 3) in the second step of its Round
0.

We now consider the relationship between the k-greedy mechanism and the mod-

ified k-greedy mechanism. First of all, the two mechanisms can induce different

exchanges.

Example 4 (k-greedy mechanism and modified k-greedy mechanism). Suppose that

I = {1, 2, 3, 4} and k = 2. Consider the following preferences.

≻1 : 2, 1;

≻2 : 4, 3, 1, 2;

≻3 : 4, 2, 3;

≻4 : 4.

Figure 10 provides a graphical representation of these preferences. Note that there

is a single unanimous trading cycle, which is a 1-cycle consisting of agent 4. After

removing agent 4, agents 2 and 3 would find themselves as respective first choices,

but they are in fact second choices originally. For this reason, the two mechanisms

induce different exchanges. More specifically, the k-greedy mechanism induces µ with

(µ1, µ2, µ3, µ4) = (2, 1, 3, 4) and the modified k-greedy mechanism induces µ′ with

(µ′
1, µ

′
2, µ

′
3, µ

′
4) = (1, 3, 2, 4).

Note that, in the above example, the exchange induced by the k-greedy mechanism

µ is not in the k-robust core because (µ′, {2, 3}) blocks it, while the one induced by

6

the modified k-greedy mechanism is in the k-robust core. This argument can be

generalized to imply the following.

Proposition 6. If a k-greedy mechanism induces an exchange µ in the k-robust core,

the modified k-greedy mechanism with the same ordering induces µ as well.

This result is a generalization of the finding in Example 4 in the sense that its

contrapositive is equivalent to the following statement: if the two mechanisms induce

different exchanges, then the exchange induced by the k-greedy mechanism is not in

the k-robust core—the situation taking place in the example. The result suggests

that, although the modified k-greedy mechanism fails to always induce an exchange

in the k-robust core, it produces such an exchange “more likely.”

Appendix D.3 provides two more examples to illustrate the properties of k-robust

core. One example shows that the following claim is false: If all exchanges in the

(unrestricted) core are not k-robust, then the k-robust core is empty. The other

example shows that, although all the examples so far feature singleton k-robust cores,

such a property is not general; the k-robust core may consist of multiple exchanges.

D.1 Proof of Proposition 5

Proof. Consider the following preferences for i ∈ {1, . . . , k + 1} where we we let

k + 2 = 1 and k + 3 = 2.2

≻i: i+ 1, i+ 2, i.

Moreover, for all i ∈ {k + 2, . . . , |I|}, let

≻i: i.

We show that any k-robust µ is blocked by some I ′ via some µ′.

Suppose first that µ has an l-cycle with 1 < l < k. Let I ′′ be the set of agents

involved in this cycle. Then, there must exist i ∈ I ′′ who is receiving her second-

choice object, i.e., object i + 2. This implies that agent i + 1 does not receive his

first-choice object. Hence, letting µ′ and I ′ be such that

1. I ′ = I ′′ ∪ {i+ 1};
2We use this convention of k + 2 = 1 and k + 3 = 2 in this proof.

7

2. µ′
j = µj for all j ∈ I ′′ \ {i};

3. µ′
i = i+ 1;

4. µ′
i+1 = i+ 2;

5. µ′
j = j for j ̸∈ I ′,

it follows that I ′ blocks µ via µ′.

Next, suppose that, for every l-cycle that µ has, l = 1 holds. Letting

1. I ′ = {1, . . . , k};

2. µ′
i = i+ 1 for all i ∈ {1, . . . , k − 1};

3. µ′
k = 1;

4. µ′
j = j for all j ̸∈ I ′,

it follows that I ′ blocks µ via µ′.

