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We examined how humans learn to choose mixed strategies using
our unique big experimental dataset with approximately 75,000 ob-
servations. We compared the out-of-sample predictive power of
conventional behavioral models and machine learning models and
found that a version of the deep learning model (LSTM) substan-
tially outperforms the conventional models. The superiority of the
machine learning model is noticeable only when the data size is an
order of magnitude larger than that of the typical lab dataset. We
tried to open the black box of LSTM and obtained an improved be-
havioral model with nearly equal predictive power. We provide sev-
eral key steps one can follow to improve existing behavioral models
by means of machine learning and big data.

The purpose of this paper is two-fold. On the methodological side, our work
provides a list of key steps one can follow to improve existing empirical models
by means of big data and machine learning. On the conceptual side, we try to
uncover how human players learn to behave when one would like to make one’s
own behavior unpredictable (i.e., how they learn to play mixed strategies). Using
a unique experimental dataset we collected, which is among the largest for a single-
treatment lab experiment, we compared the conventional behavioral models and
several leading machine learning models, and we found that the machine learning
models performed substantially better. One of the most important findings we
obtained is that the superiority of machine learning models is noticeable only
when the dataset size is an order of magnitude larger than that of the typical lab
dataset. The superiority of the machine learning models shows that the existing
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models are missing out on some important regularities of human behavior, and
it also shows to what extent the existing models can possibly be improved. We,
therefore, attempted to open the black box of our machine learning models, and we
ultimately obtained a new behavioral model that has almost the same predictive
power as our best machine learning model.

The conceptual research question we address is how humans behave when (i)
one needs to make one’s own actions unpredictable and (ii) at the same time,
one needs to predict what actions an opponent will take. Examples include tax
auditing, terrorist attacks vs. airport security guards (Tambe, 2011), tennis serves
(Walker and Wooders, 2001; Gauriot, Page and Wooders, 2023), and penalty
kicks in soccer games (Palacios-Huerta, 2003; Chiappori, Levitt and Groseclose,
2002). Such a situation can be formalized as a game with a unique mixed strategy
equilibrium. Previous research (e.g., the papers cited above as well as O’Neill
(1987) and Camerer (2011)) has revealed that mixed strategy equilibria describe
human behavior in field and lab data reasonably well, while it has also been shown
that humans do not exactly follow a mixed strategy equilibrium (e.g., Brown and
Rosenthal, 1990). If we are called upon to play a game with a unique mixed
strategy equilibrium, rather than calculating and following the mixed strategy
equilibrium, we use our intuition, hunches, and some kind of limited reasoning. It
is not yet fully understood exactly what kind of cognitive processes are employed,
and we aim to answer this question by using unique big data and machine learning
models.

Our dataset examines one of the simplest possible games with a unique non-
trivial mixed strategy equilibrium. It is a card game invented by O’Neill (1987),
where each player, the “red” and the “black” player, has four cards, K, 1, 2, and
3, and chooses one of those cards at the same time as the opponent. The winner
is determined by a rather complicated set of rules. As a result, unlike with
rock-paper-scissors or the matching pennies game, the equilibrium probability
distribution over the four cards is not uniform, and the black player has a higher
chance of winning in the equilibrium. Therefore, the subjects need to think
carefully to figure out what to do, rather than just naively mixing uniformly.
Such a situation is ideal for addressing our conceptual research question. The
dataset was collected in a Coursera online course on game theory and contains
data on more than 5,000 participants. Each player played the game 30 times
with the same opponent, providing roughly 75,000 observations (for each player’s
role). Subsection II.B shows that this is one of the largest datasets for a single
treatment in economic laboratory experiments. Note that our dataset shows how
human players learn to play this game over the 30 rounds, where the learning rule
maps the past history of play to the choice probability of current actions. This
learning rule is the focus of our study.

To uncover how human players mix, we tried to improve conventional behav-
ioral models with the help of the machine learning approach. The machine learn-
ing approach is different from conventional econometrics, at least in two respects.
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First, it offers functional forms that are new to economists. Second, and more im-
portantly, it evaluates models by their external validity : Models are evaluated by
their “out-of-sample” prediction errors in a dataset that is not used for parameter
estimation. External validity is a hallmark of established models in hard sciences,
but it has not been the main focus in economics, presumably because available
datasets are usually not big enough for systematically checking external validity.
Given our unique large dataset, however, we were able to compare the external
validity of conventional behavioral models, such as a leading model of learning
in games, EWA (Camerer and Ho, 1999), and the serial correlation model, and
leading machine learning models, including the decision tree, LightGBM, LASSO
models, and deep learning models (DNN and LSTM).

We found that LSTM, which was used for the earlier version of Google Trans-
late, substantially outperformed the conventional behavioral models. LSTM is
a type of deep learning model. Such models have a large number of param-
eters (more than 5,000), the interpretation of which is not immediately clear.
Rather than directly opening the black box of LSTM, we tried to gain insights
from more interpretable machine learning models, namely the decision tree and
LASSO models. Those models suggest that the subjects in our data are subject
to a particular form of serial correlation. By incorporating the serial correlation
and the fact that the opponent is also subject to the same tendency into the EWA
model, we obtained a new, improved model that captures how humans learn to
choose mixed strategies, which we call mixing EWA. It captures almost all the
predictive power of our best machine learning model (LSTM).

Moreover, we artificially reduced the size of our dataset used for parameter
estimation to examine how the out-of-sample prediction errors of the conven-
tional behavioral models and the machine learning models would change. Figure
1 shows the results. Under the typical lab dataset size with at most a few hun-
dred subjects, the superiority of the machine learning model is not noticeable. As
the dataset size increases, however, the performance of machine learning keeps
on improving, while the conventional model (EWA) does not show any notice-
able improvement. These results suggest that to clearly detect the limitations of
conventional models using machine learning models, we need a dataset that is an
order of magnitude larger than the typical lab dataset. We view this as one of
the main findings of this paper.

Why does the performance of the machine learning model keep on improving
as the dataset size increases? This is because the machine learning model has a
large number of parameters (more than 5,000). One might argue that it is not
surprising that a model with a larger number of parameters fares better, but this
view is misplaced. That would certainly be true if we compared the goodness of fit
of models, but it is by no means true when we compare the external validities of
models. If the true model has only one parameter, for example, the out-of-sample
prediction error of this simple model should be better than more complicated
models. This is because models with redundant parameters “overfit” the data
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Figure 1. Out-of-sample prediction errors with different sample sizes in training data

Note: Out-of-sample prediction errors of the traditional model (EWA), our best machine learning model
(LSTM), and our novel mixing EWA model (ME2*) for the red player with different sample sizes in
training data. The methodology for performance measurement is detailed in Section V. The range
of observations typical in laboratory experiments, usually fewer than 10,000 as shown in Figure 2, is
highlighted with a red rectangle.

used for parameter estimation (the training data) and fare worse in the test data.
The superiority of our best machine learning model in terms of out-of-sample
prediction error shows that the model does capture regularities of human behavior
that are common both in the training data and the test data.
Figure 1 further illustrates that our best mixing model, a version of Mixing

EWA that we call ME2∗, significantly outperforms the traditional EWA model,
even when tested on the typical dataset size found in lab experiments. This im-
provement is achieved because our model incorporates patterns in human behavior
identified by the machine learning model despite using substantially fewer pa-
rameters (≃ 100). By decoding the regularities captured by the machine learning
model trained on large datasets, we developed a compact model that is applicable
to a broader range of constant-sum games beyond O’Neill’s game.
On the technical side, we propose five key steps one can follow, including rel-

evant statistical tests, to improve the existing behavioral models by means of
machine learning and big data. We term this procedure Detect, Capture, and
Decode (DCD). A summary description of this procedure can be found in the
concluding section. This paper, in which we were able to improve the conven-
tional model to achieve the same level of predictive power as the best machine
learning model, provides an instance of a successful application of this procedure.

A. Related Literature

An overview of laboratory experiments on games with a unique mixed strat-
egy equilibrium can be found in Chapter 3 in Camerer (2011). In the case of
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the specific game we analyzed, while O’Neill (1987) stresses the accuracy of the
mixed strategy equilibrium predictions, Brown and Rosenthal (1990) reexamined
O’Neill’s result and showed that the subjects were not playing an i.i.d. mixture
over time.

Our paper is also related to the literature on learning in games. See Fudenberg
and Levine (1998), Chapter 13 in Camerer, Loewenstein and Rabin (2004), and
Chapter 6 in Camerer (2011) for surveys. Leading models include reinforcement
learning (e.g., Roth and Erev (1995) and Erev and Roth (1998)) and belief learn-
ing such as fictitious play (Brown, 1951). Camerer and Ho (1999) propose an
influential generalized model incorporating both reinforcement learning and be-
lief learning, called the experience-weighted attraction (EWA) model, which we
employed as a leading learning model in games in this paper.

Finally, our paper contributes to the rapidly growing literature on machine
learning and economics, overviews of which can be found in Athey and Imbens
(2019), Mullainathan and Spiess (2017), and Camerer (2019). Our paper is di-
rectly related to the previous studies about improving existing behavioral models
using machine learning, which include Peysakhovich and Naecker (2017), Peter-
son et al. (2021), and Fudenberg and Liang (2019). The first two papers concern
single-person decision problems about lotteries, while the last one analyzes the
initial play in simple games given by payoff matrices. The challenge in those
papers is to find good non-linear functional forms to predict subjects’ behavior
y = f(x), where x is a vector of a priori given, a small number of continuous
variables, such as the probabilities and prizes of lotteries, or entries of payoff ma-
trices. In contrast, our paper suggests another way in which machine learning
can help: the selection of the right-hand side variable x. In our study, y repre-
sents the choice probabilities of current actions, and x should represent relevant
aspects of the past history of play. Even if we focused on 2-period histories, the
number of candidate variables (dummies for subsets of history) would be 2256−1.
The challenge we face is to figure out the relevant variables from an astronomical
number of candidates.

Our paper, together with the works discussed above, suggests that the dataset
size should be an order of magnitude larger than the typical lab dataset when try-
ing to improve existing behavioral models using machine learning. Peysakhovich
and Naecker (2017), one of the earliest papers that tried to improve existing mod-
els using machine learning, found that there was little room for improvement.
Their study is based on data collected from 300 subjects. Peterson et al. (2021),
Fudenberg and Liang (2019), and our paper, in contrast, involve 14,711, 6,887,
and 5,178 subjects, respectively, with the finding that existing behavioral models
can be substantially improved with the help of the machine learning approach.

Finally, Fudenberg and Liang (2020) and Fudenberg et al. (2021) explore the
optimal trade-off between the accuracy and simplicity of models. They introduce a
measure of accuracy called completeness, and we utilize a version of completeness
to compare the various models we consider.
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Table 1—Payoff matrix of the O’Neill’s stage game

Black

Red

1 2 3 K

1 0, 1 1, 0 1, 0 0, 1

2 1, 0 0, 1 1, 0 0, 1

3 1, 0 1, 0 0, 1 0, 1

K 0, 1 0, 1 0, 1 1, 0

I. O’Neill’s Game

In this paper, we consider O’Neill’s game as introduced by O’Neill (1987). It
is a normal-form game with two players, a red (R) player and a black (B) player.
Each player i ∈ I ≡ {R, B} chooses one of four cards, ai ∈ C ≡ {1, 2, 3, K} (Ace,
Two, Three, and King), as their action. The payoff matrix is shown in Table 1.1

In words, the red player wins if and only if (1) both players choose K, or (2)
both players choose numbers (1, 2, or 3) and those two numbers are different.
The black player wins in the remaining cases. This game was designed to be the
simplest possible one with a non-trivial mixed strategy equilibrium.2

O’Neill’s game has a unique mixed strategy Nash equilibrium: both players
play K with a probability of 0.4 and play 1, 2, and 3 with a probability of 0.2,
respectively. In the equilibrium, the red player has a lower chance of winning
(probability 0.4). Hence, unlike in the rock-paper-scissors game, the mixed strat-
egy is not trivial. As a result, our subjects need to think carefully about what to
do rather than just naively choose all actions uniformly, which makes O’Neill’s
game ideal for examining how human players mix.

II. Data

A. Data Collection

We collected our dataset in an online introductory game theory course offered by
one of the authors.3 In the first week, before taking lectures on Nash equilibrium
and mixed strategy equilibrium, the students were asked to play 30 rounds of
this game with someone else and submit the results on the course web page. The

1In O’Neill’s experiment, Joker was used instead of K, and a winner (loser) gets (loses) a payoff of 5.
2More precisely, O’Neill (1987) shows that the game is the unique normal form game that satisfies

the following conditions: (i) There are binary payoffs (win or lose) for each player so that the degree
of risk aversion does not change the mixed strategy equilibrium, (ii) neither player has two identical
strategies, (iii) neither player has a dominant strategy, and (iv) the game is not completely symmetrical
in strategies. Any other game satisfying the conditions above has at least as many strategies for each
player.

