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Problem and Objective

Multiple heterogeneous items such as houses are to be sold to
several bidders.

Bidders have valuations on their interested items and unit
demands.

Bidders have quasi-linear preferences, hard budgets, and can
be budget constrained.

Both valuations and budgets are private information. Bidders
are strategic.

The question is how to design a dynamic auction that will
allocate items as efficiently as possible, meet all budget
constraints, and also induce bidders to bid sincerely.
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Difficulty Issues

Budget constraints pose a serious obstacle to the efficient
allocation of resources, because they can fail the competitive
or Walrasian equilibrium (WE).

Two different types of private information makes the incentive
issue more difficult to tackle. A similar issue is well-known in
contract theory when agents have more than one-dimensional
private information.
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Motivation

The literature typically assumes that agents can pay up to their
valuations on any good they want to buy. That is, if you
participate in a market and valuate a house at $1, 000, 000, you
should have this amount of money.

Unfortunately, in almost every society, most people cannot afford
to buy big houses or send their kids to private schools even if they
very much like to do so.

Budget constraints become more severe when we have business
downturns and financial crises.

Many organizations impose budget constraints to control their
spending.

Salary caps are used by many professions to relax competition, etc.
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Takeaway Points

This lecture discusses an efficient and strategy-proof dynamic
auction for assignment markets under budget constraints with a
WE or without a WE.

Sincere bidding is shown to be an ex post Nash equilibrium when
both valuations and budgets are private information.

The auction finds an efficient outcome that is not only in the core
but also strongly Pareto efficient. When no bidder is
budget-constrained, the auction yields a WE with the minimal
WE prices.

The set of WE price vectors is a lattice but can be open from
below if the market has a WE.

This lecture is based on Yang and Yu (2025, accepted by
International Economic Review). 5 / 36



Some Relevant References

One-Item Auctions include Laffont and Robert (1996), Che and Gale
(1998, 2000), Zheng(2001), Maskin (2002), Pai and Vohra (2014),etc.

Assignment models with WE and budgets include Quinzii (1984),
Demange and Gale (1985), Kaneko and Yamamoto (1986), Alkan and
Gale (1990), Aggarwal et al. (2009), and Morimoto and Serizawa
(2015), etc.

Assignment models with budgets and with or without WE include
Talman and Yang (2015), Herings and Zhou (2022), etc.
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Recent References on More General Models

Gul et al. (2024) consider a general model and prove the existence of a
lottery WE over allocations, when agents have a budget of 0 and
gross-substitutes preferences.

Nguyen and Vohra (2024) study a related model and prove the
existence of an approximate WE with small excess demands when
agents have some budgets, and of a lottery over approximate WE
allocations with small excess demands when agents have no budgets,
all under their ∆-substitutes.

Yang and Yu (2024) propose a dynamic auction for a general market
where agents face hard budgets and general preferences. Their auction
yields a strongly Pareto efficient core allocation. It finds a strong core
allocation with an efficient assignment of items when bidders are not
budget constrained.

7 / 36



The Model

N = {1, 2, . . . , n}–the set of indivisible items such as houses.
Let N0 = N ∪ {0}, where 0 is the harmless dummy item.

M = {1, 2, . . . ,m}–the set of bidders. Let M0 = M ∪ {0},
where 0 stands also for the seller.

Every bidder h ∈ M has a value function vh : N0 → Z+ with
vh(0) = 0, where Z+ is the set of non-negative integers.

Every bidder h has a hard budget bh ∈ Z+ of money.

Let ((vh, bh), h ∈ M,N) represent this model.

For easy exposition, assume that the seller’s reserve price of
every item is 0.
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Soft and Hard Budgets

A hard budget bh means that under no circumstances can
bidder h pay more than his budget bh. Otherwise, it is a soft
budget.

It is essential to deal with hard budgets. In the soft budget bh

case, even if you can borrow, the possible amount lh of loan is
limited. In the end, you still face a hard budget of bh + lh.

Bidder h is budget constrained if bh < maxa∈N0 v
h(a).

Otherwise, i.e., bh ≥ maxa∈N0 v
h(a), bidder h is not budget

constrained.

