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Problem and Objective

In our previous lecture, we studied an auction market with
gross substitutes and complements. In this lecture, we
consider a related but quite different market where all items
are complements or synergies. Synergies are the major sources
of revenues for many firms. Examples include:
Different segments of
transportation/telcommunication/pipeline networks;
Different volumes of a book;
Different parts of a machine or equipment; etc.

Our aim is to : clarify the scope of the problem concerned
with complements; explore an appropriate solution; and
develop an efficient and incentive compatible dynamic auction.
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▶ Maskin (2005): “Recent contributions to mechanism design:
a highly selective review” lists several major open questions

▶ The first open question is:
How to design a dynamic auction for selling multiple
complements?

▶ As a consequence, the proposed auction resolves the open
problem.
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Some Remarks

In theory and also in practice, anonymous pricing rules (i.e., the
price of any bundle of goods is the same for all agents) are widely
used and studied.

It should be noted that package auctions (see e.g., Ausubel and
Milgrom 2002 and Porter, Rassenti, Roopnarine and Smith 2003)
use the discriminatory pricing rule and can apply to more general
environments. As argued by Milgrom (2004), discriminatory pricing
fails to promote the law of one price and thus may be
psychologically hard for some people to accept. Also in some
countries, discriminatory prices are even illegal. In real-life
auctions, people are more accustomed to anonymous prices.

Discriminatory and nonlinear pricing is common and natural for
situations in which a seller is independently and separately
negotiating with several buyers.
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The Model

▶ An auctioneer (i.e. seller/she) wishes to sell a set
N = {1, 2, · · · , n} of indivisible goods/items to a group
M = {1, 2, · · · ,m} of buyers/he.

▶ Let 0 represent the seller and M(0) = M ∪ {0} the set of all
the agents.

▶ Each agent h ∈ M(0) knows her own utility function of goods
privately uh : 2N → R with uh(∅) = 0.
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Assumptions

(A1) Integer private values: uh : 2N → Z+ for every agent
h ∈ M(0);

(A2) Quasilinear utility in money: net profit = uh(S)− p(S)
when bidder h receives bundle S and pays p(S) for every
bidder;

(A3) Superadditivity for bidders: ∀A,B ∈ 2N with A∩ B = ∅;
uh(A∪ B) ≥ uh(A) + uh(B).

(the most general form of complementarity)
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Special Cases

(1) A utility function uh : 2N → R+ is supermodular if
uh(A∪ B) + uh(A∩ B) ≥ uh(A) + uh(B) for all A,B ∈ 2N .

(2) Gross complements: Increasing the price of one good will
decrease bidder h’s demand for other goods.

A utility function u is submodular if −u is supermodular.

7 / 40



Efficient Allocations

▶ An allocation of goods is a partition π = (π(h) | h ∈ M(0))
of goods such that π(i) ∩ π(j) = ∅ for all i ̸= j and
∪h∈M(0)π(h) = N.

▶ Allocation π assigns bundle π(h) to agent h for h ∈ M(0).
Let A be the family of all allocations.

▶ An allocation π is efficient if for every allocation ρ ∈ A,

∑
h∈M(0)

uh(π(h)) ≥ ∑
h∈M(0)

uh(ρ(h)).

▶ Does there exist a standard Walrasian equilibrium?
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Non-existence of Standard WE

Example 1: Three bidders and three complementary items

Bidders’ valuations

∅ A B C AB AC BC ABC

Bidder 1 0 2 2 0 7 3 4 7

Bidder 2 0 2 0 2 3 6 3 6

Bidder 3 0 0 2 2 4 3 6 7

Seller 0 1 1 1 2 2 2 3

Two efficient allocations (AB,C ,∅), (AB,∅,C ). None of these
allocations can be supported by a price vector (p(A), p(B), p(C )).
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Example 1

Consider the efficient allocation π = (AB,C ,∅).

Suppose that (p(A), p(B), p(C )) supports allocation π.

Then for bidder 1, it holds 7 ≥ p(A) + p(B).

For bidder 2, we have 2 ≥ p(C ) and
2− p(C ) ≥ 6− p(A)− p(C ). So p(A) ≥ 4.

