Resale in Asymmetric Auctions

UTMDC

Introduction

- Asymmetries lead to inefficiency in FPA
 - a motive for resale
- Two questions:
- Given resale, how do FPA and SPA compare?
- How does resale affect performance of FPA?
 - revenue
 - efficiency

Economic Environment

- Two bidders, independent private values (IPV)
- ullet Values $X_1 \sim F_1$ and $X_2 \sim F_2$ (asymmetric)
- Bidder 1 is "strong" (and bidder 2 is "weak") in the sense that for all x, $F_{1}\left(x\right)\leq F_{2}\left(x\right)$.

First-Price Auctions without Resale (FPA)

- Equilibrium: exists in monotone strategies (γ_1, γ_2) (and is typically unique)
- Characterization:

$$\begin{split} &\frac{d}{db}\ln F_{1}\left(\varphi_{1}\left(b\right)\right)=\frac{1}{\varphi_{2}\left(b\right)-b}\\ &\frac{d}{db}\ln F_{2}\left(\varphi_{2}\left(b\right)\right)=\frac{1}{\varphi_{1}\left(b\right)-b} \end{split}$$

- The pair of linked DE can be analytically solved only rarely
- Efficiency: since $\gamma_1\left(\cdot\right) \neq \gamma_2\left(\cdot\right)$, highest bid \Rightarrow highest value (FPA is inefficient)

First-Price Auctions without Resale (FPA)

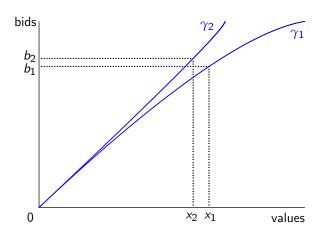
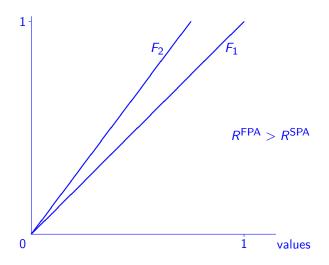


Figure: Asymmetric First-Price Auctions

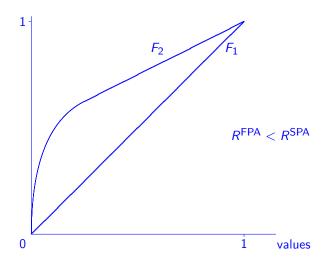
Comparing FPA and SPA

- Efficiency: SPA is, of course, efficient.
- Revenue: Ranking depends on distributions
 - $R^{FPA} \geqslant R^{SPA}$ even if F_1 , F_2 are
 - stochastically ranked
 - regular
 - (truncated) Normals
 - Maskin and Riley (2000) classification

FPA > SPA



FPA < SPA



First-Price Auctions with Resale (FPAR)

- Stage 1: First-price auction
 - losing bid is not announced
- Stage 2: Winner makes a take-it-or-leave-it offer to the loser (monopoly mechanism)

Equilibrium

Unique monotonic equilibrium satisfies the system:

$$\frac{d}{db}\ln F_{j}\left(\phi_{j}\left(b\right)\right) = \frac{1}{p\left(b\right) - b}$$

where

$$p\left(b\right)=\arg\max_{p}\left[F_{1}\left(\phi_{1}\left(b\right)\right)-F_{1}\left(p\right)\right]p+F_{1}\left(p\right)\phi_{2}\left(b\right)$$

Bid distributions are identical:

$$F_1(\phi_1(b)) = F_2(\phi_2(b))$$

If

$$F(p) = F_2\left(p - \frac{F(p) - F_1(p)}{f_1(p)}\right)$$

then

$$R^{FPAR} = \int_0^{\omega_1} (1 - F(p))^2 dp$$

Resale Stage

- Suppose bidders follow ϕ_1 and ϕ_2 .
- If j wins and $x_j < \phi_i(b)$ then he will set p to

$$\max[F_i(\phi_i(b)) - F_i(p)]p + F_i(p)x_j$$

First-order condition:

$$p - \frac{F_i(\phi_i(b)) - F_i(p)}{f_i(p)} = x_j$$

• F_i regular \Rightarrow first-order condition is sufficient

Equilibrium Characterization

- Fix b and suppose $\phi_{j}\left(b\right)<\phi_{i}\left(b\right)$ ("gains from trade").
- Payoff of *j* ("seller") from bidding *b* is

$$[F_{i}(\phi_{i}(b)) - F_{i}(p(b))]p(b) + F_{i}(p(b))x_{j} - F_{i}(\phi_{i}(b))b$$

