Auction Theory Lecture 2

UTMDC

Under symmetry and risk neutrality we have

- revenue equivalence
- efficiency
- How do asymmetries among bidders—different value distributions—affect
 - revenue?
 - efficiency?

- Two risk neutral bidders
- Bidder 1 draws value X_1 from F_1 on $[0, \omega_1]$
- Bidder 2 draws value X_2 from F_2 on $[0, \omega_2]$
- Independence
- Bidder 1 is "strong"; bidder 2 is "weak"— $F_1 \leq F_2$

- Again asymmetries have no effect on bidding in SPA—dominant strategy
- Suppose β_1, β_2 is an equilibrium of FPA.

• Inverses
$$\phi_1 \equiv \beta_1^{-1}$$
 and $\phi_2 \equiv \beta_2^{-1}$

• Clearly, $\beta_1(0) = 0 = \beta_2(0)$.

and let

$$\overline{b} \equiv \beta_1(\omega_1) = \beta_2(\omega_2)$$

Asymmetric FPA

▶ 1's expected payoff if he bids $b < \overline{b}$

$$\Pi_1(b, x) = F_2(\phi_2(b)) (x - b)$$

= $H_2(b) (x - b)$

First-order condition

$$h_2(b)(x-b) = H_2(b)$$

► Or

$$\frac{d}{db}\ln F_2(\phi_2(b)) = \frac{1}{\phi_1(b) - b}$$
(1)

Similarly,

$$\frac{d}{db}\ln F_1(\phi_1(b)) = \frac{1}{\phi_2(b) - b}$$
 (2)

Weakness Leads to Aggression

F₁ dominates F₂ in terms of the reverse hazard rate—that is, for all x ∈ (0, ω₂),

$$\frac{f_1(x)}{F_1(x)} > \frac{f_2(x)}{F_2(x)}$$
(3)

Proposition

Suppose (3) holds. Then in a FPA, (A) the "weak" bidder 2 bids more aggressively than the "strong" bidder 1—that is,

 $\beta_1(x) < \beta_2(x)$

but (B) the distribution of bids for bidder 1 stochastically dominates that of bidder 2, that is

 $H_{1}\left(b\right) \leq H_{2}\left(b\right)$

An Example

Figure: Equilibrium of an Asymmetric First-Price Auction

Proposition

With asymmetries, FPA is inefficient. (SPA is efficient).

- With asymmetries revenue equivalence fails—allocation in FPA is different from allocation in SPA.
- ► In the example E [R^{FPA}] > E [R^{SPA}] but in other examples the opposite ranking holds.
- Some partial results are available:
 - Suppose F₁ is log concave and that F₂ is a truncation of F₁, then E [R^{FPA}] > E [R^{SPA}]
- Asymmetric uniform distributions can be solved in closed-form.

Mechanisms

- Setup:
 - N risk-neutral buyers
 - values X_i with support $[0, \omega_i]$
 - seller's value 0

• A selling *mechanism* is (\mathcal{B}, π, μ)

- ▶ \mathcal{B}_i messages (bids)
- $\pi_i(\mathbf{b})$ probability of winning
- $\mu_i(\mathbf{b})$ expected payment
- Equilibrium strategy β_i

Direct Mechanisms

- In a direct mechanism (Q, M) each bidder reports a value (possibly false)
 - $Q_i(\mathbf{x}) i$'s probability of winning
 - $M_i(\mathbf{x}) i$'s expected payment
- A direct mechanism is *incentive compatible* (IC) if truthtelling is an eqm.
- Payoffs are

$$U_{i}(x_{i}) \equiv E_{\mathbf{X}_{-i}}\left[Q_{i}(x_{i}, \mathbf{X}_{-i}) x_{i} - M_{i}(x_{i}, \mathbf{X}_{-i})\right]$$

The Revelation Principle

Theorem

Given any mechanism and any equilibrium of the mechanism, there exists an IC direct mechanism which is outcome equivalent.

Proof.

Figure: The Revelation Principle

Incentive Compatibility

Buyer i's payoff from reporting z_i is q_i (z_i) x_i - m_i (z_i)
 Equilibrium payoffs

$$U_{i}(x_{i}) \equiv q_{i}(x_{i}) x_{i} - m_{i}(x_{i})$$

Note that

$$U_{i}(x_{i}) = \max_{z} \left\{ q_{i}(z) x_{i} - m_{i}(z) \right\}$$

so U_i is convex

Envelope Theorem implies

$$U_{i}^{\prime}\left(x_{i}\right)=q_{i}\left(x_{i}\right)$$

and so

$$U_{i}(x_{i}) = U_{i}(0) + \int_{0}^{x_{i}} q_{i}(t) dt$$

Convexity implies q_i is nondecreasing.

