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In a first-price auction, asymmetries among bidders typically result in inefficient allocations—
that is, the winner of the auction may not be the person who values the object the most. This 
inefficiency creates a motive for post-auction resale, and when bidders take resale possibilities 
into account, their bidding behavior is affected as well. Standard models of such auctions, by 
and large, implicitly assume either that resale possibilities do not exist or that bidders do not take 
these into account when formulating bids.

There are at least two reasons why resale possibilities should be considered explicitly. The first 
one is positive. If, after the auction is over, bidders see that there are potential gains from trade, 
then they will naturally engage in such trade. And it seems unlikely that the seller can prevent 
bidders from engaging in post-auction trade, even if, for some reason, resale was deemed dis-
advantageous. In the auction of spectrum licenses in the United Kingdom in 2000, post-auction 
trade was restricted by the government. The bidders, however, were easily able to circumvent 
these restrictions. TIW, a Canadian firm, bid successfully for the most valuable license “A” with 
a winning bid in excess of £4 billion. Hutchison, a telecommunications company, then acquired 
the license by buying TIW itself.� Similarly, after the auction, France Telecom, an unsuccessful 
bidder, acquired Orange, a successful bidder. British Telecom created a wholly owned subsidiary 
that bid successfully in the auction. After the auction, this subsidiary was floated on the stock 
market and sold. Thus, restrictions on the buying and selling of licenses were circumvented 
by the buying and selling of companies that owned the licenses. The actions of Hutchison and 
British Telecom prior to the auction suggest that bidders fully anticipated post-auction resale 
possibilities.

� Actually, Hutchison had acquired a small stake in TIW prior to the auction and, in fact, provided funds for its bid. 
We are grateful to Kenneth Binmore and Tilman Börgers for providing us with details of the UK spectrum auctions.
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The second reason to consider auctions with resale is normative. There has been recent inter-
est in the design of efficient auctions, especially in the context of privatization. If post-auction 
resale results in efficiency, however, then from the planner’s perspective, an inefficient auction 
is just as good. Are the allocations from an inefficient auction followed by post-auction resale 
indeed efficient?

In this paper, we study the effects of post-auction resale in a simple model with two bidders 
whose private values are independently, but perhaps asymmetrically, distributed. Equilibrium 
allocations in first-price auctions are then inefficient and bidders have the incentive to engage in 
post-auction trade. In our basic model, resale takes place via monopoly pricing—the winner of 
the auction makes a take-it-or-leave-it offer to the loser.

We first show that every equilibrium has the feature that, despite the asymmetries, the distribu-
tions of bids of the two bidders are identical (Proposition 1). Symmetry would not be surprising 
if resale took place under complete information and so were always efficient. In that case, each 
bidder would bid as if his value were the maximum of the two values. In our model, the symme-
try of bid distributions is striking because post-auction resale also takes place under incomplete 
information and so is not always efficient. Here it occurs as a result of some cost-benefit calcula-
tions at the margin. The symmetry of the bid distributions is key—we show in Theorem 1 how it 
may be used to construct an equilibrium of the first-price auction with resale.

The possibility of resale also affects incentives in second-price auctions. It is no longer a 
dominant strategy to bid one’s value. It is, nevertheless, a robust equilibrium—the strategies do 
not depend on the value distributions (Proposition 2). In this equilibrium, of course, the auction 
allocates efficiently and so there is no resale.

Our main result (Theorem 2) is that once resale possibilities are admitted, the expected reve-
nue from a first-price auction exceeds that from a second-price auction. We thus obtain a general 
revenue ranking of the two auction formats. We require only that the value distributions be regu-
lar in the sense defined by Roger Myerson (1981), ensuring that the monopoly pricing problem 
at the resale stage is well behaved. We remind the reader that in the absence of resale, the two 
auctions cannot be unambiguously ranked (see the work of Eric Maskin and John Riley 2000).

The proof of Theorem 2 uses a technique borrowed from the calculus of variations. To the 
best of our knowledge, the use of this technique is new to auction theory and will, perhaps, prove 
useful in other applications as well.

The results reported above concern a particular resale institution—monopoly pricing—in 
which the winner of the auction has all the bargaining power. In Section V, we show, however, 
that this is inessential by considering more general resale mechanisms. In particular, we examine 
the monopsony mechanism in which the loser has all the bargaining power and then, more gen-
erally, mechanisms in which bargaining power is shared, perhaps unequally. All of the results 
reported above extend to these alternative, and more general, resale institutions.

Related Literature.—Equilibrium analysis of asymmetric first-price auctions has posed many 
challenges. Some of the difficulties were already pointed out by William Vickrey (1961) in his 
pioneering paper. He constructed an example in which bidder 1’s value, say a, was commonly 
known while the other’s was uniformly distributed. In that case, there is an equilibrium of the 
first-price auction in which bidder 1 randomizes. Vickrey showed that for some values of a, the 
revenue from a first-price auction exceeded that from a second-price auction; for other values of 
a, the revenue ranking was reversed.

Since then, progress in the area has been sporadic at best. In asymmetric first-price auctions 
without resale, pure strategy equilibria exist under quite permissive conditions, as a consequence 
of general existence results (see, for instance, Philip Reny 1999, Susan Athey 2001, or Matthew 
Jackson and Jeroen Swinkels 2005). There is, again under weak conditions, a unique equilibrium 
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(see, for instance, the work of Maskin and Riley (2003) or that of Bernard Lebrun (2006)). But 
characterization results and revenue comparisons are few and far between. James H. Griesmer, 
Richard E. Levitan, and Martin Shubik (1967) derive closed-form equilibrium bidding strategies 
in a first-price auction in which bidders draw values from uniform distributions, but over differ-
ent supports. Michael Plum (1992) extends this to situations in which the two value distributions 
are of the form vn, again over different supports. Harrison Cheng (2006) identifies a class of 
distribution pairs which lead to linear bidding strategies. For this class, he shows that the first-
price auction is revenue superior to the second-price auction. For specific examples of distribu-
tion pairs, Estelle Cantillon (forthcoming) shows how asymmetry affects revenue in first-price 
auctions. In the absence of general analytic results, some researchers have resorted to numerical 
methods (see, for instance, the work of Robert Marshall et al. 1994).

Maskin and Riley (2000) derive the most comprehensive characterization and revenue ranking 
results concerning first- and second-price auctions in the presence of asymmetries. They con-
sider problems in which one of the bidders is unambiguously stronger than the other. Specifically, 
the distribution of one bidder (conditionally) stochastically dominates that of the other. Maskin 
and Riley (2000) are able to identify circumstances in which one or the other auction is revenue 
superior. For instance, the second-price auction is revenue superior if the distribution of the weak 
bidder is obtained from that of the strong bidder by reassigning probability mass toward lower 
values. Gadi Fibich, Arieh Gavious, and Aner Sela (2004) have shown that when the bidders are 
“nearly symmetric,” the difference in revenues is of a smaller magnitude than the difference, 
appropriately measured, in the underlying distributions. Thus, for small asymmetries, the auc-
tions are nearly revenue equivalent.

Madhurima Gupta and Lebrun (1999) consider resale possibilities in a manner not unlike this 
paper. They assume, however, that at the end of the auction both values are announced. This 
means, of course, that resale is always efficient. But it is not clear how the auctioneer would come 
to know the values themselves. In contrast, in our model, the auctioneer knows only the bids and 
not the values. Philip Haile (2003) considers resale possibilities in a symmetric model. At the 
time of bidding, however, buyers have only noisy information regarding their true values, which 
are revealed to them only after the auction. There is a motive for resale because although the win-
ner of the auction may have received the highest signal, he may not have the highest true value. 
No general revenue ranking obtains. Charles Zheng (2002) identifies conditions under which the 
outcomes of Myerson’s (1981) optimal auction can be achieved when resale is permitted.

The model of Rod Garratt and Thomas Tröger (2006) is closest to ours in spirit. The crucial 
difference is that they assume, as in Vickrey’s (1961) example, that the value of one of the bidders 
is commonly known and, moreover, is equal to zero. This bidder, thus, participates in the auction 
for purely “speculative” reasons—he has no use value for the object. He benefits only if he can 
resell the object to the other bidder.� In the efficient equilibrium of the second-price auction, the 
revenue is obviously zero. Garratt and Tröger (2006) show that there is a unique mixed strategy 
equilibrium in the first-price auction in which the revenue is positive. We allow for general con-
tinuous distributions and so their model may be viewed as a limiting case of ours.

