UTMD working Paper

The University of Tokyo
Market Design Center

UTMD-094
[Appendix]

Robust Exchange

Yuichiro Kamada
University of California, Berkeley

Yosuke Yasuda
The University of Osaka

September 17, 2025

For Online Publication

Online Appendix

Robust Exchange

Yuichiro Kamada' Yosuke Yasuda!
September 17, 2025

This Online Appendix consists of four sections. Appendix C provides a formal
proof of Theorem 1. Appendix D presents a modification of the k-greedy algorithm
and examines the relationship of its outcome to the notion of k-robust core that
we introduce there. Appendix E provides an additional discussion on the k-greedy
mechanism. In Appendix F, we consider various alternative specifications for the
simulations in Section 4 of the main text. Appendix G discusses potential reasons

why we observe the TTC mechanism being used in school choice contexts.

C Proof of Theorem 1

Since the core idea of the proof is explained via the 3-agent example in the main text
after the statement of Theorem 1, we did not provide the formal extension of that

argument. For completeness, we provide the formal argument here.

Proof of Theorem 1. Consider a subset of agents, denoted by S C I, which consists
of k4 1 agents: S = {1,2,...,k + 1}. Such a subset can be taken because k <
|I|. Suppose for a contradiction that there exists a k-robust mechanism that is k-
unanimous and strategy-proof. Let 1) be such a mechanism. Suppose that the agents’

preferences are as follows.

=1 :2,k+1,1; =k k41,1, k; k1t 1,2,k 4+ 1;
=i+ 1,1 forall I # 1,k k+ 1.

tHaas School of Business, University of California Berkeley, 2220 Piedmont Avenue, Berkeley, CA
94720-1900, USA, and University of Tokyo, Faculty of Economics, 7-3-1 Hongo, Bunkyoku, Tokyo,
113-0033, Japan. E-mail: y.cam.240gmail.com

tOsaka University, Department of Economics, 1-7 Machikaneyama, Toyonaka, Osaka 560-0043
Japan. E-mail: yosuke.yasuda@gmail.com

—> 1st choice

2
l ---->» 2nd choice
3

Figure 8: The counterexample for the general case in the proof of Theorem 1.

Figure 8 provides a graphical representation of these preferences.

We start with two observations. First, Lemma 1 implies that ¢ must always re-
turn an individually rational exchange. Second, if a given agent ¢ has two acceptable
objects besides object 7, then agent ¢ must receive an object. This is because, oth-
erwise, she could misreport to say that her true second choice was her first choice,
thereby creating a unanimous trading cycle of size no greater than k. This second
observation implies that agents k, k+ 1, and 1 must receive an object. Since the only
agent besides £ who regards object k as acceptable is &k — 1, agent k — 1 receives an
object as well. In the same way, all agents from 2 to k — 2 receive an object. Overall,
all agents from 1 to k£ + 1 must receive an object. But there is no k-robust exchange
in which every agent receives an object. This contradicts the assumption that 1 is
k-robust. [

D DModified k-Greedy Algorithm and k-Robust Core

Round 0 of the k-greedy algorithm ensures that the resulting exchange is k-unanimous.
One could imagine a modification of this algorithm where Round 0 is expanded so
that, after eliminating the unanimous trading cycles with size k or fewer, top trading
cycles with size k or fewer are iteratively implemented until no such cycles exist. For-
mally, the modified k-greedy algorithm is the same algorithm as the k-greedy algorithm
except that it replaces Round 0 with the following:

Round 0: Define p° as follows:

Round 0-1: Implement every unanimous trading cycle with size k or fewer. We define

0,1

an exchange p%! as follows. Let I%! be the set of agents who are involved in an

implemented cycle. If agent j is in %!, then pg’l is set to be agent j’s first-choice
object according to >;. Otherwise, ,u?’l = j. Define S%! := T\ 1% If SO = [, let
S0 = S%! and go to Round 1. Otherwise, go to Round 0-2.

For any n > 2 such that the algorithm was determined to proceed to Round 0-n
in Round 0-(n — 1), we define Round 0-n as follows.
Round 0-n: Implement every cycle with size k or fewer such that each agent in
S%n=1 involved in a cycle receives the first-choice object among S%"~!. We define

On as follows. Let I°™ be the set of agents who are involved in an

implemented cycle. If agent j is in I%", then ,LL[;’n

object according to >; among S°"~!. If agent j is in SO"~1\ 19" ,u?’” = j. If agent
j is not in SO set ,u?’n = u?’"_l. Define SO" := SOn=1\ [0n Tf §0n = SOn=1 et
5% = §%" and go to Round 1. Otherwise, go to Round 0-(n + 1).

an exchange p

is set to be agent j’s first-choice

Define the modified k-greedy mechanism to be the one that outputs the out-
come of the modified k-greedy algorithm for any input. A result analogous to Theo-
rem 3 holds:

Proposition 4. The modified k-greedy mechanism is a k-robust mechanism, and it

18 indwidually rational, k-unanimous, and k-efficient.

The proof is omitted as it is analogous to the one for Theorem 3.

Note that, if £ > ||, the modified k-greedy algorithm ends in Round 0, and it is
equivalent to the TTC algorithm. Since the outcome of the TTC algorithm is in the
core, one may hope to obtain variants of the properties of core, where we account for

the restriction on the cycle size. Formally, we define the following.

Definition 4. A subset of agents I’ C I blocks an exchange p via an exchange ' if
the following hold.

