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Words of Caution

In the four lectures, | will focus on auction markets with
multiple indivisible goods, dynamic auction mechanismes,
basic concepts and essential results. (As you know, there
have been and can be many important theories even on
auctioning just a single item. But | shall assume you are
familiar with most of them.) Due to time constraint,
almost no proof will be given but | will make some hints
or comments on some proofs. It seems that the proof
can always be done as long as one can formulate the
right model, the right assumptions, the right solutions,
and the right mechanism.

| will leave about 10 minutes for discussion in the last
part of every lecture.



Some Words on Dynamic Mechanism Design

It is well recognized that dynamic mechanisms have important advantages over
direct/static mechanisms such as the Vickrey-Clarke-Groves (VCG) Mechanism in
their capacity to alleviate agents’ concern about privacy and to reduce
computational complexity, payoff uncertainty, and information cost; see, e.g.,
Ausubel (2004, 2006), Ausubel and Milgrom (2007), Bergemann and Morris
(2007), McMillan (1994), Milgrom (2007,2017), Perry and Reny (2005), Rothkopf
(2007), Rothkopf et al. (1990), etc. | like to say:

Designing a direct mechanism is like to shot a single picture while designing a
dynamic mechanism is to make a movie.

Some Principles for Designing Dynamic Mechanisms:
* Incentive-compatibility;

* Efficiency and privacy preservation: Allocative efficiency, information
efficiency, and time efficiency, etc;

* Simplicity and transparency (procedural efficiency?);
e Detail free: reducing the assump. of common knowledge (Wilson doctrine);
* Robustness and error-tolerance..



Part 1: Assighment Markets

Multiple houses for sale and many potential buyers.

Every buyer has a private valuation on each house and can
pay up to his valuation and demands at most one house,
i.e., unit-demand, and has quasi-linear utilities in money.

Every house has a reserve price below which it will not be
sold.

The basic question: Who should get which house at what
price?

This model is called the assignment or unit-demand
market and was first studied by Koopmans and Beckmann
(1957): Assignment problems and the location of economic
activities, Econometrica, 25, 53-76; and by Shapley and
Shubik (1972): The assignment game I: The core,
International Journal of Game Theory, 1, 111-130.



An Example

Example 1: Four houses and five buyers. Valuations and reserve
prices are given in the table:

Bidder 1 0 4 3 5 7
Bidder 2 0 7 6 8 3
Bidder 3 0 5 5 7 7
Bidder 4 0 9 4 3 2
Bidder 5 0 6 2 4 10
Seller 0 5 4 1 5

Private Information: Every buyer’s valuations are private
information which is only known to himself. The seller or anyone
else does not have this information.



Assignment

Let N = {1, 2, ...,n} be the set of items. Let 0 be the dummy
good which has no value and does no harm and can be assigned
to any number of buyers. Iltem [ # 0 is a real one.

M = {1,2, ..., m}—the set of all buyers.

V(1) denotes the private valuation of buyer k on item [ with
V¥(0) = 0. c(l) denotes the reserve price of item [ with c(0) =
0. V¥ and c(.) are integer-valued.

An assignment 1 allocates every buyer [ an item (1) such that
no real item is assigned to more than one buyer. An assighment
may allocate the dummy good to several buyers and a real item
may not be assigned to any buyer.

An item [ # 0 is unassigned at assignment m if the item is not
assigned to any buyer. Let U(m) denote the set of all unassigned
items at .



Efficiency

An assignment ™ is efficient if
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for every assignment . An efficient assignment allocates items in
a way that generates the highest social value.

Let

SV(M) = Ziem V¥ (" (1)) + Zneymy ()
be the value of an efficient assignment.
We call SV (M) the market value.

Foranyk € M, let M_;, = M \ {k} and let SV (M_;) be the value
of an efficient assignment in the market without buyer k.