I.  Preliminaries

A single indivisible object is for sale. There are two risk-neutral buyers, labelled s (“strong”) 
and w (“weak”), with independently distributed private values, Vs and Vw. Buyer i’s value for the 
object, Vi, is distributed according to the cumulative distribution function Fi with support 30, ai 4 . 

� In a supplement to their paper, Garratt and Tröger (2006) also consider situations in which there is one speculator 
and many identical other bidders.
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It is assumed that each Fi admits a continuous density fi K Fi9 and that this density is positive on 
10, ai 2 . We suppose that for all v, Fs 1v 2 # Fw 1v 2 , so that the distribution of values of the strong 
bidder (first-order) stochastically dominates that of the weak bidder.�

We assume that both Fi are regular in the sense of Myerson (1981) so that for i 5 s, w, the 
virtual value, defined as

	 v 2
1 2 Fi 1v 2

fi 1v 2
,

is a strictly increasing function of the actual value v. This ensures that the price at the resale stage 
is uniquely determined and is characterized by the first-order conditions for a maximum.�

In later sections we will need to consider conditional distributions of the form Fi 1v Z Vi # a 2 5 
Fi 1v 2/Fi 1a 2 with support 30, a 4 . The virtual value of the conditional distribution Fi 1v Z Vi # a 2 is

	 v 2
Fi 1a 2 2 Fi 1v 2

fi 1v 2
.

It is easily verified that if Fi is regular then the conditional distribution Fi 1 · Z Vi # a 2 is also 
regular.

II.  First-Price Auction with Resale

Our model of the first-price auction with resale (FPAR) is the following. The buyers first par-
ticipate in a standard sealed-bid first-price auction. The winning bid is publicly announced. We 
assume—as is common in real-world auctions—that the losing bid is not announced.�

In the second stage, the winner of the auction—say j—may, if he wishes, offer to sell the 
object to the other bidder i Z j at some price p. If the offer is accepted by i, a sale ensues. If the 
offer is rejected, the original owner j retains the object. Thus resale takes place via a take-it-or-
leave-it offer by the winner of the auction.�

Note that if i loses the auction, then the announcement of the winning bid bj carries no useful 
information—that is, whether i will accept an offer is independent of what he believes j’s value 
to be. Thus, the equilibrium would be unaffected if neither bid were announced.

As usual, we work backward and first outline behavior in the resale stage.

A. Resale Stage

Suppose that the two bidders follow continuous and strictly increasing bidding strategies bs 
and bw with inverses fs and fw, respectively.�

� The assumption that the two distributions are stochastically ranked is made for expositional ease only. In the 
Web Appendix (available at http://www.aeaweb.org/articles.php?doi=10.1257/aer.98.1.87), we show that all our results 
remain true without this assumption.

� As shown by Jeremy Bulow and John Roberts (1989), the virtual value can be interpreted as the “marginal revenue” 
of a monopolist who faces a demand curve 1 2 Fi 1p 2 .

� This assumption is discussed in more detail below in Remark 1.
� All bargaining power, thus, lies with the seller, and from his perspective this is, of course, the optimal resale 

mechanism. In Section V below, we show that our analysis extends to resale mechanisms in which all bargaining power 
lies with the buyer and then, more generally, to mechanisms in which it is shared.

� It can be shown that all equilibria must have these properties (see the Web Appendix).
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Suppose that bidder j with value vj wins the auction with a bid of b. As a result, he would infer 
that bidder i’s value Vi # fi 1b 2 . If vj , fi 1b 2 , there are potential gains from trade, and so bidder 
j will set a (“monopoly”) price p that solves

(1) 	  max
p

 3Fi 1fi 1b 2 2 2 Fi 1p 2 4p 1 Fi 1p 2vj.

The first term is j’s expected payoff from the event Vi $ p in which bidder i accepts his offer. The 
second term is his payoff from the event Vi , p, in which case bidder i rejects it.

The first-order condition for j’s maximization problem can be rewritten as

(2) 	  p 2
Fi 1fi 1b 2 2 2 Fi 1p 2

fi 1p 2
 5 vj .

Since Fi is regular, the left-hand side is increasing and so (2) has a unique solution. Moreover, 
(2) is also sufficient for j’s maximization problem. Thus, there is a unique price pj 1b, vj 2 that 
maximizes j’s payoff from resale. Clearly, vj , pj 1b, vj 2 , fi 1b 2 . It follows immediately from (2) 
that the optimal price pj 1b, vj 2 is an increasing function of both b and vj.

Let Rj 1b, vj 2 denote bidder j’s optimal expected revenue from resale (which may or may not 
take place), that is, the value of (1). For future reference, note that as a result of the envelope 
theorem,

(3) 	
'

'b
 Rj 1b, vj 2 5 fi 1fi 1b 2 2f9i 1b 2pj 1b, vj 2 .

If bidder j wins the auction with a bid of b and vj $ fi 1b 2 , then there are no potential gains 
from trade and so bidder j will not offer the object for sale.

B. Bidding Stage

We begin by deriving some necessary conditions that equilibrium bidding strategies must 
satisfy. At the time of the auction, both bidders anticipate that behavior in the resale stage will 
be as specified above.

Necessary Conditions.—Suppose that, in equilibrium, each bidder i follows a continuous and 
strictly increasing bidding strategy bi : 30, ai 4 S R, so that bi 1vi 2 is the bid submitted by i when 
his value is vi.

It may be verified that bs 102 5 bw 102 5 0. If a bidder with a value of zero bids a positive 
amount, bidders with values close to zero would surely lose money (details may be found in the 
Web Appendix). It is also easy to verify that bs 1as 2 5 bw 1aw2 K b̄.

As above, let fi : 30, b̄ 4 S 30, ai 4 denote i’s inverse bidding strategy in equilibrium, that is, fi 
5 bi

21. Fix a bid b and suppose that fj 1b 2 , fi 1b 2 . This means that if j wins with a bid of b, then 
there are potential gains from trade and so j will make an offer to i. If, on the other hand, i wins 
with a bid of b, then there are no potential gains from trade and so i will not make an offer to j. 
Thus the bid b itself determines the direction of the resale transaction, that is, the identities of 
the seller and the buyer.

Suppose bidder i follows fi. Bidder j’s expected payoff, when his value is vj K fj 1b 2 and he 
deviates by bidding a c close to b, is

(4) 	  Rj 1c, vj 2 2 Fi 1fi 1c 2 2 c,
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where Rj 1c, vj 2 , defined above as the value of (1), is his expected revenue from resale. If j loses the 
auction, then fj 1c 2 , fi 1c 2 implies that bidder i will not offer to resell to him and so his payoff 
is 0. Since it is optimal for j to bid b, the first-order condition for maximizing (4), by using (3), 
results in

	 0 5 fi 1fi 1b 2 2f9i 1b 2pj 1b, vj 2 2 fi 1fi 1b 2 2f9i 1b 2b 2 Fi 1fi 1b 2 2 ,

where pj 1b, vj 2 is defined as the solution to (1). Since vj 5 fj 1b 2 , writing p 1b 2 K pj 1b, fj 1b 2 2 , the 
first-order condition results in the differential equation

(5) 	
d
db

 ln Fi 1fi 1b 2 2 5 
1

p 1b 2 2 b
 .

Note that p depends on both fs and fw.
Now suppose bidder j follows an equilibrium strategy fj. Bidder i’s expected payoff, when his 

value is vi K fi 1b 2 and he deviates by bidding a c close to b, is

(6) 	  1vi 2 c 2Fj 1fj 1c 2 2 1 3
aj

fj1c2
3vi 2 pj 1bj 1vj 2 , vj 2 41 fj 1vj 2  dvj  ,

where 3x 41 5 max5x, 06. This is because if i wins the auction, he never resells to j and so his 
profit is simply vi 2 c. The second term is i’s expected payoff from buying the object from j. 
Since it is optimal for i to bid b, the first-order condition for maximizing (6) is

	 0 5 3vi 2 b 4  fj 1fj 1b 2 2f9j 1b 2 2 Fj 1fj 1b 2 2 2 3vi 2 pj 1b, fj 1b 2 2 4  fj 1fj 1b 2 2f9j 1b 2 .

Again, writing pj 1b, fj 1b 2 2 5 p 1b 2 , the first-order condition becomes

(7) 	
d
db

 ln Fj 1fj 1b 2 2 5 
1

p 1b 2 2 b
,

which is the same as (5).
We have argued that if fs, fw are the equilibrium inverse bid functions in a first-price auction 

with resale, then they satisfy the same differential equation (5) or (7). This was derived using the 
first-order necessary conditions for local deviations to be unprofitable.� In Appendix A we show 
that the differential equations are, in fact, also sufficient.