Caution! Many models contain budget constraints for agents.
This does not mean that agents are budget constrained. See
e.g. Quinzii (1984) and Alkan and Gale (1990), where agents
have budget constraints but are not budget constrained.
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Assumptions

The following two assumptions are imposed upon the model:
(A1) Private Information on Valuations and Budgets: Every bidder

i ∈ M knows his valuation function vi and budget bi privately.

(A2) Quasilinear Utility: Every agent h ∈ M0 has quasi-linear
utility in money. That is, bidder h will get the payoff of
vh(a)− p(a) and the seller will get the payoff of p(a) if item a
is sold to the bidder at price p(a) ∈ R.

The problem is how to assign items to bidders as efficiently as
possible and to induce bidders to act honestly and also meet their
hard budget constraints.
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Assignment and Efficiency

An assignment π = (π(1), . . . , π(m)) assigns every bidder
i ∈ M exactly one item π(i) ∈ N0 such that no real item
a ∈ N is assigned to more than one bidder and any item that
is not assigned to a bidder is retained by the seller 0.

At π, a real item a ∈ N is unassigned if it is not assigned to
any bidder, and we use π(0) = N \

(⋃
h∈M π(h)

)
to denote the

set of all unassigned items.

Let A denote the family of all assignments.

An assignment π is efficient if∑
h∈M

vh(π(h)) ≥
∑
h∈M

vh(ρ(h)) ∀ρ ∈ A.
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Feasible Payments or Transfers

A transfer (payment) vector t = (t1, . . . , tm) is feasible if
th ≤ bh for all h ∈ M . We use t0 =

∑
h∈M th to denote the

seller’s revenue.

A pair (π, t) of an assignment π and a feasible payment t is
called an allocation.

At (π, t), agent h ∈ M receives item π(h) and pays th. The
utility that the bidders and the seller obtain are given by

uh(π, t) = vh(π(h))− th,∀h ∈ M

u0(π, t) = t0 =
∑
h∈M

th.
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Walrasian Equilibrium

A price vector p =
(
p(a)

)
a∈N0

specifies a price for each item

with p(0) = 0.

At prices p, the set of affordable items of bidder h is
Bp(b

h) = {a ∈ N0 | p(a) ≤ bh} and
the demand set of bidder h is defined by

Dh(p) =
{
a ∈ Bp(b

h) | vh(a)− p(a) ≥ vh(a′)− p(a′) for all a′ ∈ Bp(b
h)
}
.

A Walrasian equilibrium (WE) is a pair (π, p) of assignment π and
a price vector p such that π(h) ∈ Dh(p) for every h ∈ M and
p(a) = 0 for every unassigned item a ∈ π(0).
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Example 1 with Equal Budgets

There are two bidders who compete for one item a. Their values
are given by v1(a) = 20 and v2(a) = 18 and they have the same
budgets b1 = b2 = 6. So both bidders are budget constrained.
There is no Walrasian equilibrium, because the item is indivisible
and bidders are budget constrained, some utilities cannot be
transferred from one agent to another.

(1) If bidders are not budget constrained, they can compete the
item by increasing the price up to their value.

(2) If the item is divisible, they can compete the item by reducing
demand quantity to half instead of one and keeping payment
unchanged (another way to transfer utility to the seller).

Unfortunately, neither is the case.
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Example 2 with Unequal Budgets

A seller has two items {a1, a2} for sale. There are three bidders 1,
2 and 3. Valuations and budgets are given in the Table. Budgets
are different.

Bidder vi(0) vi(a1) vi(a2) Budget bi

1 0 8 6 9
2 0 7 0 5
3 0 0 6 3

To have a Walrasian equilibrium, we must have p(a1) ≥ 5 and
p(a2) ≥ 3, but we have D2(p) = {0} for p(a1) > 5 and
D3(p) = {0} for p(a2) > 3. There is no price vector to balance
demand and supply for one item. So there is no WE.
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Individual Rationality and Viable Coalitions

An allocation (π, t) is individually rational if ui(π, t) ≥ 0 for every
i ∈ M0.

A nonempty subset S ⊆ M0 is called a viable coalition if S consists
of either the seller with any number of bidders or a single bidder.