Finally, suppose that µ has a k-cycle, where the set of involved agents, which

we denote by I ′′, satisfies I ′′ ⊆ {1, . . . , k + 1}. Let i be the unique agent such that

I ′′ ∪ {i} = {1, . . . , k + 1}. Without loss of generality, let i = k. Then, letting

1. I ′ = {1, . . . , k};

2. µ′
i = i+ 1 for all i ∈ {1, . . . , k − 1};

3. µ′
k = 1;

4. µ′
j = j for all j ̸∈ I ′,

it follows that I ′ blocks µ via µ′.

Overall, we have shown that any k-robust µ is blocked by some I ′ via some µ′.

D.2 Proof of Proposition 6

Proof. Fix an ordering. Suppose that the exchange µ induced by the k-greedy algo-

rithm and exchange µ′ induced by the modified k-greedy algorithm are different from

each other. Let C be the set of cycles that are formed in Round 0 of the modified

k-greedy algorithm but not in the entire course of k-greedy algorithm. We first prove

the following:

8

Lemma 2. The set C is nonempty.

Proof. Suppose, toward a contradiction, that C is empty. Consider the following two

sets of agents:

Dµ := {i ∈ I|i is in the same cycle on µ as some j such that µj ̸= µ′
j}.

Dµ′ := {i ∈ I|i is in the same cycle on µ′ as some j such that µj ̸= µ′
j}.

Notice that, in particular, if µi ̸= µ′
i, then we have i ∈ Dµ and i ∈ Dµ′ .

Note that we must have Dµ = Dµ′ . This is because, if i ̸∈ Dµ, then every j in

the same cycle on µ as i satisfies µj = µ′
j by the definition of Dµ. But this implies

i ̸∈ Dµ′ . The same logic shows that i ̸∈ Dµ′ implies i ̸∈ Dµ, showing that Dµ = Dµ′ .

Note also that and Dµ and Dµ′ are nonempty because µ and µ′ are different from

each other.

Let i∗ = minDµ. Since C is empty, Rounds before Round i∗ in either algorithm

do not produce any cycle that does not appear in the other algorithm, and Round i∗

is the first round at which different cycles appear in the two algorithms. Let the cycle

produced in Round i∗ of the k-greedy algorithm be (iµ1 , i
µ
2 , . . . , i

µ
Lµ) and that of the

modified k-greedy algorithm be (iµ
′

1 , i
µ′

2 , . . . , i
µ′

Lµ′), where i
µ
1 = iµ1 = i∗. Since these two

cycles are different, there must exist l∗ such that iµl′ = iµ
′

l′ for all l′ < l∗ and iµl∗ ̸= iµ
′

l∗ .

Let S̃ be the set of agents whose assignment has not been determined before

Round i∗ of the k-greedy algorithm, and let S̃ ′ be the set of agents whose assignment

has not been determined before Round i∗ of the modified k-greedy algorithm. Note

that Round i∗ of the k-greedy algorithm runs the (i∗, k)-greedy algorithm on S̃, and

Round i∗ of the modified k-greedy algorithm runs the (i∗, k)-greedy algorithm on S̃ ′.

Notice that S̃ ′ ⊆ S̃ and S̃ \ S̃ ′ ⊆ C ′ hold, where C ′ is the set of agents involved in

the cycles that are formed in Round 0 of the modified k-greedy algorithm but not in

Round 0 of the k-greedy algorithm. Let I ′ := {iµ1 , i
µ
2 , . . . , i

µ
l∗−1} = {iµ

′

1 , i
µ′

2 , . . . , i
µ′

l∗−1}.
By the definition of the (i∗, k)-greedy algorithm on S̃, iµl∗ must be the (uniquely,

because preferences of agent iµl∗−1 are strict) best object for agent iµl∗−1 among all

objects in S̃ \I ′ with the constraint that there is a cycle with size k or fewer such that

(i) agent iµl receives object iµl+1 for all l ∈ {1, . . . , l∗ − 2}, (ii) all agents in the cycle

belongs to S̃, (iii) every agent in the cycle receives an acceptable object, and (iv)

agent iµl∗−1 receives the object. Similarly, the definition of (i∗, k)-greedy algorithm