Incentive Compatibility

(Payoff Equivalence) Payoffs in an IC mechanism are determined by ${\bf Q}$ up to an additive constant

$$U_{i}(x_{i}) = U_{i}(0) + \int_{0}^{x_{i}} q_{i}(t) dt$$

(Revenue Equivalence) Payments in an IC mechanism are determined by ${f Q}$ up to an additive constant

$$m_{i}(x_{i}) = m_{i}(0) + q_{i}(x_{i}) x_{i} - \int_{0}^{x_{i}} q_{i}(t) dt$$

Payoff Equivalence

Figure: Payoff Equivalence

Incentive Compatibility

 (\mathbf{Q}, \mathbf{M}) is *incentive compatible* (IC) if and only if (i) q_i is non-decreasing and (ii)

$$U_{i}(x_{i}) = U_{i}(0) + \int_{0}^{x_{i}} q_{i}(z) dz$$

Incentive Compatibility

Figure: Implications of Incentive Compatibility

Individual Rationality

 $U_i(x_i) \geq 0$

which is equivalent to $m_i(0) \leq 0$

▶ Choose (\mathbf{Q}, \mathbf{M}) to

$$\max \sum_{i} E[m_i(X_i)]$$

s.t. IC, IR

• Revenue equivalence gives $E[m_i(X_i)] =$

$$\int_{0}^{\omega_{i}} \left[m_{i}(0) + q_{i}(x_{i}) x_{i} - \int_{0}^{x_{i}} q_{i}(t) dt \right] f_{i}(x_{i}) dx_{i}$$

$$= m_{i}(0) + \int_{0}^{\omega_{i}} x_{i}q_{i}(x_{i})f_{i}(x_{i}) dx_{i} + \int_{0}^{\omega_{i}} q_{i}(t) (1 - F_{i}(t)) dt$$

$$= m_{i}(0) + \int_{0}^{\omega_{i}} \left(x_{i} - \frac{1 - F_{i}(x_{i})}{f_{i}(x_{i})} \right) q_{i}(x_{i})f_{i}(x_{i}) dx_{i}$$

$$= m_{i}(0) + \int_{\mathcal{X}} \left(x_{i} - \frac{1 - F_{i}(x_{i})}{f_{i}(x_{i})} \right) Q_{i}(\mathbf{x})f(\mathbf{x}) d\mathbf{x}$$

▶ Choose (\mathbf{Q}, \mathbf{M}) to maximize

$$\sum_{i \in \mathcal{N}} m_i(0) + \sum_{i \in \mathcal{N}} \int_{\mathcal{X}} \left(x_i - \frac{1 - F_i(x_i)}{f_i(x_i)} \right) Q_i(\mathbf{x}) f(\mathbf{x}) \, \mathbf{dx}$$

subject to

► IC: *q_i* nondecreasing

• IR:
$$m_i(0) \le 0$$

• Choose (\mathbf{Q}, \mathbf{M}) to maximize

$$\sum_{i \in \mathcal{N}} m_{i}\left(0\right) + \int_{\mathcal{X}} \left(\sum_{i \in \mathcal{N}} \psi_{i}\left(x_{i}\right) Q_{i}\left(\mathbf{x}\right)\right) f\left(\mathbf{x}\right) \, \mathbf{d}\mathbf{x}$$

subject to IC and IR, where *i*'s virtual valuation is

$$\psi_i(x_i) = x_i - \frac{1 - F_i(x_i)}{f_i(x_i)}$$

• Choose (\mathbf{Q}, \mathbf{M}) to maximize

$$\sum_{i \in \mathcal{N}} m_{i}\left(0\right) + \int_{\mathcal{X}} \left(\sum_{i \in \mathcal{N}} \psi_{i}\left(x_{i}\right) Q_{i}\left(\mathbf{x}\right)\right) f\left(\mathbf{x}\right) \, \mathbf{d}\mathbf{x}$$

subject to IC and IR, where i's virtual valuation is

$$\psi_i(x_i) = x_i - \frac{1 - F_i(x_i)}{f_i(x_i)}$$

► Ignoring IC for now
► maximize
$$\sum_{i \in \mathcal{N}} \psi_i(x_i) Q_i(\mathbf{x})$$
 for every \mathbf{x}
► set $m_i(0) = 0$
► verify IC