1., = p; forall v e I'.
2. pj = py for some j € I'.
3. el forallie I

Definition 5. The k-robust core C* is the set of exchanges such that p € C¥ if and
only if y is k-robust and there does not exist I’ C I that blocks p such that |I'| < k.

Notice that an equivalent definition can be obtained if we do not require |I'| < k
but instead require that the resulting exchange p’ is k-robust. This is because if a
coalition I’ of size greater than k induces p' that is k-robust, then we can take a
subset of I’ with size no greater than k that would work as a stand-alone coalition
and block the original pu.

We note that the k-robust core may be empty, showing that the conjecture that
the modified k-greedy mechanism induces an exchange in the k-robust core is false.
One example is the preferences depicted in Figure 4 in Section 2.2 of the main text.
In that example, any k-robust exchange must entail at least one unassigned agent.
Let this agent be ¢ and the agent who regards object 7 as the first choice be i’. Letting
I'" = {i,7'} and ' be such that (u, pujs, 1) = (7',4,7) where j € {1,2,3}\ {i,i'}, we
have that I’ blocks the original exchange via p'.

In fact, the emptiness of the k-robust core is general, in the sense the next result

formalizes.

Proposition 5. Fiz (I,k) such that 1 < k < |I|. There exists > such that the

k-robust core is empty.

Given this result, one may hope that (i) the modified k-greedy mechanism pro-
duces an exchange in the k-robust core as long as the latter is nonempty, and also
(ii) for any exchange in the k-robust core, there is a modified k-greedy mechanism
with an appropriate ordering from Round 1 onward that induces the given exchange.
Neither of these claims turns out to be true. Indeed, the k-robust core and the set of
exchanges induced by the modified k-robust mechanisms where we vary the ordering
may be disjoint even if the k-robust core is not empty, showing that both claims are

false. The following example makes this point.

Example 3 (Modified k-greedy mechanism and k-robust core). Consider the follow-

ing preferences:

~-1:2,3,4,1;
=9 :3,4,1,2;
—3:4,1,2,3;
41,2 3,4

Figure 9 provides a graphical representation of these preferences. Suppose that & = 2.

4

— 1st choice

---->» 2nd choice

........ » 3rd choice

Figure 9: Example 3. Panel (a) shows the unique exchange in the k-robust core, while
panel (b) shows the exchange induced by the modified k-greedy mechanism with the
ordering such that agent 1 is the first.

One can check by inspection that the k-robust core is {u} where (1, o, p3, pa) =
(3,4,1,2). However, u cannot be induced by any modified k-greedy mechanism. To
see this, notice that Round 0 of any modified k-greedy algorithm assigns no object to
anyone. Second, let ¢ be the agent who gets the highest priority in a given modified
k-greedy algorithm (i.e., o(i) = 1.). Let agent i’s first-choice object be j. Since
agent j deems object ¢ as acceptable, we must have u; = j. Since 7 = ¢ + 1, with
the convention that 5 = 1, we have that the outcome of the given modified k-greedy

mechanism is not p. [

This example makes another interesting point. In the standard environment,
efficiency implies that at least one agent receives her first-choice object. A proof of
this result goes as follows: if there is no such agent under a given exchange, then one
can form a top trading cycle to obtain a Pareto-dominating exchange, which means
that the original exchange was not efficient.

In our environment, such a result would not hold. Specifically, in Example 3, u is
k-efficient, but no agent receives their first-choice object. The proof that worked in
the standard environment would not work here because the top trading cycle over u
would result in an exchange that involves a 4-cycle, which is not k-robust.

We note that serial dictatorship (defined to account for the constraint of k-

robustness) does not induce y, either.!

ISerial dictatorship consists of a number of steps. In the 0-th step, it identifies the set of k-robust
exchanges, denoted E°. In the [-th step, it identifies the set of all exchanges that are the best for
agent [in E'~!, and we denote the set by E'. This construction implies that E!'! is a singleton, and
the algorithm outputs its element.

] o g 1€ -------09 —> 1st choice

----» 2nd choice

-------- » 3rd choice

0
J
wXoooooooy
w

(1) (b)

Figure 10: Example 4. After removing the unanimous trading cycle in panel (a)
(just eliminating agent 4), we obtain the updated preferences as in panel (b). The k-
greedy algorithm would implement the cycle (1, 2) in its Round 1, while the modified
k-greedy algorithm would implement the cycle (2, 3) in the second step of its Round
0.

We now consider the relationship between the k-greedy mechanism and the mod-
ified k-greedy mechanism. First of all, the two mechanisms can induce different

exchanges.

Example 4 (k-greedy mechanism and modified k-greedy mechanism). Suppose that
I ={1,2,3,4} and k = 2. Consider the following preferences.

—1:2,1;
=9 :4,3,1,2;
3 :4,2,3;

>‘4I4.

Figure 10 provides a graphical representation of these preferences. Note that there
is a single unanimous trading cycle, which is a 1-cycle consisting of agent 4. After
removing agent 4, agents 2 and 3 would find themselves as respective first choices,
but they are in fact second choices originally. For this reason, the two mechanisms
induce different exchanges. More specifically, the k-greedy mechanism induces p with

(1, po, i3, pa) = (2,1,3,4) and the modified k-greedy mechanism induces p' with
(1, iy, i, 1) = (1,3,2,4). O

Note that, in the above example, the exchange induced by the k-greedy mechanism

i is not in the k-robust core because (', {2,3}) blocks it, while the one induced by

6

the modified k-greedy mechanism is in the k-robust core. This argument can be

generalized to imply the following.