Given a viable coalition S, an allocation (ρS , τ) is feasible for S, if
0 ∈ S, τh ≤ bh for each bidder h ∈ S, ρS(j) = 0, and τ j = 0 for
each bidder j ∈ M \ S, or if S = {h} for some h ∈ M , τh = 0 and
ρS(h) = 0.
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Blocking, Core, and Strong Core

An allocation (π, t) is blocked by a viable coalition S if there exists
a feasible allocation (ρS , τ) such that uh(ρS , τ) > uh(π, t) for all
h ∈ S;

An allocation (π, t) is weakly blocked by a viable coalition S if
there exists a feasible allocation (ρS , τ) such that
uh(ρS , τ) ≥ uh(π, t) for all h ∈ S and with at least one strict
inequality.

An allocation (π, t) is in the core and is called a core allocation if
it is not blocked by any coalition. It is in the strong core and is
called a strong core allocation if it cannot be weakly blocked by
any coalition.
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The Basic Idea of the New Dynamic Auction

The auction of Yang and Yu (2025) works roughly as follows.
In the first round of the auction, on every item every bidder
first makes a bid or no bid, the seller then chooses a set of
bids yielding the highest revenue and asks every provisionally
losing bidder to make new bids.

In subsequent rounds, every provisionally losing bidder offers
new bids and then the seller chooses an optimal set of bids.
The auction process continues until no new bids are offered.
When the auction ends, the chosen bids will finally be
accepted.

To avoid the extreme case that the auction may never
terminate due to bidders’ overbidding or manipulation, the
auctioneer sets a price cap Ω∗ ∈ Z+ that significantly exceeds
the number of m× n×max{maxh∈M,a∈N vh(a),maxh∈M bh}.

Impose a fixed penalty if a bidder cannot pay his own bid.
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The New Dynamic Auction: I

Initialization: Set k = 1 being the first round. On every item
a ∈ N0, every bidder h ∈ M makes a bid ph1(a) ∈ Z+ or no bid. Go
to the Provisional Assignment Stage.

Bidding Stage: After being offered to make new bids, every
provisionally losing bidder i increases some of his previous bids by
one, or makes bids upon items which have not been bid upon by
him previously. In this round, bidder h must increase at least one
of his previous bids or make a bid phk(a) ∈ Z+ upon at least one
item a ∈ N0 which has not been bid upon by him before. Any
other bidder j keeps his bids unchanged by setting pjk = pjk−1. Go
to the Provisional Assignment Stage.
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The New Dynamic Auction: II

Provisional Assignment Stage: If bidder h ∈ M has not made a
bid on the dummy item, he is said to be active and his price of the
dummy item is set as phk(0) = −2−h. Otherwise, bidder h is
inactive and his price of the dummy item is set as phk(0) = 0. If a
bidder h has not yet made any bid upon an item a ∈ N until
round k, set an artificial price phk(a) = −∞. This gives the price
system Pk = (phk)h∈M in round k. If phk(a) equals the price cap Ω∗

for h ∈ M and some a ∈ N , go to the Final Assignment Extra.
Otherwise, based on the current prices Pk = (phk)h∈M , the seller
finds an optimal solution πk to the problem:
maxρ∈A

∑
h∈M phk(ρ(h)).

At πk, bidder h is said to be a provisionally losing (PL) bidder, if
he is active and assigned the dummy item, i.e., phk(0) = −2−h and
πk(h) = 0. If there is no PL bidder, go to the Final Assignment.
Otherwise, the seller asks all PL bidders to submit new bids in the
next round. Set k = k + 1 and go to the Bidding Stage.
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The New Dynamic Auction: III

Final Assignment: The auction ends in round K. Every bidder h ∈ M
will get item πK(h) specified by the current provisional assignment πK
if he can pay his bid th = phK(πK(h)), otherwise, he will get nothing
but have to pay a positive amount δ∗ ∈ Z+ of money as a penalty for
failing to pay his bid th.

Final Assignment Extra: Bidder h ∈ M will have to pay the price Ω∗

but not get any item if his bid phk(a) equals Ω
∗ for some item a ∈ N .

