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Problem and Goal

Consider a general auction market where all kinds of indivisible goods,
simply called objects or items, can be sold. They can be identical,
heterogeneous, substitutes, complements, or any mixture of substitutes
and complements.

Bidders may demand any number of items. Each bidder has his private
valuation on every bundle of his interested items and can be strategic.
The seller has her reserve price for every bundle of items.

How to design a dynamic auction mechanism with simple, practical
and transparent rules that will allocate items efficiently, induce bidders
to bid truthfully and require as little information from bidders as
possible to protect their privacy?
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A Particular Instance of Hayek’s Problem

An auction design problem is a particular instance of Hayek’s rational
economic order problem with strategic agents. Hayek (1945) says:
“The peculiar character of the problem of a rational economic order is
determined precisely by the fact that the knowledge of the
circumstances of which we must make use never exists in concentrated
or integrated form but solely as the dispersed bits of incomplete and
frequently contradictory knowledge which all the separate individuals
possess..... To put it briefly, it is a problem of the utilization of
knowledge which is not given to anyone in its totality......
Fundamentally, in a system in which the knowledge of the relevant
facts is dispersed among many people, prices can act to coordinate the
separate actions of different people...... This (price) mechanism would
have been acclaimed as one of the greatest triumphs of the human
mind.”
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Highlights of This Lecture

A novel and universal dynamic auction design is introduced and applies
to all unimodular demand types of Baldwin and Klemperer (2019,
ECTA) which are a necessary and sufficient condition for the existence
of competitive equilibrium and accommodate all kinds of indivisible
goods.

The auction always induces bidders to bid truthfully and yields an
efficient outcome. Sincere bidding is an ex post perfect Nash
equilibrium.

The auction is privacy-preserving, robust against any regret, and
independent of any probability distribution assumption.

The auction rules are simple, practical, transparent and detail-free.

This auction is developed by Fujishige and Yang (2025, Mathematics of
Operations Research, appearing online).
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Motivation

The huge volume of the sale of spectrum licenses in the world since
early 1990s; Klemperer (2004) and Milgrom (2004). Airport take-off
and landing slots, cloud computing band and time allocation, networks,
mining rights, treasury bills, key words, pollution permits, etc. The
trading volume and value via auction is staggeringly high, involving
billions and billions of dollars.

Substitutability and complementarity are fundamental properties of
goods and services and are pervasive.

Baldwin and Klemperer (2019, ECTA) found surprisingly that contrary
to popular belief, equilibrium is guaranteed for more classes of
complements than of substitutes.

Milgrom (2017) says: “Markets for complements can be much harder
than markets for substitutes and can require greater planning and
coordination.” See also Milgrom (2000, JPE), Jehiel and Moldovanu
(2003), Klemperer (2004), Maskin (2005).
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The Model

N = {1, 2, · · · , n}: the set of indivisible items. Each item j ∈ N is
also represented by the j-th unit vector e(j) ∈ ZN .
Let {0, 1}N denote the set of all bundles of items.

B: a group of m bidders. Let B0 = B ∪ {0} and 0 stand for the
seller.

Every bidder (he) j ∈ B has a utility function
uj : {0, 1}N → Z ∪ {−∞} specifying his valuation uj(x) (in units
of currency, say, yen) on every bundle x.

The seller (she) denoted by 0 has a reserve price function
u0 : {0, 1}N → Z ∪ {−∞}.

Let dom(uj) = {x ∈ {0, 1}N | uj(x) > −∞} denote the effective
domain of uj for all j ∈ B0. A bundle x is unacceptable to an
agent j ∈ B0 if uj(x) = −∞, i.e., x /∈ dom(uj).

Let M = (uj , j ∈ B0, N) or simply M represent the market.
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The Model: Setup

A price vector p = (p1, · · · , pn) ∈ IRN specifies a price ph for each
item h ∈ N . This is a linear and anonymous pricing rule.

At prices p, every bidder j ∈ B tries to maximize his profit and his
demand set Dj(p) is given by

Dj(p) = arg max
x∈{0,1}N

{uj(x)− p · x}.