9

on S̃ ′ implies that iµ
′

l∗ must be the (uniquely, because preferences of agent iµ
′

l∗−1 are

strict) best object for agent iµ
′

l∗−1 among all objects in S̃ ′ \ I ′ with the constraint that

there is a cycle with size k or fewer such that (i’) agent iµ
′

l receives object iµ
′

l+1 for all

l ∈ {1, . . . , l∗ − 2}, (ii’) all agents in the cycle belongs to S̃ ′, (iii’) every agent in the

cycle receives an acceptable object, and (iv’) agent iµ
′

l∗−1 receives the object.

Since C is empty, no agent in the cycle that i∗ belongs to in the k-greedy algorithm

are in C ′. Hence, all agents in the cycle that i∗ belongs to in the k-greedy algorithm are

in S̃ ′ because S̃\S̃ ′ ⊆ C ′. This implies that the constraints (ii) and (ii’) are identical to

each other. Moreover, constraints (i) and (i’), as well as (iv) and (iv’), are identical to

each other, respectively, because I ′ := {iµ1 , i
µ
2 , . . . , i

µ
l∗−1} = {iµ

′

1 , i
µ′

2 , . . . , i
µ′

l∗−1}. Finally,
constraints (iii) and (iii’) are identical to each other. These facts imply that we must

have iµl∗ = iµ
′

l∗ . But this contradicts our earlier conclusion that iµl∗ ̸= iµ
′

l∗ . This completes

the proof.

Now, let n be the smallest integer such that some cycle in C is formed in Round 0-

n of the modified k-greedy algorithm, and take an arbitrary cycle in C that is formed

in Round 0-n. Let I ′ be the set of the agents involved in the chosen cycle. Note that

|I ′| ≤ k must hold by the definition of modified k-greedy algorithm.

Note that, under µ, each agent in I ′ receives an object in S0,n−1 if n > 1 and in

I if n = 1. Note also that, under µ′, each agent in I ′ receives her first-choice object

in S0,n−1 if n > 1 and in I if n = 1. By the definition of C, there must be at least

one agent in I ′ who receives different objects between µ and µ′. These observations

imply that µ′
i ⪰i µi for every i ∈ I ′ and µ′

j ≻j µj for some j ∈ I ′. Moreover, µ′
i ∈ I ′

holds for all i ∈ I ′. Hence, I ′ blocks µ via µ′ and thus, µ is not in the k-robust core.

Therefore, we have shown the contrapositive to the statement of the proposition. The

proof is complete.

D.3 Additional Examples

This section provides two examples to illustrate the properties of k-robust core. The

first example shows that the following claim is false: If no exchanges in the (unre-

stricted) core are k-robust, then the k-robust core is empty.

Example 5 (Core and k-robust core). Suppose that I = {1, 2, 3} and k = 2. Consider

10

Figure 11: Example 5. Although the unique exchange in the core, in which every
agent receives their first-choice object, is not k-robust, the k-robust core is nonempty
(circled in the picture).

the following preferences.

≻1 : 2, 1;

≻2 : 3, 1, 2;

≻3 : 1, 3.

Figure 11 provides a graphical representation of these preferences. Note that the

(unrestricted) core consists of a single exchange µ such that (µ1, µ2, µ3) = (2, 3, 1)

and this is not k-robust. However, k-robust core is nonempty, and it consists of a

single exchange µ′ such that (µ′
1, µ

′
2, µ

′
3) = (2, 1, 3).

The second example shows that, although all the examples in Appendix D feature

singleton k-robust cores, it is not general to have a singleton k-robust core.

Example 6 (Non-singleton k-robust core). Suppose that I = {1, 2, 3, 4} and k = 2.

Consider the following preferences.

≻1 : 2, 4, 1;

≻2 : 3, 1, 2;

≻3 : 4, 2, 3;

≻4 : 1, 3, 4.