Proposition 6. If a k-greedy mechanism induces an exchange u in the k-robust core,

the modified k-greedy mechanism with the same ordering induces p as well.

This result is a generalization of the finding in Example 4 in the sense that its
contrapositive is equivalent to the following statement: if the two mechanisms induce
different exchanges, then the exchange induced by the k-greedy mechanism is not in
the k-robust core—the situation taking place in the example. The result suggests
that, although the modified k-greedy mechanism fails to always induce an exchange
in the k-robust core, it produces such an exchange “more likely.”

Appendix D.3 provides two more examples to illustrate the properties of k-robust
core. One example shows that the following claim is false: If all exchanges in the
(unrestricted) core are not k-robust, then the k-robust core is empty. The other
example shows that, although all the examples so far feature singleton k-robust cores,

such a property is not general; the k-robust core may consist of multiple exchanges.

D.1 Proof of Proposition 5
Proof. Consider the following preferences for i« € {1,...,k + 1} where we we let
k+2=1and k+3 =22
=i+ 1,0+ 2,4
Moreover, for all i € {k +2,...,|I|}, let

We show that any k-robust p is blocked by some I’ via some p’.

Suppose first that p has an l-cycle with 1 < [< k. Let I” be the set of agents
involved in this cycle. Then, there must exist ¢ € I” who is receiving her second-
choice object, i.e., object ¢ + 2. This implies that agent ¢ + 1 does not receive his

first-choice object. Hence, letting 1/ and I’ be such that

1. I'=1"U{i+1};

2We use this convention of k +2 =1 and k + 3 = 2 in this proof.

2. 1 = pj for all j € 1"\ {i};
3. p=1i+1;

4 pigy =1+2

5. wy=jforjglr,

it follows that I’ blocks u via 4.
Next, suppose that, for every [-cycle that p has, [= 1 holds. Letting

1. I'={1,...k};

2. pi=i+1forallie{l,...;k—1};
3. =15

4. pi=jforall j &I

it follows that I’ blocks u via p'.

Finally, suppose that p has a k-cycle, where the set of involved agents, which
we denote by I”, satisfies [” C {1,...,k+ 1}. Let ¢ be the unique agent such that
I"u{i} ={1,...,k+ 1}. Without loss of generality, let i = k. Then, letting

1. I'={1,...k};

2. =1+ 1forallie{l,....k—1};

!/

3.y =1
4. ph=jforallj g1

it follows that I’ blocks pu via p'.

Overall, we have shown that any k-robust p is blocked by some I’ via some p/. [

D.2 Proof of Proposition 6

Proof. Fix an ordering. Suppose that the exchange p induced by the k-greedy algo-
rithm and exchange i/ induced by the modified k-greedy algorithm are different from
each other. Let C be the set of cycles that are formed in Round 0 of the modified

k-greedy algorithm but not in the entire course of k-greedy algorithm. We first prove
the following:

Lemma 2. The set C' is nonempty.

Proof. Suppose, toward a contradiction, that C' is empty. Consider the following two

sets of agents:
D, :={i € I]i is in the same cycle on as some j such that p; # p}}.

D,y :={i € I|i is in the same cycle on ' as some j such that p; # p’}.

Notice that, in particular, if y; # p, then we have i € D, and i € D,,.

Note that we must have D, = D,,. This is because, if ¢« € D, then every j in
the same cycle on p as i satisfies p; = p; by the definition of D,. But this implies
i & D,y. The same logic shows that 7 ¢ D, implies ¢ ¢ D,,, showing that D, = D,,.

Note also that and D, and D,, are nonempty because p and y are different from
each other.

Let ¢* = min D,,. Since C' is empty, Rounds before Round 7* in either algorithm
do not produce any cycle that does not appear in the other algorithm, and Round 7*
is the first round at which different cycles appear in the two algorithms. Let the cycle

produced in Round ¢* of the k-greedy algorithm be (i}, 4, ...,i%,) and that of the

o
L

cycles are different, there must exist [* such that #}, = z'ff, for all ! < I* and i\ # zl”,

modified k-greedy algorithm be (i, i, .. i ;,), where) = i} = *. Since these two

Let S be the set of agents whose assignment has not been determined before
Round 7* of the k-greedy algorithm, and let S’ be the set of agents whose assignment
has not been determined before Round i* of the modified k-greedy algorithm. Note
that Round * of the k-greedy algorithm runs the (i*, k)-greedy algorithm on S, and
Round i* of the modified k-greedy algorithm runs the (i*, k)-greedy algorithm on S
Notice that S’ € S and S \ S’ C ¢’ hold, where C” is the set of agents involved in
the cycles that are formed in Round 0 of the modified k-greedy algorithm but not in
Round 0 of the k-greedy algorithm. Let I := {i{,d5,... i, |} = {r il ,i;ﬂlfl}.