The Example

Example 1: Four houses and five buyers. Valuations and reserve
prices are given in the table:

Agents\Houses | House 0 | House1 |House2 | House3 | Housed _

Bidder 1 0 4 3 5 7
Bidder 2 0 7 6 8 3
Bidder 3 0 5 5 7 7
Bidder 4 0 S 4 3 2
Bidder 5 0 6 2 4 10
Seller 0 5 4 1 5

There are two efficient assignments:
T = (71'(1),7'[(2),71’(3),7‘[(4),7'[(5)) = (0,2,3,1,4)
p=(p(1),p(2),p(3),p(4),p(5)) = (0,3,2,1,4)



Equilibrium

Let p = (p(1), ...,p(n)) denote a feasible price vector with
always p(0) = 0 and p(l) = c(l) foreveryl # 0.p(l) is the
price of item [.

Given a price vector p, the demand set of buyer k is given by

D) ={j 1 V*() —p() 2 V(D) —p(D) foralll € Nu{0}}.
Every item in the demand set gives the buyer the highest profit.

A Walrasian/competitive equilibrium (WE/CE) consists of an
assignment T and a feasible price vector p such that (k) €
D*(p) for every buyer k and p(1) = c(1) for every unsold item [
at .

In equilibrium, every buyer receives an optimal item and the
price of any unsold item equals its reserve price and all agents
are in harmony.



The First Lattice Theorem

Proposition 1: If (p, ) is a Walrasian equilibrium, then i
must be efficient. Moreover, if i is efficient, there must
exist a feasible price vector p such that (p, m) is a Walrasian
equilibrium.

Let p, g € R™. Define their meet A and join V by
pAq = (min{p(1),q(1)}, ..., min{p(n), g(n)}
pVq = (max{p(1),q(1)}, .., max{p(n),q(n)}.

AsetS € R"isalatticeifitholdsp Aq,pV q €
S forany p,q € S. A lattice is complete if it is compact.

Theorem 1 (Shapley and Shubik 1972): For the assignment
market, the set of WE price vectors forms a nonempty
complete lattice.



How to Find a Walrasian Equilibrium

Crawford and Knoer (1981) propose the first
algorithm to find an approximate WE.

Demange, Gale, and Sotomayor (DGS) (1986)
introduce the first dynamic auction which finds
an exact WE. We discuss this in the lecture.

In the following, when we discuss any dynamic
auction which finds a precise WE, we assume
that all valuations are integral, and the size of
price adjustment (increment) is equal to 1.



The DGS Auction

A nonempty set of real items S € N is over-demanded at a price
vector p, if the number of bidders who demand only items in S is
strictly greater than the number of itemsin S, i.e.,

S| < |{k € M| D*(p) c S}|.

An over-demanded set S is minimal if no strict subset of S is an
over-demanded set.

Step 1: The auctioneer announces the reserve prices c(l) for all
items. Set t := 0 and p%:=(c(1),..., ¢(n)). Then go to Step 2.

Step 2: The auctioneer asks every bidder k to report his demand
set D*(pt!) at the current prices p* and checks if there is any over-
demanded set at pt. If there is no over-demanded set, the
auction stops. Otherwise, there is an over-demanded set. Then
choose a minimal over-demanded set St and increase the price of
every item in St by one unit and keep the prices of all other items
unchanged. Set t :=t + 1 and return to Step 2.



lllustration of the Auction
We use Example 1 to illustrate the auction.
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0 (0,5,4,1,5)

1 (0,5,4,2,5) {3} {3} {3} {3} {1} {4}
2 (0,543,5) {3} 3,4} {3} {3} {1} {4}
3 (0,54,4,5) {3} {4} {3} {3} {1} {4}
4 (0,54,55) {4} {4} {3} 3,4} {1} {4}
5 (0,54,5,6) {4} {4} {3} {3} {1} {4}
6 (0,5,4,5,7) {3} {0,3,4} {3} {3} {1} {4}
7 (0,5,4,6,7) {0,4} {1,2,3} {2,3} {1} {4}

The auction starts with p¥ = (0,5,4,1,5) and ends at p’ =

(0,5,4,6,7). Att = 3,{3} and {4} are minimal over-demanded

sets but {3,4} is not. (p’, m) is a Walrasian equilibrium with
m = (n(1),7(2),7(3),7(4),7(5)) = (0,2,3,1,4) or (0,3,2,1,4).



Convergence and Strategic Issue

Theorem 2 (DGS 1986): The DGS dynamic auction finds the
minimum WE price vector in a finite of steps.