Otherwise he gets nothing and pays nothing.The auction stops.
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Notes on the Auction: I

At round k, if a bidder h ∈ M has not bid on a real item
a ∈ N , we set his price on the item as ph(a) = −∞ so that the
auctioneer will never assign the item to the bidder, i.e.,
πk(h) ̸= a.

When bidders are budget-constrained, discontinuity in
demand can occur in those auctions such as Demange et al.
(1986) in which the auctioneer first sets prices and
subsequently bidders respond with their demands. In
contrast, this new auction can preserve continuity in demand,
because bidders can first offer their bids according to their
valuations and budgets, and then the seller responds.
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Notes on the Auction: II

This auction has a new and special rule on the dummy item.
When a bidder h ∈ M does not make a bid on the item, its
price is set to phk(0) = −2−h. Otherwise, its price is set to
phk(0) = 0. So every bidder just needs to indicate whether he
wants to have a dummy item or not.

Differentiating active bidders from inactive ones and setting
phk(0) = −2−h for every active bidder h gives a new and easily
implementable tie-breaking rule.

This rule also improves market efficiency in a way that if
bidder h has bid on the dummy item (i.e., phk(0) = 0), the
bidder is indifferent between the dummy item and possibly
some real items, so the auctioneer can give other bidders
priorities to get real items without hurting bidder h.
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A Lemma

Lemma 1: If bidder h is a provisionally losing bidder in an
optimal assignment π of the problem:

max
ρ∈A

∑
h∈M

phk(ρ(h)), (1)

i.e., π(h) = 0 and ph(0) = −2−h, the bidder must also be assigned
a dummy item in any other optimal assignment ρ of the problem,
i.e., ρ(h) = 0.

So the problem (1) has a unique set of provisionally losing bidders.
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Sincere Bidding Strategies: I

In Step k = 1, every bidder h ∈ M sets an attainable utility
ûh
1 ∈ Z+

ûh
1 = max

a∈N0

vh(a). (2)

In subsequent step k > 1, if bidder h is a PL bidder, he will make
new bids by reducing his attainable utility by a decrement

∆k = min
{
d ∈ Z++ | vh(a)− (ûh

k−1 − d) ∈ [0, bh] for some a ∈ N0

}
.

That is, ûh
k = ûh

k−1 −∆k is a possible attainable utility in step k
and ∆k is the minimal integer for this change. In most cases, ∆k

is 1. But if a bid reaches the budget, it can be larger than 1.
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Sincere Bidding Strategies: II

In each step k ≥ 1, for every item a ∈ N0, every PL bidder h ∈ M
calculates a possible price p̂h(a|ûh

k) = vh(a)− ûh
k and makes a bid

or not as

phk(a) =

 p̂h(a|ûh
k) if 0 ≤ p̂h(a|ûh

k) ≤ bh

bh if p̂h(a|ûh
k) > bh

⋆ if p̂h(a|ûh
k) < 0

where ‘⋆’ stands for not bidding on item a. The bidder h will not
bid more than his hard budget bh when p̂h(a|ûh

k) > bh, because of
a fixed penalty δ∗.

Sincere bidding will be shown to be an ex post Nash equilibrium
of the dynamic auction game. When bidders bid sincerely, the
auction finds a strongly Pareto-efficient core allocation when
bidders are budget-constrained; otherwise, it finds a WE with the
minimum WE prices, thus always yielding an efficient outcome.
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Example 3 for Comparison

Example 3: A seller sells two items a1 and a2 to bidders 1, 2, 3, and 4.
Valuations and budgets are given in Table 1. All bidders are budget
constrained.

Table 1: Valuations and budgets

Bidder vi(0) vi(a1) vi(a2) Budget bi

1 0 10 2 5

2 0 10 4 5

3 0 2 7 4

4 0 7 7 3
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Illustration of the DGS Auction

In step k = 7, bidder 3 gets item a2 and pays 4 and the seller keeps
item a1. This yields a total increase of 7 in the utility of trade. Bidder
4 has a jump in demand from t = 5 to t = 6 and bidders 1 and 2 have a
jump in demand from t = 6 to t = 7.