11

Figure 12: Example 6. The exchanges in the two panels are both in the k-robust
core.

Figure 12 provides a graphical representation of these preferences. By inspection,

one can show that the k-robust core consists of two exchanges, Ck = {µ, µ′}, where
(µ1, µ2, µ3, µ4) = (2, 1, 4, 3) and (µ′

1, µ
′
2, µ

′
3, µ

′
4) = (4, 3, 2, 1).

E Additional Discussion on k-Greedy Mechanism

One may also consider a version of part 1 of Proposition 2 in which strict preferences

are replaced with weak preferences while at least one strict preference relation is

required:

Claim 3. Fix any I, k, and ≻. There is no ≻′
i such that for any ordering σ, we

have ψi(≻′
i,≻−i) ⪰i ψi(≻) with at least one strict preference relation where ψ is the

k-greedy mechanism with σ.

This claim turns out to be incorrect. The next example shows this point.

Example 7 (Counterexample to Claim 3). Consider an economy with four agents,

I = {1, 2, 3, 4} and set k = 2. Consider the following preferences:

≻1 : 4, 2, 3, 1;

≻2 : 1, 3, 2;

≻3 : 1, 4, 2, 3;

≻4 : 3, 4.

12

Figure 13: Example 7. Given the preference profile as in panel (a), for any ordering
σ, agent 1 would be weakly better off under the k-greedy mechanism with σ if she
misreports her preferences as in panel (b). The improvement is strict if σ orders agent
3 the first.

Also, consider the following misreporting by agent 1:

≻′
1 : 4, 2, 1.

See Figure 13 for a graphical representation.

Note first that, under both ≻ and (≻′
1,≻−1), there is no pair of agents such that

they find each other’s object to be their first choice. This means that, whether the

input is ≻ or (≻′
1,≻−1), no cycle is formed in Round 0 of any 2-greedy algorithm.

Consider Round 1. If the input is ≻, agent 1 is assigned object 3 if σ(3) = 1

and she is assigned object 2 otherwise. If, on the other hand, the input is (≻′
1,≻−1),

then agent 1 is assigned object 2 for any σ. Since 2 ≻1 3, this shows that Claim 3 is

incorrect.

F Modifications of the Simulation Model

This section presents various alternative specifications for the simulations in Section 4

of the main text. In Appendix F.1, we vary the distribution of preferences. In any of

the specifications we consider, we find the robustness of the effect that the k-greedy

mechanisms perform relatively well even with small p, and we also find that some

of the modifications amplify the effect. Then in Appendix F.2, we consider settings

where a certain rewiring process takes place after agents drop out. Again, we find

the robustness of our main insight. Each graph in this section records the average of

13

the relevant values for 100 runs where the preferences are drawn independently across

different runs.

F.1 Changes in the Utility Distribution

In all of the following specifications, the variables ϵj and ξij are independently dis-

tributed and follow N(0, 1). The numbers α, β, γ, δ ∈ [0, 1] and L ∈ N are parameters.

Agent i’s utility from receiving object j is determined as follows:

1. Popular and unpopular objects. In this modification, the preferences of different

agents are correlated, and some objects are intrinsically more popular than

others. Specifically, we set uij = αϵj + (1 − α)ξij. Here, ϵj depends only

on j (not i), and thus measures the popularity of object j. The parameter

α denotes the strength of the preference correlation. The case with α = 1

corresponds to perfect correlation (every agent has the same preferences) and

the one with α = 0 corresponds to independent preferences, which is our base

scenario. The results are shown in Figure 14 for the case of N = 200, p = 0.05,

and α = 0, 0.2, 0.6. We find that the performances of the k-greedy mechanisms

relative to the performance of the TTC mechanism become better when α is

smaller. The reason for this pattern is that preferences are more correlated

when α is larger and hence the cycles tend to be smaller. This weakens the

advantage of k-greedy mechanisms because the restrictions on the cycle sizes

become more likely to be irrelevant.3 We note that we ran simulations for other

parameter combinations, and the basic results are robust. Analogous remarks

apply to other modifications below where we only present graphs for N = 200,

p = 0.05, and a few select parameter values.