When facing an auction, every bidder has to think about how to
report/bid his demand set at the current prices. Should he bid
honestly according to his true valuations or manipulate his bid
as if he had different valuations than his true ones? A bidder
may manipulate only if doing so gives him extra profits.

Theorem 3 (Leonard 1983): For the assignment market, if trade
takes place at the minimum WE equilibrium vector, then the
payoff that every buyer k gets is equal to SV(M) — SV (M_;),
i.e., his marginal contribution to the grand coalitional value. The
price he pays is equal to

p(r*(k)) = VE(n*(k)) + SV(M_y) — SV (M)

where ¥ (k) is the item assigned to the agent.



Sincere Bidding and Incentive Compatibility

Leonard (1983) considers a direct mechanism in which every buyer
directly reports their valuations.

Theorem 4 (Leonard 1983): Truth revealing of their valuations is a
dominant strategy for every buyer.

The DGS auction is a dynamic rule that implements the direct
mechanism of Leonard (1983). DGS (1983) do not discuss the
strategic issue regarding their dynamic mechanism. Nevertheless,
Leonard's result for the associated direct mechanism implies that
sincere bidding by every bidder constitutes an ex post Nash
equilibrium of the DGS dynamic game, in the sense that the
strategy for each player would remain optimal even if the private
values of her opponents were revealed to her (so no regret).
Sincere bidding by every bidder kK means that at every step t of the
dynamic auction, bidder k always reports his demand set
D¥(p(t)) according to his true valuation V¥ at prices p(t).



Several Remarks

Theorems 3 and 4 are deep and elegant results. Their proof uses
some basic results (primal-dual formulation) from linear
programming and bi-partie graphs.

The DGS auction is an elegant design and a major improvement of
Crawford and Knoer (1981)’s approximate algorithm. Minimal
overdemanded sets play a key role in achieving the minimum prices
in the DGS auction.

The key advantage of the DGS auction over the direct mechanism is
that at least every winning bidder can avoid exposing some of their
valuations. This is extremely important in practice, as no
businessmen like to reveal their valuations or costs.

As the DGS auction must start from very low prices and is ascending,
it cannot guarantee to find a WE after bidders have made mistakes.



Remarks on Assignment Markets

Historically, Koopman and Beckmann (1957) are the first to prove
the existence of WE in the assignment market. It is interesting to
note that Shapley and Shubik (1972) did not cite the previous

paper.

There are numerous articles on the existence of WE in unit
demand models with quasi-linear (QL) and non-QL utilities,
including Quinzii (1984), Gale (1984), Kaneko and Yamamoto
(1986) on NQL models, etc, and numerous articles on variations of
the Crawford-Knoer adjustment process and the DGS auction.

The assignment market is a nice starting point but is restrictive in
the sense that every bidder is allowed to buy only one item. What
about more natural, more practical, and more general cases
where every bidder may buy several items?



Auctions for Markets beyond Assignment Markets

The key driving force for designing dynamic
auctions is the sale of radio spectrum licenses all
over the world since 1990s, and the intellectual
curiosity for understanding markets. The huge
success of spectrum auctions was phenomenal,
illuminating, and inspiring.

For instance, one of the 15t US spectrum auctions
designed by Preston McAfee, Paul Milgrom, and
Robert Wilson around 1995 was hailed by the
New York Times as The greatest Auction Ever.”
The UK 3G auction in 2000 designed by Paul
Klemperer with Ken Binmore generated 100
billion US dollars.



Part 2: The Double-Track Auction

This part focuses on auction markets where every
bidder can demand several indivisible goods/items.
There are two important cases.

* First, all items are substitutes, i.e. gross substitutes
(GS).

* Second, all items can be split into two disjoint
groups. All items in each group are substitutes but
items across the two groups are complements, i.e.,
gross substitutes and complements (GSC).

We introduce the double-track auction for GSC, which
automatically works for GS.



Kelso-Crawford Model of Gross Substitutes

The celebrated job-matching model of Kelso-
Crawford (1982). Every firm can hire several
workers, and every worker can work for at most
one firm.

Kelso-Crawford prove that their market has a WE as
long as every firm treats all workers as substitutes
(Gross Substitutes (GS)), via a salary adjustment
process. For each given increment of salary
adjustment, their process finds a core allocation
within a finite number of steps. Taking a sequence
of increments converging to zero, the limit of the
sequence of core allocations converges to a strict
core allocation, i.e., a WE.