By the definition of the (i*, k)-greedy algorithm on S, it must be the (uniquely,
because preferences of agent 4. ; are strict) best object for agent 7., among all
objects in S \ I’ with the constraint that there is a cycle with size k or fewer such that
(i) agent 4;" receives object 4}, for all [€ {1,...,1* — 2}, (ii) all agents in the cycle
belongs to S, (iii) every agent in the cycle receives an acceptable object, and (iv)

agent). , receives the object. Similarly, the definition of (i*, k)-greedy algorithm

on S’ implies that ifi/ must be the (uniquely, because preferences of agent i;ﬁlfl are
strict) best object for agent i;ﬁ:_l among all objects in S’ \ I’ with the constraint that
there is a cycle with size k or fewer such that (i) agent)’ " receives ob ject ifil for all
le{l,...,1* =2}, (it") all agents in the cycle belongs to S, (iii’) every agent in the
cycle receives an acceptable object, and (iv’) agent iéi/_l receives the object.

Since C'is empty, no agent in the cycle that i* belongs to in the k-greedy algorithm
are in C’. Hence, all agents in the cycle that i* belongs to in the k-greedy algorithm are
in §’ because S\ S’ C C’. This implies that the constraints (i) and (ii’) are identical to
each other. Moreover, constraints (i) and (i), as well as (iv) and (iv’), are identical to
each other, respectively, because I' := {if,dy,... . } = {i’f/, i’j/, o »ifi,q}- Finally,
constraints (iii) and (iii’) are identical to each other. These facts imply that we must
have i, = zf‘/ But this contradicts our earlier conclusion that . # zf‘/ This completes
the proof. n

Now, let n be the smallest integer such that some cycle in C'is formed in Round 0-
n of the modified k-greedy algorithm, and take an arbitrary cycle in C' that is formed
in Round 0-n. Let I’ be the set of the agents involved in the chosen cycle. Note that
|I'l < k must hold by the definition of modified k-greedy algorithm.

Note that, under j, each agent in I’ receives an object in S~ ! if n > 1 and in
I if n = 1. Note also that, under ', each agent in I’ receives her first-choice object
in S%""1if n > 1 and in I if n = 1. By the definition of C, there must be at least
one agent in I’ who receives different objects between p and p/. These observations
imply that i =; p; for every i € I" and i >=; p; for some j € I'. Moreover, i} € I'
holds for all i € I'. Hence, I’ blocks p via y/ and thus, i is not in the k-robust core.
Therefore, we have shown the contrapositive to the statement of the proposition. The

proof is complete. O

D.3 Additional Examples

This section provides two examples to illustrate the properties of k-robust core. The
first example shows that the following claim is false: If no exchanges in the (unre-

stricted) core are k-robust, then the k-robust core is empty.

Example 5 (Core and k-robust core). Suppose that I = {1,2,3} and k£ = 2. Consider

10

—> 1st choice

----» 2nd choice

Figure 11: Example 5. Although the unique exchange in the core, in which every
agent receives their first-choice object, is not k-robust, the k-robust core is nonempty
(circled in the picture).

the following preferences.

=1:2,1;
=9 :3,1,2;
~3 1,3

Figure 11 provides a graphical representation of these preferences. Note that the
(unrestricted) core consists of a single exchange p such that (pq, 2, u3) = (2,3, 1)
and this is not k-robust. However, k-robust core is nonempty, and it consists of a
single exchange p’ such that (uf, ph, 1) = (2,1, 3). O

The second example shows that, although all the examples in Appendix D feature

singleton k-robust cores, it is not general to have a singleton k-robust core.

Example 6 (Non-singleton k-robust core). Suppose that I = {1,2,3,4} and k = 2.

Consider the following preferences.

—1:2,4,1;
=9 :3,1,2;
3 :4,2,3;
=41 1,3,4.

11

—> 1st choice

- ---» 2nd choice

Figure 12: Example 6. The exchanges in the two panels are both in the k-robust
core.

Figure 12 provides a graphical representation of these preferences. By inspection,

one can show that the k-robust core consists of two exchanges, C* = {u, '}, where
(Mh M2, (43, /1’4) = (27 17 47 3) and (:ulla :u’/27 :uga :uﬁl) = (47 37 27 1) L

E Additional Discussion on k-Greedy Mechanism

One may also consider a version of part 1 of Proposition 2 in which strict preferences
are replaced with weak preferences while at least one strict preference relation is

required:

Claim 3. Fiz any I, k, and . There is no > such that for any ordering o, we
have ;(~5, = _;) =; ¥;(>=) with at least one strict preference relation where ¥ is the

k-greedy mechanism with o.
This claim turns out to be incorrect. The next example shows this point.

Example 7 (Counterexample to Claim 3). Consider an economy with four agents,
I =1{1,2,3,4} and set k = 2. Consider the following preferences:

=1:4,2,3,1;
=9 :1,3,2;
—3:1,4,2,3;
43,4

12

i ——— > 2 —> 1st choice

---->» 2nd choice

I

|

|

|

!

[

v: > 3rd choice

A< 3 1<------3
(a) Exchange under . (b) Exchange under (-}, >_1).

Figure 13: Example 7. Given the preference profile as in panel (a), for any ordering
o, agent 1 would be weakly better off under the k-greedy mechanism with o if she
misreports her preferences as in panel (b). The improvement is strict if o orders agent
3 the first.

Also, consider the following misreporting by agent 1:
=1 4,2,1.

See Figure 13 for a graphical representation.

Note first that, under both > and (>}, >_1), there is no pair of agents such that
they find each other’s object to be their first choice. This means that, whether the
input is > or (=7, >_1), no cycle is formed in Round 0 of any 2-greedy algorithm.