3Coursera course “Welcome to Game Theory,” by Michihiro Kandori, an introductory course that
assumes no background knowledge of mathematics or economics (https://www.coursera.org/learn/
game-theory-introduction). The course started in February 2015 and is still available.

https://www.coursera.org/learn/game-theory-introduction
https://www.coursera.org/learn/game-theory-introduction
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students were told, “Your participation in this activity should be on a completely
voluntary basis, and your answers will have no bearing on your course grades.”

Hence, our dataset is different from the typical lab dataset in the following
respects. First, the experiments were unsupervised. We asked the students to
find a partner, play the game, record the results, and report back. Second, we
do not know the identities of the students’ partners, who we expect to be their
friends or family members. Third, no financial rewards were given to the subjects.
We do not think these features pose a serious problem for the following reasons.
First, we asked the students to play this game with a deck of cards. People
are naturally motivated to win when playing a card game, even if no monetary
payment is made. Second, we clarified that participation has nothing to do with
the course grade, while participation is costly in terms of time and effort. This
fact likely discouraged attempts to submit fake data. A person who submits fake
data incurs the time and effort of reading and understanding the instructions,
cooking up data for 30 rounds, and uploading the file, even though no reward is
given.

Our dataset here contains 2,781 pairs (5,562 participants) of play in total, sub-
mitted from February 2015 to April 2022. However, 192 pairs of data in which a
player’s action was missing in at least one period were eliminated, and we used
the remaining 2,589 data pairs (5,178 participants).

B. The Uniqueness of Our Big Data

The uniqueness of our dataset lies in the number of participants, especially the
number of observations. We collected data from 2,589 pairs (5,178 participants).
Each pair played the O’Neill’s stage game for 30 rounds. Hence, the total number
of observations is 77, 670 = 2, 589 × 30 for the red player and the black player,
respectively.

The number of observations in our dataset is one of the largest for a single
treatment. Figure 2 plots the total number of participants and the maximum
number of observations in a single treatment in all experimental papers published
in the top 5 journals between 2010 and 2021.4 The number of observations in our
dataset is greater than those in all those papers except for one, whose largest num-
ber of observations concerns “market average probability assessments” backed up
by the high-frequency market data of a prediction market in the UK (Augenblick
and Rabin, 2021). Although there is another paper in Figure 2 whose maximum
number of observations is close to ours, it is clear that the number of observations
in our paper is one of the largest.

The uniqueness of our dataset is especially clear in lab experiments. On av-
erage, each experiment has 438.111 participants with a standard deviation of

4The top 5 journals are American Economic Reviews, Econometrica, Quarterly Journal of Economics,
Journal of Political Economy, and Review of Economic Studies. All experimental papers published in
those journals are compiled in Nunnari, Congiu and Emiliano (2022).
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Figure 2. Total number of participants and maximum number of observations in experiments

published in the top five journals between 2020-2021

Note: The total number of participants and the maximum number of observations in a single treatment in
each paper published in 2020 and 2021. There are 39 papers in total in those two years. Of the 39 papers,
18 are classified as lab experiments, and 21 are classified as artefactual field experiments. Artefactual field
experiments are defined by Harrison and List (2004), and this category includes experiments conducted
by Amazon Mechanical Turk (MTurk).

402.392, and each treatment has 2, 975.944 observations with a standard devia-
tion of 6, 772.554.

C. Descriptive Statistics

This section briefly describes some features of our 2,589 pairs × 30 periods of
data based on summary statistics. First, we observe that the choice frequencies
of cards and win rates are largely consistent with the Nash equilibrium prediction
at the aggregate level, which replicates what O’Neill found (Table 2).
However, the time series of the subjects’ choices cast doubt on the hypothesis

that the subjects play the mixed Nash equilibrium independently every period.
Figure 3 illustrates the trajectories of the average choice frequencies of all the
red and black players in each period. The variations in the aggregate frequencies
of the four cards over time are rather pronounced, which is not what one would
expect from i.i.d. sequences with 2,589 observations in each period.
To examine this point more formally, Table 3 shows how the card frequencies

depend on the previous action of the focal player. The rows in this table should
be similar if the subjects played the i.i.d. mixed strategy, but they are rather
different. This shows that the choice of current action depends at least on the
previous action, a violation of i.i.d. choice. In fact, Brown and Rosenthal (1990)
rigorously showed that the null hypothesis that the subjects in O’Neill’s data
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Table 2—Action distributions in our data and in O’Neill’s data

(1) Action distribution (2) Win rates

Red Black
Red Black

K 1 2 3 K 1 2 3

NE 0.400 0.200 0.200 0.200 0.400 0.200 0.200 0.200 0.400 0.600
Our data 0.350 0.238 0.214 0.198 0.364 0.236 0.202 0.198 0.419 0.581
O’Neill 0.362 0.221 0.215 0.203 0.426 0.226 0.179 0.169 0.409 0.591

Note: Action distributions in our data and in O’Neill’s data (summarized in Brown and Rosen-
thal (1990)). O’Neill collected 2625 observations of the O’Neill’s stage game results (25 pairs ×
105 periods).

Figure 3. Period transition of average choice probabilities

played the i.i.d. mixture can be statistically rejected. What mechanisms guide
the subjects’ behavior? This is the question we address in this paper.

III. Conventional Models

The behavior of our subjects may be explained by models proposed in the exist-
ing literature, which we call conventional models, and we will examine if machine
learning models can improve those models. The conventional models include a
simple benchmark model with only a constant term (naive i.i.d. model), models
that capture the fact that humans are not good at generating i.i.d. sequences
and tend to create negative correlation (serial correlation models), and the EWA
model, a leading behavioral model of learning in games. The machine learning
models we consider are LASSO, decision tree, LightGBM, and deep learning mod-
els such as DNN and LSTM. In this section, we explain the conventional models
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Table 3—Transition matrix of actions

(a) Red players

Action at t

1 2 3 K

A
ct
io
n
a
t

t
−

1

1 0.184 0.241 0.216 0.358
2 0.264 0.161 0.220 0.355
3 0.262 0.230 0.148 0.361
K 0.246 0.219 0.202 0.333

Average 0.238 0.214 0.198 0.350

(b) Black players

Action at t

1 2 3 K

A
ct
io
n
a
t

t
−

1

1 0.181 0.222 0.215 0.381
2 0.252 0.155 0.223 0.370
3 0.260 0.224 0.150 0.366
K 0.247 0.203 0.203 0.347

Average 0.236 0.202 0.198 0.364

Note: The numbers represent the conditional choice probability of (a) the red player’s actions
and (b) the black player’s actions. Each line indicates the empirical probability distribution over
current actions at

i = 1, 2, 3,K conditional on a certain previous action at−1
i .

that we adopted.
Before discussing the models, we first introduce some notation. In every period

t ∈ T ≡ {1, 2, . . . , 30}, each player i ∈ I = {R,B} simultaneously chooses one
of the four cards, ati ∈ C ≡ {1, 2, 3, K}. We denote the history of action pro-
files before period t by ht ≡ ((a1R, a

1
B), (a

2
R, a

2
B), . . . , (a

t−1
R , at−1

B )). For notational
convenience, we define the initial dummy history h0 ≡ ∅.
Each pair in our dataset is indexed by s = 1, 2, . . . , S. For the estimation of

the parameters of the conventional models we report in this section, we use all
the data we have (S = 2, 589). In the performance comparison discussed later in
this paper, on the other hand, we randomly split our dataset into training data
and test data, and estimate model parameters using the training data only. This
procedure will be explained in detail in Section IV.

A. General Formulation and the Challenge of Model Selection

Any econometric models that explain our data would specify the probability
that player i chooses action a in round t given the previous history of play ht,
namely P (ati = a | ht). If each action is chosen with a positive probability after
any history in an econometric model, we call it a full-support model. We first show
that any full support model can be represented by the following logit formula.
The probability that a subject in the role of player i ∈ I chooses action a ∈ C at
period t is given by

P a
i (t) := P (ati = a | ht) =

exp
{
βT
i,axi(h

t)
}

∑
c∈C exp

{
βT
i,cxi(h

t)
},(1)

where xi(h
t) is an m-dimensional vector of variables (including the constant term)

that depends on the history ht, where m is the number of right-hand side variables
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used in the model. In what follows, for simplicity, Equation (1) is expressed as

P a
i (t) ∝ exp

{
βT
i,axi(h

t)
}
.

Any full-support model can be written as Equation (1) for the following reason.
Since probabilities of actions (cards) add up to 1, the ratios of probabilities (odds),
such as P a

i (t)/P
K
i (t), a = 1, 2, 3, uniquely determine the probabilities of actions.

Hence, any full-support model can be expressed as

P a
i (t)

PK
i (t)

= ga(h
t),

while Equation (1) boils down to

P a
i (t)

PK
i (t)

= exp
{
(βi,a − βi,K)Txi(h

t)
}
.(2)

If we let xi(h
t) be the vector of indicator functions for histories (· · · ,1ĥt , · · · ),

where ĥt runs over all possible histories, and denote the element of vector βi,a
that corresponds to the coefficient of 1ĥt by βi,a,ĥt , then the left-hand side of (2)

is simply equal to exp
{
βi,a,ht − βi,K,ht

}
. Therefore, by setting βi,a,ht − βi,K,ht =

log ga(h
t), any full-support model is represented by (1). Equation (2) also shows

that (βi,a − βi,K) is identified but βi,a and βi,K are not.
The conventional models we consider are estimated by the method of maximum

likelihood. Our ultimate goal is to find the optimal choice of the right-hand
side variables in (1) that provides the minimum out-of-sample prediction error.
However, comparing all possible combinations of the right-hand side variables
is computationally infeasible. Even when we assume that the player’s choice
depends only on the history of actions in the last two periods, the number of
two-period histories is (4 × 4)2 = 256, and the number of dummy variables of
subsets of two-period histories of play is equal to 2256 − 1, an astronomically
large number. Furthermore, the number of feasible combinations of those dummy
variables is even larger. It is clearly impossible to compare the out-of-sample
prediction power of all those models.

B. Naive Benchmark and Serial Correlation

As a benchmark of our analysis, we first estimate the model (1) with only
constant terms. The maximum likelihood estimation of this model provides the
choice probability (i.i.d. over time) that is equal to the empirical frequencies of
cards in the entire dataset. We call this the naive i.i.d. model.
The naive model specifies that the player naively mixes in the same way over

time, and it is assumed that actions are serially uncorrelated. However, studies
in the field of psychology have shown that humans are poor at generating an
i.i.d. random sequence and end up creating negative serial correlation (c.f., Bar-
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Hillel and Wagenaar, 1991). The following model incorporates serial correlation
based on the past n periods:

P a
i (t) ∝ exp

(
cai +

n∑
s=1

αa,s
i 1
{
at−s
i = a

})
.(3)

In this model, the target mixing probability is captured by the constant terms
cai , a = 1, 2, 3,K, and the probability of player i choosing action a is affected if
the same action was chosen in the past n periods.

In Equation (3), although the coefficients αa,s
i can be different across a =

1, 2, 3,K, we observed that a model specification with the same coefficients for all
number cards yielded superior predictive performance.5 Therefore, we will adhere
to this restricted specification.

We call the model in Equation (3) with that parameter restriction serial cor-
relation of order n. We estimated the models with n = 1, 2, 3, and 4 and found
the model with n = 4 was the best. In what follows, we report the models with
n = 1 and 4.

C. Experience-Weighted Attraction (EWA) Model

The models in the previous subsection capture the subjects’ attempt to make
themselves unpredictable, but those models ignore the strategic thinking inherent
in the game they play. The subjects in our data set must have tried to learn
which action fares well and what the opponent is going to do. A host of models
of learning in games have been proposed in the behavioral economics literature.
Many of them fall into the following two groups: reinforcement learning (RL)
and belief learning (BL).6 Reinforcement learning is based on the idea that, if an
agent chooses an action and the outcome is good, that action is “reinforced” in
the sense that the agent is more willing to choose it. This reinforcement process
can be formulated as a model in which an agent has some “attraction” to each
action, which embodies how much payoff the agent has gained in the past. In a
belief learning model, an agent forms a belief about the choice probability of the
opponent’s action based on the weighted average of the past frequencies of the
opponent’s actions and plays the best response to the belief.

