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Problem and Objective

In our previous lecture, we studied an auction market with
gross substitutes and complements. In this lecture, we
consider a related but quite different market where all items
are complements or synergies. Synergies are the major sources
of revenues for many firms. Examples include:

Different segments of

transportation /telcommunication/pipeline networks;

Different volumes of a book;

Different parts of a machine or equipment; etc.

Our aim is to : clarify the scope of the problem concerned
with complements; explore an appropriate solution; and
develop an efficient and incentive compatible dynamic auction.
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» Maskin (2005): “Recent contributions to mechanism design:
a highly selective review” lists several major open questions

» The first open question is:
How to design a dynamic auction for selling multiple
complements?

» As a consequence, the proposed auction resolves the open
problem.
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Some Remarks

In theory and also in practice, anonymous pricing rules (i.e., the
price of any bundle of goods is the same for all agents) are widely
used and studied.

It should be noted that package auctions (see e.g., Ausubel and
Milgrom 2002 and Porter, Rassenti, Roopnarine and Smith 2003)
use the discriminatory pricing rule and can apply to more general
environments. As argued by Milgrom (2004), discriminatory pricing
fails to promote the law of one price and thus may be
psychologically hard for some people to accept. Also in some
countries, discriminatory prices are even illegal. In real-life
auctions, people are more accustomed to anonymous prices.

Discriminatory and nonlinear pricing is common and natural for
situations in which a seller is independently and separately
negotiating with several buyers.

4/40



The Model

» An auctioneer (i.e. seller/she) wishes to sell a set
N ={1,2,---,n} of indivisible goods/items to a group
M ={1,2,---,m} of buyers/he.

> Let O represent the seller and M(0) = MU {0} the set of all
the agents.

» Each agent h € M(0) knows her own utility function of goods
privately v : 2V — R with u"(@) = 0.
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Assumptions

(A1) Integer private values: u”: 2N — Z, for every agent
h € M(0);

(A2) Quasilinear utility in money: net profit = u"(S) — p(S)
when bidder h receives bundle S and pays p(S) for every
bidder;

(A3) Superadditivity for bidders: VA, B € 2V with AN B = @;

ul(AUB) > uh(A) + u"(B).
(the most general form of complementarity)
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Special Cases

(1) A utility function u": 2N — R, is supermodular if
ul(AUB) + u"(ANB) > u'(A) + uh'(B) for all A, B € 2N.

(2) Gross complements: Increasing the price of one good will
decrease bidder h's demand for other goods.

A utility function v is submodular if —u is supermodular.
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Efficient Allocations

>

An allocation of goods is a partition 77 = (7t(h) | h € M(0))
of goods such that 7t(i/) N 7t(j) = @ for all i # j and
Unem()y7t(h) = N.

Allocation 7t assigns bundle 7(h) to agent h for h € M(0).
Let A be the family of all allocations.

An allocation 7t is efficient if for every allocation p € A,

Y, u(m(h) = ) u(p(h)).

heM(0) heM(0)

Does there exist a standard Walrasian equilibrium?
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Non-existence of Standard WE

Example 1: Three bidders and three complementary items

Bidders' valuations

%) A B C | AB | AC | BC | ABC
Bidder 1 0 2 2 0 7 3 4 7
Bidder 2 0 2 0 2 3 6 3 6
Bidder 3 0 0 2 2 4 3 6 7
Seller 0 1 1 1 2 2 2 3

Two efficient allocations (AB, C,®), (AB,®, C). None of these
allocations can be supported by a price vector (p(A), p(B), p(C)).
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Example 1

Consider the efficient allocation 7w = (AB, C, D).

Suppose that (p(A), p(B), p(C)) supports allocation 7t.
Then for bidder 1, it holds 7 > p(A) + p(B).

For bidder 2, we have 2 > p(C) and
2—p(C)>6—p(A)—p(C). So p(A) > 4.

For bidder 3, we have 0 > 2 — p(C) and

0>6—p(B) — p(C). Note that p(C) = 2. So p(B) > 4.

Combining p(A) > 4 and p(B) > 4 yields p(A) + p(B) > 8,
contradicting 7 > p(A) + p(B).
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Anonymous and Nonlinear Pricing Rule

» An anonymous and nonlinear pricing system is a price system
that assigns a price for each bundle of goods and asks every
bidder to pay the same price for the same bundle of goods.
Namely, it is a pricing function
p:2N — R, with p(@) = 0 and p(S) = u(S) for the set S
of all unsold items under prices p.