For bidder 3, we have 0 ≥ 2− p(C ) and
0 ≥ 6− p(B)− p(C ). Note that p(C ) = 2. So p(B) ≥ 4.

Combining p(A) ≥ 4 and p(B) ≥ 4 yields p(A) + p(B) ≥ 8,
contradicting 7 ≥ p(A) + p(B).
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Anonymous and Nonlinear Pricing Rule

▶ An anonymous and nonlinear pricing system is a price system
that assigns a price for each bundle of goods and asks every
bidder to pay the same price for the same bundle of goods.
Namely, it is a pricing function
p : 2N → R+ with p(∅) = 0 and p(S) = u0(S) for the set S
of all unsold items under prices p.

▶ A pricing function p is linear if p(A) = ∑k∈A p({k}) for all
A ⊂ N.

▶ The auction discussed here uses an anonymous and nonlinear
pricing system.
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Anonymous and Nonlinear Pricing Walrasian Equilibria
▶ Define every bidder h’s demand set:

Dh(p) = argmax
S⊆N

{uh(S)− p(S)}

▶ Let K = {1, · · · , max{n,m}} and L = {0} ∪K ,
π = (π(j) | j ∈ L): a partition of all goods among members
in L. Let B be the collection of all such partitions.

▶ The seller tries to maximize her revenues and her supply
family:

S(p) = argmax
π∈B

{u0(π(0)) + ∑
j∈K

p(π(j))}.

A supply set π ∈ S(p) is an allocation if
∪j∈Lπ(j) = ∪h∈M(0)π(h).

Definition 1: An anonymous and nonlinear pricing Walrasian
equilibrium (anpWE) consists of a price function p∗ : 2N → R+

and an allocation π∗ such that π∗ ∈ S(p∗) and π∗(h) ∈ Dh(p∗)
for every bidder h ∈ M.
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A Welfare Proposition

Observe that in any anpWE, for any sold bundle B, we always have
p(S ∪ T ) ≥ p(S) + p(T ) for any two disjoint sets S and T of the
bundle B, because the seller chooses a supply set that maximizes
her revenues.

Proposition 1 (Sun and Yang 2014): If (p∗,π∗) be an
anonymous and nonlinear pricing Walrasian equilibrium, π∗ is
efficient. Furthermore, if p∗ is an equilibrium pricing function
and ρ is an efficient allocation, (p∗, ρ) is also an anonymous
and nonlinear pricing Walrasian equilibrium.
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The Scope of the anpWE

Can the concept of anpWE be too general to be interesting? The
following example dispels such concern.
Example 1 (Bevia, Quinzii, and Silva 1999): The following
market has no standard WE, although the function of every bidder
is submodular and the seller valuates every bundle at zero.
(π(0),π(1),π(2),π(3)) = (∅,B,A,C ) is the unique efficient
allocation. Assume that there are anpWe prices to support it,
saying p(AB) > p(A) + p(B). Then the seller will choose
{AB,C} instead of π, i.e., π /∈ S(p), thus no anpWE.

Bidders’ valuations
∅ A B C AB AC BC ABC

Bidder 1 0 10 8 2 13 11 9 14

Bidder 2 0 8 5 10 13 14 13 15

Bidder 3 0 1 1 8 2 9 9 10
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An Equilibrium Existence Theorem

Theorem 1 (Sun and Yang 2014): The market under
Assumptions A1, A2, and A3 has an anonymous and nonlinear
pricing Walrasian equilibrium.
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An Efficient Dynamic Auction

We say that bidder h bids sincerely with respect to value function
uh if at every time t ∈ Z+ and any price function p(t) at time t,
he reports a bid
Bh(t) ∈ Dh(p(t)) = argmaxS⊆N{uh(S)− p(t, S)} with
Bh(t) = ∅ when ∅ ∈ Dh(p(t)). When p(t) is a pricing function
at time t ∈ Z+, then p(t,S) denotes the price of bundle S ∈ 2N .

Given a pricing function p : 2N → R+, the seller reports a
supply set π ∈ S(p) and each bidder h ∈ M reports a
demand bundle Bh ∈ Dh(p).