Camerer and Ho (1999) developed the experience-weighted attraction (EWA)
learning model, which incorporates reinforcement learning and belief learning
models as its special cases. In their original EWA model, each player i ∈ I

5We compare the performance of the restricted and unrestricted Serial Correlation of order 4 models
in Appendix C.1

6The term “reinforcement learning” has been used to mean somewhat different ideas. We use this
term in the sense used in the psychology and neuroscience literature and note that this is not related to
the term commonly used in the computer science literature.
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chooses action a ∈ C at period t with probability,

P a
i (t) ∝ exp

{
λiA

a
i (t− 1)

}
,

where

Ni(t) = ρiNi(t− 1) + 1,

Aa
i (t) =

ϕiNi(t− 1)Aa
i (t− 1) +

[
δi + (1− δi)1

{
ati = a

}]
πi(a, a

t
−i)

Ni(t)
,(4)

and λi ∈ [0,∞), ρi, ϕi, δi ∈ [0, 1]. Here, Aa
i (t) is interpreted as player i’s attraction

to action a at period t.
The key parameter is δi, which measures how the model combines the ideas of

reinforcement learning and belief-based learning. It can be shown that the EWA
model with δi = 0 is a version of the reinforcement learning model, while δi = 1
provides a version of the belief-based learning model.
We estimated the parameters using maximum likelihood estimation with all

sample data. Table E13 in Appendix E.1 presents the results. The estimates of
the key parameters in EWA, δR = 0.385 and δB = 0.000, suggest that the red
player plays a mixture of RL and BL, while the black player plays the pure RL.

IV. Machine Learning Models

In this section, we provide a brief overview of machine learning in comparison
to conventional econometric models. Machine learning refers to a class of models
that make predictions or decisions based on observable data. For our purposes,
we focus on machine learning models to make a prediction:

y = f(x | β),

where x is the input data, y is the predicted outcome, and β is the vector of
parameters. This looks exactly the same as the conventional econometric models,
but there are some notable differences.
First, machine learning offers new functional forms that have not been employed

in conventional econometrics. Leading examples include LASSO, decision trees,
LightGBM, and deep learning, which we explain and use in later sections.
Second, while the typical goal of econometric work is to obtain an accurate

estimation of a given model’s parameters in a given dataset, machine learning
research tries to find better models in terms of their out-of-sample prediction
errors. The dataset is partitioned into training data and test data, and the
parameter values of models are determined using the training data. The models
are then compared by their prediction errors in the test data.
As explained above, if we split the dataset only once, we can only perform a

prediction contest once. In machine learning research, however, it is common to
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conduct prediction contests multiple times on the same dataset. This is called
cross-validation (CV) and works as follows. First, the whole dataset is randomly
split into K subsets of an (almost) equal size, with the typical value of K being 5.
Since our dataset contains 2,589 pairs, we created four subsets of 518 pairs and
one subset of 517 pairs. Call them D1, . . . , D5. Second, the first subset D1, which
accounts for 20% of the whole dataset, is set aside as test data, and parameter
fitting is conducted on the remaining 80% of training data D2∪· · ·∪D5. We then
evaluate the performance of the trained model using the test data D1. In general,
we set aside Dk as test data, conduct parameter fitting on the remaining training
data

⋃
h ̸=k Dh, and then measure the model’s predictive performance using Dk.

This process is repeated for k = 1, . . . , 5, and the models are compared in terms
of their average prediction errors in the five rounds of cross validation.

In what follows, we compare the external validities of the conventional mod-
els and leading machine learning models via cross-validation in our unique big
dataset.

A. Choice of Loss Function

The machine learning models presented below are trained to minimize the pre-
diction error defined by a loss function. Note that a machine learning model
assigns to each set of features X of the past history of play a vector of probabili-
ties P = (P (1), P (2), P (3), P (K)), where each P (c) is a predicted probability of
card c in the current period. While the prediction of a model is probabilistic, the
observed data records realized actions, which can be represented by a degener-
ated probability distribution q = (q(1), q(2), q(3), q(K)), where one of its element
is one and the others are zero. The “distance” between the probabilistic predic-
tion P and the realized action q is represented by a loss function l(P, q), and there
are many possible specifications. One of the important steps in improving the
conventional models by machine learning is the choice of loss function for the ma-
chine learning models. We argue that in the present context, the Kullback-Leibler
(KL) divergence is the appropriate choice for the reason below.

l(P, q) =
∑
a∈C

q(a) log

(
q(a)

P (a)

)
,(5)

where 0× log(0) is interpreted as limx↓0 x log x = 0. When the realized action is
a′, this expression boils down to

l(P, q) = − logP (a′).



HIRASAWA ET AL. UNCOVERING PLAYERS’ STRATEGIES 15

Hence, if we have observations (Pn, qn), n = 1, ..., N in the dataset, the total loss
function of a model is

N∑
n=1

l(Pn, qn) = −
N∑

n=1

∑
a∈C

qn(a) log(P (a)),

which is nothing but the log-likelihood of the model. In summary, minimizing
the loss defined by the KL divergence is equivalent to the method of maximum
likelihood for parameter estimation, which is used for the conventional models
we considered and also for the LASSO model described below. In this sense, the
KL divergence is the right choice for the loss function used to train our machine
learning models because the conventional models and machine learning models
are both trained to minimize the same loss function. The same loss function
should also be used when we compare the out-of-sample predictive power of those
models (Section V).

B. LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) appears to be a
promising model for our purpose because it performs an automatic selection of
variables in our general model (1). We consider 2, 448 variables (for each card
a ∈ C) as potential covariates of the multinomial logit model (1) and add an

L1-penalty term into the log-likelihood.7 That is, the LASSO estimator β̂ is the
solution to the following penalized log-likelihood maximization problem:

max
β

LL(x | β)− λ||β||1,(6)

where LL is the log-likelihood function

LLi(x | β) ≡
S∑

s=1

30∑
t=1

[∑
a∈C

qs,i,ta βT
i,axi(h

t
s)− ln

(∑
a′∈C

exp
{
βT
i,a′xi(h

t
s)
})]

for each i = R,B. Here, qs,i,ta is equal to 1 if player i in pair s chooses action a
in round t, and otherwise, it is equal to zero, while xi(·) ∈ Rm is the vector of
candidate variables whose values are given by the history of play. If we denote the
k-th element of the coefficient vector β as βk, then ||β||1 is expressed as

∑
k |βk|.

Since the graph of |βk| has a kink at 0, the maximization problem (6) typically
has a “corner solution” where βk = 0 for some (and in fact, many) k, which means
that the associated variables are excluded from the model.
We employed a total of 2,448 candidate variables. They are mostly dummy

variables about what happened in the last 4 periods. In addition, we also in-

7The number of parameters we initially have created was 2,702. Dropping variables whose values
were exactly the same as another variable then left us with 2,448 variables.
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Table 4—Number of Coefficients Selected by LASSO

βR,1 βR,2 βR,3 βR,K βB,1 βB,2 βB,3 βB,K

Average 95.6 83.2 93.0 136.4 111.6 103.8 106.4 149.4

Selected across all CVs 23 21 24 44 38 34 36 46

Notes: The first line, “Average,” represents the average number of nonzero coefficients per card across
the five cross-validation splits. The second line, “Selected across all CVs,” indicates the total number of
coefficients that were retained by LASSO across all five CV splits.

cluded dummy variables indicating whether the red (or black) player has played
K (or a number card) n times consecutively, where n = 4, 5, ..., 29 (Table B1 in
Appendix B.1).

The penalty parameter λ (> 0) is a hyperparameter of the model that is to
be determined before selecting the parameter values by solving the maximiza-
tion problem (6). Following common practice in the machine learning literature,
we determine the optimal hyperparameter λ through cross-validation within the
training dataset.8

The resulting selected values of λ across five cross-validation (CV) rounds are
0.046, 0.060, 0.060, 0.046, and 0.060 for the red players, and 0.060 for all five
rounds for the black players.

1. What we can learn from LASSO

Out of 2,448 variables considered, on average (across five CV splits), 408.2
variables were retained for the red players, and 476.0 variables were retained for
the black players. These totals represent the sum of nonzero coefficients across
the four cards.

Because different rounds of cross-validation involve different selected values of λ
and distinct training datasets, the variables chosen by LASSO differ across these
five rounds. Given the large number of selected variables, one practical way to
interpret LASSO results is to concentrate on variables commonly selected across
all five rounds of cross-validation.

The number of variables commonly selected across all CV rounds is 110 for the
red player and 154 for the black player; further details are provided in Table 4.

A full list of these commonly selected variables for the red player (card 1)
appears in Table 5, and for the red player (card K) in Table 6. Additional related
tables are included in Appendix B.3. Parameter values shown in these tables are
estimated from the entire dataset.
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Table 5—Commonly Selected Variables (Red player, Card 1)

βR,1

Value Count

Period dummy (t=6) 0.117 2589
Period dummy (t=27) −0.064 2589
R played 1 at t-1 −0.435 15988
Action profile at t-1 was (1,3) −0.077 3206
Action profile at t-1 was (K,1) −0.044 5386
R played 1 at t-2 −0.116 15980
B played 1 at t-2 −0.083 15792
R played 3 at t-3 0.042 13438
Action profile at t-4 was (3,3) 0.055 2928
R played 1 at t-1, 1 at t-2 0.312 2984
R played 1 at t-1, 2 at t-2 −0.026 3810
R played 1 at t-1, 1 at t-2, 1 at t-3 0.635 720
R played 1 at t-1, K at t-2, K at t-3 0.081 1801
R played 3 at t-1, K at t-2, 2 at t-3 0.103 1156
R played K at t-1, 1 at t-2, 2 at t-3 −0.095 1505
R played K at t-1, 2 at t-2, 3 at t-3 0.120 1177
R played K at t-1, 3 at t-2, 2 at t-3 0.128 1285
R played a number at t-1, a number at t-2, K at t-3, K at t-4 0.065 3171
Winner at t-3 was R 0.054 28155
Winner at t-4 was R 0.021 28093
R lost by playing 1 at t-1, lost by playing 1 at t-2 0.167 953
B lost by playing 1 at t-3 −0.054 6454
B consecutively played numbers in the last 5 periods 0.016 6735

Notes: The ‘Value’ column presents the estimated coefficients based on the entire dataset. If LASSO
with the entire dataset excludes any variable above during the estimation, the corresponding ‘Value’
entry is left blank. The ‘Count’ column specifies the number of histories in which each dummy
variable is assigned a value of 1.

C. Decision Tree and LightGBM

A decision tree partitions data (the pairs of current action of the red or black
player and history of play) recursively according to a tree structure, and it returns
predictions, one for each subset of data finally obtained by the tree. Figure IV.C
shows a tree of depth two. The depth of the tree is defined as the maximum
length of paths from the root to the terminal nodes of the tree.
At each node of a decision tree, the question of whether a certain “feature” of

the history of play is satisfied or not is asked. The set of candidate features we
consider is the set of 2,448 dummy variables that we used for the LASSO model.
The depth of a tree, which is a hyperparameter, is chosen by the cross-validation
in the training data.9

A decision tree works as follows (see Figure IV.C). The feature at node 1 par-
titions the data into subsets represented by nodes 2 and 3, in each of which the
decision tree gives a single probabilistic prediction about the current action given
the history of play. The prediction is given by the minimization of the KL diver-

8Each set of training data was split into 4 subsets for cross-validation, and the 10 candidate values
for λ were chosen from between 10−1 to 10−2 with equal spacing in the logarithmic scale.

