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Asymmetric Auctions

▶ Under symmetry and risk neutrality we have
▶ revenue equivalence
▶ efficiency

▶ How do asymmetries among bidders—different value
distributions—affect
▶ revenue?
▶ efficiency?



Asymmetric Auctions

▶ Two risk neutral bidders

▶ Bidder 1 draws value X1 from F1 on [0, ω1]

▶ Bidder 2 draws value X2 from F2 on [0, ω2]

▶ Independence

▶ Bidder 1 is ”strong”; bidder 2 is ”weak”—F1 ≤ F2



Asymmetric Auctions

▶ Again asymmetries have no effect on bidding in
SPA—dominant strategy

▶ Suppose β1, β2 is an equilibrium of FPA.

▶ Inverses ϕ1 ≡ β−1
1 and ϕ2 ≡ β−1

2 .

▶ Clearly, β1 (0) = 0 = β2 (0).
▶ and let

b ≡ β1 (ω1) = β2 (ω2)



Asymmetric FPA

▶ 1’s expected payoff if he bids b < b

Π1(b, x) = F2(ϕ2(b)) (x − b)
= H2(b) (x − b)

▶ First-order condition

h2(b) (x − b) = H2(b)

▶ Or
d
db

ln F2(ϕ2(b)) =
1

ϕ1(b)− b
(1)

▶ Similarly,
d
db

ln F1(ϕ1(b)) =
1

ϕ2(b)− b
(2)



Weakness Leads to Aggression

▶ F1 dominates F2 in terms of the reverse hazard rate—that is,
for all x ∈ (0, ω2),

f1 (x)
F1 (x)

>
f2 (x)
F2 (x)

(3)

Proposition

Supppose (3) holds. Then in a FPA, (A) the “weak” bidder 2 bids
more aggressively than the “strong” bidder 1—that is,

β1 (x) < β2 (x)

but (B) the distribution of bids for bidder 1 stochastically
dominates that of bidder 2, that is

H1 (b) ≤ H2 (b)



An Example
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Figure: Equilibrium of an Asymmetric First-Price Auction



Asymmetric Auctions

Proposition

With asymmetries, FPA is inefficient. (SPA is efficient).

▶ With asymmetries revenue equivalence fails—allocation in
FPA is different from allocation in SPA.

▶ In the example E
[
RFPA] > E

[
RSPA] but in other examples

the opposite ranking holds.

▶ Some partial results are available:
▶ Suppose F1 is log concave and that F2 is a truncation of F1,

then E
[
RFPA] > E

[
RSPA]

▶ Asymmetric uniform distributions can be solved in
closed-form.



Mechanisms

▶ Setup:
▶ N risk-neutral buyers
▶ values Xi with support [0, ωi]
▶ seller’s value 0

▶ A selling mechanism is (B, π, µ)
▶ Bi — messages (bids)
▶ πi (b) — probability of winning
▶ µi (b) — expected payment

▶ Equilibrium strategy βi



Direct Mechanisms

▶ In a direct mechanism (Q, M) each bidder reports a value
(possibly false)
▶ Qi (x) — i’s probability of winning
▶ Mi (x) — i’s expected payment

▶ A direct mechanism is incentive compatible (IC) if truthtelling
is an eqm.

▶ Payoffs are

Ui (xi) ≡ EX−i [Qi (xi, X−i) xi − Mi (xi, X−i)]



The Revelation Principle

Theorem
Given any mechanism and any equilibrium of the mechanism, there
exists an IC direct mechanism which is outcome equivalent.

Proof.

-















� J

J
J
J
J
J
JĴ
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Figure: The Revelation Principle



Incentive Compatibility

▶ Buyer i’s payoff from reporting zi is qi (zi) xi − mi (zi)

▶ Equilibrium payoffs

Ui (xi) ≡ qi (xi) xi − mi (xi)

▶ Note that

Ui (xi) = max
z

{qi (z) xi − mi (z)}

so Ui is convex

▶ Envelope Theorem implies

U′
i (xi) = qi (xi)

and so

Ui (xi) = Ui (0) +
∫ xi

0
qi (t) dt

▶ Convexity implies qi is nondecreasing.



