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Words of Caution
In the four lectures, I will focus on auction markets with 
multiple indivisible goods, dynamic auction mechanisms, 
basic concepts and essential results. (As you know, there 
have been and can be many important theories even on 
auctioning just a single item. But I shall assume you are 
familiar with most of them.) Due to time constraint, 
almost no proof will be given but I will make some hints 
or comments on some proofs. It seems that the proof 
can always be done as long as one can formulate the 
right model, the right assumptions, the right solutions, 
and the right mechanism.

I will leave about 10 minutes for discussion in the last 
part of every lecture. 



Some Words on Dynamic Mechanism Design

It is well recognized that dynamic mechanisms have important advantages over 
direct/static mechanisms such as the Vickrey-Clarke-Groves (VCG) Mechanism in 
their capacity to alleviate agents’ concern about privacy and to reduce 
computational complexity, payoff uncertainty, and information cost; see, e.g., 
Ausubel (2004, 2006), Ausubel and Milgrom (2007), Bergemann and Morris 
(2007), McMillan (1994), Milgrom (2007,2017), Perry and Reny (2005), Rothkopf 
(2007), Rothkopf et al. (1990), etc.  I like to say:

Designing a direct mechanism is like to shot a single picture while designing a 
dynamic mechanism is to make a movie.

Some Principles for Designing Dynamic Mechanisms:

• Incentive-compatibility;

• Efficiency and privacy preservation: Allocative efficiency, information 
efficiency, and time efficiency, etc; 

• Simplicity and transparency (procedural efficiency?);

• Detail free: reducing the assump. of common knowledge (Wilson doctrine);

• Robustness and error-tolerance .



Part 1: Assignment Markets
• Multiple houses for sale and many potential buyers.
• Every buyer has a private valuation on each house and can 

pay up to his valuation and demands at most one house, 
i.e., unit-demand, and has quasi-linear utilities in money. 

• Every house has a reserve price below which it will not be 
sold. 

• The basic question: Who should get which house at what 
price?

• This model is called the assignment or unit-demand 
market and was first studied by Koopmans and Beckmann 
(1957): Assignment problems and the location of economic 
activities, Econometrica, 25, 53-76; and by Shapley and 
Shubik (1972): The assignment game I: The core, 
International Journal of Game Theory, 1, 111-130. 



An Example
Example 1: Four houses and five buyers. Valuations and reserve 
prices are given in the table: 

Private Information: Every buyer’s valuations are private 
information which is only known to himself. The seller or anyone 
else does not have this information.

Agents\Houses House 0 House 1 House 2 House 3 House 4

Bidder 1 0 4 3 5 7

Bidder 2 0 7 6 8 3

Bidder 3 0 5 5 7 7

Bidder 4 0 9 4 3 2

Bidder 5 0 6 2 4 10

Seller 0 5 4 1 5



Assignment
• Let 𝑁 = {1, 2,… , 𝑛} be the set of items. Let 0 be the dummy 

good which has no value and does no harm and can be assigned 
to any number of buyers. Item 𝑙 ≠ 0 is a real one. 

• 𝑀 = {1,2,… ,𝑚}—the set of all buyers.

• 𝑉𝑘(𝑙) denotes the private valuation of buyer 𝑘 on item 𝑙 with 
𝑉𝑘 0 = 0. 𝑐(𝑙) denotes the reserve price of item 𝑙 with 𝑐 0 =
0. 𝑉𝑘 𝑎𝑛𝑑 𝑐(. ) are integer-valued.

• An assignment 𝜋 allocates every buyer 𝑙 an item 𝜋(𝑙) such that 
no real item is assigned to more than one buyer. An assignment 
may allocate the dummy good to several buyers and a real item 
may not be assigned to any buyer.

• An item 𝑙 ≠ 0 is unassigned at assignment 𝜋 if the item is not 
assigned to any buyer. Let 𝑈(𝜋) denote the set of all unassigned 
items at 𝜋.



Efficiency
An assignment 𝜋∗ is efficient if 
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for every assignment 𝜋. An efficient assignment allocates items in 
a way that generates the highest social value. 

Let 

𝑆𝑉(𝑀) = σ𝑘∈𝑀𝑉𝑘 𝜋∗ 𝑘 + σℎ∈𝑈(𝜋∗) 𝑐(ℎ)

be the value of an efficient assignment.

We call 𝑆𝑉 𝑀 the market value.

For any 𝑘 ∈ 𝑀, 𝑙𝑒𝑡 𝑀−𝑘 = 𝑀 ∖ 𝑘 and let 𝑆𝑉(𝑀−𝑘) be the value
of an efficient assignment in the market without buyer 𝑘.



The Example
Example 1: Four houses and five buyers. Valuations and reserve 
prices are given in the table: 

There are two efficient assignments: 

𝜋 = 𝜋 1 , 𝜋 2 , 𝜋 3 , 𝜋 4 , 𝜋 5 = (0,2,3,1,4)

𝜌 = 𝜌 1 , 𝜌 2 , 𝜌 3 , 𝜌 4 , 𝜌 5 = (0,3,2,1,4)

Agents\Houses House  0 House 1 House 2 House 3 House 4

Bidder 1 0 4 3 5 7

Bidder 2 0 7 6 8 3

Bidder 3 0 5 5 7 7

Bidder 4 0 9 4 3 2

Bidder 5 0 6 2 4 10

Seller 0 5 4 1 5



Equilibrium
• Let 𝑝 = (𝑝 1 ,… , 𝑝 𝑛 ) denote a feasible price vector with 

always 𝑝 0 = 0 and 𝑝(𝑙) ≥ 𝑐(𝑙) for every 𝑙 ≠ 0. 𝑝(𝑙) is the 
price of item 𝑙.