» A pricing function p is linear if p(A) = Y cap({k}) for all
ACN.

» The auction discussed here uses an anonymous and nonlinear
pricing system.
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Anonymous and Nonlinear Pricing Walrasian Equilibria
» Define every bidder h's demand set:

D"(p) = arg max{u"(S) — p(5)}

» Let K={1,--- ,max{n,m}} and L = {0} UK,
= (m(j) | j € L): a partition of all goods among members
in L. Let B be the collection of all such partitions.
» The seller tries to maximize her revenues and her supply
family:
S(p) = arg max{u )+ Y p(r
JjeK
A supply set 7T € S(p) is an allocation if
Ujer7t(j) = Unem(o)t(h).
Definition 1: An anonymous and nonlinear pricing Walrasian
equilibrium (anpWE) consists of a price function p* : 2N — R,
and an allocation 7t* such that 77* € S(p*) and 7*(h) € D"(p*)
for every bidder h € M.
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A Welfare Proposition

Observe that in any anpWE, for any sold bundle B, we always have
p(SUT) > p(S)+ p(T) for any two disjoint sets S and T of the
bundle B, because the seller chooses a supply set that maximizes
her revenues.

Proposition 1 (Sun and Yang 2014): If (p*, r*) be an
anonymous and nonlinear pricing Walrasian equilibrium, 77* is
efficient. Furthermore, if p* is an equilibrium pricing function
and p is an efficient allocation, (p*, p) is also an anonymous
and nonlinear pricing Walrasian equilibrium.
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The Scope of the anpWE

Can the concept of anpWE be too general to be interesting? The
following example dispels such concern.

Example 1 (Bevia, Quinzii, and Silva 1999): The following
market has no standard WE, although the function of every bidder
is submodular and the seller valuates every bundle at zero.

(rt(0), (1), t(2), (3)) = (D, B, A, C) is the unique efficient
allocation. Assume that there are anpWe prices to support it,
saying p(AB) > p(A) + p(B). Then the seller will choose

{AB, C} instead of 7, i.e., T ¢ S(p), thus no anpWE.

Bidders' valuations

%) A | B | C | AB | AC | BC | ABC
Bidder 1 0 10 | 8 2 13 11 9 14
Bidder 2 0 8 5 110 | 13 14 13 15
Bidder 3 0 1 1 8 2 9 9 10
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An Equilibrium Existence Theorem

Theorem 1 (Sun and Yang 2014): The market under
Assumptions Al, A2, and A3 has an anonymous and nonlinear
pricing Walrasian equilibrium.
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An Efficient Dynamic Auction

We say that bidder h bids sincerely with respect to value function
u” if at every time t € Z, and any price function p(t) at time t,
he reports a bid

Bh(t) € D"(p(t)) = argmaxscn{u”(S) — p(t, S)} with

By (t) = @ when @ € D"(p(t)). When p(t) is a pricing function
at time t € Z,, then p(t, S) denotes the price of bundle S € 2N.

Given a pricing function p: 2N — R, the seller reports a
supply set 7t € S(p) and each bidder h € M reports a
demand bundle B, € D"(p).

W.r.t. the sets 7t and By, a bundle B € 2N\ {®@} is
over-demanded if it is demanded by more than one bidder
(i.e., B = By = B for at least two bidders g, h) or demanded
by some bidder h (i.e., By = B) but her bundle By, is not in
the seller’s supply set 7t (i.e., By & 7).
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The Basic Dynamic Auction

» Step 1: The auctioneer announces an initial pricing function
p(0) : 2V — Z, so that p(0, S) equals the reserve price
u®(S) for every bundle S C N. Set t := 0 and go to Step 2.

» Step 2: At each round t, every bidder h reports a demand
bundle By,(t) € D"(p(t)) at p(t) (choose B(t) = @ when
@ € D"(p(t))). Then the auctioneer chooses a supply set
7t(t) € S(p(t)) so that the market yields the least
over-demanded bundles. If no bundle is over-demanded, go to
Step 3. But if there is an over-demanded bundle, raises the
price of each over-demanded bundle by one unit. Set
t:=t-+ 1 and return to Step 2.
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The Basic Dynamic Auction

> Step 3: The auctioneer assigns the bundle B,(t) to bidder h
who is asked to pay the price p(t, By(t)) in return, and in
addition for any nonempty bundle S € 7(t) which is not
demanded by any bidder at p(t), the auctioneer assigns the
bundle to the seller if p(t,S) = u°(S), otherwise, the
auctioneer assigns the bundle to some bidder who previously
demanded the bundle but was the last to give up, and who is
asked to pay p(t, S). Then the auction stops.