Recall that, in any increasing equilibrium, the highest bids must be the same, say b̄. Thus 
Fs 1fs 1b̄2 2 5 1 5 Fw 1fw 1b̄2 2 . Since the boundary conditions for the two differential equations 
are the same, it now follows immediately:

Proposition 1: If fs and fw are strictly increasing equilibrium inverse bidding strategies, 
then for all b,

	 Fs 1fs 1b 2 2 5 Fw 1fw 1b 2 2 ,

that is, the bid distributions of the two bidders are identical.

� We have argued that the differential equations hold at any b such that fj 1b 2 , fi 1b 2 . If b is such that fj 1b 2 5 fi 1b 2 , 
then whoever wins at that bid will set a price p 1b 2 5 fi 1b 2 5 fj 1b 2 and the same arguments as given above show that 
the differential equations still hold.
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Since Fs # Fw , the equality of the bid distributions also implies that fs $ fw or equivalently:

Corollary 1: The weak bidder bids more aggressively than the strong bidder; that is, for all 
v, bw 1v 2 $ bs 1v 2 .

Symmetrization.—Proposition 1 identifies a remarkable property of first-price auctions with 
resale—even though the bidders are asymmetric, in equilibrium they bid in a way that the result-
ing bid distributions Fi 1fi 1·2 2 are the same. In this sense, resale symmetrizes the auction. Since this 
property plays an important role in what follows, it is worth exploring the underlying reasons.�

As a first step, consider a standard first-price auction without resale (FPA) and let ws and ww be 
the equilibrium inverse bidding strategies. Suppose bidder i with value vi 5 wi 1b 2 raises his bid 
slightly from b to b 1 e. This benefits bidder i only against the types of bidder j to whom i loses 
the auction by bidding b but wins by bidding b 1 e. By doing this, bidder i gains approximately 
vi 2 b 5 wi 1b 2 2 b whenever wj 1b 2 , vj , wj 1b 1 e 2 . Writing the first-order condition for opti-
mality yields the pair of differential equations: for j 5 s, w and i Z j,

(8) 	
d
db

 ln Fj 1wi 1b 2 2 5 
1

wi 1b 2 2 b
.

Notice that the right-hand side is the inverse of the marginal gain accruing to i from increasing 
his bid.10

Now consider a first-price auction with resale (FPAR) with equilibrium inverse bidding strate-
gies fs and fw. Suppose that for all b, fw 1b 2 , fs 1b 2 . This means that in equilibrium, if w wins 
with a bid of b, so that his value vw 5 fw 1b 2 , then he will try to resell the object to bidder s since 
there are potential gains from trade. On the other hand, if s wins with a bid of b, he will not resell 
the object to bidder w since there are no gains from trade.

Suppose the weak bidder with value vw 5 fw 1b 2 raises his bid slightly from b to b 1 e. 
As before, we look at how much w gains against strong bidder types such that fs 1b 2 , vs , 
fs 1b 1 e 2 . When he bids b, the weak bidder loses against these types of bidder s and since there 
is no resale, the weak bidder’s payoff is 0. When he bids b 1 e, however, he wins against these 
types of bidder s and is able to resell to them at a price of p 1b 2 for a gain of p 1b 2 2 b.

What about the strong bidder? Suppose bidder s with value vs 5 fs 1b 2 raises his bid slightly 
from b to b 1 e, and again consider the benefit to s against those bidder w types such that fw 1b 2 
, vw , fw 1b 1 e 2 . When he bids b, bidder s loses against these types of bidder w but is able to 
buy the object from them at a price of approximately p 1b 2 . His payoff thus approximately equals 
vs 2 p 1b 2 . When he bids b 1 e, he wins against these types of bidder w and so his payoff is vs 2 
b. The gain in payoff for s from increasing his bid from b to b 1 e is thus approximately equal to 
1vs 2 b 2 2 1vs 2 p 1b 2 2 5 p 1b 2 2 b, the same as w’s gain!

In contrast to (8), the right-hand sides of (5) and (7) are identical.
The symmetrization effects of resale come from the fact that the marginal gain to both bidders 

from a higher bid is the same: p 1b 2 2 b. For the weak bidder (the “seller”), the marginal gain 
is just the profit from resale, that is, p 1b 2 2 b. For the strong bidder (the “buyer”), the marginal 
gain is the difference in the “retail price” p 1b 2 he pays when he loses the auction but buys from 

� Gupta and Lebrun (1998) allude to this kind of symmetry in passing, although the main thrust of their analysis 
concerns a different model—one in which values are announced at the end of the auction.

10 A consequence of this is that in a first-price auction without resale, the distribution of bids of the strong bidder 
stochastically dominates that of the weak bidder (see Maskin and Riley 2000). As a referee pointed out, without resale, 
the bid distributions are identical if and only if the value distributions are.
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bidder w, and the “wholesale price” b that he pays when he wins the auction and buys directly 
from the auctioneer.

The distributions of equilibrium bids in an asymmetric first-price auction with resale are thus 
observationally equivalent to the distribution of equilibrium bids in a symmetric first-price auc-
tion. In other words, given Fs and Fw, there exists a distribution F such that an FPA in which both 
bidders draw values from F is equivalent, in terms of equilibrium bid distributions, to an FPAR 
in which bidders draw values from Fs and Fw,  respectively. This also means that the two auctions 
are revenue equivalent.

We now show how F may be obtained from Fs and Fw without any knowledge of the equilib-
rium bidding strategies. Given distributions Fs and Fw, let F be such that for all p,

(9) 	  F 1p 2 5 Fwap 2
F 1p 2 2 Fs 1p 2

fs 1p 2 b.

Then F is a uniquely determined distribution function such that Fs 1p 2 # F 1p 2 # Fw 1p 2 . Moreover, 
if Fs 1p 2 , Fw 1p 2 , then Fs 1p 2 , F 1p 2 , Fw 1p 2 . These properties follow in a straightforward man-
ner because the regularity of Fs guarantees that the conditional virtual value in the right-hand 
side of (9) is increasing.

The construction of F has a simple geometric interpretation, as depicted in Figure 1. The 
distribution F is such that it passes through the point b, which bisects the line segment ac. The 
length of the line segment ab is just p 2 Fw

211F 1p 2 2 . And since bd/bc is fs 1p 2 , the slope of Fs at p, 
the length of bc is 3F 1p 2 2 Fs 1p 2 4/fs 1p 2 . Equation (9) requires that these be equal.

1

F p

0 p aw p as

Fw FsF

d

a b  c...

.

Figure 1. Construction of F
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Equivalent Symmetric Auction.—Now consider a symmetric first-price auction without resale 
in which there are two bidders and both draw values independently from the distribution func-
tion F on 30, p̄4 as defined above in (9).

The equilibrium strategies in a symmetric auction can, of course, be derived explicitly and 
are given by

	 b 1v 2 5 
1

F 1v 23
v

0
yf 1y 2  dy.

Let b̄  5 b 1 p̄2 . Define the equilibrium inverse bid function for the symmetric auction as

(10) 	  f 1b 2 K b211b 2

so that the distribution of bids for each bidder is F 1f 1b 2 2 . A necessary condition for f to be the 
equilibrium inverse bidding strategy in the symmetric auction is that

(11) 	
d
db

 ln F 1f 1b 2 2 5 
1

f 1b 2 2 b
 .

C. Equilibrium with Resale

In this section, we establish that the first-price auction with resale has a pure strategy equi-
librium in which each bidder follows a strictly increasing bidding strategy. The equilibrium is 
unique in the class of pure strategy equilibria with nondecreasing bidding strategies.

The proof that there is a strictly increasing equilibrium is constructive. Given regular distribu-
tion functions Fs and Fw, construct F as in (9). Consider a symmetric first-price auction in which 
each bidder draws values independently from F. In symmetric auctions, it is known that a sym-
metric equilibrium b exists and is strictly increasing. We will use the equilibrium b to construct 
equilibrium bidding strategies bs and bw for the asymmetric first-price auction with resale.

Theorem 1: Suppose Fs and Fw are regular. Then there is an equilibrium in the first-price 
auction with resale in which the bidding strategies are strictly increasing.

Proof:
The proof is by construction.
Given Fs and Fw, let F be determined as in (9). Let f, as defined above in (10), be the equilib-

rium inverse bidding strategy in the symmetric auction in which bidders draw values from F. Let 
b̄  be the maximum bid in the symmetric auction and define inverse bidding strategies fs : 30, b̄ 4 
S 30, as 4 and fw : 30, b̄ 4 S 30, aw 4 in the asymmetric first-price with resale as follows:

(12) 	  Fs 1fs 1b 2 2 5 F 1f 1b 2 2 ;

(13) 	  Fw 1fw 1b 2 2 5 F 1f 1b 2 2 .