• In equilibrium,

$$\frac{d}{db}\ln F_{i}\left(\phi_{i}\left(b\right)\right) = \frac{1}{p\left(b\right) - b}$$

where p(b) is monopoly price set by j.

• Payoff of i ("buyer") from bidding b is

$$(x_i - b)F_j(\phi_j(b)) + \int_{\phi_j(b)}^{\omega_j} [x_i - p(\beta_j(x_j))]_+ dF_j(x_j)$$

In equilibrium,

$$\frac{d}{db}\ln F_{j}\left(\phi_{j}\left(b\right)\right) = \frac{1}{p\left(b\right) - b}$$

Equilibrium Characterization

Theorem

The differential equations

$$\frac{d}{db}\ln F_{j}\left(\phi_{j}\left(b\right)\right) = \frac{1}{p\left(b\right) - b}$$

are necessary and sufficient for equilibrium

Corollary

Equilibrium bid distributions in FPAR are identical

$$F_{1}\left(\phi_{1}\left(b\right)\right)=F_{2}\left(\phi_{2}\left(b\right)\right)$$

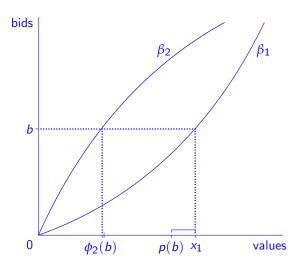
Resale "symmetrizes" first-price auction

Symmetrization

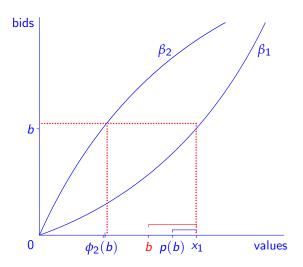
- In FPA, change from b to $b+\epsilon$ gains approximately x_i-b from bidders $x_j \in [\varphi_j(b), \varphi_j(b+\epsilon)]$
- In FPAR, change from b to $b + \epsilon$
 - by bidder j (seller) gains approximately p(b) b
 - by bidder i (buyer) gains approximately

$$(x_i - b) - (x_i - p(b)) = p(b) - b$$

Symmetrization



Symmetrization



Equilibrium in FPAR

Theorem

There exists a unique monotone equilibrium in the first-price auction with resale.

- Important that losing bid is not announced
 - otherwise, there is no (weakly) monotone equilibrium
- Unique in class of (weakly) monotone equilibria

Revenue in FPAR

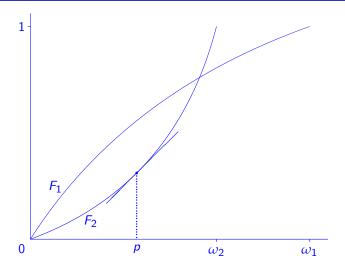
• Given F_1 , F_2 construct F by: if $F_i(p) \leq F_j(p)$, then

$$F(p) = F_j \left(p - \frac{F(p) - F_i(p)}{f_i(p)} \right)$$

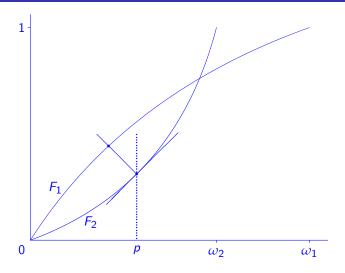
• Bid distributions in $FPAR(F_1, F_2)$ are the same as in FPA(F, F)

$$\begin{split} R^{\text{FPAR}}\left(F_{1},F_{2}\right) &= R^{\text{FPA}}\left(F,F\right) \\ &= R^{\text{SPA}}\left(F,F\right) \\ &= \int_{0}^{\bar{p}} \left(1 - F\left(p\right)\right)^{2} dp \end{split}$$