Gross Substitutes

Let N = {1, ...,n} be a set of (indivisible) goods and
2N a family of all subsets of N.

Let u: 2¥ — R be a utility function and let D(p) be the
demand set given the prices p € R and the function
Uu.

Def 1 (Kelso and Crawford 1982): The demand

correspondence D(-) satisfies the gross substitutes

condition (GS) if for any p, ¢ € RN with g = p and any

S € D(p), there exists T € D(q) such that
theS|pth) =q(M} < T.



Single Improvement and No Complementarities

Def 2 (Gul and Stacchetti 1999): The demand
correspondence D(+) has the single improvement property
(Sl) if for any p € RN and any S & D(p), there exists bundle

T such that

w(T) — Xperp(h) > u(S) — Xpesp(h)and [T\ S| < 1and
IS\ T| < 1.

Def 3 (Gul and Stacchetti 1999): The demand

correspondence D () has no complementarities (NC) if for
anyp € RN andall S,T € D(p)and B € S, thereisC ST

such that (S \ B)UC € D(p).

Theorem 1 (Gul and Stacchetti 1999): Let function u be
weakly increasing. Then GS, Sl and NC are equivalent.

They prove ¢S = SI = NC = GS.



GS and M¥* — Concavity

Def 4 (Murota and Shioura 1999): A function u: 2N — R is M*-
concave if forany S,T € N and k € S \ T, the function satisfies
u(S) + u(T) < max[u(S \ {k}) + u(T U {k}),
maxiems{u((S \ (k3) U {13) + u((T \ 1) U {k}))]

Theorem 2 (Fujishige and Yang 2003): Let function u be weakly
increasing. Then GS and are M* — Concavity equivalent.

The line of proof is GS & SI & M* — Concavity.

GS, SlI, and NC are defined on demand sets, whereas Def 4 gives a
precise and direct definition of utility functions.



GS and Submodularity

Def 5: Given a utility function u: 2" — R, define the indirect
utility function v: RN > R by

v(p) = maxsen{u(S) — Lresp (M)}

Def 6: A function f: RY - R is submodular if
forany p,q € RY, it holds f(p) + f(q) = f(pA@) + f(p V Q).
The function is supermodular if —f is submodular.

Theorem 3 (Ausubel and Milgrom 2002): Let function u be weakly
increasing. Then the demand correspondence satisfies GS if and
only if its indirect utility function is submodular.



A General Lattice Theorem for GS

Theorem 4 (Gul and Stacchetti 1999, Ausubel 2006): Let every
agent’s function be weakly increasing and the demand
correspondence satisfy GS in an economy with m agents and n
indivisible goods. Then the set of WE price vectors constitutes a
nonempty complete lattice in R .



Dynamic Auctions for GS

Milgrom (2000) price adjustment process, which finds a core allocation wrt the
given increment;

Gul and Stacchetti (2000) auction, which finds the minimum WE price vector,
generalizing the DGS auction. They use matroid theory to prove the finite
convergence to the WE price vector p* € RY with a WE assignment m*and
demonstrate that no dynamic auction can reveal sufficient information to
implement the VCG mechanism for the GS market. Indeed, the minimum WE
prices do not correspond to the VCG payments in the GS market. The VCG
payment for bidder k equals

q(m*(k)) = V¥ (m*(k)) + SV(M_;) — SV (M)
where m*(k) is the bundle of items assigned to the agent. In the GS market,
generally speaking, q(n*(k)) * Xnen() D" () for at least one bidder k.

Ausubel (2006) proposes an ingenious dynamic auction design for the GS market
which can converge globally to a WE and achieves incentive-compatibility. Based
on the VCG framework, his idea is to run the original market plus all submarkets
each dropping one bidder, i.e., m + 1 markets in total when there are m bidders
in the original market.



Problems with Complementarity

Milgrom (2000, 2017), Jehiel and Moldovanu (2003), Noussair (2003), and
Klemperer (2004), and Maskin (2005) call for designing dynamic auctions which
can handle complementarities. In fact, complementarities have long been a
challenge for economic analyses; Scarf (1960) and Samuelson (1974) etc.