Note: In Step 3, the auctioneer assigns B,(t) = B to bidder h
and then may assign another bundle S to him, and asks him to pay
the sum of current prices p(t, B) and p(t,S). This operation is
called the complementary activity rule, which is a novel and
important feature of this auction.
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Revisiting Example 1

Example 1: Three bidders and three complementary items

Bidders' valuations

%) A B C | AB | AC | BC | ABC
Bidder 1 0 2 2 0 7 3 4 7
Bidder 2 0 2 0 2 3 6 3 6
Bidder 3 0 0 2 2 4 3 6 7
Seller 0 1 1 1 2 2 2 3

Two efficient allocations (AB, C,®), (AB,®, C).
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Table: Illustration of the basic dynamic auction for Example 1.

Price Vector Seller Bidder 1 | Bidder 2 | Bidder 3
p(0)=(1,1,1,2,2,2,3) | {AB,C} AB AC BC
p(1)=(1,1,1,2,3,3,3) | {AC,B} AB AC ABC
p(2)=(1,1,1,3,3,3,4) | {AC,B} AB AC ABC
p(3) =(1,1,1,4,3,3,5) | {AB,C} AB AC BC
p(4)=(1,1,1,4,4,4,5) | {AB,C} AB AC BC
p(5)=(1,1,1,4,555) | {AC, B} AB C ABC
p(6) =(1,1,2,5,5,5,6) | {AB, C} AB A ABC
p(7) = (2,1,2,5,5,5,7) | {AB,C} AB AC BC
p(8) = (2,1,2,56,6,7) | {A BC} AB %) %
p(9) = (2,2,2,6,6,6,7) | {AB,C} AB %) %)
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where the price vector is

p=(p(A),p(B).p(C),p(AB), p(AC), p(BC), p(ABC))

with p(@) = 0, seller's column indicates her supplies, whereas
each bidder's column indicates its demands.

Bidder 1 gets AB by paying 6, bidder 2 gets C by paying 2, and
bidder 3 gets nothing. Let 1* = (AB, C,®) and p* = p°. Then
(p*, t*) is a nonlinear pricing WE. Note that bidder 2 gave up C
in Step 6.
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Convergence Theorem

Theorem 2 (Sun and Yang 2014):

Suppose that Assumptions (A1)—(A3) hold for the auction
model. If all bidders bid sincerely, the basic dynamic auction
yields an anonymous and nonlinear pricing Walrasian
equilibrium, in a finite number of rounds.
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Proof of Theorem 2: Part 1

The auction must stop at some step t*, because the price of every
bundle is weakly increasing, the value of every bundle is finite, and
prices cannot increase forever.

Let p* = p(t*) and let B = Bj(t*) that is demanded by bidder
h, and let v* = y(t*) € S(p*) that is the supply set of the seller.
Recall that by definition v* is a partition of all the items N that
maximizes the seller’s revenues. We will construct an allocation 7T
so that (p*, 7*) constitutes an anpWE.

*

At p*, no (nonempty) bundle is over-demanded. Thus, for any
bidder h € M, if his demand bundle B}, is not empty, it must be in
the supply set v*. If UpemBj = N, let 7%(h) = B} for all he M
and 77%(0) = @, then clearly (p*, 77*) is an anpWE and we are
done.
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Proof of Theorem 2: Part 2

Assume there is some bundle B € ¢* which is not demanded by
any bidder at t*. We call such a bundle a squeezed out bundle.
First, consider p*(B) = u%(B). Let

vs ={B € v*|p*(B) = u°(B) and B # B; for all h € M} be the
collection of all such bundles. Let 77°(0) = Ugeq;B. We can
assign 77*(0) to the seller.

By superadditivity, we know that

p*(71(0)) = u°(1*(0)) > Lgeqs u*(B) = Lgeqg P*(B). Note
that p*(71°(0)) < Lpeo; p*(B) because v € S(p*). Hence, we
have

pr(m"(0)) = u°(m*(0)) = }, p*(B) =}, u°(B). (1)

Bevg Bevg
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Proof of Theorem 2: Part 3

Next, consider p*(B) > u®(B). Then let | be the bidder who
demanded B and was the last one to give up B. Let t be the step
in which bidder / still demanded B but gave up B in the next step.
Clearly, t < t*. By the complementarity auction rule, we can
assign B to bidder / and ask him to pay the current price p*(B).