9The training data is partitioned into 4 subsets, and candidate depth of 1 to 12 considered. The
depth of our model is 5 for the red player and 7 for the black player.
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Table 6—Commonly Selected Variables (Red player, Card K)

βR,K

Value Count

Period dummy (t=6) −0.070 2589
Period dummy (t=17) 0.031 2589
Period dummy (t=23) 0.063 2589
Period dummy (t=30) 0.200 2589
Action profile at t-1 was (1,3) ——– 3206
B played 2 at t-2 −0.016 13645
B played K at t-2 0.137 24356
Action profile at t-2 was (1,3) 0.088 3195
R played K at t-3 0.074 23380
B played K at t-3 0.197 24427
R played K at t-4 0.135 23435
B played 2 at t-4 −0.028 13619
B played K at t-4 0.191 24480
Action profile at t-4 was (2,2) −0.097 3115
3-period K-history is ((K,N),(K,N),(K,N)) 0.157 686
3-period K-history is ((N,K),(K,N),(N,K)) 0.245 772
3-period K-history is ((N,N),(K,N),(N,K)) −0.116 1467
4-period K-history is ((N,K),(N,N),(N,N),(N,N)) 0.152 1018
R played K at t-1, a number at t-2, a number at t-3, K at t-4 −0.103 3982
R played a number at t-1, K at t-2, a number at t-3, a number at t-4 −0.087 7366
B played K at t-1, 1 at t-2, 1 at t-3 0.112 978
B played K at t-1, a number at t-2, K at t-3, a number at t-4 −0.099 3738
B played a number at t-1, K at t-2, a number at t-3, a number at t-4 −0.074 7063
Winners at t-1, t-2, t-3 are B, B, B 0.036 13157
Winners at t-1, t-2, t-3 are R, R, R 0.025 4903
Winners at t-1, t-2, t-3, t-4 are B, B, R, R −0.050 3930
R won by playing K at t-1, won by playing a number at t-2 −0.089 2790
B won by playing a number at t-1, lost by playing K at t-2 −0.105 3092
K-profile and winner were (N,N) and B at t-1 −0.035 10109
R consecutively played K in the last 2 periods 0.089 7792
R consecutively played K in the last 3 periods 0.246 2944
R consecutively played K in the last 6 periods 0.519 392
R consecutively played K in the last 10 periods 1.315 157
R consecutively played numbers in the last 2 periods 0.100 28347
R consecutively played numbers in the last 3 periods 0.009 17752
R consecutively played numbers in the last 4 periods 0.099 11062
R consecutively played numbers in the last 6 periods −0.073 4359
R consecutively played numbers in the last 7 periods −0.080 2879
R consecutively played numbers in the last 8 periods −0.060 1967
R consecutively played numbers in the last 10 periods −0.192 996
B consecutively played K in the last 3 periods 0.140 3287
B consecutively played numbers in the last 4 periods 0.064 10619
B consecutively played numbers in the last 6 periods −0.084 4447
B consecutively played numbers in the last 8 periods −0.183 2175

Notes: The ‘Value’ column presents the estimated coefficients based on the entire dataset. If
LASSO with the entire dataset excludes any variable above during estimation, the corresponding
‘Value’ entry is left blank. The ‘Count’ column specifies the number of histories in which each
dummy variable is assigned a value of 1.
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Figure 4. An example of a decision tree (of depth 2)

Note: The prediction at each terminal node (leaf) is derived from the frequency of actions in the training
data classified to that node.

gence, and it is equal to the empirical frequencies of the current actions in the
subset. The feature at node 1 is chosen in such a way that the total loss (predic-
tion errors) at nodes 2 and 3, given the KL divergence, is minimized. Similarly,
the feature at node 2 is chosen to minimize the total prediction errors at the
succeeding nodes 4 and 5, and so on. The prediction of the model is given by the
prediction in the terminal nodes (nodes 4 to 7). This amounts to an automatic
selection of the covariates of our general model (1) in the form of the products of
dummy variables. For example, the final node 4 in Figure IV.C corresponds to a
covariate that is equal to (the dummy for the previous action of the red player
being K)×(the dummy for the last winner being the red player).

The decision tree literature measures the contribution of each feature used in
the tree according to feature importance, which we report in Tables 7. Formally,
the feature importance of feature x is defined as

I(x) =

∑
m∈M(x)∆Lm∑

m∆Lm
,

where m is a node, M(x) is the set of nodes associated with feature x (note that
the yes/no question about x may be asked at multiple nodes) and

∆Lm = Lm − L(m,Yes) − L(m,No)

is the reduction of total loss (prediction error) at node m. Here, Lm denotes the
total loss given by the KL divergence at node m, and L(m,Yes) is the total loss at
the succeeding node to m where feature x is true (L(m,No) is similarly defined).
Intuitively, the feature importance of x indicates how much the use of feature x
improves the prediction of the model. Looking at Table 7, we can see that for
both players, the choice probability is affected when the player did not take the
action in the past two periods.

We also employed LightGBM, which is an improved version of the decision
tree. We considered this model because it has been successful in a wide range of
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Table 7—Average feature importance and number of appearances in five CVs

(a) Red players

Variable Feature Importance Count

R did not play 1 in the last two periods 0.144 5

R did not play 2 in the last two periods 0.131 5
R did not play 3 in the last two periods 0.095 5

K profile at t-8 is (N,N) 0.087 5
R played K consecutively in the last eight periods 0.068 3
R played K consecutively in the last six periods 0.041 2

K profile at t-3 is (N,N) 0.033 4
R played 2 at t-1 and K at t-2 0.028 3

B played K consecutively in the last three periods 0.025 4

R played 1 consecutively in the last three periods 0.024 3
R played 3 at t-1 0.017 3
B played K at t-3 0.014 2

4-period history of K profiles is ((N,N),(N,N),(N,N),(N,N)) 0.013 3
B played K at t-4 0.011 3

B played a number at t-3 0.011 3
R played 2 consecutively in the last three periods 0.010 2

R played 1 at t-1 and K at t-2 0.010 3

(b) Black players

Variable Feature Importance Count

B did not play 1 in the last two periods 0.191 5

B did not play 3 in the last two periods 0.090 5
B did not play 2 in the last two periods 0.086 5

B played numbers consecutively in the last eight periods 0.060 5

B played K consecutively in the last four periods 0.048 4
B played numbers consecutively in the last thirteen periods 0.036 5

B won by playing K at t-1 and by playing a number at t-2 0.035 3

K profile at t-1 is (N,K) 0.033 4
B played numbers consecutively in the last nine periods 0.020 3

B played 3 at t-1 and 1 at t-2 0.020 3
B played K consecutively in the last seven periods 0.019 5

B played K consecutively in the last three periods 0.016 1

B won by playing K at t-1 and by playing 2 at t-2 0.013 2
B played 3 at t-1 and K at t-2 0.012 1

B played a number at t-1 and K at t-2 0.011 2

B played 1 at t-1 and t-2 0.010 3
K profile at t-4 is (N,N) 0.010 4

Notes: Average feature importance and the number of appearances (duplicates within a single tree do

not count) in five trees for (a) the red player and (b) the black player. Note that we report only variables

whose feature importance is greater than 0.01.



HIRASAWA ET AL. UNCOVERING PLAYERS’ STRATEGIES 21

applications. Its performance in our study, however, turned out not to be among
the best, and therefore, we skip the formal definition of this model, which can be
found in Ke et al. (2017).

D. Deep Learning Models

We consider two types of deep learning algorithms: the basic Deep Neural
Network (DNN) and Long-Short Term Memory (LSTM). The DNN model is the
simplest form of deep learning. We created a five-layer neural network composed
of one input layer, one output layer, and three hidden layers, as described in Figure
5. The input to the machine is the four-period history of (the action profile and
the payoffs to the player), and the output is the vector of choice probabilities of the
action in the current period.10 That is, each input is a vector of (16+1)× 4 = 68
dummies across four periods, and each output is a four-dimensional probability
vector.11 The number of cells in the three hidden layers is a hyperparameter that
is determined by cross-validation in the training data, where the number of cells
in each hidden layer is optimally selected from the candidate set {10, 30, 50}.12
Each cell in the hidden and output layers is densely connected in the sense that
it is connected to all cells in the previous layer.

・・・

t − 1

17 dummy
variables

(action profile +

Red player’s payoff)

t − 2

t − 3

t − 4

Input

・・・

Hidden1

・・・

Hidden2

・・・

Hidden3 Output

4-length
prob. vector

(with the sigmoid

activation function)

Figure 5. An illustration of a DNN model

DNN recursively determines the value of each cell in the following way. Let j be
a cell in the hidden or output layer, and let i = 1, ..., I be the cells in the previous

10Even if the payoff to the focal player can be deduced from the action profile, including the payoff
data helps to reduce the prediction error of the model.

11For each period, we used 16-dimensional dummy variables of action profiles and 1-dimensional payoff
of the red player as input data.

12The selected set of parameters is (30, 50, 50), (50, 30, 50), (50, 30, 30), (50, 30, 30), (50, 50, 10) for the
red players, and (50, 30, 30), (50, 50, 50), (50, 30, 30), (50, 30, 30), (50, 30, 30) for the black players.
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layer. The branch from i to j is associated with parameter (or weight) wij , and
given the values xi of previous cells i = 1, ..., I , the input to cell j is determined
as
∑

iwijxi and the value of j, denoted xj , is determined by activation function f
as xj = f(

∑
iwijxi). We adopt the ReLU activation function f(x) = max{0, x}

for all cells except those in the output layer. Cells in the output layer use the
softmax activation function (multinomial logit). The parameters wij are selected
to minimize the loss defined by the KL divergence. Note that the machine has a
large number of parameters wij , and the meaning of the value of each parameter
is not immediately clear. This is why the deep learning model is often called a
“black box,” and this fact will play an important role in our analysis presented
below.
We used the PyTorch implementation of a standard DNN. To avoid overfitting,

we used early stopping and dropouts when training the model. We trained our
model with the Adam optimizer.
LSTM is a Markovian version of the deep learning model, where state variables

are updated in a Markovian way, and the prediction for each period is given by
the current values of the state variables. The neural network architecture is used
to implement the state transition and the derivation of predictions from the state
variables. LSTM has been successfully used in a number of applications, such
as Google and Facebook machine translation systems, Google’s voice recognition
application, and autocorrect on iOS.

Figure 6. An unfolded illustration of the LSTM model.

Note: An unfolded illustration of the structure of our LSTM model architecture based on Gers, Schmid-
huber and Cummins (2000). This figure is drawn by the authors based on Olah (2015).

We use the PyTorch implementation of LSTM, which is a standard network
introduced in Gers, Schmidhuber and Cummins (2000). Our LSTM model is
illustrated in Figure 6. This model includes two state vectors, st and ℓt, both of
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which are numerical vectors of dimension L. Here, L is a hyperparameter of the
model and is determined by the cross-validation in the training data. As a result,
we adopted L = 20 to 80 (50 to 70 for 8/10 splits) for the five training data sets
from the candidate dimensions {10, 20, . . . , 80}.
The LSTM module for period t (encompassed by a rounded rectangle in the

figure) takes two state vectors and a new data vector (the action profile in and
the win/loss of the player in the previous round) as inputs and outputs new state
variables and choice probabilities for the action in period t.
We trained our model using the Adam optimizer. To avoid overfitting, we used

early stopping and dropouts when training the model.

V. Performance Comparison

We compared the model performance using leave-one-out cross-validation as
discussed in Section IV. We first randomly divided the entire 2589 pairs in our
dataset into five subgroups D1, . . . , D5 of nearly equal size. Four of them concern
2018 pairs, while the remaining one concerns 2017 pairs. Then, for each k =
1, . . . , 5, we trained (estimated) each model using its training data ∪ℓ̸=kDℓ and
computed the out-of-sample prediction errors (the KL loss) using its test data
Dk.
In particular, we computed the error rate of each model trained in each round

of cross-validation as follows. Since the predictions of our machine learning mod-
els depend on the history of play in the last four periods, they provide predic-
tions for periods t = 5, 6, . . . , 30. Therefore, we first compute, in each round of
cross-validation, the average error (per observation) of each model as (the sum of
prediction errors given by the KL loss (5) over all observations) divided by (the
number of observaions |Dk| × 26). Next, we take the average of those numbers
across the five rounds of cross-validation. These are the error rates of the models
we report in what follows.
The error rate given by the KL divergence for our best model is, as we will

discuss shortly, 1.331, but this number is hard to interpret. To address this issue,
we introduce the notion of the strategic error rate, which is easy to interpret and
defined by the following loss function

l(P, q) = 1− π−i(BR−i(P ), q),(7)

where π−i is the payoff function of the opponent of player i, which takes on value
1 for a win (and is otherwise equal to zero), BR−i denotes the best reply of the
opponent of player i, and finally, P and q are the prediction of the model and
the degenerated probability distribution representing the action choice of player
i. The strategic error rate, the average loss (7) across all observations, provides
the answer to the following question. Consider a model of, for example, the red
player. Suppose we randomly select one pair of players from the data and also
randomly select a round denoted by t. Given the history of play of the pair up
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to round t, the model gives a probabilistic prediction of the red player’s action
in round t. If the black player utilizes that prediction of the model, takes the
(myopic) best reply, and faces the actual choice of action of the red player, on
average, how often does the black player lose? For example, if the strategic error
rate of a model is 0.35, the opponent loses 35% of the time if she utilizes the
model of the player and takes the best reply in any single period.13

A. Results

Table 8—Prediction Performance (Conventional and Machine Learning Models)

Red Players Black Players

#Params KL SER RC #Params KL SER RC

Conventional Models

Constant (Baseline) 3 1.360 0.350 0.000 3 1.354 0.562 0.000

2-period Nonparametric 768 1.354 0.341 0.215 768 1.347 0.539 0.297

EWA 8 1.352 0.332 0.276 8 1.349 0.559 0.195

Serial Correlation

Order 1 5 1.354 0.350 0.204 5 1.349 0.541 0.199

Order 4 11 1.351 0.343 0.293 11 1.346 0.536 0.334

Machine Learning Models

LASSO 408.2 1.344 0.324 0.562 476.0 1.339 0.526 0.589

Decision Tree 40.4 1.352 0.343 0.273 41.6 1.348 0.536 0.248

LightGBM 30.0 1.344 0.325 0.547 30.0 1.340 0.527 0.556

DNN 6208.0 1.347 0.332 0.455 6428.0 1.343 0.534 0.432

LSTM 5524.0 1.331 0.308 1.000 11204.0 1.329 0.507 1.000

Human 0.419 0.581

Notes: Average prediction performance of the selected models measured in the test data. KL, SER, and
RC denote Kullback-Leibler divergence, strategic error rate, and relative completeness. Each performance
score is the average of five train-test CV splits. The average training (test) data size is 2071.2 (517.8)
observations. Hyperparameters of the machine learning models are determined by cross-validation within
training data. The number of model parameters (#Params) is the average of the five models for each
split. The performance table of the other models is shown in Appendix C.1. The scores of the other
performance measures (L1 and L2 loss measured on test data, and AIC and BIC on the training data)
are listed in Appendix C.2.