W.r.t. the sets π and Bh, a bundle B ∈ 2N \ {∅} is
over-demanded if it is demanded by more than one bidder
(i.e., Bg = Bh = B for at least two bidders g , h) or demanded
by some bidder h (i.e., Bh = B) but her bundle Bh is not in
the seller’s supply set π (i.e., Bh ̸∈ π).
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The Basic Dynamic Auction

▶ Step 1: The auctioneer announces an initial pricing function
p(0) : 2N → Z+ so that p(0,S) equals the reserve price
u0(S) for every bundle S ⊆ N. Set t := 0 and go to Step 2.

▶ Step 2: At each round t, every bidder h reports a demand
bundle Bh(t) ∈ Dh(p(t)) at p(t) (choose Bh(t) = ∅ when
∅ ∈ Dh(p(t))). Then the auctioneer chooses a supply set
π(t) ∈ S(p(t)) so that the market yields the least
over-demanded bundles. If no bundle is over-demanded, go to
Step 3. But if there is an over-demanded bundle, raises the
price of each over-demanded bundle by one unit. Set
t := t + 1 and return to Step 2.
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The Basic Dynamic Auction

▶ Step 3: The auctioneer assigns the bundle Bh(t) to bidder h
who is asked to pay the price p(t,Bh(t)) in return, and in
addition for any nonempty bundle S ∈ π(t) which is not
demanded by any bidder at p(t), the auctioneer assigns the
bundle to the seller if p(t,S) = u0(S), otherwise, the
auctioneer assigns the bundle to some bidder who previously
demanded the bundle but was the last to give up, and who is
asked to pay p(t, S). Then the auction stops.

Note: In Step 3, the auctioneer assigns Bh(t) = B to bidder h
and then may assign another bundle S to him, and asks him to pay
the sum of current prices p(t,B) and p(t,S). This operation is
called the complementary activity rule, which is a novel and
important feature of this auction.
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Revisiting Example 1

Example 1: Three bidders and three complementary items

Bidders’ valuations

∅ A B C AB AC BC ABC

Bidder 1 0 2 2 0 7 3 4 7

Bidder 2 0 2 0 2 3 6 3 6

Bidder 3 0 0 2 2 4 3 6 7

Seller 0 1 1 1 2 2 2 3

Two efficient allocations (AB,C ,∅), (AB,∅,C ).
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Table: Illustration of the basic dynamic auction for Example 1.

Price Vector Seller Bidder 1 Bidder 2 Bidder 3
p(0) = (1, 1, 1, 2, 2, 2, 3) {AB,C} AB AC BC
p(1) = (1, 1, 1, 2, 3, 3, 3) {AC ,B} AB AC ABC
p(2) = (1, 1, 1, 3, 3, 3, 4) {AC ,B} AB AC ABC
p(3) = (1, 1, 1, 4, 3, 3, 5) {AB,C} AB AC BC
p(4) = (1, 1, 1, 4, 4, 4, 5) {AB,C} AB AC BC
p(5) = (1, 1, 1, 4, 5, 5, 5) {AC ,B} AB C ABC
p(6) = (1, 1, 2, 5, 5, 5, 6) {AB,C} AB A ABC
p(7) = (2, 1, 2, 5, 5, 5, 7) {AB,C} AB AC BC
p(8) = (2, 1, 2, 5, 6, 6, 7) {A,BC} AB ∅ ∅
p(9) = (2, 2, 2, 6, 6, 6, 7) {AB,C} AB ∅ ∅
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where the price vector is

p = (p(A), p(B), p(C ), p(AB), p(AC ), p(BC ), p(ABC ))

with p(∅) = 0, seller’s column indicates her supplies, whereas
each bidder’s column indicates its demands.