Then, using (11), we have that, for i 5 s, w,

	
d
db

 ln Fi 1fi 1b 2 2 5 
1

f 1b 2 2 b
 .
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We claim that fs and fw are equilibrium inverse bidding strategies in the first-price auction with 
resale.

The definition of F in (9) implies that

	 F21
w 1F 1f 1b 2 2 2 5 f 1b 2 2 

F 1f 1b 2 2 2 Fs 1f 1b 2 2
fs 1f 1b 2 2  ,

and since F 1f 1b 2 2 5 Fw 1fw 1b 2 2 5 Fs 1fs 1b 2 2 ,

	 fw 1b 2 5 f 1b 2 2 
Fs 1fs 1b 2 2 2 Fs 1f 1b 2 2

fs 1f 1b 2 2  ,

which is precisely the first-order condition for

	 max
p

 3Fs 1fs 1b 2 2 2 Fs 1p 2 4p 1 Fs 1p 2fw 1b 2 .

Regularity implies that the first-order condition is both necessary and sufficient for a maximum. 
Since p 1b 2 was defined to be the solution to the maximization problem, we have that for all b,

	 p 1b 2 5 f 1b 2.

Finally, note that Fs 1p 1b 2 2 , Fw 1p 1b 2 2 is equivalent to fw 1b 2 , fs 1b 2 . This is because (12) 
and (13) imply that Fs 1p 1b 2 2 , F 1p 1b 2 2 , which is equivalent to Fs 1p 1b 2 2 , Fs 1fs 1b 2 2 , and so 
also to p 1b 2 , fs 1b 2 . Similarly, F 1p 1b 2 2 , Fw 1p 1b 2 2 is equivalent to Fw 1fw 1b 2 2 , Fw 1p 1b 2 2 , 
and so also to fw 1b 2 , p 1b 2 . Thus, Fs 1p 1b 2 2 , Fw 1p 1b 2 2 if and only if fw 1b 2 , fs 1b 2 .

We have thus argued that if fs and fw are determined by (12) and (13), then they satisfy the 
differential equations (5) and (7) where p 1b 2 is determined by the solution to (2) when j 5 w and 
vw 5 fw 1b 2 .

Thus, as constructed, the functions fs and fw satisfy the conditions of Proposition 4 in 
Appendix A and so constitute equilibrium inverse bidding strategies.

This completes the proof.

Remark 1: Theorem 1 relies on the assumption that at the end of the auction, the losing 
bid is not announced. If the losing bid is announced, the value of the losing bidder would be 
revealed in any strictly increasing equilibrium. This creates an incentive for a bidder to bid 
lower, so that if he were to lose, the other bidder would think that his value was smaller than it 
actually is. This effect overwhelms the loss from not winning with a lower bid and it is known 
that no strictly increasing equilibrium exists (Krishna 2002, chap. 4). In fact, a stronger result 
holds: if the losing bid is announced, there is no nondecreasing equilibrium with (partial) 
pooling either.

Remark 2: It can be shown that the equilibrium constructed in Theorem 1 is, in fact, the only 
equilibrium in which bidders follow nondecreasing bidding strategies. This is established in the 
Web Appendix.

Remark 3: It may be verified that the strong bidder’s strategy does not constitute a strict best-
response. In particular, the strong bidder is indifferent between his equilibrium bid and bidding 
0 and buying (or attempting to buy) on the resale market.
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D. An Example

It is useful to consider an explicit example to illustrate the various constructs.
Suppose that Fs 1v 2 5 v/as over 30, as 4 and Fw 1v 2 5 v/aw over 30, aw 4 where as $ aw ; that is, the 

value distributions are both uniform, but over different supports.
It may be verified that with uniformly distributed values, the symmetrizing distribution, F, is 

also uniform. Specifically, F 1v 2 5 2v/ 1as 1 aw2 over support 30, 1/2 1as 1 aw2 4 . The associated pric-
ing function p 1b 2 5 2b. The equilibrium inverse bidding strategies are: fs 1b 2 5 4asb/ 1as 1 aw2 
and fw 1b 2 5 4awb/ 1as 1 aw2 . The highest bid b̄  5 1/4 1as 1 aw2 .

Notice that if 3aw , as , then fw 1b 2 , b, or equivalently, bw 1v 2 . v; that is, bidder w bids  
more than his value in a first-price auction with resale. The reason, of course, is that he antici-
pates being able to resell the object to bidder s for a profit. Thus, bidder w’s motives have a sub-
stantial “speculative” component. The model of Garratt and Tröger (2006), in which the weak 
bidder is known to have a value of 0, is an extreme instance of this. Since the weak bidder derives 
no value from the object himself, he is driven purely by speculative motives.

III.  Second-Price Auction with Resale

We now study properties of the second-price auction with resale (SPAR). Our model is the 
same as that in previous sections except for the change in the auction format—that is, there is a 
second-price auction, and the winner, if he so wishes, can resell the object to the other bidder via 
a take-it-or-leave-it offer. There is one important difference, however. Under second-price rules, 
the winner of the auction inevitably knows the losing bid—after all, this is the price he pays in 
the auction. Thus, unlike in a first-price auction, the winner can condition the price offered in 
the resale stage on the losing bid.11 This, of course, considerably simplifies the inference problem 
faced by a winning bidder and puts the losing bidder in a weak position during resale.

Resale Stage.—Suppose bidder i follows a nondecreasing bidding strategy bi in the auction. 
Suppose also that bidder j wins the auction and pays a price of bi, which is in the range of bi , that 
is, i’s bid. He then infers that bidder i’s value is in the set bi

211bi 2 5 5v : bi 1v 2 5 bi6. If bi
211bi 2 is 

a singleton, say bi
211bi 2 5 5vi6, then it is optimal for j to offer the object to i only if vj , vi and, 

in that case, set a price p 5 vi .

Bidding Stage.—With private values, a standard second-price auction—without the possibility 
of resale—has some important and well-known features. First, it is a weakly dominant strategy 
for each bidder to bid his true value. Second, the resulting equilibrium is, of course, efficient, 
even in an asymmetric environment. Third, there is a continuum of other (inefficient) equilibria 
(see Andreas Blume and Paul Heidhues (2004) for a complete classification).

Our first observation is that once there is the possibility of resale, it is not a weakly dominant 
strategy to bid one’s value in a second-price auction. As the example below shows, if one of the 
bidders, say s, bids more than his value, the other bidder may gain by bidding less than his value. 
This is because a lower bid in the auction may lead to a lower resale price.

Example 1: The values Vs, Vw [ 30, 14 . Suppose that bidder s bids according to a continuous 
and strictly increasing strategy bs such that bs 1v 2 . v, for all v [ 10, 12, and, if he wins, has 

11 Recall that a first-price auction with resale does not have a monotonic equilibrium if the losing bid is known to 
the winner (see Remark 1).
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beliefs ms 1bw , v 2 5 1 if v 5 bw and 0 otherwise; that is, s believes that w is following the strategy, 
bw 1vw2 5 vw .

Suppose that bidder s has value vs [ 10, 12 and bidder w’s value vw is such that vs , vw , bs 1vs 2 . 
If bidder w bids vw , then s will win the auction and will offer the object to w at price p 5 vw . So 
bidder w’s payoff from bidding his value is 0. If bidder w reduces his bid to a bw such that vs , 
bw , vw , then again bidder s will win the auction but now offer to sell the object to w at price p 
5 bw . By accepting this offer, bidder w can make a profit of vw 2 bw . Thus, in this situation it is 
strictly better for bidder w to bid bw , vw than to bid vw .

Robust Equilibrium.—While not weakly dominant, if both bidders bid their values and the 
winner prices optimally, this nevertheless results in an equilibrium of the second-price auction 
with resale. Of course, this results in an efficient allocation and so, in equilibrium, there is no 
resale.

Proposition 2: There is an equilibrium of the second-price auction with resale in which both 
bidders bid their values.

Proof:
Consider the following strategies. In the auction, each bidder bids his value; that is, bi 1vi 2 5 vi. 

After the auction, the winner i believes that j’s value Vj 5 bj and offers to sell at a price pi 5 bj if 
and only if bj . vi ; the loser responds optimally to the price offer, if any.