At prices p, the seller chooses bundles to maximize her revenues
and her demand set D0(p) is given by

D0(p) = argmaxx∈{0,1}N {u0(x) + p · (
∑

h∈N e(h)− x)}
= argmaxx∈{0,1}N {u0(x)− p · x}

The set D0(p) contains those bundles that the seller wishes to
keep in hand and give her the highest revenues.
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Competitive Equilibrium

An allocation of items in N is a redistribution X = (xj , j ∈ B0) of
items among all agents in B0 such that

∑
j∈B0

xj =
∑

h∈N e(h)

and xj ∈ {0, 1}N for all j ∈ B0.

Allocation X = (xj , j ∈ B0) is feasible if it satisfies xj ∈ dom(uj)
for all j ∈ B ∪ {0}.

An allocation X = (xj , j ∈ B0) is efficient if∑
j∈B0

uj(xj) ≥
∑

j∈B0
uj(yj) for every allocation

Y = (yj , j ∈ B0).

Given an efficient allocation X, let SV (B) =
∑

j∈B0
uj(xj). We

call SV (B) the market value of the items.

A competitive or Walrasian equilibrium (p,X) consists of a price
vector p ∈ IRN and an allocation X such that xj ∈ Dj(p) for every
j ∈ B0. 8 / 42



No Budget Constraints and Feasibility

Quasi-Linear Utilities: All agents j ∈ B0 have the form of utilities
U j(x, c) = uj(x) + c for all bundles x ∈ {0, 1}N and money c ∈ IR.

No Budget Constraints: Every agent has a limited but enough
amount of budget so that she is not subject to any budget
constraint.
When a commodity is sold with a negative price, the seller will
pay the price and the commodity can be bad.

Feasibility: The market has at least one feasible allocation.
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A Typical but Special Market

The set dom(uj) of every bidder j ∈ B contains at least one
nonzero vector and also the dummy bundle 0 with uj(0) = 0.
So every bidder has the option of buying nothing and is interested
in buying some items.

The set dom(u0) of the seller equals {0, 1}N with u0(0) = 0.
The seller will not sell but retain a bundle if the price of the
bundle is below her reserve price, and she will keep any bundle of
her own items if the bundle is not sold.

This market obviously has at least one feasible allocation.
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The Model: Basic Conditions

The following two conditions will be imposed on the market M:

(A1) Integer Private Values: Every bidder j ∈ B knows his own utility
function uj : {0, 1}N → Z ∪ {−∞} privately and is strategic. The
seller knows her own utility function u0 : {0, 1}N → Z ∪ {−∞}
privately and is honest.

(A2) Common Unimodular Demand Type: All agents j ∈ B0 have the
same unimodular demand type D for their utility functions uj .
This information is made known to the auctioneer.
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Locus of Indifference Prices (LIP)

W.R.T. any utility function u : S → IR, let the demand set at
prices p be given by Du(p) = argmaxx∈S{u(x)− p · x}, where
S ⊆ ZN .

Following Baldwin and Klemperer (2019), we call the set
Tu = {p ∈ IRN | ♯Du(p) > 1} the locus of indifference prices (LIP)
of the demand set Du, where ♯Du(p) denotes the number of
elements in Du(p).

This set Tu concerns those price vectors p at which there are at
least two optimal bundles for any agent who has the utility
function u.

A set S ⊆ IRN is a polyhedron if S = {x ∈ IRN | Ax ≤ b} for some
m× n matrix A and an m-vector. A polyhedron is a polytope if it
is bounded.
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Demand Type

A facet of a polyhedron of dimension n is a face that has
dimension n− 1.

The LIP Tu is the union of (n− 1)-dimensional linear pieces also
called facets. These facets separate the unique demand regions, in
each of which some bundle is the unique demand.

The normal vector to a facet F is a vector which is perpendicular
to F at a point in its relative interior.

A non-zero integer vector is primitive if the greatest common
divisor of its coordinates is one.

Demand Type (Baldwin and Klemperer 2019): A finite set D of
nonzero primitive integer vectors in ZN is a demand type D if v ∈ D
implies −v ∈ D and every facet of the LIP Tu has a normal vector in
the set D.
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Polyhedra, Facets, and Faces

Figure 1: Blue and orange lines are facets of the rectangle and triangle, resp.
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Unimodular Demand Types

Demand types are derived from utility functions and given as sets of
integer vectors. These demand types capture the quintessential and
natural attributes of the commodities but do not reveal the values of
the consumers. For instance, consumers view tables as something
sharing the same physical property but they can each have different
valuations on tables.