Bidder 1 gets AB by paying 6, bidder 2 gets C by paying 2, and
bidder 3 gets nothing. Let π∗ = (AB,C ,∅) and p∗ = p9. Then
(p∗,π∗) is a nonlinear pricing WE. Note that bidder 2 gave up C
in Step 6.
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Convergence Theorem

Theorem 2 (Sun and Yang 2014):
Suppose that Assumptions (A1)–(A3) hold for the auction
model. If all bidders bid sincerely, the basic dynamic auction
yields an anonymous and nonlinear pricing Walrasian
equilibrium, in a finite number of rounds.
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Proof of Theorem 2: Part 1

The auction must stop at some step t∗, because the price of every
bundle is weakly increasing, the value of every bundle is finite, and
prices cannot increase forever.

Let p∗ = p(t∗) and let B∗
h = Bh(t

∗) that is demanded by bidder
h, and let γ∗ = γ(t∗) ∈ S(p∗) that is the supply set of the seller.
Recall that by definition γ∗ is a partition of all the items N that
maximizes the seller’s revenues. We will construct an allocation π∗

so that (p∗,π∗) constitutes an anpWE.

At p∗, no (nonempty) bundle is over-demanded. Thus, for any
bidder h ∈ M, if his demand bundle B∗

h is not empty, it must be in
the supply set γ∗. If ∪h∈MB∗

h = N, let π∗(h) = B∗
h for all h ∈ M

and π∗(0) = ∅, then clearly (p∗,π∗) is an anpWE and we are
done.
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Proof of Theorem 2: Part 2

Assume there is some bundle B ∈ γ∗ which is not demanded by
any bidder at t∗. We call such a bundle a squeezed out bundle.
First, consider p∗(B) = u0(B). Let
γ∗
0 = {B ∈ γ∗ | p∗(B) = u0(B) and B ̸= B∗

h for all h ∈ M} be the
collection of all such bundles. Let π∗(0) = ∪B∈γ∗

0
B. We can

assign π∗(0) to the seller.

By superadditivity, we know that
p∗(π∗(0)) = u0(π∗(0)) ≥ ∑B∈γ∗

0
u0(B) = ∑B∈γ∗

0
p∗(B). Note

that p∗(π∗(0)) ≤ ∑B∈γ∗
0
p∗(B) because γ∗ ∈ S(p∗). Hence, we

have

p∗(π∗(0)) = u0(π∗(0)) = ∑
B∈γ∗

0

p∗(B) = ∑
B∈γ∗

0

u0(B). (1)
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Proof of Theorem 2: Part 3

Next, consider p∗(B) > u0(B). Then let l be the bidder who
demanded B and was the last one to give up B. Let t be the step
in which bidder l still demanded B but gave up B in the next step.
Clearly, t < t∗. By the complementarity auction rule, we can
assign B to bidder l and ask him to pay the current price p∗(B).

Then we must have ul (B)− p(t,B) ≥ 1, and p∗(B) = p(t,B) or
p∗(B) = p(t,B) + 1. For bidder l , it holds that

ul (B)− p∗(B) ≥ 0. (2)
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Proof of Theorem 2: Part 4

Case 1. When B∗
l = ∅, let π∗(l) = B. Because B∗

l ∈ D l (p∗) and
B∗
l = ∅, we have 0 ≥ ul (B)− p∗(B). It follows from (2) that

ul (B)− p∗(B) ≥ 0. These inequalities lead to
ul (B)− p∗(B) = 0, which implies π∗(l) ∈ D l (p∗).

Case 2. When B∗
l ̸= ∅, let π∗(l) = B∗

l ∪ B. For the seller, we
know that

p∗(B∗
l ) + p∗(B) ≥ p∗(π∗(l)). (3)

For bidder l , superadditivity implies that

ul (π∗(l)) ≥ ul (B∗
l ) + ul (B). (4)
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Proof of Theorem 2: Part 5

(3) and (4) imply that

ul (π∗(l))− p∗(π∗(l)) ≥ ul (π∗(l))− (p∗(B∗
l ) + p∗(B))

≥
(
ul (B∗

l )− p∗(B∗
l )
)
+

(
ul (B)− p∗(B)

)
≥ ul (B∗

l )− p∗(B∗
l )

where the last inequality is derived from (2). Because
B∗
l ∈ D l (p∗), we have π∗(l) ∈ D l (p∗).