A casual observation is that complementarity/synergy is ubiquitous, pervasive,
and overwhelming.

Substitutes are often observed. But substitutes and complements are more
often jointly observed and more pervasive and more fundamental.

Interestingly, substitutes and complements often appear together in some
regular and typical patterns. For instance, tables and chairs; computer hardware
and software packages; workers and machines; left shoes and right shoes,
students and teachers; buyers and sellers; suppliers and retailers, etc.

Gul and Stacchetti (1999) prove that GS is a “"necessary' condition for existence
of WE in some sense. The statement throws cold water on this very subject.



Gross Substitutes and Complements

 The above regular patterns have been called gross
substitutes and complements (GSC) by Sun and Yang
(2006,2009) in an equilibrium or auction model and
same-side substitutes and cross-side complements by

Ostrovsky (2008) in a vertical supply chain model (a
matching model).

* Consider a market where indivisible goods can be split
into two groups. Goods in the same group are
substitutes and can be heterogeneous but goods
across the two groups are complements.

* Every buyer has private valuation on every bundle of
goods but may consume several goods.



An Example

Example 2: One table t and two chairs ¢; and ¢, are going to be sold
to three buyers. Every agent views chairs as substitutes, but chairs
and table as complements. The valuations of every agent are shown
in the table and are private information.

Bidder 1
Bidder2 O 1 11 11 13 13 20 23
Bidder3 O 12 6 6 20 20 10 25

Who should get what at what prices?



The Formal Model

gl, 2,...,S}: the set of items of type 1, e.g., tables.
S

51
S, + 1,s + 2, ...,n}: the set of items of type 2, e.g., chairs.

[tems of the same type can be also heterogeneous!

N = §; U S,: the union of §; and S,--the set of all items
2N = {S | § € N}: the family of all bundles of items.

M = {1,2, ..., m}—the set of all bidders.

Vk:2N — Z. is the utility function of bidder k, weakly
increasing and integer-valued with V*(@) = 0.

VX is private information.



Allocation and Efficiency

An allocation is a distribution of items among all
bidders and can be denoted by T =

(n(l),n(Z), ...,n(m)), where Uy (k) = N
and w(k) Nmw(l) = @ for k # . mis a partition of

g00d

s among bidders. At m, bidder k gets the

bundle m(k) of items.

An a

location ™ is efficient if

z Vk(n*(k)) > 2 VE(m(k))

keM keM

for every allocation . An efficient allocation
achieves the highest market value of the goods.



Equilibrium

* A price vector p = (py, P2, ---, Pn) indicates a price p; for every
good/item j € N.

* Given a price vector p, the demand set of bidder k is given by
D¥(p) = {S|V*(S) — Xpespn = VH(T) —
SnerPn forallT S N}
Every bundle in the demand set gives the bidder the highest profit.

* A Walrasian/competitive equilibrium consists of a price vector p
and an allocation  such that (k) € D*(p) for every bidder k.

* In equilibrium, every buyer receives an optimal bundle of items
and all agents are in harmony.

* Proposition 1: If (7T, p) is a WE, then T must be efficient.



Gross Substitutes and Complements

Definition 7: The demand set D*(p) satisfies the Gross
Substitutes and Complements (GSC) Condition if, for any
given prices p and increasing the price of one item of type
Jj = 1or 2,the bidder who demands a bundle § at prices p
will continue to demand items of type j in S whose prices
do not change, and will not demand any item of the other
type [ # j he does not demand at prices p.

In other words, bidder views items in the same set as
substitutes but items across the two sets as complements.

GSC is introduced by Sun and Yang (2006). When §; = @ or
S, = @, i.e. there is only one type of goods, GSC reduces to
the GS Condition of Kelso and Crawford (1982).



Equilibrium Existence Theorem

Theorem 5 (Sun and Yang 2006): If GSC is satisfied by every agent
in the market, there exists a competitive equilibrium.

Revisiting Example 2.

Bidder 1
Bidder2 O 1 11 11 13 13 20 23
Bidder3 O 12 6 6 20 20 10 25

A competitive equilibrium in this example is to set the price of each
chair at 8 and the price of table at 16 and to assign the table to
bidder 1 and two chairs to bidder 2.