Incentive Compatibility

(Payoff Equivalence) Payoffs in an IC mechanism are deter-
mined by Q up to an additive constant

Ui (xi) = Ui (0) +
∫ xi

0
qi (t) dt

(Revenue Equivalence) Payments in an IC mechanism are de-
termined by Q up to an additive constant

mi (xi) = mi (0) + qi (xi) xi −
∫ xi

0
qi (t) dt



Payoff Equivalence
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Incentive Compatibility

(Q, M) is incentive compatible (IC) if and only if (i) qi is non-
decreasing and (ii)

Ui (xi) = Ui (0) +
∫ xi

0
qi (z) dz



Incentive Compatibility

▶
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Figure: Implications of Incentive Compatibility



Individual Rationality

▶ (Q, M) is individually rational (IR) if

Ui (xi) ≥ 0

which is equivalent to mi (0) ≤ 0



Seller’s Problem

▶ Choose (Q, M) to

max ∑
i

E [mi (Xi)]

s.t. IC, IR

▶ Revenue equivalence gives E [mi (Xi)] =∫ ωi

0

[
mi (0) + qi (xi) xi −

∫ xi

0
qi (t) dt

]
fi (xi) dxi

= mi (0) +
∫ ωi

0
xiqi (xi) fi (xi) dxi +

∫ ωi

0
qi (t) (1 − Fi (t)) dt

= mi (0) +
∫ ωi

0

(
xi −

1 − Fi (xi)

fi (xi)

)
qi (xi) fi (xi) dxi

= mi (0) +
∫
X

(
xi −

1 − Fi (xi)

fi (xi)

)
Qi (x) f (x) dx



Seller’s Problem

▶ Choose (Q, M) to maximize

∑
i∈N

mi (0) + ∑
i∈N

∫
X

(
xi −

1 − Fi (xi)

fi (xi)

)
Qi (x) f (x) dx

subject to
▶ IC: qi nondecreasing

▶ IR: mi (0) ≤ 0



Seller’s Problem

▶ Choose (Q, M) to maximize

∑
i∈N

mi (0) +
∫
X

(
∑

i∈N
ψi (xi)Qi (x)

)
f (x) dx

subject to IC and IR, where i’s virtual valuation is

ψi (xi) = xi −
1 − Fi (xi)

fi (xi)

▶ Ignoring IC for now
▶ maximize ∑i∈N ψi (xi)Qi (x) for every x
▶ set mi (0) = 0
▶ verify IC
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Seller’s Problem

▶ Choose Q to maximize

∑
i

ψi (xi)Qi (x)

▶ The regular case: ψi is increasing, so

Qi (x) > 0 ⇔ ψi (xi) = max
j

ψj
(
xj
)
≥ 0

is optimal and IC with a consistent payment rule

Mi (x) = Qi (x) xi −
∫ xi

0
Qi (z, x−i) dz



Optimal Mechanism

Qi (x) =

{
1 xi > yi (x−i)
0 xi < yi (x−i)

Mi (x) = Qi (x) yi (x−i)

Winners pay their lowest winning value

yi (x−i) = inf
{

z : ψi (z) ≥ 0, ∀j ̸= i, ψi (z) ≥ ψj
(
xj
)}

▶ Inefficient: sometimes not sold, sometimes misallocated

▶ Not anonymous or distribution-free
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Optimal Mechanism
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Figure: An Optimal Mechanism



Optimal Mechanism

A second-price auction with r∗ = ψ−1 (0) or equivalently

r∗ − 1
λ (r∗)

= 0

yi (x−i) = inf
{

z : ψi (z) ≥ 0, ∀j ̸= i, ψi (z) ≥ ψj
(
xj
)}

= max
{

ψ−1 (0) , max
j ̸=i

xj

}



Optimal Mechanism

▶ The bidder with the highest virtual valuation wins

ψi (xi) = xi −
1 − Fi (xi)

fi (xi)
= xi −

1
λi (xi)

▶ If λ1 ≤ λ2 and supp F1 = supp F2, then 2 is weaker but

ψ1 (x) = x − 1
λ1 (x)

≤ x − 1
λ2 (x)

= ψ2 (x)



Optimal Mechanism

▶ The share of i-bidders willing to buy at price p

qi (p) = 1 − Fi (p)

is their quantity demanded

▶ Revenue
pi (q)× q = qF−1

i (1 − q)

▶ Marginal revenue

d
dq

[pi (q)× q] = F−1
i (1 − q)− q

F′
i

(
F−1

i (1 − q)
)



Optimal Mechanism

▶ Marginal revenue from selling to i

MRi (p) = p − 1 − Fi (p)
fi (p)

= ψi (p)

▶ Marginal opportunity cost of selling to i

MCi = max
{

0, max
j ̸=i

MRj

}
▶ A discriminating monopolist prices where MRi (p) = MCi

yi (x−i) = inf
{

z : ψi (z) ≥ 0, ∀j ̸= i, ψi (z) ≥ ψj
(
xj
)}

▶ Buyer gets informational rent

E [Xi − yi (X−i)]



Optimal Mechanism

▶ Revenue from optimal negotiation

E [max {ψ (0) , 0}]

▶ Revenue from
▶ finding a second symmetric bidder
▶ holding a second-price auction with no reserve

E [max {ψ (X1) , ψ (X2)}]

The auction gives higher expected revenue

▶ The auction is “detail-free”
▶ universal — any object can be sold
▶ anonymous — all bids are treated the same