Consider Round 1. If the input is >, agent 1 is assigned object 3 if 0(3) = 1
and she is assigned object 2 otherwise. If, on the other hand, the input is (>}, >_1),
then agent 1 is assigned object 2 for any o. Since 2 > 3, this shows that Claim 3 is

incorrect. O

F Modifications of the Simulation Model

This section presents various alternative specifications for the simulations in Section 4
of the main text. In Appendix F.1, we vary the distribution of preferences. In any of
the specifications we consider, we find the robustness of the effect that the k-greedy
mechanisms perform relatively well even with small p, and we also find that some
of the modifications amplify the effect. Then in Appendix F.2, we consider settings
where a certain rewiring process takes place after agents drop out. Again, we find

the robustness of our main insight. Each graph in this section records the average of

13

the relevant values for 100 runs where the preferences are drawn independently across

different runs.

F.1 Changes in the Utility Distribution

In all of the following specifications, the variables €; and &;; are independently dis-
tributed and follow N(0,1). The numbers «, 3,7, € [0,1] and L € N are parameters.

Agent i’s utility from receiving object j is determined as follows:

1. Popular and unpopular objects. In this modification, the preferences of different
agents are correlated, and some objects are intrinsically more popular than
others. Specifically, we set u;; = ae; + (1 — a)§;;. Here, €; depends only
on j (not i), and thus measures the popularity of object j. The parameter
a denotes the strength of the preference correlation. The case with a = 1
corresponds to perfect correlation (every agent has the same preferences) and
the one with a = 0 corresponds to independent preferences, which is our base
scenario. The results are shown in Figure 14 for the case of N = 200, p = 0.05,
and o = 0,0.2,0.6. We find that the performances of the k-greedy mechanisms
relative to the performance of the TTC mechanism become better when « is
smaller. The reason for this pattern is that preferences are more correlated
when « is larger and hence the cycles tend to be smaller. This weakens the
advantage of k-greedy mechanisms because the restrictions on the cycle sizes
become more likely to be irrelevant.> We note that we ran simulations for other
parameter combinations, and the basic results are robust. Analogous remarks
apply to other modifications below where we only present graphs for N = 200,

p = 0.05, and a few select parameter values.

2. Two-sided market. In this specification, the market is divided into two sides,
and agents have a tendency to prefer the objects on the other side. Specifically,
we set u;; = Plitjmodaa + (1 — B)&;;. Here, we consider the scenario where
odd-indexed agents/objects are on one side of the market and even-indexed
agents/objects are on the other side. The parameter § denotes the strength
of the tendency to prefer the objects on the other side. When S = 1, the

preferences depend only on which side the given object belongs to; the case

3In particular, when a = 1, every agent receives their own object, so the size of every cycle is 1.

14

Number of agents
5
g

Figure 14: The performance
of preference correlation («)

p --- TC
S 1-greedy
/ — 2-greedy
/ — 3-greedy
g —— 4-greedy
—— S5-greedy

Number of agents
S
8

1-greedy
— 2-greedy
/ — 3-greedy

P —— a-greedy
7 —— S-greedy

Number of agents

--- TTC

1-greedy
— 2-greedy
— 3-greedy
—— d-greedy
—— 5-greedy

<
4
4
k4

3 A @ S A G A S N A DGy A D S A A A S N DAY Gy A D By Ay A DS
RESEAEAIRIAAAARAARRANA) IR OIS ARAR IR IR IS RPN AT AN ARAAAS &
Rank of the assigned object Rank of the assigned object Rank of the assigned object

of each mechanism under Modification 1. The strength
is 0, 0.2, and 0.6 in the left, middle, and right panels,

respectively.

Number of agents
5
g

Number of agents
5
8
Number of agents
5
5

d -=- TIC
y 1-greedy 50 A
v —— 2-greedy S
— 3-greedy 25 /
) —— 4-greedy
/ — S-greedy 0

d --- TTC
1-greedy 50
—— 2-greedy P
—— 3-greedy 25 A
—— 4-greedy
—— S-greedy 0 ——

— 1-greedy
— 2-greedy
— 3-greedy
—— d-greedy
—— 5-greedy

~

R A R N A DGy S A D B DA
RN M AR NARANANR SR IANA A RIS AINAEAAAAS S

Rank of the assigned obje

N Gy & A B B A DS
R MEANRNACANAA KA AN
Rank of the assigned object t Rank of the assigned object

Figure 15: The performance of each mechanism under Modification 2. The strength
of the tendency to prefer the objects on the other side (5) is 0, 0.2, and 0.6 in the
left, middle, and right panels, respectively.

with 8 = 0 corresponds to our base scenario where the sides do not matter.
The results are shown in Figure 15. We find that the k-greedy mechanisms
perform mostly well relative to the TTC mechanism for any 3, while k-greedy
mechanisms with even k£ perform relatively better than those with odd k£ when
[is large. The reason for this pattern is that there are many cycles with size
k under the k-greedy mechanism, and when [is large, the agents in the cycle
are likely to alternate the sides and, thus, the k-th agent chosen during the
algorithm when forming the cycle receives a relatively desirable object when k

is even and a relatively undesirable object when k is odd.