• Given a price vector 𝑝, the demand set of buyer 𝑘 is given by

𝐷𝑘 𝑝 = 𝑗 𝑉𝑘 𝑗 − 𝑝 𝑗 ≥ 𝑉𝑘 𝑙 − 𝑝 𝑙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 ∈ 𝑁 ∪ {0}}.

Every item in the demand set gives the buyer the highest profit.

• A Walrasian/competitive equilibrium (WE/CE) consists of an 
assignment 𝜋 and a feasible price vector 𝑝 such that 𝜋(𝑘) ∈
𝐷𝑘(𝑝) for every buyer 𝑘 and 𝑝 𝑙 = 𝑐(𝑙) for every unsold item 𝑙
at 𝜋.

• In equilibrium, every buyer receives an optimal item and the 
price of any unsold item equals its reserve price and all agents 
are in harmony.



The First Lattice Theorem
Proposition 1: If (𝑝, 𝜋) is a Walrasian equilibrium, then 𝜋
must be efficient. Moreover, if 𝜋 is efficient, there must 
exist a feasible price vector 𝑝 such that (𝑝, 𝜋) is a Walrasian
equilibrium.

Let 𝑝, 𝑞 ∈ 𝑅𝑛. Define their meet ⋀ and  join ⋁ by
𝑝⋀𝑞 = (min 𝑝 1 , 𝑞 1 , … ,min{𝑝 𝑛 , 𝑞 𝑛 }

𝑝 ∨ 𝑞 = (max 𝑝 1 , 𝑞 1 , … ,max 𝑝 𝑛 , 𝑞 𝑛 .

A set 𝑆 ⊆ 𝑅𝑛 is a lattice if it holds 𝑝 ∧ 𝑞, 𝑝 ∨ 𝑞 ∈
𝑆 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝, 𝑞 ∈ 𝑆. A lattice is complete if it is compact.

Theorem 1 (Shapley and Shubik 1972): For the assignment 
market, the set of WE price vectors forms a nonempty 
complete lattice.



How to Find a Walrasian Equilibrium 

Crawford and Knoer (1981) propose the first 
algorithm to find an approximate WE.

Demange, Gale, and Sotomayor (DGS) (1986) 
introduce the first dynamic auction which finds 
an exact WE. We discuss this in the lecture.

In the following, when we discuss any dynamic 
auction which finds a precise WE, we assume 
that all valuations are integral, and the size of 
price adjustment (increment) is equal to 1.



The DGS Auction
• A nonempty set of real items 𝑆 ⊆ 𝑁 is over-demanded at a price 

vector 𝑝, if the number of bidders who demand only items in 𝑆 is 
strictly greater than the number of items in 𝑆, i.e.,                      

𝑆 < 𝑘 ∈ 𝑀 𝐷𝑘 𝑝 ⊆ 𝑆 . 

• An over-demanded set 𝑆 is minimal if no strict subset of 𝑆 is an 
over-demanded set.

• Step 1: The auctioneer announces the reserve prices 𝑐(𝑙) for all 
items. Set 𝑡 ≔ 0 and 𝑝𝑡:=(c(1),…, c(n)). Then go to Step 2.

• Step 2: The auctioneer asks every bidder 𝑘 to report his demand 
set 𝐷𝑘(𝑝𝑡) at the current prices 𝑝𝑡 and checks if there is any over-
demanded set at 𝑝𝑡. If there is no over-demanded set, the 
auction stops. Otherwise, there is an over-demanded set. Then 
choose a minimal over-demanded set 𝑆𝑡 and increase the price of 
every item in 𝑆𝑡 by one unit and keep the prices of all other items 
unchanged. Set 𝑡 ≔ 𝑡 + 1 and return to Step 2.



Illustration of the Auction
We use Example 1 to illustrate the auction.

The auction starts with 𝑝0 = (0,5,4,1,5) and ends at 𝑝7 =
(0,5,4,6,7). At 𝑡 = 3,{3} and {4} are minimal over-demanded 
sets but {3,4} is not. (𝑝7, 𝜋) is a Walrasian equilibrium with 

𝜋 = 𝜋 1 , 𝜋 2 , 𝜋 3 , 𝜋 4 , 𝜋 5 = 0,2,3,1,4 𝑜𝑟 0,3,2,1,4 .

Step t Prices 𝒑𝒕 𝑺𝒕 𝑫𝟏(𝒑𝒕) 𝑫𝟐(𝒑𝒕) 𝑫𝟑(𝒑𝒕) 𝑫𝟒(𝒑𝒕) 𝑫𝟓(𝒑𝒕)

0 (0,5,4,1,5) {3} {3} {3} {3} {1} {4}

1 (0,5,4,2,5) {3} {3} {3} {3} {1} {4}

2 (0,5,4,3,5) {3} {3,4} {3} {3} {1} {4}

3 (0,5,4,4,5) {3} {4} {3} {3} {1} {4}

4 (0,5,4,5,5) {4} {4} {3} {3,4} {1} {4}

5 (0,5,4,5,6) {4} {4} {3} {3} {1} {4}

6 (0,5,4,5,7) {3} {0,3,4} {3} {3} {1} {4}

7 (0,5,4,6,7) {0,4} {1,2,3} {2,3} {1} {4}



Convergence and Strategic Issue

Theorem 2 (DGS 1986): The DGS dynamic auction finds the 
minimum WE price vector in a finite of steps.