2. Two-sided market. In this specification, the market is divided into two sides,

and agents have a tendency to prefer the objects on the other side. Specifically,

we set uij = βIi+j=odd + (1 − β)ξij. Here, we consider the scenario where

odd-indexed agents/objects are on one side of the market and even-indexed

agents/objects are on the other side. The parameter β denotes the strength

of the tendency to prefer the objects on the other side. When β = 1, the

preferences depend only on which side the given object belongs to; the case

3In particular, when α = 1, every agent receives their own object, so the size of every cycle is 1.

14

Figure 14: The performance of each mechanism under Modification 1. The strength
of preference correlation (α) is 0, 0.2, and 0.6 in the left, middle, and right panels,
respectively.

Figure 15: The performance of each mechanism under Modification 2. The strength
of the tendency to prefer the objects on the other side (β) is 0, 0.2, and 0.6 in the
left, middle, and right panels, respectively.

with β = 0 corresponds to our base scenario where the sides do not matter.

The results are shown in Figure 15. We find that the k-greedy mechanisms

perform mostly well relative to the TTC mechanism for any β, while k-greedy

mechanisms with even k perform relatively better than those with odd k when

β is large. The reason for this pattern is that there are many cycles with size

k under the k-greedy mechanism, and when β is large, the agents in the cycle

are likely to alternate the sides and, thus, the k-th agent chosen during the

algorithm when forming the cycle receives a relatively desirable object when k

is even and a relatively undesirable object when k is odd.

3. Hate for the own object. This modification corresponds to the case when agents

are eager to exchange goods. We represent such preferences by the disutility

of receiving their own good. Specifically, we set uij = γIj ̸=i + (1 − γ)ξij. The

parameter γ denotes the strength of the tendency to prefer the objects that

other agents have. When γ = 1, the preferences depend only on whether there

15

Figure 16: The performance of each mechanism under Modification 3. The strength
of the tendency to prefer the objects that others have (γ) is 0, 0.2, and 0.6 in the left,
middle, and right panels, respectively.

was an exchange; the case with γ = 0 corresponds to our base scenario where

there is no disutility of receiving the own good. The results are shown in

Figure 16. We find that the performances of the k-greedy mechanisms relative

to the performance of the TTC mechanism become better when γ is larger. The

reason for this pattern is that the TTC mechanism entails a greater chance for

an agent to receive her own object than the k-greedy mechanisms do when there

are many agents, and such an event becomes more undesirable as γ becomes

larger.

4. Love for the own object. This modification corresponds to the case when

agents are reluctant to exchange goods. We represent such preferences by

the additional utility of receiving their own good. Specifically, we set uij =

δIj=i + (1 − δ)ξij. The parameter δ denotes the strength of the tendency to

prefer the objects that they themselves are endowed with. When δ = 1, the

preferences depend only on whether there was an exchange; the case with δ = 0

corresponds to our base scenario where there is no additional utility of receiving

the own good. The results are shown in Figure 17. We find that the perfor-

mances of the k-greedy mechanisms relative to the performance of the TTC

mechanism become better when δ is smaller. The reason for this pattern is the

opposite of the one for Modification 3: The TTC mechanism entails a greater

chance for an agent to receive her own object than the k-greedy mechanisms

do when there are many agents, and such an event becomes more desirable as

δ becomes larger.