Then we must have u/(B) — p(t,B) > 1, and p*(B) = p(t, B) or
p*(B) = p(t, B) + 1. For bidder /, it holds that

J'(B) - p*(B) > 0. (2)
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Proof of Theorem 2: Part 4

Case 1. When Bj = @, let w*(/) = B. Because B € D'(p*) and
Bf = @, we have 0 > u'(B) — p*(B). It follows from (2) that
u'(B) — p*(B) > 0. These inequalities lead to

u'(B) — p*(B) = 0, which implies 7t*(/) € D'(p*).

Case 2. When B[ # @, let r*(I) = B} U B. For the seller, we
know that

p (Bi) +p*(B) = p(7*(1)). (3)
For bidder /, superadditivity implies that

u' (7 (1)) = u'(B) + ' (B). (4)
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Proof of Theorem 2: Part 5

(3) and (4) imply that

u' (e (1)) — p*(m*(1))

(AVAR VARV,
S — g
:\
=
|

where the last inequality is derived from (2). Because
B} € D!(p*), we have 7*(/) € D!(p*).

Consequently, we have v/ (7t* (/)
u'(m*(1)) = (p*(Bf) + p*(B))
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Proof of Theorem 2: Part 6

We can repeat this adjustment until every such squeezed out
bundle B (i.e., p*(B) > u°(B)) in 7* is assigned to some bidder.
For any bidder h who is not assigned with any squeezed out
bundle, let 77%(h) = B}. So in the end each bidder h gets a bundle
7t*(h) in his demand set. Because y* is a seller’s partition of N,
(rt*(0), -+, 7m*(m)) must be an allocation of N.

It follows from the formulas (1) and (5) that
Yhemy P (7T (h)) = Y acy- p*(A). That is, the allocation
€ S(p*). Consequently, (p*, r*) is an anpWE. O
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The Dynamic Incentive Compatible (IC) Mechanism
This dynamic IC mechanism is based on the basic dynamic
auction. Here we give a simplified version of the dynamic IC
mechanism which has omitted an important component of bid
withdrawals. See Sun and Yang (2014) for a complete version and
detailed discussion.

» Basic notation:
M denotes the original market;

M _; denotes the market M without bidder i, (i € M);
M_; =M\ {i}, M_g =M, M(0) = MU {0}, M_q =M.
» Every bidder i knows his own super-additive utility function v’

and can be strategic. The seller has her own super-additive
utility function u® and acts honestly.
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Price functions used in the auction mechanism

At each round t,

> po(t): the open price function announced by the auctioneer;
» pi(t): the price function faced by bidder i;

» p~/(t): the price function faced by the seller in every market
My,
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Basic Idea: In each round t, the auctioneer announces p°(t) and
informs every bidder i of p’(t). Every bidder i reports a bundle
Ai(t) € 2N, Then the auctioneer adjusts price functions p(t),
p~'(t), k,I € M(0). When all markets are clear, every bidder i
receives equili. bundle 77°(i) in M _q and pays the difference g;
between the total equili. payments of his opponents in market
M _; and those in market M _g, i.e.,

g = u(m(0)) + Tiem, p'(t*, (1))
—u(7%(0)) = Ljem, P (t*, T0(1))

If p'(t+1,5) > U* (a high price!) for some i and bundle S, the

auctioneer assigns the whole bundle N to bidder /i and asks him to
pay U*. Other bidders get nothing and pay nothing.
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» A bundle S is first-price-over-demanded by a bidder i if bidder
i is the unique bidder such that A;(t) = S,
p'(t,S)=p°t,S), and S ¢ ~/(t) for some
e M(0)\ {i}.

» A bundle S is second-price-over-demanded if it is demanded
by at least one bidder when p°(t,S) < p~°(t, S), or by more
than one bidder when p°(t,S) = p~%(t, S).