The performance comparison results are presented in Table 8, which reports
the KL divergence and the strategic error rates of our leading models on the test

13We stress that the strategic error rate concerns the usefulness of the estimated model in any given
single period. In principle, if the back player in the previous story makes the best reply to the estimated
model of the red player in one period, this has two effects: (i) the loss rate in the current period changes,
and (ii) the future behavior of the red player changes, which affects the future loss rates of the black
player. Our notion of strategic error rate only measures the former effect.
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data, averaged across five CV splits. Note that all our models were trained to
minimize the KL divergence on the training data.
Table 8 shows that, among the four machine learning model — LASSO, decision

tree, LightGBM, deep learning models DNN and LSTM— LSTM has outstanding
performance, followed by LASSO. LSTM takes on a flexible functional form of
the deep learning model, and its Markovian structure is suitable for processing
sequential data.14

Given this, we measure the relative predictive powers of our models in terms of
the error rate reduction from a näıve benchmark in the form of an i.i.d. mixture
model (constant baseline) to the best model LSTM.15 This leads to the notion of
relative completeness (RC) defined as

(RC of a model) =
(KL of the model) − (KL of Constant)

(KL of LSTM) − (KL of Constant)
,

where KL (KL divergence) is the average of the five CV (cross-validation) splits.
This is a version of the completeness measure introduced by Fudenberg et al.
(2021). If we replace LSTM (the best model we have obtained) with the true best
model (the best one among all specifications of the model Equation (1)) in the
above definition of RC, we obtain their completeness measure.16

We observe that EWA, a leading learning model in behavioral economics, has
a relative completeness of 0.286 (0.192) for the red (black) player. This means
that for the red (black) player, EWA achieves only 28.6% (19.2%) of the pre-
dictive power of the best machine learning model LSTM (in terms of the error
rate reduction from the naive benchmark i.i.d. mixture model). The other class
of behavioral models, the serial correlation, exhibit performance similar to that
of EWA (relative completeness of 0.210-0.302 (0.202-0.340) for the red (black)
player). This shows that the traditional behavioral models only have 20-30%
of the predictive power of the best machine learning model. They are missing
out on some regularities of human behavior, and there is room to improve those
models. The notion of RC, or the relative error rate reduction, provides a useful
benchmark to intuitively understand how much the traditional models can be
improved.
Let us now turn to the strategic error rates. In the mixed strategy equilibrium,

the loss rate for the black player is 40%, and this is true (by the property of

14However, traditional econometric criteria of model selection, such as AIC and BIC in the training
sample, do not select LSTM due to its large parameter size. Machine learning models DNN and LSTM
are known to be “over-parametrized” in the sense that different parameter configurations can provide the
same or similar functional form. Hence, these traditional information criteria that penalize the number
of parameters are known to be inappropriate in the machine learning literature. We list the average AIC
and BIC of the representative models in Appendix C.2.

15The näıve benchmark model of a player assumes that the player’s action is i.i.d. over time according
to the empirical frequencies of actions in the training data.

16To estimate the true best model among all specifications is impossible in our setting. Since there
are a total of 16t types of t-period histories, a fully non-parametric model should specify the choice
probability for

∑29
t=0 16

t kinds of histories.
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completely mixed strategy equilibrium) no matter which action the black player
chooses. If, in our dataset set, the black player utilizes EWA or the serial corre-
lation model of order 4 to predict the red player’s choice and takes the best reply
action, in contrast, the loss rate can be reduced to 33.1% or 34.3%. The loss rate
of the black player can be further reduced to 30.8% if she/he utilizes the best
machine learning model, LSTM.17 This shows that the prediction error of the
best machine learning model (LSTM) is significantly lower than those of the tra-
ditional models in a strategic sense. The statistical significance of the difference
in prediction errors will be discussed in Subsection VI.C.
Table 8 also shows that the non-parametric model that depends on two-period

histories of action profiles (2-period Nonparametric) fares worse than EWA and
the serial correlation model and much worse than the best machine learning
model, LSTM. We have a sufficiently large data set for two-period non-parametric
estimation, where each 2-period history occurred at least 66 times (the average
occurrence is 291.9). This provides fairly reliable evidence that the subjects’
memory is longer than two periods.

B. The Role of Big Data

In this section, we show that the merits of the machine learning models can be
seen only when the data size for parameter fitting is an order of magnitude larger
than that of the typical lab dataset.
To this end, we show how the out-of-sample prediction errors of various models

change if we conduct parameter fitting in artificially reduced data sets (while
keeping the data size for performance comparison fixed).18 The outcomes are
shown in Figure 7 (ME1, ME2, and ME2* in the figure are the modified models
that we introduce later). The figure shows that the performance of the traditional
models, Constant, EWA, and Serial Correlation, do not improve if we increase the
training data size beyond 400 pairs. In contrast, the error rates of the machine
learning models, LASSO and LSTM, keep on decreasing as the training data
size increases, and at our dataset size of 2,000+ pairs, the difference in out-of-
sample prediction errors between the best machine learning model, LSTM, and
the conventional models is quite evident. In contrast, if we have 400 pairs of
subjects, our best machine learning model, LSTM, is only marginally better than
the traditional models, and if the number of pairs is less than 200, LSTM fares
worse than the traditional models.
The reason why we need a large data set to see the merit of the machine learning

model is that the machine learning model has a large number of parameters, as

17One may note that, for the red player, the serial correlation of order 4 model has a larger strategic
error rate than EWA, but its KL divergence is smaller than that of EWA. This happens for the following
reasons. Given a history of the play, consider the empirical frequencies of actions (call it (a)) and
prediction of action distribution by EWA (b) and by the serial correlation (c). It can happen that, even
though (a) and (c) are close to each other (low KL), (a) and (b) may have the same best reply, but (c)
does not. Then, (b) fares better than (c) in terms of the strategic error rate.

18Peterson et al. (2021) conducted a similar analysis.
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Figure 7. Average KL divergences with smaller training samples

Note: Average KL divergences of machine learning models compared to traditional models as the size of
the training dataset is artificially reduced. In most laboratory experiments, the number of observations
is typically under 6,000 (see Figure 2), corresponding to around 100 to 200 pairs in the plots. Improved
models, ME1, ME2, and ME2∗ will be explained in Section VI.B. They demonstrate performance that is
very close to the best machine learning model, LSTM, when using the full training sample. Furthermore,
unlike LSTM, their performance remains good even with smaller sample sizes.
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shown in Table 8. As we noted in the introduction, however, a large number of
parameters of a model does not necessarily guarantee its high model performance.
If the subjects’ behavior were independent of the past history of the play, for
example, the model with only three parameters (constant terms for 1, 2, and 3),
which predicts player behavior according to the empirical frequency of actions in
the training data, would have much lower out-of-sample prediction errors than
any other model with a larger number of parameters. In other words, models with
too many parameters should fare worse because they “overfit” the data used for
parameter fitting. Therefore, our finding that the best machine learning model,
which has a large number of parameters, fares much better than the traditional
model in our big dataset is by no means a trivial observation that can be expected
a priori. It shows that our best machine learning model has successfully captured
some regularities of human behavior that the traditional models have failed to
detect, and this can only be seen when the dataset size is much larger than usual.

VI. Opening the Black Box of the Machine Learning Models to Improve

the Traditional Models

A. Procedure

Our next task is to improve the traditional behavioral models by incorporating
what is captured by the machine learning models. The challenge is, however, that
a machine learning model is usually a black box that is difficult to interpret. This
is especially true for our best-performing machine learning model, LSTM. The
parameters of this model are the weights attached to more than 5,000 branches
in its network structure, whose meaning is hard to interpret. To address this
issue, we adopted the following procedure to open the black box.19 First, we
examined more interpretable machine learning models we estimated, the decision
tree and LASSO models. In particular, we examined the feature importance of
the decision tree model and the commonly selected right-hand side variables in
the five rounds of cross-validation of the LASSO model. Second, we modified the
conventional behavioral models by incorporating the insights gained from those
observations. We obtained new behavioral models, which we call Mixing EWA
models, that capture how humans learn to play mixed strategies. Third, we
examined how much out-of-sample predictive power the improved models have
compared to the best machine learning model. We indeed find that there is no
statistically significant difference in the predictive power of our best modified
behavioral model and the best machine learning model. Fourth, we conducted
two statistical tests to see if our modified models actually capture what is encoded
in the black box of our best machine learning model (“decoding verification”).
Finally, we point out a potential concern about our procedure, and to address

19Opening the black box of machine learning is a hot research topic in AI under the rubric of XAI
(explainable AI). Decoding our machine learning models by the XAI techniques is an intriguing agenda
for future research.
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this issue, we conduct a double-checking of the external validity of our modified
model.

B. Improved Models

The feature importance of our decision tree model shows that an important
factor in determining current action choice is whether a certain action was con-
secutively not played in the last two periods (Table 7). The lists of the variables
commonly selected in the five rounds of cross-validation of the LASSO model are
shown in Table 5, 6, and Tables B2-B7 in Appendix B.3. It suggests that the
choice of a card is affected by (1) whether the card was chosen in the previous
period and (2) whether the card was consecutively chosen (or not chosen) in the
last four periods. This points to the importance of a very specific form of serial
correlation based on the repeated choice or repeated avoidance of a certain set of
actions. To capture this, let us introduce the following variables. For any subset
B ⊆ {K, 1, 2, 3}, let Rt

i(B, τ) be a vector of indicator functions that show player
i repeatedly chose (or avoided) actions in B:

Rt
i(B, τ) =


1
{
at−s
i ∈ B, s = 1, ..., τ

}
1
{
at−s
i /∈ B, s = 1, ..., τ

}
 .

For a singleton set B = {a}, we write Rt
i(B, τ) as Rt

i(a, τ).
Using those variables, we obtain what we call Mixing EWA models that try

to improve upon the conventional behavioral models. The first version, Mixing
EWA 1, or ME1 for short, incorporates a specific form of serial correlation into
the EWA model and is formulated as follows.