5. Short preference list with informed agents. In this modification, we assume

16

Figure 17: The performance of each mechanism under Modification 4. The strength
of the tendency to prefer the objects that they themselves have (δ) is 0, 0.2, and 0.6
in the left, middle, and right panels, respectively.

that each agent submits a preference list that only includes the top L choices

among all the objects, where we set the utility to be uij = ξij. We call this case

the case with “informed agents” because we implicitly assume that each agent

knows which objects are her top L choices among all the N objects. The results

are shown in Figure 18. We find that the k-greedy mechanisms perform mostly

well relative to the TTC mechanism for any L except when both L and k are

small, while the performances of the k-greedy mechanisms are nonmonotone

in L. Specifically, the performances become better as L increases when L is

small, while they become worse when L is large. The reason for this pattern

is that increasing L has two effects: First, it increases the chance that a cycle

can be formed given any set of agents of size no more than k due to the greater

acceptability. This enhances the welfare of the agents. Meanwhile, the choice

of cycles in the k-greedy algorithm implies that a cycle may assign relatively

undesirable objects, especially to the agents who appear at a later stage in the

formation of a given cycle. This is because increasing L adds more undesirable

objects to the list of preferences as agents are informed. This effect deteriorates

the welfare.

6. Short preference list with uninformed agents. In this modification, we assume

that each agent submits a preference list that only includes L randomly chosen

objects, where we set the utility to be uij = ξij. This is called the case with

“uninformed agents” because we implicitly assume that each agent does not

necessarily know her true top L objects but rather samples random L objects

out of all the N objects. The results are shown in Figure 19. We find that the

performances of the k-greedy mechanisms relative to the performance of the

17

Figure 18: The performance of each mechanism under Modification 5. The length
of the submitted preference list (L) is 5, 20, and unbounded in the left, middle, and
right panels, respectively.

Figure 19: The performance of each mechanism under Modification 6. The length
of the submitted preference list (L) is 5, 20, and unbounded in the left, middle, and
right panels, respectively.

TTC mechanism become better when L is greater. The reason for this pattern

can be understood by considering the two effects of increasing L in Modification

5: The first effect in which a cycle becomes more likely to be formed due to the

greater acceptability still remains. However, the second effect in which agents

become worse off due to the addition of the worse objects in the preference list

no longer holds. This is because, as L increases, not only worse objects but also

better objects can be added to the list of preferences as agents are uninformed.

Overall, increasing L only enhances the welfare.

Our result that the k-greedy mechanisms perform relatively well even with small p

is robust to these modifications, and we find that some of these modifications amplify

the effect.

We have also examined mixtures of some of the above specifications, but do not

list all the details of the results from such specifications.4 We found that the results

4E.g., a mixture of Modifications 1 and 2, where uij = αϵj + βIi+j=odd + (1− α− β)ξij .

18

are robust to considering such mixtures as well.

F.2 Rewiring among Affected Agents

In this section, we consider specifications in which, after agents drop out, the agents

who are “affected” by a dropout agent take part in a certain rewiring process. Specifi-

cally, consider a family of mechanisms (ΓN ′
)N ′⊆N . We first run ΓN . Then, each agent

independently drops out with probability p. This determines the set of dropped

agents, the set of affected agents, and the set of agents who are neither dropped

nor affected. We consider centralized and decentralized rewriting processes. For the

centralized ones, we examine the following two settings.

1. Rewiring Process 1: The mechanism ΓN̄ is run where N̄ is the set of the

affected agents. Each affected agent receives the object under the second run

of Γ. Each dropped agent receives her own object. Each agent who is neither

a dropped agent nor an affected agent receives the object assigned under the

initial run of Γ.

2. Rewiring Process 2: First, we implement Rewiring Process 1. Then, each

agent in N̄ drops out with probability p. Any agents who are in the same cycle

as a newly dropped agent receive their own object. Other agents receive the

same object as in the outcome of Rewiring Process 1.