Hate for the own object. This modification corresponds to the case when agents
are eager to exchange goods. We represent such preferences by the disutility
of receiving their own good. Specifically, we set u;; = YL + (1 — 7)&;;. The
parameter v denotes the strength of the tendency to prefer the objects that
other agents have. When ~ = 1, the preferences depend only on whether there

15

--- TIC
50 1-greedy 50
— 2-greedy —— 2-greedy
25 —— 3-greedy 25 —— 3-greedy
— d-greedy —— 4-greedy
0 — S-greedy o —— S-greedy

> A Iy, Dy ~

SIS

Figure 16: The performance of each mechanism under Modification 3. The strength
of the tendency to prefer the objects that others have () is 0, 0.2, and 0.6 in the left,
middle, and right panels, respectively.

was an exchange; the case with v = 0 corresponds to our base scenario where
there is no disutility of receiving the own good. The results are shown in
Figure 16. We find that the performances of the k-greedy mechanisms relative
to the performance of the TTC mechanism become better when + is larger. The
reason for this pattern is that the TTC mechanism entails a greater chance for
an agent to receive her own object than the k-greedy mechanisms do when there
are many agents, and such an event becomes more undesirable as 7 becomes

larger.

4. Love for the own object. This modification corresponds to the case when
agents are reluctant to exchange goods. We represent such preferences by
the additional utility of receiving their own good. Specifically, we set u;; =
0Li—; + (1 — 60)&;;. The parameter 6 denotes the strength of the tendency to
prefer the objects that they themselves are endowed with. When 6 = 1, the
preferences depend only on whether there was an exchange; the case with § = 0
corresponds to our base scenario where there is no additional utility of receiving
the own good. The results are shown in Figure 17. We find that the perfor-
mances of the k-greedy mechanisms relative to the performance of the TTC
mechanism become better when ¢ is smaller. The reason for this pattern is the
opposite of the one for Modification 3: The TTC mechanism entails a greater
chance for an agent to receive her own object than the k-greedy mechanisms
do when there are many agents, and such an event becomes more desirable as

0 becomes larger.

5. Short preference list with informed agents. In this modification, we assume

16

--- TTC = --- TTC

50 1-greedy 1-greedy
— 2-greedy —— 2-greedy
— 3-greedy

25 — 3-greedy
P — d-greedy —— 4-greedy
o] 7/ —— S-greedy 25 — S-greedy

A& Dy ~

SIS

Figure 17: The performance of each mechanism under Modification 4. The strength
of the tendency to prefer the objects that they themselves have (¢§) is 0, 0.2, and 0.6
in the left, middle, and right panels, respectively.

that each agent submits a preference list that only includes the top L choices
among all the objects, where we set the utility to be u;; = &;;. We call this case
the case with “informed agents” because we implicitly assume that each agent
knows which objects are her top L choices among all the N objects. The results
are shown in Figure 18. We find that the k-greedy mechanisms perform mostly
well relative to the TTC mechanism for any L except when both L and k are
small, while the performances of the k-greedy mechanisms are nonmonotone
in L. Specifically, the performances become better as L increases when L is
small, while they become worse when L is large. The reason for this pattern
is that increasing L has two effects: First, it increases the chance that a cycle
can be formed given any set of agents of size no more than k due to the greater
acceptability. This enhances the welfare of the agents. Meanwhile, the choice
of cycles in the k-greedy algorithm implies that a cycle may assign relatively
undesirable objects, especially to the agents who appear at a later stage in the
formation of a given cycle. This is because increasing L adds more undesirable
objects to the list of preferences as agents are informed. This effect deteriorates

the welfare.

6. Short preference list with uninformed agents. In this modification, we assume
that each agent submits a preference list that only includes L randomly chosen
objects, where we set the utility to be u;; = ;. This is called the case with
“uninformed agents” because we implicitly assume that each agent does not
necessarily know her true top L objects but rather samples random L objects
out of all the NV objects. The results are shown in Figure 19. We find that the

performances of the k-greedy mechanisms relative to the performance of the

17

Number of agents
5
8
Number of agents
5
g
Number of agents
5
8

75 / 75
--- TIC / --- TTC --- TTIC
1-greedy 50 A 1-greedy 50 1-greedy
— 2-greedy

—— 2-greedy / —— 2-greedy

25 —— 3-greedy 25 / — 3greedy 25 / — 3-greedy
i —— 4-greedy —— 4-greedy L —— 4-greedy
. /

o] — Sgreedy o]l — S-greedy ol ~ — S-greedy

%

NSRS S S S NSRS S NSRS S S
RSO R R O R EEARE RO
Rank of the assigned object Rank of the assigned object Rank of the assigned object

Figure 18: The performance of each mechanism under Modification 5. The length
of the submitted preference list (L) is 5, 20, and unbounded in the left, middle, and
right panels, respectively.

Number of agents
=1
8
Number of agents
5
8
Number of agents
5
8

--- TIC

--- TTC

P --- TTC

50 —— 1-greedy 50 —— 1-greedy 50 pd —— l-greedy
—— 2-greedy —— 2-greedy y —— 2-greedy
25 —— 3-greedy 25 —— 3-greedy 25 / —— 3-greedy
— 4-greedy — a-greedy % —— 4-greedy
o — S-greedy 0 —— S-greedy o] ~ — S-greedy

N A DGy QA D S A A AT NS DO
RN M AR NARANANR SR IANA A PR RS S
Rank of the assigned object Rank of the assigned obje

i S o B oA B G
S RO RO
t Rank of the assigned object

Figure 19: The performance of each mechanism under Modification 6. The length
of the submitted preference list (L) is 5, 20, and unbounded in the left, middle, and
right panels, respectively.

TTC mechanism become better when L is greater. The reason for this pattern
can be understood by considering the two effects of increasing L in Modification
5: The first effect in which a cycle becomes more likely to be formed due to the
greater acceptability still remains. However, the second effect in which agents
become worse off due to the addition of the worse objects in the preference list
no longer holds. This is because, as L increases, not only worse objects but also
better objects can be added to the list of preferences as agents are uninformed.