A square matrix M is unimodular if all its elements are integral and its
determinant is +1 or −1. A matrix M is totally unimodular if every
minor of M is 0 or ±1. A set of n integer vectors in IRN is a
unimodular basis for IRN if the n× n matrix which has the n integer
vectors as its columns is unimodular.

Unimodular Demand Type (Baldwin and Klemperer 2019): A demand
type D in IRN is unimodular if every linearly independent subset of D
can be extended to a unimodular basis for IRN .
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Illustrative Examples

Example 1: Two bidders and two substitutable items. Valuations:

Bundle (0, 0) (1, 0) (0, 1) (1, 1)
Bidder1 0 3 4 5
Bidder2 0 5 2 6

Both bidders have the same unimodular demand type
D = {±(1, 0),±(0, 1),±(1,−1)}. See the blue dashed lines in the figure.

Example 2: Three bidders and two complementary items A = (1, 0)
and B = (0, 1). Valuations:

Bundle (0, 0) (1, 0) (0, 1) (1, 1)
Bidder1 0 2 2 5
Bidder2 0 2 2 5
Bidder3 0 1 1 4
Seller 0 1 1 3

All agents have the same unimodular demand type
D = {±(1, 0),±(0, 1),±(1, 1)}.
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Demand Type: Substitutes

1 2 3 4 5

1

2

3

4

5

p2

p1

(0, 0) demanded

(0, 1) demanded

(1, 0) demanded

(1, 1) demanded
±(−1, 1) normal vectors

±(1, 0) normal vectors

±(0, 1) normal vectors

Figure 2: u(0, 0) = 0, u(1, 0) = 3, u(0, 1) = 4, and u(1, 1) = 5. The red lines denote LIP.
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Demand Type: Complements

1 2 3 4 5

1

2

3

4

5

p2

p1

(0, 0) demanded

(0, 1) demanded

(1, 0) demanded

(1, 1) demanded

±(1, 1) normal vectors

±(1, 0) normal vectors

±(0, 1) normal vectors

Figure 3: u(0, 0) = 0, u(1, 0) = u(0, 1) = 2, and u(1, 1) = 5. The red lines denote LIP.
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Two Basic Properties of Unimodular Demand Types

Proposition 1 (Fujishige and Yang 2025): Every unimodular demand
type in IRN can be added with less than n new vectors so that the
enlarged set is still a unimodular demand type and contains at least
one basis.

This basic property of unimodular demand types is used in our auction
design by naturally assuming that every given unimodular demand
type spans the space IRN . By using Proposition 1 and its proof, we
have the following alternative characterization of unimodular demand
types which is easy to verify.

Proposition 2: A demand type D in IRN is unimodular if and only if
there exists a set D∗ ⊇ D of nonzero primitive integer vectors such that
every 1 ≤ k ≤ n linearly independent vectors from the set D∗ can find
n− k vectors from the set D∗ to form a unimodular matrix.
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Typical Examples of Unimodular Demand Types

Baldwin and Klemperer (2019) have identified a variety of demand
types and shown the richness of complements.

A demand type D is Gross Substitutes if every vector x ∈ D has at
most one 1 and at most one −1 and no other nonzero entries. Kelso
and Crawford (1982).

Let (S1, S2) be a partition of the set N . A demand type D is Gross
Substitutes and Complements (GSC) if every vector x ∈ D has at most
two nonzero components of +1 or −1 and no other nonzero entries so
that if two nonzero components of x have the same sign, then one
nonzero component must be indexed by an element in S1 and the other
must be indexed by an element in S2. Sun and Yang (2006, 2009).

A unimodular demand type D is unimodular complements if every
vector x ∈ D implies either x ∈ {0, 1}N or x ∈ {0,−1}N .
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The Structure of Equilibria: Concepts I

A set S ⊆ IRN is a polyhedron if S = {x ∈ IRN | Ax ≤ b} for some
m× n matrix A and an m-vector. A bounded polyhedron is called
a polytope.

A polyhedron S ⊆ IRN is integral if all its vertices are integral.

Given any x, y ∈ IRN , define their meet x ∧ y as the
componentwise minimum of x and y and join x ∨ y as the
componentwise maximum of x and y. A set S ⊂ IRN is a lattice if
x ∧ y ∈ S and x ∨ y ∈ S for any x, y ∈ S. A polyhedron is called a
polyhedron with a lattice structure if it is also a lattice.