We view Rewiring Process 1 as an extreme scenario because, in reality, some of

the affected agents may not participate in the rewiring process and even if they

do, they may drop out after the process is run. Nonetheless, it helps us obtain

a loose upper bound on the performance of mechanisms. We find that, although

the TTC mechanism outperforms k-greedy mechanisms in Rewiring Process 1, our

main insights from Section 4.2 carry over to Rewiring Process 2. The results are

illustrated in Figure 20 for the case with N = 1000 and p = 0.05.5 The utilities uij

are drawn according to the normal distribution N(0, 1), independently across agents

and objects for 100 simulation runs. Behind these results is Theorem 5. When

there are many agents, almost 100% of non-dropped agents are affected, and thus

5When N = 200, there is no clear dominance relationship between the TTC mechanism and the
k-greedy mechanisms, but it is still true that the performance of the TTC mechanism becomes worse
with dropouts and the k-greedy mechanisms are a viable alternative.

19

Figure 20: The performance of each mechanism under Rewiring Process 1 (left panel)
and under Rewiring Process 2 (right panel).

the TTC mechanism under Rewiring Process 1 would essentially be rerunning the

TTC mechanism among the non-dropped agents. This is why the TTC mechanism

under Rewiring Process 1 performs well. The performance of the TTC mechanism

becomes worse with the additional dropouts under Rewiring Process 2 for the same

reason as the one with which the TTC mechanism is disadvantaged under our main

simulations. The additional insight here is that running the k-greedy mechanisms

among the affected agents (which would not be “almost 100% of non-dropped agents”

due to Theorem 5) would still work better than the TTC mechanism under Rewiring

Process 2.

For the decentralized processes, we consider the following two settings.

1. Rewiring Process 3: Randomly match agents in N̄ to make as many pairs

as possible, so that there will be |N̄ |
2

pairs if |N̄ | is even, and |N̄ |−1
2

pairs and

one remaining agent if |N̄ | is odd (each configuration of matching occurs with

equal probability). If two agents i and j in a pair regard each other’s object

as acceptable, then agent i receives object j and agent j receives object i.

Otherwise, each of these two agents receives her own object. The remaining

one agent in the case of |N̄ | being odd receives her own object. Each dropped

agent receives her own object. Each agent who is neither a dropped agent nor

an affected agent receives the object assigned under the initial run of Γ.

2. Rewiring Process 4: First, we implement Rewiring Process 3. Then, follow

the steps described below.

• Step 1: Take the set N̄1 ⊆ N̄ of agents who are currently receiving their

20

own objects. Finalize the assignment for agents in I \ N̄1. Run the same

procedure as Rewiring Process 3, with replacing N̄ with N̄1, to determine

the assignment for agents in N̄1. Go to Step 2.

• Step l (l = 2, 3, . . .): Take the set N̄ l ⊆ N̄ l−1 of agents who are currently

receiving their own objects. Finalize the assignment for agents in N̄ l−1\N̄ l.

If every agent in N̄ l regards all objects in N̄ l as unacceptable, let every

agent in N̄ l receive their own object, finalize such an assignment (which

would finalize the assignment for all agents in I) and finish following the

steps. Otherwise, Run the same procedure as Rewiring Process 3, with

replacing N̄ with N̄ l, to determine the assignment for agents in N̄ l. Go to

Step l + 1.

Note that this ends in a finite number of steps. Intuitively, Rewiring Process 3 lets

the affected agents have one chance to receive someone else’s object. Those agents

are randomly matched with another agent, and if both agents agree, they can ex-

change their objects. We view this process as a realistic scenario when there is no

centralized process for the affected agents. Depending on the situation, the affected

agents may be able to spend a longer time searching for an object. Rewiring Process

4 is an extreme case in which agents continue searching until there is no possibility of

receiving someone else’s object. We view this as an unrealistic scenario because such

an extensive search would likely require some type of centralization, and moreover,

we assume no dropouts during the search process. We consider this case despite these

problems because analyzing it would provide an upper bound on the performance of

a decentralized rewiring process. We find that the k-greedy mechanisms for small

values of k outperform the TTC mechanism under both Rewiring Processes 3 and

4, while the difference is more significant under Rewiring Process 3. The results are

illustrated in Figure 21 for the case with N = 1000 and p = 0.05 (we observe a similar

pattern for N = 200 as well). The utilities uij are drawn according to the normal

distribution N(0, 1), independently across agents and objects for 100 simulation runs.