When facing an auction, every bidder has to think about how to 
report/bid his demand set at the current prices. Should he bid 
honestly according to his true valuations or manipulate his bid 
as if he had different valuations than his true ones? A bidder 
may manipulate only if doing so gives him extra profits.

Theorem 3 (Leonard 1983): For the assignment market, if trade 
takes place at the minimum WE equilibrium vector, then the 
payoff that every buyer 𝑘 gets is equal to 𝑆𝑉 𝑀 − 𝑆𝑉 𝑀−𝑘 , 
i.e., his marginal contribution to the grand coalitional value. The 
price he pays is equal to 

𝑝 𝜋∗ 𝑘 = 𝑉𝑘 𝜋∗ 𝑘 + 𝑆𝑉 𝑀−𝑘 − 𝑆𝑉(𝑀)

where 𝜋∗(𝑘) is the item assigned to the agent.



Sincere Bidding and Incentive Compatibility
Leonard (1983) considers a direct mechanism in which every buyer 
directly reports their valuations.

Theorem 4 (Leonard 1983): Truth revealing of their valuations is a 
dominant strategy for every buyer.ealing of their valuations is a 
minant strategy for every buyer.

The DGS auction is a dynamic rule that implements the direct 
mechanism of Leonard (1983). DGS (1983) do not discuss the 
strategic issue regarding their dynamic mechanism. Nevertheless, 
Leonard's result for the associated direct mechanism implies that 
sincere bidding by every bidder constitutes an ex post Nash 
equilibrium of the DGS dynamic game, in the sense that the 
strategy for each player would remain optimal even if the private 
values of her opponents were revealed to her (so no regret). 
Sincere bidding by every bidder 𝑘 means that at every step 𝑡 of the 
dynamic auction,  bidder 𝑘 always reports his demand set 
𝐷𝑘(𝑝 𝑡 ) according to his true valuation 𝑉𝑘 at prices 𝑝 𝑡 .



Several Remarks
Theorems 3 and 4 are deep and elegant results. Their proof uses 
some basic results (primal-dual formulation) from linear 
programming and bi-partie graphs.

The DGS auction is an elegant design and a major improvement of 
Crawford and Knoer (1981)’s approximate algorithm. Minimal 
overdemanded sets play a key role in achieving the minimum prices 
in the DGS auction.  

The key advantage of the DGS auction over the direct mechanism is 
that at least every winning bidder can avoid exposing some of their 
valuations. This is extremely important in practice, as no 
businessmen like to reveal their valuations or costs. 

As the DGS auction must start from very low prices and is ascending, 
it cannot guarantee to find a WE after bidders have made mistakes. 



Remarks on Assignment Markets
Historically, Koopman and Beckmann (1957) are the first to prove
the existence of WE in the assignment market. It is interesting to
note that Shapley and Shubik (1972) did not cite the previous
paper.

There are numerous articles on the existence of WE in unit
demand models with quasi-linear (QL) and non-QL utilities,
including Quinzii (1984), Gale (1984), Kaneko and Yamamoto
(1986) on NQL models, etc, and numerous articles on variations of
the Crawford-Knoer adjustment process and the DGS auction.

The assignment market is a nice starting point but is restrictive in
the sense that every bidder is allowed to buy only one item. What
about more natural, more practical, and more general cases
where every bidder may buy several items?



Auctions for Markets beyond Assignment Markets

The key driving force for designing dynamic 
auctions is the sale of radio spectrum licenses all 
over the world since 1990s, and the intellectual 
curiosity for understanding markets. The huge 
success of spectrum auctions was phenomenal,  
illuminating, and inspiring.
For instance, one of the 1st US spectrum auctions 
designed by Preston McAfee, Paul Milgrom, and 
Robert Wilson around 1995 was hailed by the 
New York Times as ``The greatest Auction Ever.” 
The UK 3G auction in 2000 designed by Paul 
Klemperer with Ken Binmore generated 100 
billion US dollars.  



Part 2: The Double-Track Auction

This part focuses on auction markets where every 
bidder can demand several indivisible goods/items. 
There are two important cases. 

• First, all items are substitutes, i.e. gross substitutes 
(GS).

• Second, all items can be split into two disjoint 
groups. All items in each group are substitutes but 
items across the two groups are complements, i.e., 
gross substitutes and complements (GSC).

We introduce the double-track auction for GSC, which 
automatically works for GS. 



Kelso-Crawford Model of Gross Substitutes
The celebrated job-matching model of Kelso-
Crawford (1982). Every firm can hire several 
workers, and every worker can work for at most 
one firm.

Kelso-Crawford prove that their market has a WE as 
long as every firm treats all workers as substitutes 
(Gross Substitutes (GS)), via a salary adjustment 
process. For each given increment of salary 
adjustment, their process finds a core allocation 
within a finite number of steps. Taking a sequence 
of increments converging to zero, the limit of the 
sequence of core allocations converges to a strict 
core allocation, i.e., a WE.



Gross Substitutes

Let 𝑁 = 1,… , 𝑛 be a set of (indivisible) goods and 
2𝑁 a family of all subsets of 𝑁.