The conventional strategy would sell the table and chairs as one
package, resulting in the social value of only 25!



Auction Design

* Markets do not work automatically!

 They need Design and Maintenance—Lots of visible hands!

* Three major difficulties for the current auction design:

1.  Multiple Heterogeneous ltems
2. Complements & Substitutes Mixed Up
3. Asymmetric and Private Information




Lyapunov Function
* The indirect utility function of bidder k:

VR(P) = mangN{Vk(S) — Xnes (M)}

* The Lyapunov function:

Lp)=) vE+)  ph).

The use of this function is well known in the literature (see, e.g.,
Arrow and Hahn 1971 and Varian 1981), but was first used by
Ausubel ( 2006) in auction. His Proposition 1 shows that if a WE
exists, then the set of equilibrium price vectors coincides with the
set of minimizers of the Lyapunov function.



Integral Convexity, Generalized Lattice and Submodularity

Def 7: Foranyp,q € R", we define their generalized meet and join by
P Ag q = (min{p(1),q(1)}, ..., min{p(s), q(s)}, max{p(s + 1), q(s + 1)}, ..., max{p(n), g(n)})
p Vg q = (max{p(1),q(1)}, ..., max{p(s),q(s)}, min{p(s + 1),q(s + 1)}, ..., min{p(n), g(n)})

Def 8: A function f: RN — R is g-submodular if foranyp,q € R", it holds
f@) +f@=f(pnrga)+flpvya)

The function is g-supermodular if —f is g-submodular.
Def9: AsetS € RV isageneralized lattice if p Ng @, PVgq € Sforanyp,q €S.

Def 10 (Sun and Yang 2009): A set S € R" is integrally convex if it is convex and
every point x in the set can be written as a convex combination of integer points
contained by the set S and the set N(x) = {y € Z"|max,|y(h) — x(h)| < 1}.

Favati and Tardella (1990) first introduce a similar concept for discrete sets.



Generalized Lattice Results

Lemma 1 (Sun and Yang 2009): For any model with quasi-linear
utilities and indivisible goods, p™ is a WE price vector if and
only if it is @ minimizer of the Lyapunov function with its
minimum value L(p™) equal to the market value SV (M).

Theorem 6 (Sun and Yang 2009) : For the GSC model, the
Lyapunov function is a continuous, convex and g-submodular
function; and the set of equilibrium price vectors coincides
with the set of minimizers of the Lyapunov function.

Theorem 7 (Sun and Yang 2009) : For the GSC model,
the set of WE prices forms a nonempty, integrally
convex, and complete generalized lattice.



Def 11: A demand correspondence D(-) has a generalized single improvement property
(GSI) if any prices p and any S € D(p), there is bundle T such that

V(S) — Xpesp(h) < V(T) — Xper p(h) and one of the following two
holds: (a) SNS; =TnNS;and [(S\T) N Sjc| <land|(T\S)N S]-Cl < 1 for eitherj =
lor2.(b)eitherTE€ESand |[(S\T)NS;|=|S\T)NS,|=1orSSTand|(T\S)N
Si1=1(T\S)NS,| =1.Note that S = S, and S5 = S;.

(b) says that we can strictly improve a suboptimal bundle by simultaneously adding one
item to each set or simultaneously removing one item from each set.

The Law of Price Adjustment: Increase the price for any over-demanded item
but decrease the price for any under-demanded item. (Tatonnement process)

The existing auctions are one-track auctions adjusting all prices only in one
direction (either ascending or descending), of English or Dutch types. The
exposure problem for the one-track auctions.

The basic idea is to try to find a minimizer of the Lyapunov function. Two hurdles: 1. every
bidder’s indirect utility function is private information, and the auctioneer cannot get the
Lyapunov function. 2 Even if the function is known, choosing a proper search direction is
also crucial. Otherwise, the auction may get stuck like what Scarf (1960) discovered 60
years ago. GSI plays an important role in establishing various properties of our auction.



The Double-Track Auction

Sun and Yang (2009) propose the double-track auction,
which uses only observable information. The idea of a
simple version of the auction is given as follows:

The auctioneer starts with very low prices for all items in
one set but very high prices for items in the other set.