Suppose bidder i follows the strategy outlined above.
Suppose bidder j deviates and bids b , vj . If vi , b , vj , bidder j wins for a price of vi and so 

there is no resale. So his payoff is vj 2 vi , which is the same as if he bid vj . If b , vi , vj , then 
i wins and j’s payoff is zero since again there is no offer of resale. So if b , vi , vj , j’s payoff is 
zero if he bids v and vj 2 vi if he bids vj . Finally, if b , vj , vi , bidder j loses the auction and his 
payoff is 0 whether he bids b or vj . Thus, underbidding is not profitable.

Now suppose bidder j bids b . vj . If vi . b, then j’s payoff is 0 since he loses and i will not 
resell to him. If b . vi . vj , then again his payoff is zero, because he will pay vi for the object and 
then resell to i for Vi . If b . vj . vi , then it makes no difference whether he bids b or vj . Thus, 
overbidding is not profitable either.

We have thus argued it is a best response for bidder j to follow the strategy bj 1v 2 5 v, also. The 
optimality of the proposed strategies in the resale stage is clear.

Remark 4: The “bid-your-value” strategies constitute not only an equilibrium but, in fact, 
one that is robust—that is, the proposed strategies constitute a perfect Bayesian equilibrium for 
all distributions Fs , Fw of values that are strictly increasing and continuous. This is easily veri-
fied since the proof of Proposition 2 did not make use of the distributions. It can also be argued 
that the “bid-your-value” equilibrium is the unique robust equilibrium. This last result is proved 
in the Web Appendix to this paper.12

IV.  Revenue Comparison

Recall that a first-price auction with resale (FPAR) in which bidders draw values from Fs and 
Fw , respectively, has the same bid distribution as a symmetric first-price auction in which both 

12 A paper by Tilman Börgers and Timothy McQuade (2007) develops the correct notion of a “robust” equilibrium 
in multistage games such as ours.
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bidders draw values from F. This is because if f 1 · 2 is the equilibrium inverse bidding strategy in 
the auxiliary auction, then for all b [ 30, b̄ 4 , F 1f 1b 2 2 5 Fj 1fj 1b 2 2 .

Hence, in equilibrium, the expected revenue accruing to the auctioneer from an FPAR is

(14) 	  RFPAR 1Fs, Fw2 5 RFPA 1F, F2 5 RSPA 1F, F2 5 3
0

p̄

11 2 F 1p 2 22  dp,

where F is defined in (9) and RSPA 1F, F2 denotes the revenue from a symmetric second-price 
auction (SPA). The second equality is a consequence of the revenue equivalence principle. The 
third equality is a well-known formula for the expectation of the minimum of two independent 
random variables, both of which are distributed according to F.

In a SPAR, the expected revenue from the efficient equilibrium is

(15) 	  RSPAR 1Fs, Fw2 5 3
aw

0
11 2 Fs 1v 2 2 11 2 Fw 1v 2 2 dv.

The right-hand side of the formula above is simply E 3min 5Vs, Vw64 .

Example. For the asymmetric uniform distributions as in Section IID, the expected revenue in 
a first-price auction with resale is

	 RFPAR 5 16 1as 1 aw2 ,

whereas the expected revenue in a second-price auction with resale is

	 RSPAR 5 
aw 13as 2 aw 2

6as
.

The difference between the two is

	 RFPAR 2 RSPAR 5 
1as 2 aw 2 2

6as

and this is positive as long as as . aw .
We now show that the revenue superiority of the first-price auction with resale over its second-

price counterpart is general. Our main result is:

Theorem 2: The seller’s revenue from a first-price auction with resale is at least as great as 
that from a second-price auction with resale.

The proof of Theorem 2, which appears in Appendix B, proceeds as follows. For a fixed 
distribution of the strong bidder, Fs , consider the difference in the revenues between the two 
auctions:

	 D 5 RFPAR 1Fs, Fw2 2 RSPAR 1Fs, Fw2 .

When Fw 5 Fs , this difference is zero because in that case Fw 5 Fs 5 F also, and then (14) and 
(15) are identical, so that D 5 0. (This also follows from the revenue equivalence principle.) Now 
consider an e-perturbation of Fw in the direction of Fs . As depicted in Figure 2, such a perturba-
tion affects F also, bringing the situation closer to one with symmetric bidders. The proof shows 
that such a perturbation must decrease D as long as we are not in a symmetric situation. Since in 
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the symmetric situation, the value of D is zero, it must be positive whenever Fw is not the same 
as Fs . Figure 3 is a schematic depiction of this claim.

The calculation of the derivative of D with respect to e (the perturbation) is carried out using a 
simple technique from the calculus of variations (this is also discussed in Appendix B) and uses 
the regularity condition on Fs .

V.  Other Resale Mechanisms

In our analysis of asymmetric auctions with resale, we assumed that post-auction trade took 
place via a take-it-or-leave-it offer from the winner of the auction. This mechanism—henceforth 
referred to as the monopoly mechanism—is salient in that it places all bargaining power in 
the hands of the seller and so is, of course, optimal from his perspective. But one may wonder 
whether our results are robust to changes in the way resale takes place. For instance, what if 
resale takes place via a take-it-or-leave-it offer from the loser of the auction—that is, via the 
monopsony mechanism? More generally, what if bargaining power is shared between the buyer 
and the seller, perhaps unequally? In this section, we analyze the robustness of our results in this 
direction.

Recall that in our basic model, at the end of the auction, only the winning bid was announced. 
When resale takes place via the monopoly mechanism, this is the same as if no bid were announced. 
This is because information about the winner’s bid is irrelevant to the other bidder—he faces a 
take-it-or-leave-it offer from the winner. In other resale mechanisms, say when the buyer makes 

1

0 aw p as

Fw F Fs

Figure 2. Perturbation in the Direction of Symmetry



VOL. 98 NO. 1 101Hafalir and Krishna: Asymmetric Auctions with Resale

a take-it-or-leave-it offer, information regard-
ing the winner’s value is no longer irrelevant—
for instance, if the winning bid revealed the 
winner’s value, then the loser could extract all 
surplus from the winner during resale. It can 
be shown that if the winning bid is announced 
when resale takes place via monopsony, then 
there is no monotonic equilibrium.

In the extensions of the basic model that fol-
low, we assume that no bids are announced at 
the end of the auction. Thus, only the identity 
of the winner is commonly known.

We first observe that the symmetrization 
result of Section III, Proposition 1, can be gen-
eralized to include a large class of resale mechanisms.13

A. Symmetrization Redux

There is an almost unlimited variety of possible trading mechanisms for resale, and a separate 
analysis of each one would be tedious. It is more fruitful, instead, to posit a mechanism in the 
abstract, and then to identify some common features that lead to symmetrization. Specifically, a 
trading mechanism may be thought of as consisting of two functions q and t which specify, for 
any pair of values vi and vj , (a) the probability q 1vi, vj 2 that i buys the object from j ; and (b) the 
transfer t 1vi, vj 2 from i to j if, in fact, a transaction takes place. We suppose that the mechanism is 
incentive compatible, that is, both parties want to report their true values, and also individually 
rational, that is, both parties wish to participate.14

The monopoly resale mechanism, considered above, can, of course, be accommodated in this 
framework. In that case, the probability of sale q 1vi, vj 2 5 1, if vi $ p 1bj 1vj 2 2 , that is, if i’s value 
exceeds j’s offer and q 1vi, vj 2 5 0, otherwise. The transfer t 1vi, vj 2 5 p 1bj 1vj 2 2 , is, naturally, just 
the monopoly price set by j.

Now consider the following situation: a first-price auction is conducted and then resale takes 
place via the mechanism 1q, t 2 . Suppose that there is an equilibrium of the two-stage game in 
which the bidding strategies 1fi, fj 2 are continuous and increasing. We know that in this equilib-
rium, both players will report their values truthfully at the resale stage.

Is it the case that for an arbitrary resale mechanism, the distribution of bids in equilibrium 
is identical? The answer is clearly no, since if 1q, t 2 5 10, 02 , that is, no trade/transfer ever takes 
place, then clearly symmetrization does not obtain.

Suppose, however, that the mechanism has the property that if the seller’s value is the lowest 
possible and the buyer’s value is the highest possible, then trade is sure to take place. We call this 
the sure-trade property.