P a
i (t) ∝ exp

{
λAa

i (t− 1) +
4∑

τ=1

αaτ
i ·Rt

i(a, τ)

}
,

where Aa
i (t− 1) is the EWA attractor defined by Equation (4). We assume that

the coefficient vectors in the above formula are common for all number cards
(α1τ

i = α2τ
i = α3τ

i ) but can differ from those for K. This is because this parameter
restriction has provided the best predictive performance.20 Analogous parameter
restrictions apply for the second modified model that will be introduced in what
follows. Table 9 shows the out-of-sample predictive power of ME1. The relative
completeness of ME1 is 83% for the red player and 75% for the black player,
which are substantial improvements over the conventional models.
The relative completeness of ME1 shows that this improved model is still miss-

ing out on some important empirical regularities that are captured by our best ma-

20We compare the performance of the restricted and unrestricted models in Appendix C.1
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Table 9—Prediction Performance (Improved Models)

Red Players Black Players

#Params KL SER RC #Params KL SER RC

Conventional Models

Constant (Baseline) 3 1.360 0.350 0.000 3 1.354 0.562 0.000

EWA 8 1.352 0.332 0.276 8 1.349 0.559 0.195

Serial Correlation (Order 4) 11 1.351 0.343 0.293 11 1.346 0.536 0.334

Improved Models

ME1 (t=4) 24 1.336 0.314 0.825 24 1.335 0.521 0.753

ME2 (t=4) 38 1.335 0.311 0.870 38 1.333 0.517 0.848

ME2* 126 1.332 0.311 0.961 110 1.330 0.516 0.932

Best ML Model

LSTM 5524.0 1.331 0.308 1.000 11204.0 1.329 0.507 1.000

Notes: Average prediction performance of the selected models measured in the test data. KL, SER, and
RC are the abbreviations for Kullback-Leibler divergence, strategic error rate, and relative completeness.
Each performance score is the average of five train-test CV splits. The average training (test) data size is
2071.2 (517.8) observations. The number of model parameters (#Params) is the average of five models.
The scores of the other performance measures (L1 and L2 loss measured in the test data, and AIC and
BIC measured in the training data) are listed in Appendix C.2. ME2* is the ME2 model whose history
length t minimizes the KL divergence among all t = 1, 2, . . . , 29. Here, the best t is 15 for the red player
and 13 for the black player.

chine learning model. If the particular form of serial correlation captured by ME1
is important, a subject may pay attention to the fact that the opponent’s behavior
is so affected. Moreover, when player i considers choosing card a, what is relevant
is whether the opponent chooses the particular cards against which player i’s card
a wins. To capture this idea, letW a

i be the set of opponent cards for which a player
i wins by choosing card a. Formally, W a

i = {a′ ∈ {1, 2, 3,K} | πi(a, a′) = 1},
where πi(a, a

′) denotes player i’s payoff when she plays a and her opponent plays
a′. Our second modified model, Mixing EWA2, or ME2 for short, is defined as
follows: for each a = K, 1, 2, 3,

P a
i (t) ∝ exp

{
λAa

i (t− 1) +
T∑

τ=1

αaτ
i Rt

i(a, τ) +
T∑

τ=1

γaτi Rt
−i(W

a
i , τ)

}
,(8)

where T = 4. To avoid multicollinearity, we set γa1i = (γa1i1 , 0).
21

Table 9 shows ME2 captures 87% (for the red player) and 85% (for the black
player) of the predictive power of our best machine learning model LSTM. We
then varied T in Formula (8) to see which value of T minimizes the out-of-sample

21There are multicolinearites in the elements in vector Rt
i(a, 1) and vector Rt

−i(W
a
i , 1). This is because

(1, 1)Rt
i(a, 1) = 1

{
at−1
i = a

}
+1

{
at−1
i ̸= a

}
= 1, and similarly (1, 1)Rt

−i(W
a
i , 1) = 1. Hence the second

element of the vector Rt
−i(W

a
i , 1), namely 1

{
at−1
−i /∈ Wa

i

}
, is to be omitted.
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prediction error. We show the KL divergence of each ME2(T ) moels in Table D12
in Figure D3. We found that the optimal value is T = 15 for the red player and
T = 13 for the black player. Let us call those models ME2∗. Remarkably, this
model captures almost all predictive power (96% for the red player and 93% for
the black player) of our best machine learning model.
By incorporating the insights gained from our machine learning models, we have

obtained improved models that are applicable to learning behavior not just in the
O’Neill’s game but in general games with a unique mixed strategy equilibrium.
The Mixing EWA models, ME1 and ME2, modify the leading model of learning,
EWA, in the following ways. EWA captures two important factors that guide a
player trying to learn how to play a game. One is which strategy fared well in
the past history of play, and the other is the prediction of the opponent’s strategy
based on the past history. However, a player’s desire to make one’s own behavior
unpredictable in a game with a unique mixed strategy equilibrium can only be
mechanically captured by the i.i.d. logit noise in the model, despite the fact that
humans are not good at creating i.i.d. sequences. Our Mixing EWA makes this
aspect of EWA more realistic by incorporating a player’s naive attempt to make
oneself unpredictable by choosing (or avoiding) the same strategy repeatedly.
ME2 is more sophisticated than ME1, and it allows a player to pay attention
to the opponent’s naive attempt to be unpredictable. While ME1 applies to
all games with a unique mixed strategy Nash equilibrium, ME2 can be applied
to a subset of such games, zero-sum two-person games with binary outcomes,
either “player 1 wins” or “player 2 wins.” We hope these models prove useful in
explaining how human players learn to play mixed strategies.
Figure 7, which we have seen previously, also shows how the out-of-sample

prediction errors of the Mixing EWA models change as the training data size for
parameter estimation varies. ME2∗ in the figure refers to the ME2 models with
the optimal value of T for each training data size. It shows that the Mixing EWA
models perform well over the entire range of data sizes, including the range of
data sizes typically found in lab experiments.

C. How to Conduct Statistical Tests on the Cross-validation Outcomes

The performance comparison of our models in Tables 8 and 9 is based on cross-
validation (CV). Recall that it works as follows. First, we randomly split the whole
dataset into K subsets of an (almost) equal size, calling all of them D1, . . . , DK .
Second, we set aside Dk as test data, conduct parameter fitting of our models
on the remaining training data

⋃
h ̸=k Dh, and then measure their out-of-sample

prediction errors in the test data Dk. This process is repeated for k = 1, . . . ,K.
Finally, models are compared according to the average out-of-sample prediction
errors in the K rounds of CV.
Are the differences in the prediction errors (KL) of our models reported in

Tables 8 and 9 statistically significant? This is not a trivial question because the
reported errors are the average taken over the K(= 5) rounds of CV, where the
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estimated parameters of the models are different across the K rounds.
To address this issue, we suggest two kinds of tests, an overall test and a round-

wise test, which serve somewhat different purposes. The overall test compares the
reported prediction errors in CV, the average errors over the K rounds. This test
was developed by Austern and Zhou (2024) and introduced into economic analysis
by Fudenberg, Gao and Liang (2023).22 It concerns the expected out-of-sample
prediction errors of models when their parameter fitting is conducted in a given
size of data. Suppose we have data with size N and conduct K rounds of CV. Then,
the training data size for parameter fitting is (K − 1)N/K. Austern and Zhou
is concerned with the expected out-of-sample prediction errors of models when
parameter fitting is conducted in a data set whose size is (K−1)N/K. Consider a
model with parameter space Θ, denoted by FΘ. The expected out-of-sample error
when this model is optimally estimated in the data of size (K−1)N/K is denoted
by eFΘ,K−1

K
N . The null hypothesis we test is whether the expected error is the

same for LSTM and any other given model. Intuitively, it addresses the following
kind of question. If we randomly sample a new data set of size (K − 1)N/K
that comes from the true underlying distribution, and conduct parameter fitting
of various models using the data, what are the expected out-of-sample prediction
errors of the models? The precise description of the Austern-Zhou test, which
we call the overall test, is given in Appendix A, and the results are reported
in Table 10. The test in the table examines the statistical significance (in the
above-mentioned sense) of the difference in prediction errors (KL) between the
best model (LSTM) and each of the other models. The p-values in the table
strongly show that there are significant differences in the prediction errors of the
best model (LSTM) and the rest.
Let us now discuss the difference between a model specification and an esti-

mated model. Model specification refers to a functional form, such as EWA, with
parameters whose values are to be estimated. In contrast, an estimated model
refers to a model with estimated parameters. The overall test is all about model
specifications and is suitable for answering the following question. Which model
specifications will provide better out-of-sample predictions if we have a new data
set for parameter estimation, whose size is equal to that of our current training
data? If our purpose is to select the best model specification to make an accurate
prediction, the overall test is the one we should use. It also provides a handy way
to see the statistical significance of the cross-validation results.23

However, our goal in this paper is somewhat different. We want to see if the
estimated models of machine learning are better than the traditional models. If
the answer is yes, we can then try to improve the traditional models using the
insights gained from the estimated models of machine learning. This observation

22We are grateful to Annie Liang for helpful suggestions and discussions.
23The validity of the overall test is currently established under a certain set of rather restrictive

conditions (see Appendix A), which may not be satisfied by all of our models. In particular, strict
convexity of the loss function of a mode may not be true for the machine learning models. The roundwise
test, in contrast, does not have such a potential concern.
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Table 10—Overall test for prediction performance

Red Players Black Players

KL Diff p-value KL Diff p-value

Conventional Models

Constant (Baseline) 1.360 0.029 1.57×10−94 1.354 0.026 1.01×10−90

EWA 1.352 0.021 2.04×10−55 1.349 0.021 1.25×10−70

Serial Correlation

Order 1 1.354 0.023 2.33×10−68 1.349 0.020 3.26×10−64

Order 4 1.351 0.020 2.18×10−61 1.346 0.017 1.94×10−53

Machine Learning Models

LASSO 1.344 0.013 2.00×10−31 1.339 0.010 8.74×10−24

Decision Tree 1.352 0.021 2.69×10−65 1.348 0.019 5.92×10−58

LightGBM 1.344 0.013 2.22×10−34 1.340 0.011 2.58×10−28

DNN 1.347 0.016 3.08×10−52 1.343 0.014 1.92×10−49

LSTM 1.331 0.000 — 1.329 0.000 —

Improved Models

ME1 (t = 4) 1.336 0.005 9.93×10−7 1.335 0.006 3.66×10−9

ME2 (t = 4) 1.335 0.004 2.44×10−4 1.333 0.004 2.35×10−4

ME2* 1.332 0.001 2.96×10−1 1.330 0.002 1.62×10−1

Notes: The Diff column indicates the difference between the average KL divergence of the LSTM model
and the average KL divergence of each respective model. The p-value column represents the p-value
of the Austern-Zhou test discussed in Section VI.C. The null hypothesis states that the expected KL
divergence of each model, estimated in the population, is equal to that of the LSTM model trained in
the population.

leads us to the roundwise test of our CV results. This test asks if the differences
in the out-of-sample prediction errors of the estimated models in each round
of CV are statistically significant. It is a simple standard test about the null
hypothesis that (prediction error of a given estimated model) − (prediction error
of the best estimated model LSTM) has mean 0, and the results are reported
in Table 11. The roundwise test shows that there are significant differences in
prediction errors between the estimated LSTM models and the rest (other than
the improved models), which validates our presumption that we can improve
the existing models by examining the estimated models of machine learning. In
contrast, statistical significance differs across the rounds of CV for the improved
models. In some rounds, there are no statistically significant differences in the
prediction errors of the estimated LSTM and the estimated improved models.
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Table 11—Roundwise test for prediction performance (KL divergence, each CV)

Red Players Black Players

CV1 CV2 CV3 CV4 CV5 CV1 CV2 CV3 CV4 CV5

Conventional Models

Constant (Baseline) 1.361∗∗∗ 1.359∗∗∗ 1.362∗∗∗ 1.361∗∗∗ 1.355∗∗∗ 1.359∗∗∗ 1.351∗∗∗ 1.352∗∗∗ 1.354∗∗∗ 1.356∗∗∗

EWA 1.351∗∗∗ 1.352∗∗∗ 1.350∗∗∗ 1.355∗∗∗ 1.350∗∗∗ 1.353∗∗∗ 1.347∗∗∗ 1.347∗∗∗ 1.348∗∗∗ 1.351∗∗∗

Serial Correlation

Order 1 1.358∗∗∗ 1.352∗∗∗ 1.355∗∗∗ 1.355∗∗∗ 1.349∗∗∗ 1.353∗∗∗ 1.345∗∗∗ 1.347∗∗∗ 1.351∗∗∗ 1.349∗∗∗

Order 4 1.357∗∗∗ 1.350∗∗∗ 1.352∗∗∗ 1.352∗∗∗ 1.346∗∗∗ 1.350∗∗∗ 1.341∗∗∗ 1.343∗∗∗ 1.347∗∗∗ 1.347∗∗∗

Machine Learning Models

LASSO 1.347∗∗∗ 1.346∗∗∗ 1.342∗∗∗ 1.344∗∗∗ 1.339∗∗∗ 1.344∗∗∗ 1.336∗∗∗ 1.335∗∗∗ 1.340∗∗∗ 1.341∗∗∗

Decision Tree 1.356∗∗∗ 1.352∗∗∗ 1.350∗∗∗ 1.354∗∗∗ 1.348∗∗∗ 1.354∗∗∗ 1.347∗∗∗ 1.346∗∗∗ 1.347∗∗∗ 1.345∗∗∗

LightGBM 1.347∗∗∗ 1.345∗∗∗ 1.343∗∗∗ 1.345∗∗∗ 1.339∗∗∗ 1.344∗∗∗ 1.337∗∗∗ 1.336∗∗∗ 1.342∗∗∗ 1.341∗∗∗

DNN 1.351∗∗∗ 1.348∗∗∗ 1.346∗∗∗ 1.347∗∗∗ 1.343∗∗∗ 1.347∗∗∗ 1.338∗∗∗ 1.341∗∗∗ 1.344∗∗∗ 1.345∗∗∗

LSTM 1.339 1.332 1.326 1.333 1.325 1.336 1.326 1.324 1.326 1.332

Improved Models

ME1 (t = 4) 1.339 1.337∗∗∗ 1.329 1.341∗∗∗ 1.335∗∗∗ 1.339 1.333∗∗∗ 1.331∗∗∗ 1.336∗∗∗ 1.336∗