A function f with a polyhedron domain in IRN is called a
polyhedral convex function if it is given as

f(x) = max{Bj · x+ cj | j = 1, · · · ,m}

where Bj is an n-vector and cj is a constant, j = 1, · · · ,m for a
given positive integer m.
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The Structure of Equilibria: Concepts II

For every j ∈ B0, define her indirect utility function by

V j(p) = max
x∈{0,1}N

{uj(x)− p · x}.

Define the Lyapunov function L : IRN → IR by

L(p) =
∑
h∈N

ph +
∑
j∈B0

V j(p).

A function f : ZN 7→ IR is discrete concave if for any λj ≥ 0,
j = 1, · · · , t and any xj ∈ ZN for j = 1, · · · , t with

∑t
j=1 λj = 1

and
∑t

j=1 λjx
j ∈ ZN we have

f(λ1x
1 + λ2x

2 + · · ·+ λtx
t) ≥

∑
j=1

λjf(x
j).
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The Structure of Equilibria: Basic Results

Lemma 1: For the market model, the Lyapunov function L is a
polyhedral convex function bounded from below.

Theorem 1 (Fujishige and Yang 2025): Assume that the market model
satisfies Assumptions (A1) and (A2). Then the set of competitive
equilibrium price vectors forms a nonempty integral polytope.

The following result sharpens the lattice results of Gul and Stacchetti
(1999) and Ausubel (2006).

Proposition 3 (Fujishige and Yang 2025): Assume that the market
model satisfies Assumption (A1) and all items are substitutes (GS).
Then the set of competitive equilibrium price vectors forms a
nonempty integral polytope with a lattice structure.
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Dynamic Auction Design: Ideas and Challenges

The underlying principle of our auction design is to try to find a
minimizer of the Lyapunov function. Two challenges.

How to Elicit Private Information? First, the auctioneer cannot
get the Lyapunov function, which is based on every bidder’s
private information, i.e., his indirect utility function. How can we
extract enough information from bidders?

How to Do Local Search? Second, typically, one uses the gradient
of a function and does repeated local searches to find a minimiser.
What can we do when the Lyapunov function is not available nor
its gradient and we have to deal with all unimodular demand
types?

The Answer is to use prices and demand sets (observable
information) and to introduce the notion of “search set”.
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Dynamic Auction Design: Search Set

Search Set (Fujishige and Yang 2025): A search set for a demand type
D is the collection of the zero vector and all nonzero primitive integer
vectors δ ∈ ZN such that we have δ · di = 0 for some n− 1 linearly
independent vectors d1, · · · , dn−1 ∈ D. The search set is denoted by
SD.
Example 1: Two bidders and two substitutable items. Valuations:

Bundle (0, 0) (1, 0) (0, 1) (1, 1)
Bidder1 0 3 4 5
Bidder2 0 5 2 6

Both bidders have the same unimodular demand type D = {±(1, 0),±(0, 1),±(1,−1)}
whose search set equals SD = {(0, 0),±(1, 0),±(0, 1),±(1, 1)}.
Example 2: Three bidders and two complementary items A = (1, 0) and B = (0, 1).
Valuations:

Bundle (0, 0) (1, 0) (0, 1) (1, 1)
Bidder1 0 2 2 5
Bidder2 0 2 2 5
Bidder3 0 1 1 4
Seller 0 1 1 3

All agents have the same unimodular demand type D = {±(1, 0),±(0, 1),±(1, 1)} whose
search set equals SD = {(0, 0),±(1, 0),±(0, 1),±(1,−1)}.
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Dynamic Auction Design: A Road Map

Every unimodular demand type D gives its own search set SD.

Roughly speaking, if we adjust the prices of goods along the direction
of an element from the search set, it will not cause dramatic change in
demands on goods.