Choose Q to maximize

$$\sum_{i}\psi_{i}\left(x_{i}\right)Q_{i}\left(\mathbf{x}\right)$$

• The regular case: ψ_i is increasing, so

$$Q_{i}\left(\mathbf{x}\right) > 0 \Leftrightarrow \psi_{i}\left(x_{i}\right) = \max_{j} \psi_{j}\left(x_{j}\right) \ge 0$$

is optimal and IC with a consistent payment rule

$$M_{i}\left(\mathbf{x}\right) = Q_{i}\left(\mathbf{x}\right)x_{i} - \int_{0}^{x_{i}} Q_{i}\left(z, \mathbf{x}_{-i}\right) dz$$

$$Q_{i}(\mathbf{x}) = \begin{cases} 1 & x_{i} > y_{i}(\mathbf{x}_{-i}) \\ 0 & x_{i} < y_{i}(\mathbf{x}_{-i}) \end{cases}$$
$$M_{i}(\mathbf{x}) = Q_{i}(\mathbf{x}) y_{i}(\mathbf{x}_{-i})$$

Winners pay their lowest winning value

$$y_{i}(\mathbf{x}_{-i}) = \inf \left\{ z : \psi_{i}(z) \geq 0, \forall j \neq i, \psi_{i}(z) \geq \psi_{j}(x_{j}) \right\}$$

Inefficient: sometimes not sold, sometimes misallocated

$$Q_{i}(\mathbf{x}) = \begin{cases} 1 & x_{i} > y_{i}(\mathbf{x}_{-i}) \\ 0 & x_{i} < y_{i}(\mathbf{x}_{-i}) \end{cases}$$
$$M_{i}(\mathbf{x}) = Q_{i}(\mathbf{x}) y_{i}(\mathbf{x}_{-i})$$

Winners pay their lowest winning value

$$y_{i}(\mathbf{x}_{-i}) = \inf \left\{ z : \psi_{i}(z) \geq 0, \forall j \neq i, \psi_{i}(z) \geq \psi_{j}(x_{j}) \right\}$$

- Inefficient: sometimes not sold, sometimes misallocated
- Not anonymous or distribution-free

Figure: An Optimal Mechanism

A second-price auction with $r^*=\psi^{-1}\left(0
ight)$ or equivalently $r^*-rac{1}{\lambda\left(r^*
ight)}=0$

$$y_{i}(\mathbf{x}_{-i}) = \inf \left\{ z : \psi_{i}(z) \ge 0, \forall j \neq i, \psi_{i}(z) \ge \psi_{j}(x_{j}) \right\}$$
$$= \max \left\{ \psi^{-1}(0), \max_{j \neq i} x_{j} \right\}$$

The bidder with the highest virtual valuation wins

$$\psi_{i}(x_{i}) = x_{i} - \frac{1 - F_{i}(x_{i})}{f_{i}(x_{i})} = x_{i} - \frac{1}{\lambda_{i}(x_{i})}$$

▶ If $\lambda_1 \leq \lambda_2$ and supp $F_1 = \operatorname{supp} F_2$, then 2 is weaker but

$$\psi_{1}(x) = x - \frac{1}{\lambda_{1}(x)} \le x - \frac{1}{\lambda_{2}(x)} = \psi_{2}(x)$$

The share of *i*-bidders willing to buy at price p

$$q_i(p) = 1 - F_i(p)$$

is their quantity demanded

Revenue

$$p_i(q) \times q = qF_i^{-1}(1-q)$$

Marginal revenue

$$\frac{d}{dq} \left[p_i(q) \times q \right] = F_i^{-1} \left(1 - q \right) - \frac{q}{F_i' \left(F_i^{-1} \left(1 - q \right) \right)}$$

• Marginal revenue from selling to
$$i$$

$$MR_{i}(p) = p - \frac{1 - F_{i}(p)}{f_{i}(p)} = \psi_{i}(p)$$

• Marginal opportunity cost of selling to i

$$MC_i = \max\left\{0, \max_{j\neq i} MR_j\right\}$$

► A discriminating monopolist prices where $MR_i(p) = MC_i$

$$y_{i}(\mathbf{x}_{-i}) = \inf \left\{ z : \psi_{i}(z) \geq 0, \forall j \neq i, \psi_{i}(z) \geq \psi_{j}(x_{j}) \right\}$$

Buyer gets informational rent

$$E\left[X_i-y_i\left(\mathbf{X}_{-i}\right)\right]$$

Revenue from optimal negotiation

 $E\left[\max\left\{\psi\left(0\right),0\right\}\right]$

- Revenue from
 - finding a second symmetric bidder
 - holding a second-price auction with no reserve

 $E\left[\max\left\{\psi\left(X_{1}\right),\psi\left(X_{2}\right)
ight\}
ight]$

The auction gives higher expected revenue

- The auction is "detail-free"
 - universal any object can be sold
 - anonymous all bids are treated the same