Let 𝑢: 2𝑁 → 𝑅 be a utility function and let 𝐷(𝑝) be the 
demand set given the prices 𝑝 ∈ 𝑅𝑁 and the function 
𝑢.

Def 1 (Kelso and Crawford 1982): The demand 
correspondence 𝐷(∙) satisfies the gross substitutes 
condition (GS) if for any 𝑝, 𝑞 ∈ 𝑅𝑁 with 𝑞 ≥ 𝑝 and any 
𝑆 ∈ 𝐷(𝑝), there exists 𝑇 ∈ 𝐷(𝑞) such that 

ℎ ∈ 𝑆 𝑝 ℎ = 𝑞(ℎ)} ⊆ 𝑇.



Single Improvement and No Complementarities

Def 2 (Gul and Stacchetti 1999): The demand 
correspondence 𝐷(∙) has the single improvement property 
(SI) if for any 𝑝 ∈ 𝑅𝑁 and any 𝑆 ∉ 𝐷(𝑝), there exists bundle 
𝑇 such that 

𝑢 𝑇 − σℎ∈𝑇 𝑝 ℎ > 𝑢 𝑆 − σℎ∈𝑆 𝑝(ℎ) and |𝑇 ∖ 𝑆| ≤ 1 and 
𝑆 ∖ 𝑇 ≤ 1.

Def 3 (Gul and Stacchetti 1999): The demand 
correspondence 𝐷(∙) has no complementarities (NC) if for 
any 𝑝 ∈ 𝑅𝑁 and all 𝑆, 𝑇 ∈ 𝐷(𝑝) and 𝐵 ⊆ 𝑆 , there is 𝐶 ⊆ 𝑇
such that 𝑆 ∖ 𝐵 ⋃𝐶 ∈ D p .

Theorem 1 (Gul and Stacchetti 1999): Let function 𝑢 be 
weakly increasing. Then GS, SI and NC are equivalent.

They prove 𝐺𝑆 ⇒ 𝑆𝐼 ⟹ 𝑁𝐶 ⟹ 𝐺𝑆.



GS and 𝑀⋕ − 𝐶𝑜𝑛𝑐𝑎𝑣𝑖𝑡𝑦

Def 4 (Murota and Shioura 1999): A function 𝑢: 2𝑁 → 𝑅 is 𝑀⋕-
concave if for any 𝑆, 𝑇 ⊆ 𝑁 and 𝑘 ∈ 𝑆 ∖ 𝑇, the function satisfies 

𝑢 𝑆 + 𝑢(𝑇) ≤ max[𝑢 𝑆 ∖ 𝑘 + 𝑢 𝑇 ∪ 𝑘 ,

𝑚𝑎𝑥𝑙∈𝑇∖𝑆 𝑢 𝑆 ∖ 𝑘 ∪ 𝑙 + 𝑢 𝑇 ∖ 𝑙 ∪ 𝑘 ]

Theorem 2 (Fujishige and Yang 2003): Let function 𝑢 be weakly 
increasing. Then GS and  are 𝑀⋕ − 𝐶𝑜𝑛𝑐𝑎𝑣𝑖𝑡𝑦 equivalent.

The line of proof is 𝐺𝑆 ⟺ 𝑆𝐼 ⟺ 𝑀⋕ − 𝐶𝑜𝑛𝑐𝑎𝑣𝑖𝑡𝑦.

GS, SI, and NC are defined on demand sets, whereas Def 4 gives a 
precise and direct definition of utility functions.



GS and Submodularity

Def 5:  Given a utility function 𝑢: 2𝑁 → 𝑅, define the indirect 
utility function 𝑣: 𝑅𝑁→ 𝑅 by

v 𝑝 = 𝑚𝑎𝑥𝑆⊆𝑁{𝑢 𝑆 − σℎ∈𝑆 𝑝(ℎ)}.

Def 6:  A function 𝑓: 𝑅𝑁 → 𝑅 is submodular if                                      
for any 𝑝, 𝑞 ∈ 𝑅𝑁, it holds 𝑓 𝑝 + 𝑓 𝑞 ≥ 𝑓 𝑝⋀𝑞 + 𝑓 𝑝 ∨ 𝑞 .

The function is supermodular if −𝑓 is submodular.

Theorem 3 (Ausubel and Milgrom 2002): Let function 𝑢 be weakly 
increasing. Then the demand correspondence satisfies GS if and 
only if its indirect utility function is submodular. 



A General Lattice Theorem for GS 

Theorem 4 (Gul and Stacchetti 1999, Ausubel 2006): Let every 
agent’s function be weakly increasing and the demand 
correspondence satisfy GS in an economy with 𝑚 agents and 𝑛
indivisible goods. Then the set of WE price vectors constitutes a 
nonempty complete lattice in 𝑅𝑁.  



Dynamic Auctions for GS
Milgrom (2000) price adjustment process, which finds a core allocation wrt the 
given increment;

Gul and Stacchetti (2000) auction, which finds the minimum WE price vector, 
generalizing the DGS auction. They use matroid theory to prove the finite 
convergence to the WE price vector 𝑝∗ ∈ 𝑅𝑁 with a WE assignment 𝜋∗and  
demonstrate that no dynamic auction can reveal sufficient information to 
implement the VCG mechanism for the GS market. Indeed, the minimum WE 
prices do not correspond to the VCG payments in the GS market. The VCG 
payment for bidder 𝑘 equals

𝑞 𝜋∗ 𝑘 = 𝑉𝑘 𝜋∗ 𝑘 + 𝑆𝑉 𝑀−𝑘 − 𝑆𝑉(𝑀)

where 𝜋∗(𝑘) is the bundle of items assigned to the agent. In the GS market, 

generally speaking, 𝑞 𝜋∗ 𝑘 ≠ σℎ∈𝜋∗ 𝑘 𝑝∗ ℎ for at least one bidder 𝑘.