Step 1: Every bidder is asked to report his demand set at
the current prices.

Step 2: The auction adjusts prices of items upwards in one
set which are over-demanded but prices of items
downwards in the other set which are over-supplied.

Repeat Step 1 and Step 2 until the market clears.



The Precise Description of the Auction

* Letp(t) bethe price vectorattimet =0,1,2,.... Let
A={6 | 6 = (61,62, ,64.),6, €{0,1},h € S3; 6, € {0,—1},h € S, }.
* Step O: Start with p(0) = (L, ..., L, H, ..., H), low prices for
all items in S; but high prices for itemsin S,.

e Step 1: Every bidder reports his demand set at the current
prices p(t). The auctioneer adjusts p(t) top(t + 1) =
p(t) + 6(t) where §(t) solves the following problem

?@E{ZREM(SEDI}}(IS@) 2hes On) — 2inen On}

As soon as 6(t) = 0 is an optimal solution, stop. Otherwise,
go back to Step 1.



The Auction Mechanism

The Exposure Problem

* The existing auctions cannot handle the situation.
* Example: Bidders know their valuations privately.

Bidder1 O
Bidder2 0 2 2 5
Bidder3 0 0 0 4

p(0)=(0,0) 6(0)=(1,1) {AB} {AB} {AB}
P(1)=(1,1) 6(1)=(1,1) {AB} {AB} {AB}
P(2)=(2,2) 6(2)=(1,1) {AB} {AB} {AB,0}

P(3)=(3,3) 6(3)=(0,0) {2} {2} {2}



The Auction Mechanism

Overcoming the Exposure Problem

* The double-track auction overcomes the exposure problem
and finds a WE.

p(0)=(0,6) 6(0)=(1,-1) {A} {A,0}
p(1)=(1,5) 6(1)=(0,-1) {A, ¢} {A} {?}
p(2)=(1,4) 6(2)=(1,-1) {AAB@Z}  {A} {?}

p(3)=(2,3) 6(3)=(0,0) {AB,@} {@,AAB}  {@}



The Auction Mechanism

The lllustrative Example

* Every bidder knows his valuations privately. The auctioneer
knows only that all values are no more than 26.

-ﬂ“ﬂﬂmm

Bidder 1
Bidder 2 0 1 11 11 13 13 20 23
Bidder 3 0 12 6 6 20 20 10 25

* The auction starts with prices p(0)=(0,0,26), i.e., the price of
each chair is 0 and the price of the table is 26.



The lllustration of the Auction

(111;_

r(0) = (0,0,26)
p(D) = (1,1,25)
p(2) = (2,2,24)
r(3) = (3,3,23)
r(4) = (44,22)
p(5) = (5,5,21)
p(6) = (6,6,20)
p(7) = (6,6,19)

p(8) = (6,6,18)

(111;_

(1,1,

(1,1,

(1,1,

(1,1,

(0,0,

(0,0,

1)

1)

-1)

_1)

-1)

-1)

-1)

-1)

(0,0,0)

D'(p(t)

€162}
{c1,€3, €105}
{c1, C2}
{cq,c,, 0}
)
9}
19}
19}

{t, 2}

€162}
(€162}
(€162}
€162}
€162}
(€162}
€162}
€162}

{cicz}

D?(p(t)) D3 (p(t))

(€162}
(€162}
(€162}
(€162}
{c1,¢y, 010}
(€1, C2}
{0,cq,c5}
19, ¢4, 62}

{9, ¢1,¢2}



Convergence and Strategic Issue

In this example, bidder 1 gets the table and pays 18, bidder 2
gets the two chairs and pays 12, and bidder 3 gets nothing and
pays nothing.

Here we only present the simple version of the double-track
auction. In Sun and Yang (2009), the auction can start from
anywhere and will converge globally to a WE.

In our third lecture, we will study the dynamic auction of
Fujishige and Yang (2025), which works for all unimodular
demand types (i.e. the necessary and sufficient condition of
Baldwin and Klemperer 2019). In contrast to their model with
complete information and price-taking agents, our auction
model is a setting with incomplete information and strategic
bidders. It will be shown that sincere bidding is an ex post
perfect Nash equilibrium of the auction game.
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