The auction is to search for a minimizer of the Lyapunov function L.
Given an integer price vector p(t) ∈ Zn at time t ∈ Z+, the auctioneer
asks every bidder i to report his demand Di(p(t)). Then she uses every
bidder’s reported demand Di(p(t)) to search for a price adjustment δ in
the search set so as to reduce the value of the Lyapunov function
L(p(t) + δ) as much as possible, in hope of finding the minimum of the
Lyapunov function.
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Dynamic Auction Design: Basic Relations I

The following proposition says when the auctioneer tries to adjust
prices, she just needs to focus on the few choices in the search set SD
rather than gropes around the entire convex hull of the set SD.
Proposition 4 (Fujishige and Yang 2025): Under Assumptions (A1) and
(A2) we have

max
δ∈Conv(SD)

{L(p(t))− L(p(t) + δ)} = max
δ∈SD

{L(p(t))− L(p(t) + δ)}. (1)

This result with its proof implies the next corollary, which says that if
we can change prices slightly, the demand set of every bidder will not
change.

Corollary 1 (Fujishige and Yang 2025): Under Assumptions (A1) and
(A2), then for any j ∈ B0, any p ∈ ZN , and any δ ∈ SD, we have
Dj(p+ εδ) ⊆ Dj(p) for all ε ∈ [0, 1) and xj ∈ argminx∈Dj(p) x · δ lies in

Dj(p+ εδ) for all ε ∈ [0, 1].
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Dynamic Auction Design: Basic Relations II

From Proposition 4, we rewrite the maximand of (1) as

L(p(t))− L(p(t) + δ) =
∑
j∈B0

(V j(p(t))− V j(p(t) + δ))−
∑
i∈N

δi. (2)

By Corollary 1, we can immediately infer the difference between
L(p(t)) and L(p(t) + δ) just from the reported demands Dj(p(t)) and
the price variation δ because xj ∈ argminx∈Dj(p) x · δ is in Dj(p+ εδ)
for all ε ∈ [0, 1]. So, when prices move from p(t) to p(t) + δ, the
reduction in indirect utility for every bidder j is uniquely given by

V j(p(t))− V j(p(t) + δ) = min
xj∈Dj(p(t))

xj · δ. (3)
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Dynamic Auction Design: Basic Relations III

From Proposition 4 and (3), we have:

Lemma 2 (Fujishige and Yang 2025): Under Assumptions (A1) and
(A2) we further have:

max
δ∈Conv(SD)

{L(p(t))− L(p(t) + δ)} = max
δ∈SD

{
∑
j∈B0

min
xj∈Dj(p(t))

xj · δ −
∑
h∈N

δh} (4)

This relation (4) shows a dramatic change from the unobservable
Lyapunov function L to the observable reported demands of bidders
and integer price adjustment δ. A magic transformation!

The right-hand max-min formula says that when the auctioneer adjusts
the prices from p(t) to p(t+ 1) = p(t) + δ(t), she tries to balance two
opposing forces by minimizing every bidder’s loss for every possible
price change δ in D and choosing one price change that maximizes the
seller’s gain from all possible price changes.
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Dynamic Auction Design: How to Adjust Prices

Theorem 2 (Fujishige and Yang 2025): Under Assumptions (A1) and
(A2), p∗ ∈ ZN is a competitive equilibrium price vector if and only if
L(p∗) ≤ L(p∗ + δ) for all δ ∈ SD.

In the auction process bidders do nothing but report their demand sets
Dj(p(t)) and the auctioneer adjusts prices according to the right-hand
formula of (4) in Lemma 2, i.e.,

max
δ∈Conv(SD)

{L(p(t))−L(p(t) + δ)} = max
δ∈SD

{
∑
j∈B0

min
xj∈Dj(p(t))

xj · δ −
∑
h∈N

δh}

Agent j ∈ B0 bids sincerely w.r.t. her uj if she submits her demand
set Dj(p(t)) = argmaxx∈{0,1}N {uj(x)− p(t) · x} at ∀t ∈ Z+ and

∀p(t) ∈ IRN .
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The Basic Dynamic Auction and Its Convergence

The universally convergent dynamic (UCD) auction

Step 1: The auctioneer announces an (arbitrary) initial price
vector p(0) ∈ ZN . Let t := 0 and go to Step 2.

Step 2: Every agent j ∈ B0 reports her demand Dj(p(t)) at p(t) to
the auctioneer. Then based on reported demands Dj(p(t)), the
auctioneer finds an integer solution δ(t) to the right side problem
of (4). If the zero vector δ(t) = 0 is an optimal solution, the
auction stops. Otherwise, the auctioneer adjusts prices by setting
p(t+ 1) := p(t) + δ(t) and t := t+ 1. Return to Step 2.