Consequently, we have ul (π∗(l))− p∗(π∗(l)) =
ul (π∗(l))− (p∗(B∗

l ) + p∗(B)) = ul (B∗
l )− p∗(B∗

l ), yielding

p∗(π∗(l)) = p∗(B∗
l ) + p∗(B). (5)
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Proof of Theorem 2: Part 6

We can repeat this adjustment until every such squeezed out
bundle B (i.e., p∗(B) > u0(B)) in γ∗ is assigned to some bidder.
For any bidder h who is not assigned with any squeezed out
bundle, let π∗(h) = B∗

h . So in the end each bidder h gets a bundle
π∗(h) in his demand set. Because γ∗ is a seller’s partition of N,
(π∗(0), · · · ,π∗(m)) must be an allocation of N.

It follows from the formulas (1) and (5) that

∑h∈M0
p∗(π∗(h)) = ∑A∈γ∗ p∗(A). That is, the allocation

π∗ ∈ S(p∗). Consequently, (p∗,π∗) is an anpWE.
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The Dynamic Incentive Compatible (IC) Mechanism
This dynamic IC mechanism is based on the basic dynamic
auction. Here we give a simplified version of the dynamic IC
mechanism which has omitted an important component of bid
withdrawals. See Sun and Yang (2014) for a complete version and
detailed discussion.

▶ Basic notation:
M denotes the original market;

M−i denotes the market M without bidder i , (i ∈ M);

M−i = M \ {i}, M−0 = M, M(0) = M ∪ {0}, M−0 = M.

▶ Every bidder i knows his own super-additive utility function ui

and can be strategic. The seller has her own super-additive
utility function u0 and acts honestly.
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Price functions used in the auction mechanism

At each round t,

▶ p0(t): the open price function announced by the auctioneer;

▶ pi (t): the price function faced by bidder i ;

▶ p−l (t): the price function faced by the seller in every market
M−l ,
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Basic Idea: In each round t, the auctioneer announces p0(t) and
informs every bidder i of pi (t). Every bidder i reports a bundle
Ai (t) ∈ 2N . Then the auctioneer adjusts price functions pk(t),
p−l (t), k , l ∈ M(0). When all markets are clear, every bidder i
receives equili. bundle π−0(i) in M−0 and pays the difference qi
between the total equili. payments of his opponents in market
M−i and those in market M−0, i.e.,

qi = u0(π−i (0)) + ∑l∈M−i
pl (t∗,π−i (l))

−u0(π−0(0))− ∑l∈M−i
pl (t∗,π−0(l))

If pi (t + 1,S) > U∗ (a high price!) for some i and bundle S , the
auctioneer assigns the whole bundle N to bidder i and asks him to
pay U∗. Other bidders get nothing and pay nothing.
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▶ A bundle S is first-price-over-demanded by a bidder i if bidder
i is the unique bidder such that Ai (t) = S ,
pi (t,S) = p−0(t,S), and S /∈ π−l (t) for some
l ∈ M(0) \ {i}.

▶ A bundle S is second-price-over-demanded if it is demanded
by at least one bidder when p0(t, S) < p−0(t,S), or by more
than one bidder when p0(t,S) = p−0(t,S).

▶ A bundle S is over-demanded whenever it is either first-price
or second-price-over demanded.
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The auctioneer adjusts the prices as follows:

For every bidder i , every bundle S , and every market M−j , let

q0(t + 1,S) ={
p0(t, S) + 1, if S is 2nd-price-over-demanded,

p0(t, S), otherwise;

qi (t + 1,S) ={
pi (t,S) + 1, if S is 1st-price-over-demanded by bidder i ,

max{pi (t,S), p0(t + 1,S)}, otherwise;

p−j (t + 1) =
∨

l∈M−j
pl (t + 1).
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The IC dynamic auction mechanism