Overall, increasing L only enhances the welfare.

Our result that the k-greedy mechanisms perform relatively well even with small p
is robust to these modifications, and we find that some of these modifications amplify
the effect.

We have also examined mixtures of some of the above specifications, but do not

list all the details of the results from such specifications.* We found that the results

“E.g., a mixture of Modifications 1 and 2, where u;; = ae; + Bli4j—o0aa + (1 — @ — B)&;;.

18

are robust to considering such mixtures as well.

F.2 Rewiring among Affected Agents

In this section, we consider specifications in which, after agents drop out, the agents
who are “affected” by a dropout agent take part in a certain rewiring process. Specifi-
cally, consider a family of mechanisms (T'V') yvc . We first run I'V. Then, each agent
independently drops out with probability p. This determines the set of dropped
agents, the set of affected agents, and the set of agents who are neither dropped
nor affected. We consider centralized and decentralized rewriting processes. For the

centralized ones, we examine the following two settings.

1. Rewiring Process 1: The mechanism IV is run where N is the set of the
affected agents. Each affected agent receives the object under the second run
of I'. Each dropped agent receives her own object. Each agent who is neither
a dropped agent nor an affected agent receives the object assigned under the

initial run of I'.

2. Rewiring Process 2: First, we implement Rewiring Process 1. Then, each
agent in N drops out with probability p. Any agents who are in the same cycle
as a newly dropped agent receive their own object. Other agents receive the

same object as in the outcome of Rewiring Process 1.

We view Rewiring Process 1 as an extreme scenario because, in reality, some of
the affected agents may not participate in the rewiring process and even if they
do, they may drop out after the process is run. Nonetheless, it helps us obtain
a loose upper bound on the performance of mechanisms. We find that, although
the TTC mechanism outperforms k-greedy mechanisms in Rewiring Process 1, our
main insights from Section 4.2 carry over to Rewiring Process 2. The results are
illustrated in Figure 20 for the case with N = 1000 and p = 0.05.> The utilities u;;
are drawn according to the normal distribution N(0,1), independently across agents
and objects for 100 simulation runs. Behind these results is Theorem 5. When

there are many agents, almost 100% of non-dropped agents are affected, and thus

5When N = 200, there is no clear dominance relationship between the TTC mechanism and the
k-greedy mechanisms, but it is still true that the performance of the TTC mechanism becomes worse
with dropouts and the k-greedy mechanisms are a viable alternative.

19

1000 1000

800

800

600 600

Number of agents
Number of agents

400 4
--- TIC --- TIC
2-greedy 2-greedy
—_— 2—greejy 200 4 — z'gfeejy
—— 5-greedy —— 5-greedy
—— 10-greedy | —— 10-greedy

400

R AT I T TSI T TSP R T T T T T S TSP
R SO IO IC IO RO Y RN I SO UG IO RO Y
Rank of the assigned object Rank of the assigned object

Figure 20: The performance of each mechanism under Rewiring Process 1 (left panel)
and under Rewiring Process 2 (right panel).

the TTC mechanism under Rewiring Process 1 would essentially be rerunning the
TTC mechanism among the non-dropped agents. This is why the TTC mechanism
under Rewiring Process 1 performs well. The performance of the TTC mechanism
becomes worse with the additional dropouts under Rewiring Process 2 for the same
reason as the one with which the TTC mechanism is disadvantaged under our main
simulations. The additional insight here is that running the k-greedy mechanisms
among the affected agents (which would not be “almost 100% of non-dropped agents”
due to Theorem 5) would still work better than the TTC mechanism under Rewiring
Process 2.

For the decentralized processes, we consider the following two settings.

1. Rewiring Process 3: Randomly match agents in N to make as many pairs
as possible, so that there will be @ pairs if |N| is even, and W'T_l pairs and
one remaining agent if | N| is odd (each configuration of matching occurs with
equal probability). If two agents ¢ and j in a pair regard each other’s object
as acceptable, then agent ¢ receives object j and agent j receives object 1.
Otherwise, each of these two agents receives her own object. The remaining
one agent in the case of |N| being odd receives her own object. Each dropped
agent receives her own object. Each agent who is neither a dropped agent nor

an affected agent receives the object assigned under the initial run of I.

2. Rewiring Process 4: First, we implement Rewiring Process 3. Then, follow

the steps described below.

e Step 1: Take the set N' C N of agents who are currently receiving their

20

own objects. Finalize the assignment for agents in I \ N'. Run the same
procedure as Rewiring Process 3, with replacing N with N', to determine

the assignment for agents in N'. Go to Step 2.

e Step ! (I =2,3,...): Take the set N C N'=! of agents who are currently

receiving their own objects. Finalize the assignment for agents in N=1\ N*.

If every agent in N' regards all objects in N' as unacceptable, let every
agent in N'! receive their own object, finalize such an assignment (which
would finalize the assignment for all agents in I) and finish following the
steps. Otherwise, Run the same procedure as Rewiring Process 3, with
replacing NV with N, to determine the assignment for agents in N*. Go to
Step [+ 1.