ME2 (t = 4) 1.338 1.337∗∗ 1.328 1.339∗∗∗ 1.333∗∗∗ 1.336 1.331∗∗∗ 1.329∗∗ 1.334∗∗∗ 1.334

ME2* 1.335 1.337∗∗ 1.324 1.337∗ 1.329∗∗ 1.333 1.330∗∗ 1.326 1.331∗∗ 1.332

Notes: We compared the KL divergence of each estimated model with that of the LSTM model using paired t-tests for each of the five cross-validation
splits. The null hypothesis is that there is no difference in the KL divergence between a given model and the LSTM model, meaning the mean difference
is zero. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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D. Double-checking the External Validities of the Improved Models

Strictly speaking, the above performance comparison is not entirely “fair” as it
can potentially favor the modified models. This is because the modified models are
constructed from the better-performing models in the test data, and therefore,
the functional forms of the modified models utilize the information in the test
data (although parameter fitting is done in the training data). In other words,
the improved model may overfit the test data, and its good performance may
come from the goodness of fit to the test data, not from the fact that it captures
the true regularities of the subjects’ behavior.
To address this potential problem, we conducted a performance comparison by

means of a new dataset, which we collected after obtaining the data we used in
our preceding analysis in this paper. The new dataset comes from April 2021 to
March 2023 and has 231 pairs of observations. This is about half of the average
number of pairs in the test data used in the cross-validation (517.8).
We conducted a prediction contest once, using all prior data for parameter fit-

ting and the new data for performance comparison. The results are shown in
Table 12. KL’ and RC’ are the KL divergence and the relative completeness ob-
tained from the new data. The table shows that the results are largely unchanged.
The relative ranking of models is unchanged except that EWA fares worse than
the baseline for the black player.24 The stars in the table refer to the simple test
that we used for our roundwise test because we did not use cross-validation. Our
best improved model (ME2∗) has, for the red player, an out-of-sample prediction
error that is not significantly different from that of the best machine learning
model, LSTM, at the 5% level.

E. Decoding Verification

Our best modified model, ME2*, has 93-96% of the predictive power of the
best machine learning model, LSTM. This could mean that ME2* successfully
decoded the black box of LSTM, but there is a possibility that ME2* and LSTM
capture different regularities of data and happen to perform similarly.
To examine if ME2* successfully decodes what is captured by our best machine

learning model (LSTM), we propose what we call residual tests. First, we define
the “attractors” of our models. Note that both ME2* and LSTM have the prop-
erty that the choice probability of card a = K, 1, 2, 3 by player i at time t is given
by

P a
i (t) =

exp (W a
i (t− 1))∑

a′=K,1,2,3 exp
(
W a′

i (t− 1)
),

for some scalar W a
i (t − 1), which we call the “attractor.” Since the probability

24For the black player, EWA and ME1 have lower performance in the new data, and it may be because
the small test data happened to contain histories that do not favor the EWA model.
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Table 12—Prediction Performance (Existing Data vs New Data)

Red Players Black Players

KL KL’ RC RC’ KL KL’ RC RC’

Conventional Models

Constant (Baseline) 1.360 1.362∗∗∗ 0.000 0.000 1.354 1.351∗∗∗ 0.000 0.000

EWA 1.352 1.355∗∗∗ 0.276 0.187 1.349 1.353∗∗∗ 0.195 −0.045

Serial Correlation (t = 4) 1.351 1.350∗∗∗ 0.293 0.294 1.346 1.338∗∗∗ 0.334 0.380

Improved Models

ME1 (t = 4) 1.336 1.334∗∗∗ 0.825 0.681 1.335 1.334∗∗∗ 0.753 0.510

ME2 (t = 4) 1.335 1.328∗∗∗ 0.870 0.810 1.333 1.330∗∗∗ 0.870 0.638

ME2* 1.332 1.326∗ 0.961 0.868 1.330 1.325∗∗∗ 0.932 0.763

Best ML Model

LSTM 1.331 1.320 1.000 1.000 1.329 1.317 1.000 1.000

Notes: Average prediction performance scores are measured on the test data. The KL and RC columns
are the KL divergence and relative completeness based on the old data (averaged across five CV splits),
while KL’ and RC’ are based on the new data. For KL and RC, the average training and test dataset
sizes are 2,071.2 and 517.8 observations, respectively; for KL’ and RC’, the training and test dataset sizes
are 2,589 and 213 observations, respectively. The history length t of ME2* is fixed at 15 for red players
and 13 for black players, which are optimal values determined using the existing data. To compare each
estimated model’s KL divergence with that of the LSTM model on the new data, we performed paired
t-tests. The null hypothesis states that there is no difference in KL divergence between the given model
and the LSTM model, i.e., the mean difference is zero. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

distribution of cards is uniquely determined by P a
i /P

K
i = exp(W a

i − WK
i ) for

a = 1, 2, 3, any model is characterized by its normalized attractors W̃ a
i := W a

i −
WK

i , a = 1, 2, 3.

To formally assess the extent to which ME2* captures the regularities of data
identified by LSTM, we conducted the following statistical test. We first regress
a normalized LSTM attractor of number card j on a normalized ME2* attractor
of card a (a = 1, 2, 3),

W̃ a
i,LSTM(t) = βa

i,0 + βa
i,1W̃

a
i,ME2*(t).(9)

Using the OLS estimator of (β̂a
i,0, β̂

a
i,1), we compute the residuals

Ra
i (t) := W̃ a

i,LSTM(t)− β̂a
i,0 − β̂a

i,1W̃
a
i,ME2*(t).

This represents the factors that are captured by LSTM but not captured by ME2*.
To see how much predictive power this residual has, we estimate our residual
model, whose attractor of card a is given by

W a
i (t) :=

{
αa
i,0 + αa

i,1R
a
i (t) for a = 1, 2, 3

0 for a = K.
(10)
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We compare the residual model and the constant (baseline) model in two ways.
First, we test if the cross validation outcomes of the residual model and the

naive model are significantly different. For each round of CV, using the trained
LSTM and ME2* models, we conduct OLS (9) and comupte the residual. Then,
by minimizing the KL divergence of the residual model in the training data, we
compute the value of parameters of the residual model (10). In the test data of
the same round of CV, the residual is computed from the estimated parameters
of LSTM and ME2* models and the coefficients of the OLS model (9), both
computed in the training data of the same around. The residual thus obtained
is plugged in to the residual model (10) whose parameters were estimated in the
training data in the same round of CV. In this way, we compare the naive baseline
model and the residual model in terms of the average KL divergence in the five
rounds of CV.
Table 13 shows the results. The KL divergence of the residual models is 15%

for the red player model and 9% for the black player model, and the difference
in the prediction errors (KL) of the baseline and residual models is statistically
significant according to the overall test.
Next, we conducted the model specification test using the trained LSTM and

ME2* models with the entire dataset. We first estimate the residual model in
Equation (10) and then conduct a likelihood ratio test with the null hypothesis
H0 : α

1
i,1 = α2

i,1 = α3
i,1 = 0. The estimated parameters and the test results are

shown in Table 14. The table shows that the predictive power of the residual
model is significant.
These two residual tests show that, although ME2* achieves nearly the same

predictive power as our best machine learning model (LSTM), it is not the case
that they capture exactly the same mechanism. There are still certain regularities
of human behavior captured by LSTM that remain to be decoded.

Table 13—Prediction Performance (Constant vs. Residual Model)

Red Players Black Players

#Params KL RC #Params KL RC

Constant (Baseline) 3 1.360 0.000 3 1.354 0.000
Residual Model 6 1.356∗∗∗ 0.147 6 1.352∗∗∗ 0.091

Note: Average prediction performance of the selected models measured in the test data. Each
performance score is the average of five train-test CV splits.

VII. Conclusion: Detect, Capture and Decode (DCD)

In summary, our paper suggests a possible way to utilize AI in economic re-
search. The conventional approach has been to use our creative minds to detect
the limitations of existing models and to think about how to improve them. This
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Table 14—Estimated Parameters (Constant vs. Residual Model)

Red Players Black Players

Constant Residual Constant Residual

α1
i0 −0.392 −0.382 −0.425 −0.434

α2
i0 −0.491 −0.491 −0.579 −0.597

α3
i0 −0.568 −0.572 −0.588 −0.616

α1
i1 0.924 1.046

α2
i1 0.983 1.050

α3
i1 0.977 1.079

Log Likelihood -91525.8 -89865.2 -91153.1 -90372.0
#Parameters 3 6 3 6
LR statistic 3321.2∗∗∗ 1562.2∗∗∗

Note: The LR Statistic is the likelihood ratio test statistic comparing the constant baseline
model and the residual model. *p<0.1; **p<0.05; ***p<0.01.

paper suggests a procedure for semi-automatically doing some of those tasks,
which we call Detect, Capture, and Decode (DCD). It proceeds in the following
steps.

1) Collect big data that is an order of magnitude larger than the typical
lab dataset. Our analysis suggests that this is necessary to capture hidden
regularities, if any, using machine learning models, which have a large number
of free parameters.

2) Compare the external validities of conventional models and machine learning
models, by means of cross-validation, to detect if the existing models can be
improved and to what extent. The notion of relative completeness offers
a handy way to see how much predictive powers the conventional models
have relative to the best machine learning model. Use the overall test
and the roundwise test to see if the differences in the performances of the
models are statistically significant.

3) If the existing models can be improved, certain regularities of human behav-
ior that were not captured by the traditional models are captured by and
encoded in the machine learning model(s). Try to open the black box of
the better-performing machine learning model(s) and improve the existing
models until the out-of-sample predictive error of the improved model is close
to that of the best machine learning model.

4) Decoding verification: Examine if the improved model successfully de-
codes what is encoded in the best machine learning model, by means of the
residual tests.

5) Double-check the external validity of the improved model using a sep-
arate dataset.
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One of the challenges we face lies in the third step of this procedure, opening
the black box of the machine learning models. This paper suggests the following
method. Utilize interpretable machine learning models, such as the decision tree
or LASSO model, along with complete black box models, such as deep learning
models, and try to gain insights from the interpretable models. This method
happened to worke well for the problem we considered in this paper, but it would
be nice to come up with a more systematic way. Opening the black box of machine
learning models is a hot research topic in AI, under the rubric of XAI (explainable
AI). How Step 3 (opening the black box) might be automated is an important
and promising future research topic.
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Appendix

A. Notes on the Overall Test

This section summarizes the details of the overall test introduced by Austern
and Zhou (2024) and explained by Fudenberg, Gao and Liang (2020) discussed
in Section VI.C. Although Fudenberg, Gao and Liang (2020) provides detailed
instructions on how to use the overall test for economics practitioners, they cite
an earlier version of Austern and Zhou (2024), where slightly different assumptions
are used. Thus, following the notations in Fudenberg, Gao and Liang (2020), we
provide instructions on how to use the overall test using the new assumptions.

Let X be a finite set of features, and let PX be the marginal distribution of X.
Let Y ⊆ Rk be a compact set of outcomes. Let F := YX be the set of all mappings
from X to Y, endowed with the usual topology. Each f : X → Y belonging to
F is called a prediction rule. For a compact set Θ of parameters, we define a
parametric model, denoted by FΘ = {fθ}θ∈Θ ⊆ F , where each fθ is continuous
in θ.25 A loss function is given by l : F × X × Y → R+, where l (f, (x, y)) is
the loss between the prediction f (x) and the true outcome y. Let Zi = (Xi, Yi)
be the observation i.26 The researchers observe data denoted by {Zi}Ni=1, where
each observation is independently and identically distributed according to the
distribution P .

Given the data set {Zi}Ni=1, we can compute the out-of-sample prediction error
of a parametric model FΘ as follows:

1) Divide the data {Zi}Ni=1 into K groups, denoted by {Gk}Kk=1, where each
Gk has approximately the same size. For simplicity, assume that N/K is an
integer so that each Gk has N/K observations.

2) In each k-th process of the cross-validation, {Zi}Ni=1 \ Gk is used as the
training data and Gk is used as the test data.

3) For each k ∈ {1, . . . ,K}, compute the best prediction rule that minimizes
the average sample error for prediction of the k-th training data {Zi}Ni=1\Gk:

f̂−k
FΘ,CV := argmin

f∈FΘ

1

N −N/K

∑
Zj∈{Zi}Ni=1\Gk

l (f, Zj) .

This best prediction rule gives the average out-of-sample error for the pre-
diction of the k-th test data Gk:

êk,FΘ,CV :=
1

N/K

∑
Zj∈Gk

l
(
f̂−k
FΘ,CV , Zj

)
.