▶ Step 1: The auctioneer announces an initial pricing function
p0(0) : 2N → Z+ so that p0(0,S) equals the reserve price
u0(S) for every bundle S ⊆ N. Set pi (0) = p−i (0) = p0(0)
for every i ∈ M(0). Set t := 0 and go to Step 2.
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▶ Step 2: At each round t, the auctioneer announces the price
function p0(t) and informs every bidder i of his price function
pi (t). Then, every bidder i , based on his own bidding history
and the observed information, reports his bid Ai (t) ∈ 2N . For
every market M−j , the auctioneer chooses a supply set
π−j (t) ∈ S(p−j (t)) so that the market M−j has the least
over-demanded bundles. If there is no over-demanded bundle
in any M−j , go to Step 3. Otherwise, the auctioneer adjusts
the price functions p0(t + 1), pi (t + 1) and p−j (t + 1) for all
i ∈ M and j ∈ M(0). If pi (t + 1,S) > U∗ for some bidder i
and some bundle S , then go to Step 4. Otherwise, set
t := t + 1 and return to Step 2.
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▶ Step 3: At the last round t = t∗, for every j ∈ M(0) the
auctioneer chooses an allocation π−j for the market M−j as
the basic dynamic auction does. Finally, according to the
allocation π−0 of the original market M, the auctioneer
assigns π−0(0) to the seller and π−0(i) to bidder i who is
asked to pay the price

qi = u0(π−i (0)) + ∑l∈M−i
pl (t∗,π−i (l))

−u0(π−0(0))− ∑l∈M−i
pl (t∗,π−0(l))

Then the auction stops.

▶ Step 4: The auctioneer assigns the whole bundle N to a
bidder i with pi (t + 1,S) > U∗ for some bundle S and asks
him to pay the price U∗. And all other bidders get nothing
and pay nothing. The auction stops.
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The Sealed-Bid VCG mechanism

▶ The (Sealed-Bid) VCG Mechanism

Every bidder h ∈ M reports uh. The seller computes an
efficient allocation π and assigns π(h) to bidder h who pays
uh(π(h))− SV (M) + SV (M−h), where
SV (M) = ∑h∈M(0) u

h(π(h)) and

SV (M−h) = ∑h∈M(0)\{h} u
h(ρ(h)) with ρ be an efficient

allocation of items in the market without bidder h.

Bidder h’s payoff: SV (M)− SV (M−h) (marginal
contribution)
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Information and Strategies

Prior to the start of the auction, nature according to a joint
probability distribution function F (·) draws a profile {ui}i∈M with
ui ∈ U for all i ∈ M, and reveals to every player i ∈ M only his
own value function ui of private information. Let Hi (t) be the part
of the information (or history) of play that player i has observed
just before he takes action at time t ∈ Z+. A natural and sensible
specification can be that Hi (t) comprises all observable price
functions and his own past actions.

A (dynamic) strategy σi of player i is a function
{(t,Hi (t), ui ) | t ∈ Z+} → 2N , which tells him to submit a a bid
σi (t,Hi (t), ui ) = Ai (t) ∈ 2N at each time t ∈ Z+ when he
observes Hi (t).
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Ex Post Perfect Nash Equilibrium

Ex Post Perfect Nash Equilibrium: An m-tuple
{σi}i∈M of strategies is an ex post perfect Nash equilibrium if for
any time t ∈ Z+, following any history profile {Hi (t)}i∈M , and for
any realization {ui}i∈M of profile of value functions of private
information, the continuation strategy σi (· | t,Hi (t), ui ) of every
player i ∈ M constitutes his best response against the continuation
strategies {σl (· | t,Hl (t), u

l )}l∈M−i
of player i ’s opponents of the

game even if the realization {ui}i∈M becomes common knowledge.

In other words, this notion of equilibrium is not only robust against
any regret but also independent of any probability distribution. It
requires that the equilibrium strategy for every player should
remain optimal at every node of the auction game even if the
player were to learn his opponents’ private values.
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A Major Theorem

Theorem 3 (Sun and Yang 2014): Suppose that
the market M satisfies Assumptions (A1)–(A3).

(1) When every bidder bids sincerely, the IC dynamic auction
yields a VCG outcome for the market M in a finite number of
rounds. Moreover, the VCG payment for every bidder is no
less than the seller’s reserve price for the bundle that the
bidder receives.

(2) Sincere bidding is an ex post perfect Nash equilibrium in the
auction game.
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