These results show that the effect of dropouts is so significant under the TTC mech-

anism that a decentralized system (as defined here) would not sufficiently mitigate

the problem, even under an unrealistic scenario of Rewiring Process 4.

21

Figure 21: The performance of each mechanism under Rewiring Process 3 (left panel)
and under Rewiring Process 4 (right panel).

G Discussion on School Choice

The simulation results so far demonstrate that the TTC mechanism performs poorly.

One could argue that this is a possible explanation for why the TTC mechanism is

not widely used in practice despite its well-known desirable properties in the standard

environment without dropouts, such as efficiency, being in the core and strategy-

proofness. However, this mechanism was used in a few school choice contexts such as

New York City and New Orleans (cf. ??). Why is this the case? More specifically,

what is a feature distinct in the school choice problem that makes the TTC mechanism

usable in practice?

We view that the key difference is in how “soft” the capacity constraint is. In

the house exchange problem, it would be practically infeasible to let multiple agents

consume one object. For this reason, once an agent in a given cycle drops out, all

agents in the cycle have to become unassigned. The standard school-choice situation

is different in that it would not be fatal for schools to accommodate slightly more

students than their capacity because they typically have many available seats. Hence,

even if one student drops out of a cycle, one could imagine a system that lets the other

agents in the cycle receive the school seat specified in the cycle and only changes the

assignment of the dropped student to the school she was initially endowed with, such

as the “walk-zone school” (or to her outside option). One concern, then, is that such

a system may result in too much excess of the number of students compared to the

capacity when many dropout students come back to the same school. By simulations,

we show that such a concern may not be too much of an issue.

22

Specifically, we consider the following model. There are N agents and K schools.

Each student is endowed with a school, and each school has N/K students who are

endowed with that school and has a capacity of N/K. Each student has preferences

over schools and each school has priority over the students who are endowed with that

school. First, the TTC mechanism is run.6 After that, each student drops out of the

currently assigned school with probability p and is assigned the endowed school.7 If a

student is assigned its endowed school and drops out, then the student is reassigned

that school.

In the simulations, we generated the students’ preferences and the schools’ priori-

ties uniformly randomly and independently. The result of the simulations for the case

with N/K = 100 is presented in Figure 22. One can see that, although the number

of students who come back to the endowed school (represented by orange bars) can

be large, the resulting excess (i.e., the number of come-backs minus the number of

students who leave, represented by blue bars) is typically much smaller.8 The reason

is that, although a given school may have to accept the dropped-out students who

return to the school, there may also exist students who are assigned to the school

under the TTC mechanism but drop out and leave the school. These two effects

mostly cancel each other out, resulting in only a small excess beyond the capacity.

6We consider the standard modification of the TTC mechanism adapted to the school choice
context: In each step of the TTC algorithm, each student points to the most desirable school that
still has vacant seats. Each school has priority over the N/K students who are endowed with that
school, and points to the highest student according to such priority among those who still remain
in the market.

7Another possible specification would be that some dropped-out students will not be assigned
any school (e.g., they go to a school outside of the market, such as a private school), but such an
assumption would only strengthen our claim that the excesses are liklely to be small, as the excess
becomes even less likely to emerge.

8In the graphs, the blue bar at the zero excess is extremely high. This is because it accounts for
all the schools for which the resulting number of assignments is no greater than their capacity.

23

Figure 22: The distribution of the number of returns and excess at each school in
the school choice problem. Each school has a capacity of 100. Left : 10 schools and
p = 0.05; Middle: 20 schools and p = 0.05; Right : 20 schools and p = 0.2.

24