Theorem 3 (Fujishige and Yang 2025): Under Assumptions (A1) and
(A2), starting with any given initial price vector p(0) ∈ ZN , the UCD
auction finds an integer competitive equilibrium vector in a finite steps
when bidders bid sincerely.
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Revisiting Example 2

Recall Example 2 with two items A = (1, 0) and B = (0, 1). Every
agent knows her values privately. Agents’ values are given in Table 1.

Table 1: Valuations of Agents over Bundles.

Agents\Bundles ∅ A = (1, 0) B = (0, 1) AB = (1, 1)

Bidder 1 0 2 2 5

Bidder 2 0 2 2 5

Bidder 3 0 1 1 4

Seller 0 1 1 3

For this example, we have the demand type
D = {±(1, 0),±(0, 1),±(1, 1)} and its search set
SD = {(0, 0),±(1, 0),±(0, 1),±(1,−1)}.
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Illustration of the New Dynamic Auction

Let us see how a simultaneously ascending auction would operate for
this example. Start at p(0) = (pA(0), pB(0)) = (0, 0). Every agent
demands AB. As AB is overdemanded, the auction raises the two
prices each by one unit. Prices are updated to p(1) = (1, 1), to
p(2) = (2, 2), and to p(3) = (3, 3). At p(3) no bidder wants any item
and the auction is stuck in a non-equilibrium state, causing an
exposure problem. The new dynamic auction, however, finds a WE at
p(5) = (3, 2) in which AB is given to bidder 1 or 2 who pays 5.

Table 2: Illustration of the New Dynamic Auction.

time t prices p(t) δ(t) D0(p(t)) D1(p(t)) = D2(p(t)) D3(p(t))
0 (0, 0) (1, 0) {AB} {AB} {AB}
1 (1, 0) (0, 1) {AB} {AB} {AB}
2 (1, 1) (1, 0) {AB} {AB} {AB}
3 (2, 1) (0, 1) {AB,B, ∅} {AB} {AB}
4 (2, 2) (1, 0) {∅} {AB} {AB, ∅}
5 (3, 2) (0, 0) {∅} {AB,B, ∅} {∅}
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VCG Direct Mechanism

Recall M stands for the (original) market with m bidders and the
seller with the set N of n items. For every bidder j ∈ B, let M−j

denote the market M without bidder j and B−j = B0 \ {j}. Let
M−0 = M and B−0 = B0. So, for every k ∈ B0, the sub-market M−k

comprises the set B−k of agents and the set N of n items.

VCG Direct Mechanism: Every agent j ∈ B0 reports her value
function uj . The auctioneer computes an efficient allocation X with
respect to all reported uj and assigns bundle xj to bidder j ∈ B and
charges him a payment of β∗

j = uj(xj)− SV (B) + SV (B−j), where
SV (B) and SV (B−j) are the market values of the items in N in the
markets M and M−j for all j ∈ B, respectively. Bidder j’s VCG
payoff equals SV (B)− SV (B−j), j ∈ B.

It is known from Green and Laffont (1977) and Holmström (1979) that
in the setting of transferable utility any strategy-proof mechanism
must generate the VCG outcome.
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Incentive Compatible (IC) Auction: Basic Idea

The basic idea of the IC dynamic auction to implement the universally
convergent dynamic (UCD) auction for every sub-market M−k

(k ∈ B0) simultaneously from the same starting price vector. This will
create m+ 1 paths of price vectors. By using the bids of every bidder
and the generated price vectors the auction will converge to a WE,
generating a VCG outcome. As mentioned previously, Ausubel (2006)
has explored this idea for the market with gross substitutes and Sun
and Yang (2014) for the market with superadditive utilities.

It will be shown that sincere bidding is an ex post perfect Nash
equilibrium.
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Incentive Compatible (IC) Auction Design: Basic Ideas

Let pk(t) denote the prices of each market M−k (k ∈ B0) at time
t ∈ Z+. Then at t ∈ Z+ and with respect to pk(t) ∈ ZN , every bidder
j ∈ B−k submits his bid Bj

k(t) ⊆ {0, 1}N which may differ from his true
demand set Dj(pk(t)), but the seller’s bid B0

k(t) always equals her true
demand set D0(pk(t)). The auctioneer solves the problem (4), i.e.,

max
δ∈SD

{
∑

j∈B−k

min
xj∈Bj

k(t)
xj · δ −

∑
h∈N

δh} (5)