Now consider a bid b such that vj 5 fj 1b 2 , fi 1b 2 5 vi. If j wins with a bid of b then he knows 
that i’s value is at most fi 1b 2 . Similarly, if i loses with a bid of b, then he knows that j’s value is 
at least fj 1b 2 . The sure-trade property requires that q Afi 1b 2 , fj 1b 2 B 5 1. In other words, if the 
values of the two parties are such that they bid the same amount b in the auction, then trade takes 

13 We developed this result following a suggestion of John Riley.
14 We have specified the resale mechanism in a direct form, that is, the outcome depends on the values only. Myerson 

and Mark Satterthwaite (1983) show, via the so-called revelation principle, how any equilibrium of any trading mecha-
nism can be formulated in this way.

1
0

Figure 3. Revenue Difference
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place with probability one. Of course, the monopoly mechanism has this property since if bidder 
j wins the object, the price p 1b 2 he will set will be strictly less than fi 1b 2 , and so this offer will 
be accepted if i’s value is fi 1b 2 .

We now argue that for any mechanism satisfying the sure-trade property, a necessary condi-
tion for equilibrium is that the bid distributions be symmetric.

To see this, suppose that the bid b is such that fj 1b 2 , fi 1b 2 .
Consider bidder j with a value vj 5 fj 1b 2 . Consider what happens if bidder j were to deviate 

from equilibrium behavior by bidding c Z b during the auction but to report truthfully at the 
resale stage. Suppose further that c is close enough to b so that fj 1c 2 , fi 1c 2 also. His payoff 
from doing so is

	 3
fi 1c2

0
3q 1vi, vj2 t 1vi, vj2 1 11 2 q 1vi, vj2 2vj 4  fi 1vi2  dvi 2 Fi 1fi 1c 2 2 c.

(This is analogous to (4) in Section IIB). Since such a deviation cannot be profitable, the expected 
payoff must be maximized at b and the first-order condition can be written as (all functions are 
evaluated at b)

	 0 5 q 1fi, fj 2 t 1fi, fj 2 fi 1fi 2f9i 1 31 2 q 1fi, fj 2 4 vj  fi 1fi 2f9i 2 fi 1fi 2bf9i 2 Fi 1fi 2

	 5 t 1fi, fj 2 fi 1fi 2f9i 2 fi 1fi 2bf9i 2 Fi 1fi 2 ,

since the sure-trade property ensures that q 1fi, fj 2 5 1. Rearranging this results in

	
d
db

 ln Fi 1fi 1b 2 2 5 
1

t 1fi 1b 2 ,fj 1b 2 2 2 b
,

which is a generalization of (5).
Now consider bidder i with a value vi 5 fi 1b 2 . His payoff from bidding c and then behaving 

truthfully at the resale stage is

	 1vi 2 c 2Fj 1fj 1c 2 2 1 3
aj

fj 1c2
q 1vi, vj2 3vi 2 t 1vi, vj2 4   fj 1vj2  dvj.

(This is analogous to (6) in Section IIB). Again, since it is optimal for i to bid b, the first-order 
condition results in (all functions are evaluated at b)

	 0 5 1vi 2 b 2  fj 1fj 2f9i 2 bFj 1fj 2 2 q 1fi, fj 2vi  fj 1fj 2f9j 1 q 1fi, fj 2 t 1fi, fj 2 fj 1fj 2f9j

	 5 1t 1fi, fj 2 2 b 2 fj 1fj 2f9j 2 bFj 1fj 2

by using the sure-trade property again. Rearranging this results in the same differential equation 
as above:

	
d
db

 ln Fj 1fj 1b 2 2 5 
1

t 1fi 1b 2 ,fj 1b 2 2 2 b
.

Thus, the symmetrization result generalizes to all resale mechanisms with the sure-trade-at-
the-margin property.
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Proposition 3: Suppose that resale takes place via a mechanism with the sure-trade prop-
erty. If fs and fw are continuous and strictly increasing inverse bidding strategies associated 
with an equilibrium, then for all b,

	 Fs 1fs 1b 2 2  5 Fw 1fw 1b 2 2 ;

that is, the bid distributions of the two bidders are identical.

Remark 5: Notice that the symmetry result above does not directly make use of the regularity 
assumption.

B. Revenue Comparisons

Monopsony.—We have shown above that the symmetrization result, first derived in Proposition 
1, in fact generalizes for all resale mechanisms with the sure-trade property. We have mentioned 
that the monopoly mechanism satisfies this assumption. But notice that the so-called monopsony 
mechanism also satisfies the sure-trade assumption. To see this, suppose bidder j wins the object 
with a bid of b and fj 1b 2 , fi 1b 2 . Under the monopsony mechanism the losing bidder i will 
make a take-it-or-leave-it offer to j, and the price he will offer, say r 1b 2 , will be strictly greater 
than fj 1b 2 . This offer is sure to be accepted if j’s value is indeed fj 1b 2 . Thus if the two values 
are fi 1b 2 and fj 1b 2 , then trade takes place for certain.

Proposition 3 now guarantees that the bid distributions in any increasing equilibrium are 
symmetric.

The analysis parallels that of the earlier sections, except that the monopoly pricing function 
p 1b 2 is replaced by the monopsony pricing function r 1b 2 , which is the solution to

(16) 	  max
r
3Fj 1r 2 2 Fj 1fj 1b 2 2 4 1fi 1b 2 2 r 2 ,

(where fj 1b 2 # fi 1b 2). For both the strong and the weak bidder, a pair of differential equa-
tions analogous to (5) and (7) characterizes the equilibrium bidding strategy—it is necessary 
to replace only p 1b 2 by r 1b 2 . Of course, the monopsony price r 1b 2 typically differs from the 
monopoly price p 1b 2 , and so the equilibrium bidding strategies when resale is via monopsony 
are different from the equilibrium bidding strategies when resale is via monopoly.

All of our other results also extend (details may be found in the Web Appendix). Specifically:

•  	 As in (9), Fs and Fw uniquely determine a distribution G of monopsony resale prices:

	 G 1r 2 5 Fs ar 2
G 1r 2 2 Fw 1r 2

fw 1r 2 b.

The distribution G has a geometric interpretation similar to that of F in Figure 1. In general, 
G Z F.

•  	 As in Theorem 1, there exists an equilibrium with strictly increasing bidding strategies.

•   As in Theorem 2, the revenue from a first-price auction with monopsony resale is at least as 
great as that from a second-price auction with resale.
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Random Proposer Mechanism.—Our results also extend to a class of mechanisms in which 
the bargaining power is shared, perhaps unequally. Specifically, we consider a mechanism in 
which, with probability k, the seller makes a take-it-or-leave-it offer and, with probability 1 2 k, 
the buyer makes a take-it-or-leave-it offer. We refer to this as the random proposer mechanism.

The value of k determines the allocation of bargaining power between the seller and the buyer. 
When k 5 1, this reduces to the monopoly resale mechanism in which all bargaining power lies 
with the seller. When k 5 0, it reduces to the monopsony mechanism in which all bargaining 
power lies with the buyer.

The random proposer mechanism also satisfies the sure-trade property. If the values of the 
buyer and the seller are fi 1b 2 and fj 1b 2 , respectively, then trade takes place for certain regard-
less of whether the buyer or the seller makes a take-it-or-leave-it offer. So again, by Proposition 
3, bid distributions are symmetric.

The analysis of first-price auctions when resale is via the random proposer mechanism also 
parallels the analysis when resale is via the monopoly mechanism—the monopoly price p 1b 2 
now needs to be replaced by the expected price kp 1b 2 1 11 2 k 2 r 1b 2 .

Once again, in general, p 1b 2 Z r 1b 2 and so for k [ 10, 12 , the expected price is distinct from 
both p 1b 2 and r 1b 2 . Thus the equilibrium bidding strategies are now different from both those 
in the case of monopoly resale and those in the case of monopsony resale. This, in turn, implies 
that the pricing functions p 1b 2 and r 1b 2 in the case of a random proposer are also different from 
those resulting in the case of a pure monopoly or a pure monopsony.

It can be shown that the expected revenue from a first-price auction in which resale is via a 
random proposer is a k : 1 2 k weighted average of the revenue when resale is via monopoly and 
when resale is via monopsony.

The following theorem extends our main result.

Theorem 3: The seller’s revenue from a first-price auction with resale via the random pro-
poser mechanism is at least as great as that from a second-price auction.

Theorem 3 naturally subsumes the two extreme cases of monopoly (when k 5 1) and of mon-
opsony (when k 5 0). A proof may be found in the Web Appendix.

VI.  Further Extensions

A. Interdependent Values

We have assumed from the beginning that bidders’ evaluation of the object was private. 
In a more general setup, however, there may be a “common value” component to the values. 
Specifically, suppose that each bidder receives a private signal xi regarding the value and that 
values are interdependent. In other words, the value to bidder i is of the form vi 1xi, xj 2 and is 
increasing in both signals. Further, suppose that the signals of the two bidders are independently 
distributed according to distributions Fi and Fj.