Table 2: Illustration of the DGS auction for Example 3.

k pk Sk D1(pk) D2(pk) D3(pk) D4(pk)
1 (0, 0) {a1} {a1} {a1} {a2} {a1, a2}
2 (1, 0) {a1, a2} {a1} {a1} {a2} {a2}
3 (2, 1) {a1, a2} {a1} {a1} {a2} {a2}
4 (3, 2) {a1, a2} {a1} {a1} {a2} {a2}
5 (4, 3) {a1, a2} {a1} {a1} {a2} {a2}
6 (5, 4) {a1} {a1} {a1} {a2} {0}
7 (6, 4) ∅ {0} {0, a2} {a2} {0}
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Illustration of the New Dynamic Auction: I

In k = 1, no bidder bids for the dummy item, so they are all active.
Only bidders 2 and 4 are PL bidders. In k = 2, bidders 2 and 4 make
new bids, and bidders 1 and 3 become PL. In k = 7, bidder 4 becomes
a PL. In k = 8, bidder 4 makes a bid on the null item and keeps his
bids on items a1 and a2 unchanged, and then becomes inactive. His
attainable utility decreases from 4 to 0, as his previous prices reach his
budget. Symbol ‘−′ on a real item means −∞ for its price.

Table 3: Illustration of the new auction for Example 3.

k (û1
k, û

2
k, û

3
k, û

4
k) p1k(·) p2k(·) p3k(·) p4k(·) πk(1, 2, 3, 4)

1 (10, 10, 7, 7) (− 1
2
, 0,−) (− 1

4
, 0,−) (− 1

8
,−, 0) (− 1

16
, 0, 0) (a1, 0, a2, 0)

2 (10, 9, 7, 6) (− 1
2
, 0,−) (− 1

4
, 1,−) (− 1

8
,−, 0) (− 1

16
, 1, 1) (0, a1, 0, a2)

3 (9, 9, 6, 6) (− 1
2
, 1,−) (− 1

4
, 1,−) (− 1

8
,−, 1) (− 1

16
, 1, 1) (a1, 0, a2, 0)

4 (9, 8, 6, 5) (− 1
2
, 1,−) (− 1

4
, 2,−) (− 1

8
,−, 1) (− 1

16
, 2, 2) (0, a1, 0, a2)

5 (8, 8, 5, 5) (− 1
2
, 2,−) (− 1

4
, 2,−) (− 1

8
,−, 2) (− 1

16
, 2, 2) (a1, 0, a2, 0)

6 (8, 7, 5, 4) (− 1
2
, 2,−) (− 1

4
, 3,−) (− 1

8
,−, 2) (− 1

16
, 3, 3) (0, a1, 0, a2)

7 (7, 7, 4, 4) (− 1
2
, 3,−) (− 1

4
, 3,−) (− 1

8
,−, 3) (− 1

16
, 3, 3) (a1, 0, a2, 0)

8 (7, 6, 4, 0) (− 1
2
, 3,−) (− 1

4
, 4,−) (− 1

8
,−, 3) (0, 3, 3) (0, a1, a2, 0)
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Illustration of the New Dynamic Auction: II

The auction ends in k = 17 when there is no PL. Bidder 2 makes a bid
for the null item and becomes inactive, while bidders 1 and 3 are still
active. Although bidders 2 and 3 offer the same bid of 4 on item a2,
bidder 3 has higher priority than bidder 2, because bidder 2’s bid on
the null item is 0 but bidder 3’s bid on it is −1

8 . Clearly,
π∗ = (a1, 0, a2, 0) is the unique optimal assignment. In the end, bidder
1 gets a1 and pays 5, bidder 3 gets a2 and pays 4. This is a core
allocation. This outcome has improved the one found by the DGS
auction by increasing the total utility from 7 to 17!