Ausubel (2006) proposes an ingenious dynamic auction design for the GS market 
which can converge globally to a WE and achieves incentive-compatibility. Based 
on the VCG framework, his idea is to run the original market plus all submarkets 
each dropping one bidder, i.e., 𝑚 + 1 markets in total when there are 𝑚 bidders 
in the original market.



Problems with Complementarity

Milgrom (2000, 2017), Jehiel and Moldovanu (2003), Noussair (2003), and 
Klemperer (2004), and Maskin (2005) call for designing dynamic auctions which 
can handle complementarities. In fact, complementarities have long been a 
challenge for economic analyses; Scarf (1960) and Samuelson (1974) etc.

A casual observation is that complementarity/synergy is ubiquitous, pervasive, 
and overwhelming.

Substitutes are often observed. But substitutes and complements are more 
often jointly observed and more pervasive and more fundamental. 

Interestingly, substitutes and complements often appear together in some 
regular and typical patterns. For instance, tables and chairs; computer hardware 
and software packages; workers and machines; left shoes and right shoes, 
students and teachers; buyers and sellers; suppliers and retailers, etc.

Gul and Stacchetti (1999) prove that GS is a ``necessary'' condition for existence 
of WE in some sense. The statement throws cold water on this very subject. 



Gross Substitutes and Complements

• The above regular patterns have been called gross 
substitutes and complements (GSC) by Sun and Yang 
(2006,2009) in an equilibrium or auction model and 
same-side substitutes and cross-side complements by 
Ostrovsky (2008) in a vertical supply chain model (a 
matching model).

• Consider a market where indivisible goods can be split 
into two groups. Goods in the same group are 
substitutes and can be heterogeneous but goods 
across the two groups are complements. 

• Every buyer has private valuation on every bundle of 
goods but may consume several goods.  



An Example
Example 2: One table t and two chairs 𝑐1 and 𝑐2 are going to be sold 
to three buyers.  Every agent views chairs as substitutes, but chairs 
and table as complements. The valuations of every agent are shown 
in the table and are private information.

Who should get what at what prices?

∅ 𝒕 𝒄𝟏 𝒄𝟐 𝒕𝒄𝟏 𝒕𝒄𝟐 𝒄𝟏𝒄𝟐 𝒕𝒄𝟏𝒄𝟐

Bidder 1 0 18 3 3 22 22 4 24

Bidder 2 0 1 11 11 13 13 20 23

Bidder 3 0 12 6 6 20 20 10 25



The Formal Model
• 𝑆1 = 1, 2,… , 𝑠 : the set of items of type 1, e.g., tables.        
𝑆2 = 𝑠 + 1, 𝑠 + 2,… , 𝑛 : the set of items of type 2, e.g., chairs. 

• Items of the same type can be also heterogeneous!

• 𝑁 = 𝑆1 ∪ 𝑆2: the union of 𝑆1 and 𝑆2--the set of all items

• 2𝑁 = 𝑆 𝑆 ⊆ 𝑁}: the family of all bundles of items.

• 𝑀 = {1,2,… ,𝑚}—the set of all bidders.

• 𝑉𝑘: 2𝑁 → 𝑍+ is the utility function of bidder 𝑘, weakly 
increasing and integer-valued with 𝑉𝑘 ∅ = 0.

• 𝑉𝑘 is private information. 



Allocation and Efficiency

An allocation is a distribution of items among all 
bidders and can be denoted by 𝜋 =

𝜋 1 , 𝜋 2 ,… , 𝜋 𝑚 , where ⋃𝑘∈𝑀𝜋 𝑘 = 𝑁

and 𝜋 𝑘 ∩ 𝜋 𝑙 = ∅ for 𝑘 ≠ 𝑙. 𝜋 is a partition of 
goods among bidders. At 𝜋, bidder 𝑘 gets the 
bundle 𝜋(𝑘) of items.

An allocation 𝜋∗ is efficient if 

෍

𝑘∈𝑀

𝑉𝑘 𝜋∗ 𝑘 ≥ ෍

𝑘∈𝑀

𝑉𝑘(𝜋 𝑘 )

for every allocation 𝜋. An efficient allocation  
achieves the highest market value of the goods.



Equilibrium
• A price vector 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛) indicates a price 𝑝𝑗 for every 

good/item 𝑗 ∈ 𝑁.

• Given a price vector 𝑝, the demand set of bidder 𝑘 is given by

𝐷𝑘 𝑝 = 𝑆 𝑉𝑘 𝑆 − σℎ∈𝑆 𝑝ℎ ≥ 𝑉𝑘 𝑇 −
σℎ∈𝑇 𝑝ℎ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇 ⊆ 𝑁}

Every bundle in the demand set gives the bidder the highest profit.

• A Walrasian/competitive equilibrium consists of a price vector  𝑝
and an allocation 𝜋 such that 𝜋(𝑘) ∈ 𝐷𝑘(𝑝) for every bidder 𝑘.