It can then be shown that, in equilibrium, the bid distributions are symmetric in the same 
fashion as in Proposition 1. The proof is virtually the same.

The revenue ranking result of Theorem 2, however, does not generalize. When there is a sub-
stantial common value component, it may be that the second-price auction with resale is revenue 
superior to the first-price auction with resale.
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B. More Than Two Bidders

In this paper, we have restricted attention to the case of two bidders. Considering resale when 
there are three or more bidders poses additional conceptual and technical difficulties.15 First, 
there are many reasonable ways to resell to more than one buyer. For instance, the winner of the 
auction could hold a second auction—perhaps of a different format—himself. Alternatively, he 
could post a fixed price and sell the object at random to all buyers who are willing to buy at that 
price. He could make price offers sequentially to different buyers.

Second, it can be shown that the symmetry result in Proposition 1 does not extend in general 
to the case of three or more bidders. For instance, suppose there are two identical weak bidders 
and only one strong bidder. Resale takes place via a posted price. Then it can be shown that sym-
metry does not obtain.

We hope to explore the case of three or more bidders in future work.

VII.  Conclusion

We have shown that a consideration of resale possibilities allows for a simpler characterization 
of equilibrium strategies in first-price auctions than available when resale is not admitted. In our 
model, equilibrium strategies can be explicitly computed in a relatively simple manner as in the 
proof of Theorem 1. Moreover, we obtain a general revenue ranking result between first- and 
second-price auctions that is not available in the standard model. Thus, this appears to be one of 
those happy circumstances where complicating the model with a real-world feature—resale—
actually simplifies the analysis.

Appendix A

Here we show that the pair of differential equations in (5) for j 5 s, w is sufficient to character-
ize equilibrium. In other words, the solution to the differential equations results in equilibrium 
bidding strategies: no deviations are profitable.

Proposition 4: The strictly increasing and onto functions fs : 30, b̄ 4 S 30, as 4 and fw : 30, b̄ 4 S  
30, aw 4 are equilibrium inverse bidding strategies for the first-price auction with resale if and 
only if for all b [ 30, b̄ 4 ,

	
d
db

 ln Fs 1fs 1b 2 2 5 
1

p 1b 2 2 b
  ,   

d
db

 ln Fw 1fw 1b 2 2 5 
1

p 1b 2 2 b
 ,

where p 1b 2 is the solution to

	 max
p

 3Fs 1fs 1b 2 2 2 Fs 1p 2 4p 1 Fs 1p 2fw 1b 2 .

Proof:
Note that the boundary conditions are determined by the condition that the fi be strictly 

increasing and onto.
The necessity of the differential equations has already been shown. It remains to show that 

these are sufficient.

15 Zheng (2002) also finds that when there are three or more bidders, Myerson’s optimal auction is robust to resale 
only under stringent conditions (see the paper by Tymofiy Mylovanov and Tröger (2007)).
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Suppose bidder j follows the equilibrium inverse bidding strategy fj . We will argue that when 
bidder i has a value of vi , he cannot do better than to bid b such that fi 1b 2 5 vi . We do this by 
showing that neither underbidding nor overbidding can be profitable.

Notice that the differential equations can be rewritten as: for j 5 s, w and for all b,

(A1) 	  1p 1b 2 2 b 2 fj 1fj 1b 2 2f9j 1b 2 2 Fj 1fj 1b 2 2 5 0.

Case 1 (Underbidding): Suppose bidder i bids c such that fi 1c 2 , vi .

Case 1a: fj 1c 2 , fi 1c 2 , vi . If i wins the auction with a bid of c, then his payoff is simply 1vi 2 
c 2 since there are no benefits to reselling. If i loses, however, j will offer to sell the object to him 
for a price of p 1bj 1vj 2 2 and so i’s payoff is max 5vi 2 p 1bj 1vj 2 2 , 06 . Thus, i’s expected payoff is

	 Pi 1c,vi 2  5 1vi 2 c 2Fj 
1fj 

1c 2 2 1 3
aj

fj 1c2
3vi 2 p 1bj 1vj 2 2 41  

fj 1vj 2dvj ,

where 3x 41 5 max 5x, 06. Differentiating with respect to c and using (A1) results in

	
'Pi

'c
 5 1p 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 5 0.

Case 1b: fi 1c 2 # fj 1c 2 , vi . If i wins the auction with a bid of c, then his payoff is simply 1vi 
2 c 2 , since again there are no benefits to reselling. Similarly, if i loses, bidder j will not offer 
to sell the object to him since, from j’s perspective, there appear to be no benefits to selling to i. 
Thus i’s expected payoff is simply

	 Pi 1c,vi 2  5 1vi 2 c 2Fj 1fj 1c 2 2 ,
and so again by using (A1),

	
'Pi

'c
 5 1vi 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 . 1fj 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 

	 $ 1p 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 5 0.

Case 1c: fi 1c 2 , vi # fj 1c 2 . If i wins the auction with a bid of c, then he may resell it to bidder 
j, since again there are potential gains from trade. His expected payoff from winning is

	 Ri 1c, vi 2 5 max 3Fj 1fj 1c 2 2 2 Fj 1p 2 4p 1 Fj 1p 2vi.

If i loses, bidder j will not offer to sell the object to him, since from j’s perspective, there appear 
to be no gains from trade. Thus, i’s expected payoff from bidding c is

	 Pi 1c,vi 2  5 Ri 1c, vi 2 2 Fj 1fj 1c 2 2 c,

and using the envelope theorem, and the fact that pi 1c, vi 2 . pi 1c, fi 1c 2 2 K p 1c 2 ,

	
'Pi

'c
 5 1pi 1c, vi 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 . 1p 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 5 0.
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Case 2 (Overbidding): Suppose bidder i bids c such that vi , fi 1c 2 .

Case 2a: fj 1c 2 , vi , fi 1c 2 . If i wins the auction with a bid of c, then his payoff is simply 1vi 
2 c 2 , since there is no benefit from reselling to j. On the other hand, if i loses, j will offer to sell 
the object to him for a price of p 1bj 1vj 2 2 and so i’s payoff if he loses is max 5vi 2 p 1bj 1vj 2 2 , 06 . 
Thus i’s expected payoff from bidding c is

	 Pi 1c,vi 2  5 1vi 2 c 2Fj 1fj 1c 2 2 1 3
aj

fj1c2
3vi 2 p 1bj 1vj 2 2 41  fj 1vj 2  dvj.

Differentiating with respect to c,

	
'Pi

'c
 5 1vi 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 2 3vi 2 p 1c 2 41  fj 1fj 1c 2 2f9j 1c 2 

	 # 1vi 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 2 3vi 2 p 1c 2 4  fj 1fj 1c 2 2f9j 1c 2 

	 5 1p 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 5 0, 

since 3vi 2 p 1c 2 41 $ 3vi 2 p 1c 2 4 .

Case 2b: vi # fj 1c 2 , fi 1c 2 . If i wins the auction with a bid of c, then he may resell it to bidder 
j, since again there are potential gains from trade. If he loses, bidder j will offer to sell the object 
to him for a price of p 1bj 1vj 2 2 , but this price will always exceed vi and so i will refuse the offer. 
Thus i’s expected payoff from bidding c is just

	 Pi 1c,vi 2  5 Ri 1c, vi 2 2 Fj 1fj 1c 2 2 c,

and, again using the envelope theorem and the fact that pi 1c, vi 2 # fj 1c 2 , pj 1c, fj 1c 2 2 K p 1c 2 ,

	
'Pi

'c
 5 (pi 1c, vi 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 , 1p 1c 2 2 c 2 fj 1fj 1c 2 2f9j 1c 2 2 Fj 1fj 1c 2 2 5 0.

Case 2c: vi , fi 1c 2 # fj 1c 2 . If i wins the auction with a bid of c, then he may resell it to bid-
der j, since again there are potential gains from trade. His expected payoff from winning is the 
monopoly profit Ri 1c, vi 2 . If he loses, bidder j will not offer to sell the object to him since from 
j’s perspective, there appear to be no gains from trade. Thus, i’s expected payoff from bidding c 
is again
	 Pi 1c,vi 2  5 Ri 1c, vi 2 2 Fj 1fj 1c 2 2 c,

and the argument is the same as in Case 2B, except that now pi 1c, vi 2 , pi 1c, fi 1c 2 2 K p 1c 2 .