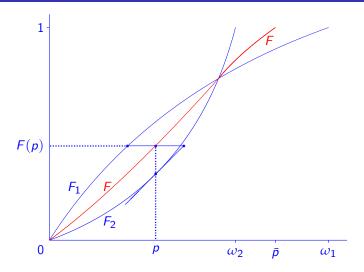
Construction of F



Construction of F



Construction of F



Second-price Auction with Resale (SPAR)

- In SPAR, losing bid (price) is known to winner.
- With resale, bidding value is not a dominant strategy.
- But bidding value is the unique (weak) ex post (or "robust") equilibrium
 - allocation is efficient and there is no resale
- There are other (inefficient) equilibria.
- Revenue in efficient equilibrium

$$R^{\text{SPAR}}(F_1, F_2) = E\left[\min\{X_1, X_2\}\right]$$
$$= \int_0^{\omega_2} (1 - F_1(p)) (1 - F_2(p)) dp$$

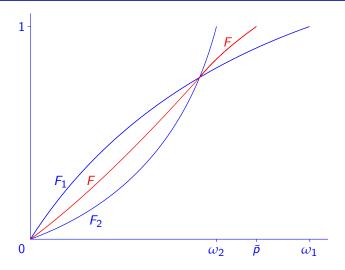
Comparing FPAR and SPAR

Theorem

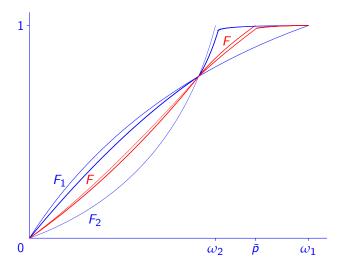
Suppose distributions are regular. Then the revenue from the first-price auction with resale exceeds that from the second-price auction (with or without resale).

- No assumptions on distributions other than regularity.
- Proof uses a technique from calculus of variations
- This result holds for more general resale mechanisms: monopsony resale and random proposer mechanism

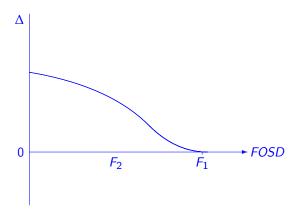
Variational Technique



Variational Technique



Variational Technique



Proof

(Assuming that F_1 is convex.) For any $t \in [0, \omega]$,

$$F^{-1}\left(t\right)>\frac{F_{1}^{-1}\left(t\right)+F_{2}^{-1}\left(t\right)}{2}\equiv G^{-1}\left(t\right)$$

Hence

$$R^{FPAR} = \int_{0}^{\omega} (1 - F(z))^{2} dz > \int_{0}^{\omega} (1 - G(z))^{2} dz$$

Let G(z) = t.

$$z = \frac{F_1^{-1}(t) + F_2^{-1}(t)}{2}$$

Differentiating

$$\frac{dz}{dt} = \frac{1}{2} \left(\frac{1}{f_1 \left(F_1^{-1} (t) \right)} + \frac{1}{f_2 \left(F_2^{-1} (t) \right)} \right)$$

and so

$$\begin{split} \int_{0}^{1} \left(1 - G(z)\right)^{2} dz &= \frac{1}{2} \int_{0}^{1} \left(1 - t\right)^{2} \frac{1}{f_{1}\left(F_{1}^{-1}(t)\right)} dt \\ &+ \frac{1}{2} \int_{0}^{1} \left(1 - t\right)^{2} \frac{1}{f_{2}\left(F_{2}^{-1}(t)\right)} dt \end{split}$$

Change variables using $t = F_1(z)$ and $t = F_2(z)$, resp.

$$\int_{0}^{1} (1 - G(z))^{2} dz = \frac{1}{2} \int_{0}^{1} ((1 - F_{1}(z))^{2} + (1 - F_{2}(z))^{2}) dz$$