Note that this ends in a finite number of steps. Intuitively, Rewiring Process 3 lets
the affected agents have one chance to receive someone else’s object. Those agents
are randomly matched with another agent, and if both agents agree, they can ex-
change their objects. We view this process as a realistic scenario when there is no
centralized process for the affected agents. Depending on the situation, the affected
agents may be able to spend a longer time searching for an object. Rewiring Process
4 is an extreme case in which agents continue searching until there is no possibility of
receiving someone else’s object. We view this as an unrealistic scenario because such
an extensive search would likely require some type of centralization, and moreover,
we assume no dropouts during the search process. We consider this case despite these
problems because analyzing it would provide an upper bound on the performance of
a decentralized rewiring process. We find that the k-greedy mechanisms for small
values of k£ outperform the TTC mechanism under both Rewiring Processes 3 and
4, while the difference is more significant under Rewiring Process 3. The results are
illustrated in Figure 21 for the case with N = 1000 and p = 0.05 (we observe a similar
pattern for N = 200 as well). The utilities u;; are drawn according to the normal
distribution N (0, 1), independently across agents and objects for 100 simulation runs.
These results show that the effect of dropouts is so significant under the TTC mech-
anism that a decentralized system (as defined here) would not sufficiently mitigate

the problem, even under an unrealistic scenario of Rewiring Process 4.

21

1000 1000 +

800

800

600 600

Number of agents
Number of agents

/
4 --- TTC i --- TTC
2-greedy 2-greedy
200 —— 3-greedy 2004 —— 3-greedy
—— 5-greedy —— 5-greedy
—— 10-greedy —— 10-greedy

T R T T T A P AR LR I T T T A I R AP
R SO IO IC IO RO Y RN I SO UG IO RO Y

Rank of the assigned objects Rank of the assigned objects

Figure 21: The performance of each mechanism under Rewiring Process 3 (left panel)
and under Rewiring Process 4 (right panel).

G Discussion on School Choice

The simulation results so far demonstrate that the TTC mechanism performs poorly.
One could argue that this is a possible explanation for why the TTC mechanism is
not widely used in practice despite its well-known desirable properties in the standard
environment without dropouts, such as efficiency, being in the core and strategy-
proofness. However, this mechanism was used in a few school choice contexts such as
New York City and New Orleans (cf. ??7). Why is this the case? More specifically,
what is a feature distinct in the school choice problem that makes the TTC mechanism
usable in practice?

We view that the key difference is in how “soft” the capacity constraint is. In
the house exchange problem, it would be practically infeasible to let multiple agents
consume one object. For this reason, once an agent in a given cycle drops out, all
agents in the cycle have to become unassigned. The standard school-choice situation
is different in that it would not be fatal for schools to accommodate slightly more
students than their capacity because they typically have many available seats. Hence,
even if one student drops out of a cycle, one could imagine a system that lets the other
agents in the cycle receive the school seat specified in the cycle and only changes the
assignment of the dropped student to the school she was initially endowed with, such
as the “walk-zone school” (or to her outside option). One concern, then, is that such
a system may result in too much excess of the number of students compared to the
capacity when many dropout students come back to the same school. By simulations,

we show that such a concern may not be too much of an issue.

22

Specifically, we consider the following model. There are N agents and K schools.
Each student is endowed with a school, and each school has N/K students who are
endowed with that school and has a capacity of N/K. Each student has preferences
over schools and each school has priority over the students who are endowed with that
school. First, the TTC mechanism is run.% After that, each student drops out of the
currently assigned school with probability p and is assigned the endowed school.” If a
student is assigned its endowed school and drops out, then the student is reassigned
that school.

In the simulations, we generated the students’ preferences and the schools’ priori-
ties uniformly randomly and independently. The result of the simulations for the case
with N/K = 100 is presented in Figure 22. One can see that, although the number
of students who come back to the endowed school (represented by orange bars) can
be large, the resulting excess (i.e., the number of come-backs minus the number of
students who leave, represented by blue bars) is typically much smaller.® The reason
is that, although a given school may have to accept the dropped-out students who
return to the school, there may also exist students who are assigned to the school
under the TTC mechanism but drop out and leave the school. These two effects

mostly cancel each other out, resulting in only a small excess beyond the capacity.

6We consider the standard modification of the TTC mechanism adapted to the school choice
context: In each step of the TTC algorithm, each student points to the most desirable school that
still has vacant seats. Each school has priority over the N/K students who are endowed with that
school, and points to the highest student according to such priority among those who still remain
in the market.

7Another possible specification would be that some dropped-out students will not be assigned
any school (e.g., they go to a school outside of the market, such as a private school), but such an
assumption would only strengthen our claim that the excesses are liklely to be small, as the excess
becomes even less likely to emerge.

8In the graphs, the blue bar at the zero excess is extremely high. This is because it accounts for
all the schools for which the resulting number of assignments is no greater than their capacity.

23

°
>
°
Y

W Excess
== Number of returns

—Excess m— Excess
= Number of returns = Number of returns. 05

°
o
°

°
ks
o
=

Fraction of schools
° °
2 g
Fraction of schools
° °
9 &

Fraction of schools

°
&
°

11T L|.|||||||||I||||
0.0

- -
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 "o 12 3 4 5 6 7 8 5 0 m 213 O 590N B0 ARSI IPAHROIDIEY

Excess / Number of returning students Excess / Number of returning students Excess / Number of returning students

Figure 22: The distribution of the number of returns and excess at each school in
the school choice problem. Each school has a capacity of 100. Left: 10 schools and
p = 0.05; Middle: 20 schools and p = 0.05; Right: 20 schools and p = 0.2.

24