When δk(t) = 0 is a solution to (5), the auction finds an “equili.
allocation” Xk = (xk,j , j ∈ B−k) in the market M−k in the sense that
xk,j ∈ Bj

k(t) for every j ∈ B−k and
∑

j∈B−k
xk,j =

∑
h∈N e(h). As long

as δk(t) ̸= 0, the auctioneer updates prices pk(t+ 1) = pk(t) + δk(t).
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ICUD Auction: Part I

The Incentive Compatible Universal Dynamic (ICUD)
Auction

Step 1: The auctioneer initially announces a common price vector
pk(0) = p(0) ∈ ZN for all markets M−k, k ∈ B0. Let t := 0 and go
to Step 2.

Step 2: At each time t ∈ Z+ and prices pk(t) ∈ ZN , every agent
j ∈ B−k submits her bid Bj

k(t) ⊆ {0, 1}N . Based on reported bids,
if the auctioneer finds an equilibrium allocation Xk in any market
M−k at the current step, she records the current prices as
pk(T k) ∈ Zn and the step as T k ∈ Z+. For any other market M−k

which is not in equilibrium, the auctioneer calculates a price
change δk(t) according to (5) and updates prices
pk(t+ 1) := pk(t) + δk(t) for the market M−k. The UCD auction
goes back to Step 2 with t := t+ 1. When the auction has found
an equilibrium allocation Xk in every market M−k, k ∈ B0, go to
Step 3. Otherwise, go to Step 4.
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ICUD Auction: Part II

Step 3: All markets now clear. For every market k ∈ B0 and every
agent j ∈ B−k at every time t = 0, 1, · · · , T k − 1, based on her
reported bids Bj

k(t) and the price change δk(t) the auctioneer
calculates agent j′s ‘indirect utility reduction’ ∆k

j (t) when prices

are changed from pk(t) to pk(t+ 1) in the market M−k, where

∆k
j (t) = min

xj(t)∈Bj
k(t)

xj(t) · δk(t) (6)

Every bidder j ∈ B will be assigned the bundle x0,j of the
allocation X0 = (x0,j , j ∈ B0) found in the original market
M−0 = M and asked to pay βj , with the option to decline and
walk away, when his payoff becomes negative, where
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ICUD Auction: Part III

where

βj =
∑

h∈B−j

[(T 0−1∑
t=0

∆0
h(t)−

T j−1∑
t=0

∆j
h(t)

)
+xj,h ·pj(T j)−x0,h ·p0(T 0)

]
(7)

The seller keeps the bundle x0,0 of the allocation X0 and receives
the total payment

∑
j∈B βj . The auction stops.

Step 4: In this case the auction does not find an allocation in
every market M−k, k ∈ B0. In the end, every bidder j ∈ B gets
nothing and pays nothing.

The first term of βj is the accumulation of ‘indirect utility reduction’ of
bidder j′s all opponents in B−j along the path from p(0) to p0(T 0) in
the market M and along the path from pj(T j) to p(0) in the market
M−j ; The second term is the total equilibrium payment by all bidders
in the market M−j ; The third term is the total equilibrium payment
by all opponents of bidder j in the market M.
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Properties of the ICUD Auction

Ausubel (2004, 2006) and Sun and Yang (2014) have used ex post
perfect Nash equilibrium to dynamic auction games of incomplete
information which requires that the strategy for every player should
remain optimal if the player were to get to know private information of
his opponents at every node of the dynamic auction games (on and off
equilibrium paths). This equilibrium is robust against any regret and
also independent of any probability distribution.

An auction mechanism is said to be ex post individually rational, if, for
every bidder, no matter how his opposing bidders act in the auction, as
long as he is sufficiently able to judge whether his payoff is negative or
nonnegative, he will never end up with a negative payoff.
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An Incentive Compatibility Theorem

Theorem 4 (Fujishige and Yang 2025): Suppose that the market M
satisfies Assumptions (A1) and (A2).
(1) If bidders bid sincerely, the ICUD auction converges to a
competitive equilibrium, yielding a VCG outcome and a revenue for
the seller not less than her reserve price.
(2) Sincere bidding by every bidder is an ex post perfect Nash
equilibrium in the ICUD auction.
(3) The ICUD auction is ex post individually rational.
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The End

Thank You!
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