• In equilibrium, every buyer receives an optimal bundle of items
and all agents are in harmony.

• Proposition 1:  If (𝜋, 𝑝) is a WE, then 𝜋 must be efficient.



Gross Substitutes and Complements
Definition 7: The demand set 𝐷𝑘(𝑝) satisfies the Gross 
Substitutes and Complements (GSC) Condition if, for any 
given prices 𝑝 and increasing the price of one item of type 
𝑗 = 1 𝑜𝑟 2 , the bidder who demands a bundle 𝑆 at prices 𝑝
will continue to demand items of type 𝑗 in 𝑆 whose prices 
do not change, and will not demand any item of the other 
type 𝑙 ≠ 𝑗 he does not demand at prices 𝑝.

In other words, bidder views items in the same set as 
substitutes but items across the two sets as complements.

GSC is introduced by Sun and Yang (2006). When 𝑆1 = ∅ or 
𝑆2 = ∅, i.e. there is only one type of goods, GSC reduces to 
the GS Condition of Kelso and Crawford (1982).  



Equilibrium Existence Theorem
Theorem 5 (Sun and Yang 2006): If GSC is satisfied by every agent 
in the market, there exists a competitive equilibrium. 

Revisiting Example 2.

A competitive equilibrium in this example is to set the price of each 
chair at 8 and the price of table at 16 and to assign the table to 
bidder 1 and two chairs to bidder 2.

The conventional strategy would sell the table and chairs as one 
package, resulting in the social value of only 25!

∅ 𝒕 𝒄𝟏 𝒄𝟐 𝒕𝒄𝟏 𝒕𝒄𝟐 𝒄𝟏𝒄𝟐 𝒕𝒄𝟏𝒄𝟐

Bidder 1 0 18 3 3 22 22 4 24

Bidder 2 0 1 11 11 13 13 20 23

Bidder 3 0 12 6 6 20 20 10 25



Auction Design

• Markets do not work automatically!

• They need Design and Maintenance—Lots of visible hands!

• Three major difficulties for the current auction design:

1. Multiple Heterogeneous Items

2.     Complements & Substitutes Mixed Up

3.     Asymmetric and Private Information



Lyapunov Function

• The indirect utility function of bidder 𝑘: 

𝑣𝑘 𝑝 = 𝑚𝑎𝑥𝑆⊆𝑁{𝑉
𝑘 𝑆 − σℎ∈𝑆 𝑝(ℎ)}.

• The Lyapunov function: 

𝐿 𝑝 =෍
𝑘∈𝑀

𝑣𝑘 𝑝 +෍
ℎ∈𝑁

𝑝(ℎ) .

The use of this function is well known in the literature (see, e.g., 
Arrow and Hahn 1971 and Varian 1981), but was first used by 
Ausubel ( 2006) in auction. His Proposition 1 shows that if a WE 
exists, then the set of equilibrium price vectors coincides with the 
set of minimizers of the Lyapunov function. 



Integral Convexity, Generalized Lattice and Submodularity

Def 7:  For any 𝑝, 𝑞 ∈ 𝑅𝑁, we define their generalized meet and join by
𝑝 ∧𝑔 𝑞 = (min 𝑝 1 , 𝑞 1 , … ,min 𝑝 𝑠 , 𝑞 𝑠 ,max 𝑝 𝑠 + 1 , 𝑞 𝑠 + 1 ,… ,max 𝑝 𝑛 , 𝑞 𝑛 )

𝑝 ∨𝑔 𝑞 = (max 𝑝 1 , 𝑞 1 ,… ,max 𝑝 𝑠 , 𝑞 𝑠 ,min 𝑝 𝑠 + 1 , 𝑞 𝑠 + 1 ,… ,min 𝑝 𝑛 , 𝑞 𝑛 )

Def 8:   A function 𝑓: 𝑅𝑁 → 𝑅 is g-submodular if  for any 𝑝, 𝑞 ∈ 𝑅𝑁, it holds 
𝑓 𝑝 + 𝑓 𝑞 ≥ 𝑓 𝑝 ∧𝑔 𝑞 + 𝑓 𝑝 ∨𝑔 𝑞 .

The function is g-supermodular if −𝑓 is g-submodular.

Def 9:   A set 𝑆 ⊆ 𝑅𝑁 is a generalized lattice if 𝑝 ∧𝑔 𝑞, 𝑝 ∨𝑔 𝑞 ∈ 𝑆 for any 𝑝, 𝑞 ∈ 𝑆.

Def 10  (Sun and Yang 2009): A set 𝑆 ⊆ 𝑅𝑁 is integrally convex if it is convex and 
every point 𝑥 in the set can be written as a convex combination of integer points 
contained by the set 𝑆 and the set 𝑁 𝑥 = 𝑦 ∈ 𝑍𝑁 𝑚𝑎𝑥ℎ 𝑦 ℎ − 𝑥 ℎ < 1}.

Favati and Tardella (1990) first introduce a similar concept for discrete sets.



Generalized Lattice Results

Lemma 1 (Sun and Yang 2009): For any model with quasi-linear 
utilities and indivisible goods, 𝑝∗ is a WE price vector if and 
only if it is a minimizer of the Lyapunov function with its 
minimum value 𝐿(𝑝∗) equal to the market value 𝑆𝑉(𝑀).