Since arithmetic mean is greater than geometric mean

$$\begin{split} \frac{1}{2} \left(\left(1 - F_1 \left(z \right) \right)^2 + \left(1 - F_2 \left(z \right) \right)^2 \right) &> \left(1 - F_1 \left(z \right) \right) \left(1 - F_2 \left(z \right) \right) \\ R^{FPAR} &> \int_0^1 \left(1 - G \left(z \right) \right)^2 dz &> R^{SPA} \end{split}$$

4 D > 4 D > 4 E > 4 E > E 9 Q @

Resale in Asymmetric Auctions

Asymmetric Auctions

• Without resale, no revenue ranking possible

$$E\left[R^{FPA}\right] \lessgtr E\left[R^{SPA}\right]$$

• But once resale is considered,

$$E\left[R^{FPAR}\right] > E\left[R^{SPAR}\right]$$

Sometimes adding a real-world feature simplifies theory!

FPAR vs FPA: Revenue

Conjecture: For all regular distributions, the revenue from the first-price auction with resale is higher than that from the first-price auction, that is,

$$R^{FPAR} > R^{FPA}$$

From previous result, if $R^{SPA} > R^{FPA}$, then conclusion holds.

Results

• For three families of distribution-pairs for which the equilibria in FPA is known, resale increases revenue

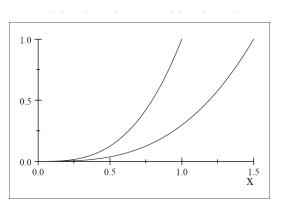
$$R^{FPAR} > R^{FPA}$$

Presence of resale may actually decrease social surplus

$$S^{FPAR} \leq S^{FPA}$$

Plum (1992)

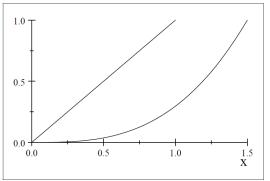
$$F_1\left(x\right) = \left(x/\omega_1\right)^a$$
 and $F_2\left(x\right) = \left(x/\omega_2\right)^a$



Distributions from Plum's family

Cheng (2006)

$$F_1\left(x\right) = \left(x/\omega_1\right)^{a_1} \ \text{and} \ F_2\left(x\right) = \left(x/\omega_2\right)^{a_2} \ \text{where} \ \omega_2 = \frac{a_2}{a_2+1} \frac{a_1+1}{a_1} \omega_1.$$

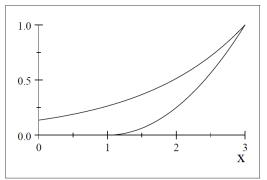


Distributions from Cheng's family 1

Cheng (2007)

$$F_{1}(x) = \left(\frac{x-1}{a}\right)^{a} \text{ over } [1, a+1]$$

$$F_{2}(x) = \exp\left(\frac{a}{a+1}x - a\right) \text{ over } [0, a+1]$$



Distributions from Cheng's class 2

FPAR > FPA for P

Proof.

The distribution of revenues—the highest bid—in the FPA is:

$$L^{N}(b) = F_{1}\left(\phi_{1}^{N}(b)\right) F_{2}\left(\phi_{2}^{N}(b)\right)$$
$$= \left(\frac{\phi_{1}^{N}(b) \phi_{2}^{N}(b)}{\omega_{1}\omega_{2}}\right)^{a}$$

distribution of revenues in the FPAR is

$$L^{R}(b) = \left(\frac{\phi_{1}^{R}(b)\phi_{2}^{R}(b)}{\omega_{1}\omega_{2}}\right)^{a}$$

We show that for all b, $L^{N}\left(b\right) > L^{R}\left(b\right)$

FPAR > FPA for C1 and C2

Proof.

For FPAR, consider F

For FPA, define G to be the distribution such that a symmetric FPA in which both bidders draw values from G is revenue equivalent to an asymmetric FPA in which the bidders draw values from F_1 and F_2 .

We show that F stochastically dominates G; that is, F(p) < G(p).