We have thus argued that for all c such that fi 1c 2 , vi , 0Pi /0c $ 0, and for all c such that fi 1c 2 
. vi , 0Pi /0c # 0. Thus, bidding a b such that fi 1b 2 5 vi is a best response to fj.

Appendix B

This Appendix contains the proof of Theorem 2, which ranks the first- and second-price auc-
tions with resale in terms of expected revenue. Before proceeding with the proof, some prelimi-
naries are in order.



March 2008108 THE AMERICAN ECONOMIC REVIEW

Calculus of Variations.—In what follows, we will make use of a simple technique from the 
calculus of variations that is used to derive the Euler equation. (See, for instance, Section 3 in 
Kamien and Schwartz (1981)).

Consider the integral

	 D 5 3
a

0
F 1p, M 1p 2 , m 1p 2 2  dp,

where M : 30, a 4 S R and m 1p 2 5 M9 1p 2 . Suppose Z 1p 2 : 30, a 4 S R is a variation satisfying Z 102 
5 Z 1a 2 5 0 and let z 1p 2 K Z9 1p 2 . Define

	 D 1e 2 5 3
a

0
F 1p, M 1 eZ, m 1 ez 2  dp

to be the value of the integral when M is perturbed by eZ. Differentiating with respect to e,

	 D9 1e 2 5 3
a

0
3FMZ 1 Fm z 4  dp,

where FM K 0F/0M and Fm K 0F/0m. Integrating by parts,

	 3
a

0
Fm z  dp 5 Fm Z ̀

a

0
 2 3

a

0

d
dp

 1Fm 2Z  dp 5 23
a

0

d
dp

 1Fm 2Z  dp , 

since Z 102 5 Z 1a 2 5 0.
Thus, we obtain

(B1) 	  D9 1e 2 5 3
a

0
  cFM 2 

d
dp

 1Fm 2 d  Zdp,

where both FM and d/dp 1Fm 2 are evaluated at 1p, M 1 eZ, m 1 ez 2 .

Notation.—In the proof below, it is convenient to reformulate the problem in terms of the 
decumulative distribution functions16: for p [ 30, as 4 , Hs 1p 2 K 1 2 Fs 1p 2 , Hw 1p 2 K 1 2 Fw 1p 2 
and H 1p 2 K 1 2 F 1p 2 . Also, let hs 1p 2 5 H9s 1p 2 , hw 1p 2 5 H9w 1p 2 , and h 1p 2 5 H91p 2 . Notice that, 
in terms of decumulative functions, equation (9) in the body of the paper can be rewritten as

	 H 1p 2 5 Hwap 2
H 1p 2 2 Hs 1p 2

hs 1p 2 b,

or, equivalently,

(B2) 	  H 1p 2 5 Hs 1p 2 1 3p 2 Hw
21H 1p 2 4hs 1p 2 .

The regularity assumption; that is, the monotonicity of virtual values p 1 1Hs 1p 2/hs 1p 2 2 , is 
equivalent to

(B3) 	  2hs 1p 22 2 Hs 1p 2h9s 1p 2 . 0.

16 As usual, if p . aw, Hw 1p 2 5 0 and similarly, if p . p̄, H 1p 2 5 0.
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Proof of Theorem 2:
In terms of the decumulative functions, the difference between the revenue from a FPAR and 

the revenue from a SPAR can be written as

(B4)  	 D 5 3
as

0
H 1p 2 2dp 2 3

as

0
Hs 1v 2Hw 1v 2   dv.

(See equations (14) and (15) in the body of the paper.)
Define the function M : 30, as 4 S 30, as 4 by

	 M 1p 2 5 p 2
F 1p 2 2 Fs 1p 2

fs 1p 2
 5 p 2

H 1p 2 2 Hs 1p 2
hs 1p 2

to be the value of bidder w for which he would set a monopoly price of p. It follows from the 
definition of F (see (9) in the body of the paper) that for p [ 30, p̄ 4 , M 1p 2 5 Fw

21F 1p 2 (see Figure 
4). M is an increasing function satisfying M 102 5 0, M 1as 2 5 as and for all p, M 1p 2 # p. Let m 1p 2 
5 M9 1p 2 .

By changing the variable of integration from v to p 5 M 211v 2 in the second integral in (B4), 
we obtain

	 D 5 3
as

0
3H 1p 2 2 2 Hs 1M 1p 2 2H 1p 2m 1p 2 4   dp,

1

0

F FsFw

asaw ppM p

Figure 4. The Function M
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where H 1p 2 is given by

(B5) 	  H 1p 2  5 Hs 1p 2 1 3p 2 M 1p 2 4hs 1p 2 .

Note that Hs 5 Hw if and only if M 1p 2 5 p for all p.
Consider the integrand in the expression for D, that is, the function17

	 F 1p, M, m 2  5 H  
2 2 Hs 1M 2Hm

and the perturbation Z 1p 2  K p 2 M 1p 2  $ 0. Then, define

	 D 1e 2  5 3
as

0
F 1p, M 1 eZ, m 1 ez 2   dp

to be the revenue difference when M is perturbed by e in the direction of p. Figure 2 shows how 
an e-perturbation of M in the direction of p moves both Fw and F closer to Fs; that is, in the direc-
tion of increased symmetry. Notice that perturbing M leaves Fs unchanged.

We now use (B1) to evaluate D r 10 2 . For this, we need

	 FM 5 2H  
'H
'M

2 hs 1M 2Hm 2 Hs 1M 2  

'H
'M

  m,

and since 'H/'M 5 2hs, derived from (B5), we have

(B6) 	  FM 5 22Hhs 2 hs 1M 2Hm 1 Hs 1M 2hs  
m.

And since

	 Fm 5 2Hs 1M 2H,

we have

(B7) 	
d
dp

1Fm 2  5 2hs 1M 2Hm 2 Hs 1M 2h.

Now (B6) and (B7) result in

	 FM 2
d
dp

1Fm 2  5 22Hhs 1 Hs 1M2hs m 1 Hs 1M2h 

	 5 22Hhs 1 Hs 1M2hs m 1 Hs 1M2 32hs 1 3 p 2 M4hs9 2 hs m 4 

	 5 2 3Hs 1M2 2 H4hs 1 Hs 1M2 3p 2 M4hs9 

	 5 Hs 1M2 a2 c1 2
H

Hs 1M 2 dhs 2 c
Hs 2 H

hs
d  hs9b ,

17 To ease the notational burden, we suppress the argument p for the remainder of the proof.
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where the second equality is obtained by substituting h 5 2hs 1 3 p 2 M4 hs9 2 hs m, which is 
derived from (B5). The fourth equality is obtained by substituting 3 p 2 M4 5 2 1Hs 2 H2/hs , 
again from (B5).

But since Hs is decreasing and M 1p 2 # p, we have Hs 1M 1p 2 2 $ Hs 1p 2 , and using the fact that 
hs , 0,

	 FM 2
d
dp

1Fm 2  # Hs 1M2 a2 c1 2
H
Hs

dhs 2 c
H 2 Hs

hs
dhs9b 5 Hs 1M2 c

Hs 2 H
Hshs

d 12hs
2 2 Hs hs92 .

Since Fs is regular, 2hs
2 2 Hs hs9 . 0, as in (B3). Together with Hs . H and hs , 0, this implies

	 FM 2
d
dp

1Fm 2  , 0

whenever M 1p 2 , p.
If M 1p 2 , p for all p, then Z 1p 2 5 p 2 M 1p 2 . 0, and so (B1) now implies

	 D r 10 2  5 3
as

0
cFM 2

d
dp

1Fm 2 d 3 p 2 M4  dp , 0.

Now notice that exactly the same argument can be replicated at any e . 0. Evaluating the 
integral at any M– 5 11 2 e 2M 1 ep and m– 5 11 2 e 2m 1 e, shows that for all e such that 0 , e 
, 1,

	 D r 1e 2  5 3
as

0
cFM 2

d
dp

1Fm 2 d 3 p 2 M– 4  dp , 0,

where the terms in the first square bracket are all evaluated at 1p, M–, m– 2 . Recall that a change 
from M to M– leaves Hs unchanged.

We have thus shown that D 1e 2 is decreasing for all e [ 10, 12 and so is minimized at e 5 1. But 
when e 5 1, M 1p 2 5 p, and so Hs 5 Hw 5 H, and in turn Fs 5 Fw 5 F. In that case, the situa-
tion is symmetric and (B4) implies that D 112 5 0 (this also follows from the revenue equivalence 
principle). We have thus shown that for all regular Fs and all Fw , D $ 0.

This completes the proof of Theorem 2.
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