Theorem 6 (Sun and Yang 2009) : For the GSC model, the 
Lyapunov function is a continuous, convex and g-submodular 
function; and the set of equilibrium price vectors coincides 
with the set of minimizers of the Lyapunov function.

Theorem 7 (Sun and Yang 2009) : For the GSC model, 
the set of WE prices forms a nonempty, integrally 
convex, and complete generalized lattice. 



Def 11:  A demand correspondence 𝐷(∙) has a generalized single improvement property 
(GSI) if any prices 𝑝 and any 𝑆 ∉ 𝐷(𝑝), there is bundle 𝑇 such that 

𝑉 𝑆 − σℎ∈𝑆 𝑝 ℎ < 𝑉 𝑇 − σℎ∈𝑇 𝑝(ℎ) and one of the following two 
holds: (a) 𝑆 ∩ 𝑆𝑗 = 𝑇 ∩ 𝑆𝑗 and |(𝑆 ∖ 𝑇) ∩ 𝑆𝑗

𝑐| ≤ 1 and |(𝑇 ∖ 𝑆) ∩ 𝑆𝑗
𝑐| ≤ 1 for either 𝑗 =

1 𝑜𝑟 2. (b) either 𝑇 ⊆ 𝑆 and 𝑆 ∖ 𝑇 ∩ 𝑆1 = 𝑆 ∖ 𝑇 ∩ 𝑆2 = 1 or S⊆ 𝑇 and |
|

𝑇 ∖ 𝑆 ∩
𝑆1 = 𝑇 ∖ 𝑆 ∩ 𝑆2 = 1. Note that 𝑆1

𝑐 = 𝑆2 and 𝑆2
𝑐 = 𝑆1.

(b) says that we can strictly improve a suboptimal bundle by simultaneously adding one 
item to each set or simultaneously removing one item from each set.  

The Law of Price Adjustment:  Increase the price for any over-demanded  item 
but decrease the price for any under-demanded item.  (Tatonnement process)

The existing auctions are one-track auctions adjusting all prices only in one 
direction (either ascending or descending), of English or Dutch types. The 
exposure problem for the one-track auctions.

The basic idea is to try to find a minimizer of the Lyapunov function. Two hurdles: 1. every 
bidder’s indirect utility function is private information, and the auctioneer cannot get the 
Lyapunov function. 2 Even if the function is known,  choosing a proper search direction is 
also crucial. Otherwise, the auction may get stuck like what Scarf (1960) discovered 60 
years ago.  GSI plays an important role in establishing various properties of our auction.



The Double-Track Auction
• Sun and Yang (2009) propose the double-track auction, 

which uses only observable information. The idea of a 
simple version of the auction is given as follows:

• The auctioneer starts with very low prices for all items in 
one set but very high prices for items in the other set.

• Step 1: Every bidder is asked to report his demand set at 
the current prices.

• Step 2: The auction adjusts prices of items upwards in one 
set which are over-demanded but prices of items 
downwards in the other set which are over-supplied.

• Repeat Step 1 and Step 2 until the market clears.



The Precise Description of the  Auction

• Let 𝑝(𝑡) be the price vector at time 𝑡 = 0,1,2, … . Let          
∆= 𝛿 𝛿 = 𝛿1, 𝛿2, … , 𝛿𝑛` , 𝛿ℎ ∈ 0,1 , ℎ ∈ 𝑆1; 𝛿ℎ ∈ 0,−1 , ℎ ∈ 𝑆2 .

• Step 0: Start with 𝑝 0 = (𝐿, … , 𝐿, 𝐻, … , 𝐻), low prices for 
all items in 𝑆1 but high prices for items in 𝑆2.

• Step 1: Every bidder reports his demand set at the current 
prices 𝑝(𝑡). The auctioneer adjusts 𝑝(𝑡) to 𝑝 𝑡 + 1 =
𝑝 𝑡 + 𝛿(𝑡) where 𝛿(𝑡) solves the following problem             

max
𝛿∈∆

{σ𝑘∈𝑀( min
𝑆∈𝐷𝑘(𝑝 𝑡 )

σℎ∈𝑆 𝛿ℎ) − σℎ∈𝑁 𝛿ℎ}

As soon as  𝛿 𝑡 = 0 is an optimal solution, stop. Otherwise, 
go back to Step 1. 



The Exposure Problem

• The existing auctions cannot handle the situation. 

• Example: Bidders know their valuations privately. 

Ø A B AB

Bidder 1 0 1 1 5

Bidder 2 0 2 2 5

Bidder 3 0 0 0 4

Price vectors Price variations Bidder 1 Bidder 2 Bidder  3

p(0)=(0,0) δ(0)=(1,1) {AB} {AB} {AB}

P(1)=(1,1) δ(1)=(1,1) {AB} {AB} {AB}

P(2)=(2,2) δ(2)=(1,1) {AB} {AB} {AB,Ø}

P(3)=(3,3) δ(3)=(0,0) {Ø} {Ø} {Ø}

The Auction Mechanism



Overcoming the Exposure Problem

• The double-track auction overcomes the exposure problem 
and finds a WE. 

Price vectors Price variation Bidder 1 Bidder 2 Bidder 3

p(0)=(0,6) δ(0)=(1,-1) {A} {A} {A,Ø}

p(1)=(1,5) δ(1)=(0,-1) {A, Ø} {A} {Ø}

p(2)=(1,4) δ(2)=(1,-1) {A,AB,Ø} {A} {Ø}

p(3)=(2,3) δ(3)=(0,0) {AB,Ø} {Ø,A,AB} {Ø}

The Auction Mechanism



The Illustrative Example

• Every bidder knows his valuations privately. The auctioneer 
knows only that all values are no more than 26.