Surplus under FPA

$$\int_{0}^{\omega_{1}} \left(\underbrace{\int_{0}^{\varphi_{2}\gamma_{1}\left(x_{1}\right)} x_{1} dF_{2}\left(x_{2}\right)}_{1 \text{ wins}} + \underbrace{\int_{\varphi_{2}\gamma_{1}\left(x_{1}\right)}^{\omega_{2}} x_{2} dF_{2}\left(x_{2}\right)}_{2 \text{ wins}} \right) dF_{1}\left(x_{1}\right)$$

Surplus under FPA

$$\int_{0}^{\omega_{1}} \left(\underbrace{\int_{0}^{\phi_{2}\beta_{1}\left(x_{1}\right)} x_{1} dF_{2}\left(x_{2}\right)}_{1 \text{ wins}} + \underbrace{\int_{\phi_{2}\beta_{1}\left(x_{1}\right)}^{P\left(x_{1}\right)} x_{1} dF_{2}\left(x_{2}\right)}_{2 \text{ wins but resells to } 1} + \underbrace{\int_{P\left(x_{1}\right)}^{\omega_{2}} x_{2} dF_{2}\left(x_{2}\right)}_{2 \text{ wins and no resale}} \right) dF_{1}\left(x_{1}\right)$$

which can be written as

$$\int_{0}^{\omega_{1}}\left(\int_{0}^{P\left(x_{1}\right)}x_{1}dF_{2}\left(x_{2}\right)+\int_{P\left(x_{1}\right)}^{\omega_{2}}x_{2}dF_{2}\left(x_{2}\right)\right)dF_{1}\left(x_{1}\right)$$

An example

• Consider distributions identified by Plum (1992)

$$F_{1}\left(x
ight)=\left(rac{x}{\omega_{1}}
ight)^{a}$$
 and $F_{2}\left(x
ight)=x^{a}$

Can show that

$$\lim_{\omega_1 \rightarrow \infty} \frac{S^{FPAR}}{S^{FPA}} = 1 - \frac{\left(a+1\right)^{-\frac{a+1}{a}}}{a+2} < 1$$

• For the case when a=1,

$$S^{FPA} > S^{FPAR}$$

if and only if $\omega_1>\omega_1^*\simeq 1.95$

An example

- Resale may decrease ex ante social surplus!
- Reason is speculation by weak bidder
- This occurs when the asymmetry is large because that is when the benefits to speculative bidding are also large.

Efficiency



Figure: Resale may decrease Efficiency

Efficiency

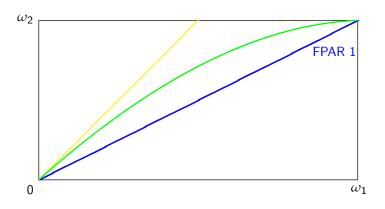


Figure: Resale may decrease Efficiency

Efficiency

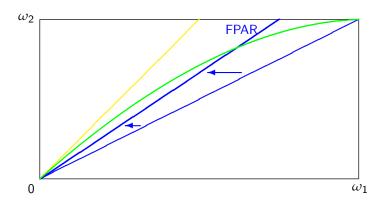


Figure: Resale may decrease Efficiency

Conclusion

- Including resale leads to unambiguous revenue ranking of FPA vs. SPA
- ullet For three main families \mathcal{P} , \mathcal{C}_1 and \mathcal{C}_2 , FPAR is revenue superior to FPA
- Conjecture: this holds in general (under regularity)
- Resale does not restore efficiency; in fact, it may decrease surplus!

Extensions

- More than 2 bidders
 - many ways of modelling resale
 - symmetry does not hold
- Interdependent values
 - symmetry still holds
 - revenue ranking between FPAR and SPAR does not
- Affiliated private values
 - conditional bid distributions of the two bidders are identical
- Multi-unit auctions

Multi-Unit Auctions with Resale

- Multi-unit auctions, single unit demand, discriminatory price auction
 - has a symmetric (efficient) equilibria

$$\beta(x) = E\left[Y_k^{(n-1)} \mid Y_k^{(n-1)} < x\right]$$

- When bidders can resell, they can bid for more than one item
 - if resale is a (centralized) uniform price auction

$$\beta^{R}(x) = E\left[Y_{k}^{(n-1)} \mid Y_{1}^{(n-1)} < x\right]$$

for all items is another NE

- revenue equivalence holds
- If resale is a uniform price auction with reserve price, original equilibrium is no longer an equilibrium!