» A bundle S is over-demanded whenever it is either first-price
or second-price-over demanded.
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The auctioneer adjusts the prices as follows:

For every bidder i, every bundle S, and every market M _;, let

qo(t +1,5)
PO (t, 5 )+ 1, if Sis 2nd-price-over-demanded,
p otherwise;

q(t+1,5)

p'(t,S) +1, if S is 1st-price-over-demanded by bidder i,
ax{p (t,5),p°(t+1,5)}, otherwise;

i(t+1) = Viem, p'(t+1).
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The IC dynamic auction mechanism

» Step 1: The auctioneer announces an initial pricing function
p°(0) : 2N — Z, so that p°(0, S) equals the reserve price
u®(S) for every bundle S C N. Set p'(0) = p~/(0) = p°(0)
for every i € M(0). Set t := 0 and go to Step 2.
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» Step 2: At each round t, the auctioneer announces the price
function p°(t) and informs every bidder i of his price function
p'(t). Then, every bidder i, based on his own bidding history
and the observed information, reports his bid A;(t) € 2V. For
every market M _;, the auctioneer chooses a supply set
i (t) € S(p~4(t)) so that the market M_; has the least
over-demanded bundles. If there is no over-demanded bundle
in any M_j, go to Step 3. Otherwise, the auctioneer adjusts
the price functions p®(t + 1), p'(t 4+ 1) and p~4(t + 1) for all
i€ M andje M) If pi(t+1,S) > U* for some bidder i
and some bundle S, then go to Step 4. Otherwise, set
t:=t-+ 1 and return to Step 2.
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> Step 3: At the last round t = t*, for every j € M(0) the
auctioneer chooses an allocation 7777 for the market M_; as
the basic dynamic auction does. Finally, according to the
allocation 7770 of the original market M, the auctioneer
assigns 719(0) to the seller and 717%(i) to bidder i who is
asked to pay the price

g = u(m(0)) + Yiem, p'(t*, (1))
—u®(17%(0)) = Ljem, p'(t*, 0(1))

Then the auction stops.

» Step 4: The auctioneer assigns the whole bundle N to a
bidder i with p/(t +1,S) > U* for some bundle S and asks
him to pay the price U*. And all other bidders get nothing
and pay nothing. The auction stops.
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The Sealed-Bid VCG mechanism

» The (Sealed-Bid) VCG Mechanism

Every bidder h € M reports u”. The seller computes an
efficient allocation 7t and assigns 77(h) to bidder h who pays
uP(7t(h)) — SV(M) + SV (M_), where

SV(M) = Them(o) u(71(h)) and

SV(M_h) = Lhem(o)\{h} u(p(h)) with p be an efficient
allocation of items in the market without bidder h.

Bidder h's payoff: SV(M) — SV (M_p) (marginal
contribution)
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Information and Strategies

Prior to the start of the auction, nature according to a joint
probability distribution function F(-) draws a profile {u'};cp with
u' € U for all i € M, and reveals to every player i € M only his
own value function u' of private information. Let H;(t) be the part
of the information (or history) of play that player i has observed
just before he takes action at time t € Z,. A natural and sensible
specification can be that H;(t) comprises all observable price
functions and his own past actions.

A (dynamic) strategy o; of player i is a function

{(t.Hi(t),u) | t € Zy} — 2N, which tells him to submit a a bid
oi(t, Hi(t), u’) = A;(t) € 2V at each time t € Z, when he
observes H;(t).
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Ex Post Perfect Nash Equilibrium

Ex Post Perfect Nash Equilibrium: An m-tuple
{0;}icm of strategies is an ex post perfect Nash equilibrium if for
any time t € Z,, following any history profile {H;(t)};epm, and for
any realization {u'};cpm of profile of value functions of private
information, the continuation strategy o;(- | t, H;(t), u') of every
player i € M constitutes his best response against the continuation
strategies {07(- | t, Hi(t), u') }jem_, of player i's opponents of the
game even if the realization {u'};c) becomes common knowledge.

In other words, this notion of equilibrium is not only robust against
any regret but also independent of any probability distribution. It
requires that the equilibrium strategy for every player should
remain optimal at every node of the auction game even if the
player were to learn his opponents’ private values.
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A Major Theorem

Theorem 3 (Sun and Yang 2014): Suppose that
the market M satisfies Assumptions (A1)—(A3).

(1) When every bidder bids sincerely, the IC dynamic auction
yields a VCG outcome for the market M in a finite number of
rounds. Moreover, the VCG payment for every bidder is no
less than the seller’s reserve price for the bundle that the
bidder receives.

(2) Sincere bidding is an ex post perfect Nash equilibrium in the
auction game.
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