Table 4: Illustration of the new auction for Example 3.

k (û1
k, û

2
k, û

3
k, û

4
k) p1k(·) p2k(·) p3k(·) p4k(·) πk(1, 2, 3, 4)

9 (6, 6, 4, 0) (− 1
2
, 4,−) (− 1

4
, 4,−) (− 1

8
,−, 3) (0, 3, 3) (a1, 0, a2, 0)

10 (6, 5, 4, 0) (− 1
2
, 4,−) (− 1

4
, 5,−) (− 1

8
,−, 3) (0, 3, 3) (0, a1, a2, 0)

11 (5, 5, 4, 0) (− 1
2
, 5,−) (− 1

4
, 5,−) (− 1

8
,−, 3) (0, 3, 3) (a1, 0, a2, 0)

12 (5, 4, 4, 0) (− 1
2
, 5,−) (− 1

4
, 5, 0) (− 1

8
,−, 3) (0, 3, 3) (a1, 0, a2, 0)

13 (5, 3, 4, 0) (− 1
2
, 5,−) (− 1

4
, 5, 1) (− 1

8
,−, 3) (0, 3, 3) (a1, 0, a2, 0)

14 (5, 2, 4, 0) (− 1
2
, 5,−) (− 1

4
, 5, 2) (− 1

8
,−, 3) (0, 3, 3) (a1, 0, a2, 0)

15 (5, 1, 4, 0) (− 1
2
, 5,−) (− 1

4
, 5, 3) (− 1

8
,−, 3) (0, 3, 3) (a1, a2, 0, 0)

16 (5, 1, 3, 0) (− 1
2
, 5,−) (− 1

4
, 5, 3) (− 1

8
,−, 4) (0, 3, 3) (a1, 0, a2, 0)

17 (5, 0, 3, 0) (− 1
2
, 5,−) (0, 5, 4) (− 1

8
,−, 4) (0, 3, 3) (a1, 0, a2, 0)
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Ex Post Nash Equilibrium

Sincere bidding in every round of an auction is an ex post Nash
equilibrium if, for every bidder i ∈ M , using his sincere bidding
strategy maximizes his utility as long as all other bidders in
M \ {i} follow their sincere bidding strategies.

This notion of equilibrium is robust against regret and
independent of any probability distribution assumption. But it
focuses only on the equilibrium path and cannot deal with the
case of off-equilibrium path.
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An Incentive Compatibility Theorem

Proposition 1 (Yang and Yu 2025): The proposed auction
terminates within a finite number of steps.

Theorem 1 (Yang and Yu 2025): In the face of the proposed
auction, sincere bidding is an ex post Nash equilibrium of the
dynamic auction game.

The above result generalizes the incentive results of Leonard
(1983) and Demange et al. (1986).
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Three Convergence Theorems

Theorem 2 (Yang and Yu 2025): The proposed auction finds a
strongly Pareto efficient core allocation.

The next result shows that in the presence of budget constraints,
the price vector found by the proposed dynamic auction actually
treats all the bidders better than the minimum integer Walrasian
equilibrium price vector does provided a WE exists.

Theorem 3 (Yang and Yu 2025): If there exists a Walrasian
equilibrium, the price vector generated by the proposed dynamic
auction is not larger than the minimum integer Walrasian
equilibrium price vector.

Theorem 4 (Yang and Yu 2025): When no bidder is budget
constrained, the proposed auction finds a Walrasian equilibrium
with the minimum equilibrium price vector, which is also in the
strong core. 33 / 36



A Lattice Theorem

Theorem 5 (van der Laan, Talman, Yang, and Yu 2025): If a
Walrasian equilibrium exists, the set of Walrasian equilibrium
price vectors forms a lattice and contains a unique minimum
integer Walrasian equilibrium price vector and a unique maximum
integer Walrasian equilibrium price vector.

An intuitive display of this theorem is given by an simple
example. The auctioneer sells one item a to bidders 1 and 2.
Bidders have values v1(a) = 20, v2(a) = 18, and budgets b1 = 6
and b2 = 10, respectively. In this case, bidder 2 wins the item by
paying a price p(a) ∈ (6, 10]. Both bidders are budget constrained.
Clearly, Walrasian equilibrium prices form a nonempty lattice
which is open from below but closed from above.

34 / 36



Two Questions

Question 1: Is it possible to design an efficient dynamic auction
for the assignment market with possibly budget constrained
bidders such that sincere bidding is an ex post perfect Nash
equilibrium or even a dominant strategy for all bidders?

Question 2: Is it possible to design an efficient and strategy-proof
dynamic auction when bidders are budget constrained and have
gross substitutes preferences?
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The End

Thank You!
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