• The auction starts with prices p(0)=(0,0,26), i.e., the price of 
each chair is 0 and the price of the table is 26.

Ø t c1 c2 tc1 tc2 c1c2 tc1c2

Bidder 1 0 18 3 3 22 22 4 24

Bidder 2 0 1 11 11 13 13 20 23

Bidder 3 0 12 6 6 20 20 10 25

The Auction Mechanism



The Illustration of the  Auction
Prices 𝒑(𝒕) Variation 𝜹(𝒕) 𝑫𝟏(𝒑 𝒕 ) 𝑫𝟐(𝒑 𝒕 ) 𝑫𝟑(𝒑 𝒕 )

𝑝 0 = (0,0,26) (1,1,-1) {𝑐1𝑐2} {𝑐1𝑐2} {𝑐1𝑐2}

𝑝 1 = (1,1,25) (1,1,-1) {𝑐1, 𝑐2, 𝑐1𝑐2} {𝑐1𝑐2} {𝑐1𝑐2}

𝑝 2 = (2,2,24) (1,1,-1) {𝑐1, 𝑐2} {𝑐1𝑐2} {𝑐1𝑐2}

𝑝 3 = (3,3,23) (1,1,-1) {𝑐1, 𝑐2, ∅} {𝑐1𝑐2} {𝑐1𝑐2}

𝑝 4 = (4,4,22) (1,1,-1) {∅} {𝑐1𝑐2} {𝑐1, 𝑐2, 𝑐1𝑐2}

𝑝 5 = (5,5,21) (1,1,-1) {∅} {𝑐1𝑐2} {𝑐1, 𝑐2}

𝑝 6 = (6,6,20) (0,0,-1) {∅} {𝑐1𝑐2} {∅, 𝑐1, 𝑐2}

𝑝 7 = (6,6,19) (0,0,-1) {∅} {𝑐1𝑐2} {∅, 𝑐1, 𝑐2}

𝑝 8 = (6,6,18) (0,0,0) {𝑡, ∅} {𝑐1𝑐2} {∅, 𝑐1, 𝑐2}



Convergence and Strategic Issue

• In this example, bidder 1 gets the table and pays 18, bidder 2 
gets the two chairs and pays 12, and bidder 3 gets nothing and 
pays nothing.

• Here we only present the simple version of the double-track 
auction. In Sun and Yang (2009), the auction can start from 
anywhere and will converge globally to a WE. 

• In our third lecture, we will study the dynamic auction of 
Fujishige and Yang (2025), which works for all unimodular 
demand types (i.e. the necessary and sufficient condition of 
Baldwin and Klemperer 2019). In contrast to their model with 
complete information and price-taking agents, our auction 
model is a setting with incomplete information and strategic 
bidders. It will be shown that sincere bidding is an ex post 
perfect Nash equilibrium of the auction game.  


	Slide 1:  Lecture 1:  Dynamic Auctions for Substitutes and Complements  Time: 10:30-12:00,Wed, 23rd July 2025 Venue: University of Tokyo 
	Slide 2: Words of Caution
	Slide 3: Some Words on Dynamic Mechanism Design
	Slide 4: Part 1: Assignment Markets
	Slide 5: An Example
	Slide 6: Assignment
	Slide 7: Efficiency
	Slide 8: The Example
	Slide 9: Equilibrium
	Slide 10: The First Lattice Theorem
	Slide 11: How to Find a Walrasian Equilibrium 
	Slide 12: The DGS Auction
	Slide 13: Illustration of the Auction
	Slide 14: Convergence and Strategic Issue
	Slide 15: Sincere Bidding and Incentive Compatibility
	Slide 16: Several Remarks
	Slide 17: Remarks on Assignment Markets
	Slide 18:   Auctions for Markets beyond Assignment Markets 
	Slide 19: Part 2: The Double-Track Auction
	Slide 20: Kelso-Crawford Model of Gross Substitutes
	Slide 21: Gross Substitutes
	Slide 22:  Single Improvement and No Complementarities 
	Slide 23:  GS and cap M to the equal and parallel to minus cap C o n c a. v i. t y  
	Slide 24:   GS and Submodularity 
	Slide 25:   A General Lattice Theorem for GS  
	Slide 26: Dynamic Auctions for GS
	Slide 27: Problems with Complementarity
	Slide 28: Gross Substitutes and Complements
	Slide 29: An Example
	Slide 30: The Formal Model
	Slide 31: Allocation and Efficiency
	Slide 32: Equilibrium
	Slide 33: Gross Substitutes and Complements
	Slide 34: Equilibrium Existence Theorem
	Slide 35: Auction Design
	Slide 36: Lyapunov Function
	Slide 37:   Integral Convexity, Generalized Lattice and Submodularity 
	Slide 38:   Generalized Lattice Results 
	Slide 39
	Slide 40: The Double-Track Auction
	Slide 41: The Precise Description of the  Auction
	Slide 42: The Exposure Problem
	Slide 43: Overcoming the Exposure Problem
	Slide 44: The Illustrative Example
	Slide 45: The Illustration of the  Auction
	Slide 46: Convergence and Strategic Issue