25Since X is finite, we can regard Θ ⊆ Rp, where p < ∞.
26In our setting, each observation corresponds to the choices of a player for 30 periods.
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4) Finally, the average out-of-sample error across cross-validation is as follows:

êFΘ,CV :=
1

K

k∑
k=1

êk,FΘ,CV .

For given data {Zi}Ni=1 and a given parametric model FΘ, we define the condi-
tional out-of-sample error by

eFΘ
:= EZN+1∼P

[
l
(
f̂FΘ

, ZN+1

)]
,

where f̂FΘ
is the best prediction rule that minimizes the average sample error for

prediction of the entire training data {Zi}Ni=1. That is,

f̂FΘ
:= argmin

f∈FΘ

1

N

∑
Zj∈{Zi}Ni=1

l (f, Zj) .

As data {Zi}Ni=1 is realized according to the distribution PN , we can define the
unconditional out-of-sample error by

eFΘ,N := E{Zi}Ni=1∼PN [eFΘ
] .

By construction of êFΘ,CV , E{Zi}Ni=1∼PN [êFΘ,CV ] = eFΘ,K−1
K

N holds. That is, the

expected average out-of-sample errors across cross-validation given N observa-
tions is equal to the unconditional out-of-sample error given K−1

K N observations.

Using this property, we consider the asymptotics of êFΘ,CV −eFΘ,K−1
K

N . To this

end, we introduce additional assumptions. For a generic prediction rule fθ ∈ FΘ,
we define

lΘ (θ, Zi) := l (fθ, Zi) .

Also, we define the best prediction rule fθ∗ by

θ∗ ∈ argmin
θ∈Θ

EZ∼P [lΘ (θ, Z)] .

ASSUMPTION 1 (Austern and Zhou (2024)): A model FΘ and its best predic-
tion rule fθ∗ satisfy the following:

1) lΘ (θ, Zi) is three times differentiable and strictly convex in θ.

2) maxk∈{1,...,p}

∥∥∥∂lΘ(θ∗,Zi)
∂θk

∥∥∥
L50

< ∞, and

supN ′∈N E(Z,{Zi}N
′

i=1)∼PN′+1

[
l8Θ

(
θ̂N ′ , Z

)]
< ∞, where θ̂N ′ satisfies fθ̂N′

=

f̂FΘ
, where f̂FΘ

is derived using {Zi}N
′

i=1.
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3) There is a convex open neighborhood Oθ∗ of θ∗ such that

a) ∥ supθ∈Oθ∗
∥∇θlΘ (θ, Zi) ∥2∥L32 < ∞,

b) ∥ supθ∈Oθ∗
λmax

(
∇2

θlΘ (θ, Zi)
)
∥L16 < ∞, where λmax is a mapping from

a matrix to its highest eigenvalue,

c) maxk∈{1,...,p}

∥∥∥supθ∈Oθ∗
∥∇3

θlΘ (θ, Zi)k,·,· ∥op
∥∥∥
L32

< ∞, where ∥ · ∥op is the

operator 2-norm, and

d) there exists c > 0 such that infθ∈Oθ∗ λmin

(
∇2

θlΘ (θ, Zi)
)
≥ c holds almost

surely, where λmin is a mapping from a matrix to its lowest eigenvalue.

THEOREM 1 (Proposition 5 in Austern and Zhou (2024)): Under Assumption
1, we have

√
N
(
êFΘ,CV − eFΘ,K−1

K
N

)
d−→ N (0,Var (l (fθ∗ , Zi))) .

This theorem provides the foundation for the overall test. Note that the following
estimator consistently estimates the asymptotic variance of êFΘ,CV :

σ̂2
FΘ

:=
1

K

K∑
k=1

1
N
K − 1

∑
Zj∈Gk

l (f̂−k
FΘ,CV , Zj

)
− 1

N
K

∑
Zj′∈Gk

l
(
f̂−k
FΘ,CV , Zj′

)2

.

PROPOSITION 1 (Proposition 1 in Austern and Zhou (2024)): Under Assump-
tion 1, we have

σ̂2
FΘ

p−→ Var (l (fθ∗ , Zi)) .

A.1. Hypothesis Testing

We are interested in testing whether the unconditional out-of-sample error for
a model FΘ is significantly smaller than that for another model FΘ′ . We define

∆l
(
fθ∗ , fθ′∗ , Zi

)
:= lΘ (θ∗, Zi)− lΘ′

(
θ
′∗, Zi

)
.

Theorem 1 implies the following result:

PROPOSITION 2: If Assumption 1 holds for both FΘ and FΘ′, then we have

√
N
[(
êFΘ,CV − êFΘ′ ,CV

)
−
(
eFΘ,K−1

K
N − eFΘ′ ,K−1

K
N

)]
d−→ N

(
0,Var

(
∆l
(
fθ∗ , fθ′∗ , Zi

)))
.

PROOF:
The proof of Lemma C.1. in Fudenberg, Gao and Liang (2023), where the result

of Theorem 1 is used, applies when we replace their F with our FΘ′ .
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Note that, as in Proposition 1, we can construct a consistent estimator of the
asymptotic variance of êFΘ,CV − êFΘ′ ,CV :

σ̂2
Θ+Θ′ :=2σ̂2

FΘ
+ 2σ̂2

FΘ′ − σ̂2
FΘ+FΘ′

=
1

K

K∑
k=1

1
N
K − 1

∑
Zj∈Gk

l (f̂−k
FΘ,CV , Zj

)
− 1

N
K

∑
Zj′∈Gk

l
(
f̂−k
FΘ,CV , Zj′

)

+l
(
f̂−k
FΘ′ ,CV , Zj

)
− 1

N
K

∑
Zj′∈Gk

l
(
f̂−k
FΘ′ ,CV , Zj′

)2

.

PROPOSITION 3: Under Assumption 1, we have

σ̂2
Θ+Θ′

p−→ Var
(
∆l
(
fθ∗ , fθ′∗ , Zi

))
.

PROOF:
The proof of Lemma C.2. in Fudenberg, Gao and Liang (2023), where the result

of Proposition 1 is used, applies when we replace their F with our FΘ′ .
Therefore, the standard error of êFΘ,CV − êFΘ′ ,CV can be derived by

SE
(
êFΘ,CV − êFΘ′ ,CV

)
:=
√
σ̂2
Θ+Θ′/N.
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B. Details of Machine Learning Models

B.1. List of Variables for LASSO, Decision Tree, and LightGBM

We employed a total of 2,448 candidate variables for LASSO, decision tree, and
LightGBM listed in Table B1.27 These variables were selected according to the
following criteria. First, we include all dummies of actions and action profiles
taken in t − 1, t − 2, t − 3, and t − 4. Second, we include one- and two-period
history dummies. In addition, since we do not have enough observations of longer
histories, we focus on the reduced histories, such as histories of K-number profiles
and histories of win-lose patterns, to incorporate the associated dummies in the
last four periods.

Table B1—The list of variables included in ML models

List of (Dummy) Variables

Constant
Period dummy (t=5, 6, . . . , 30)
R’s action in t-1, t-2, t-3, t-4
B’s action in t-1, t-2, t-3, t-4
Action profile in t-1, t-2, t-3, t-4
R’s action was a number or K in t-1, t-2, t-3, t-4
B’s action was a number or K in t-1, t-2, t-3, t-4
Action profile (number or K) in t-1, t-2, t-3, t-4
History of R’s actions in the last 2, 3, 4 periods
History of B’s actions in the last 2, 3, 4 periods
History of action profiles in the last 2 periods
History of action profiles (number or K) in the last 2, 3, 4 periods
R played 1 (or 2, 3, K) consecutively in the last three periods
B played 1 (or 2, 3, K) consecutively in the last three periods
R did not play 1 (or 2, 3, K) in the last three periods
B did not play 1 (or 2, 3, K) in the last three periods
R won or lost in periods t-1, t-2, t-3, t-4
History of winners in the last 2, 3, 4 periods
History of R’s actions (number or K) and winners in t-1, t-2, t-3, t-4
History of B’s actions (number or K) and winners in t-1, t-2, t-3, t-4
History of action profiles (number or K) and winners in t-1, t-2, t-3, t-4
R played K (or numbers) in t-1, ...., t-n consecutively (n=4, 5, ..., 29)
B played K (or numbers) in t-1, ...., t-n consecutively (n=4, 5, ..., 29)

Notes: The list of variables included in the LASSO, decision tree, and LightGBM models.

Here, t is the current period; a model predicts the action in period t using the variables listed

above.

27The number of parameters we initially created was 2,702. Dropping variables whose values were
exactly the same as another variable then left us with 2,448 variables.
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B.2. Illustration of Decision Tree

In this section, we show the sample of decision trees for the red player (CV-1).
Each node, except for the terminal nodes, corresponds to a feature, a property
of three-period history whose occurrences can be answered by Yes or No. If the
answer to the question is Yes, we go to the bottom right, and if it is No, we go
to the bottom left.

Figure B1. Part of the decision tree for the red player trained by all data.

Notes: In each node, the first line represents the feature that partitions data, the second line
represents the entropy in the node, the third line represents the number of observations in the
node, and the last line represents how many times each action is chosen (from left to right:
1, 2, 3, K). Note that choosing a feature for splitting based on the entropy is equivalent to
choosing a feature for splitting based on the KL divergence. R action nana asks if the red
player did not play a ∈ {1, 2, 3,K} in the last two periods, R action prev 12.12 asks if the red
player played 1 at t-1 and 2 at t-2, R K10 asks if the red player played K in the last 10 periods
consecutively, and Kprofile prec 4.(N,N) asks if a pair of numbers were player at t-4.

Figure B2. Part of the decision tree for the black player trained by all data.

Notes: In each node (except for the node on the far right), the first line represents the
feature that partitions data, the second line represents the entropy in the node, the third line
represents the number of observations in the node, and the last line represents how many
times each action is chosen (from left to right: 1, 2, 3, K). Note that choosing a feature
for splitting based on the entropy is equivalent to choosing a feature for splitting based on
the KL divergence. B action nana asks if the black player did not play a ∈ {1, 2, 3,K} in
the last two periods, B N^n asks if the black player played numbers in the last n periods
consecutively, B action 111 asks if the black player played 1 in the last periods consecutively,
B K winner prev 12.KN BB asks if the black player won by K at t-1 and won by numbers
at t-2, and B action prev 2.3 asks if the black player played 3 at t-2.

B.3. Parameters that LASSO Commonly Selected across All Five Cross-validation

Splits

In this section, we summarize in Table B2 to B7 the list of coefficients that
appear in all five CVs. Since we already showed the table for the red player, card
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1 (Table 5) and for the red player, card K (Table 6) in Section IV.B, we do not
repeat them here.

Table B2—Commonly Selected Variables in LASSO (Red player, Card 2)

βR,2

Value Count

Period dummy (t=8) −0.049 2589
Period dummy (t=11) 0.045 2589
R played 2 at t-1 −0.411 14494
B played 2 at t-1 −0.034 13675
Action profile at t-1 was (K,1) 0.080 5386
Action profile at t-1 was (K,2) −0.053 4284
R played 2 at t-2 −0.192 14470
Action profile at t-2 was (2,2) −0.026 3157
Action profile at t-3 was (2,2) −0.034 3140
Action profile at t-4 was (2,1) 0.096 3415
R played 2 at t-1, 2 at t-2 0.393 2359
R played 1 at t-1, 3 at t-2, K at t-3 0.062 1353
R played 2 at t-1, 2 at t-2, 2 at t-3 0.510 498
R played K at t-1, a number at t-2, a number at t-3, K at t-4 0.058 3982
B played K at t-1, 1 at t-2, 2 at t-3 −0.108 1355
R won by playing 2 at t-1 −0.055 6411
R lost by playing 2 at t-3 −0.021 8039
R lost by playing 1 at t-1, lost by playing 2 at t-2 −0.142 1254
R lost by playing K at t-1, lost by playing 3 at t-2 0.071 1659
B won by playing 2 at t-4 −0.073 7430
B won by playing a number at t-1, lost by playing a number at t-2 −0.034 6817

Notes: The Value column presents the estimated coefficients based on the entire dataset. If LASSO with
the entire dataset excludes any variable above during the estimation, the corresponding Value entry is
left blank. The Count column specifies the number of histories in which each dummy variable is assigned
a value of 1.
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Table B3—Commonly Selected Variables in LASSO (Red player, Card 3)

βR,3

Value Count

Constant −0.053 67314
Period dummy (t=11) −0.062 2589
Period dummy (t=18) 0.077 2589
R played 3 at t-1 −0.394 13449
Action profile at t-1 was (2,1) 0.049 3464
R played 3 at t-2 −0.173 13488
B played 3 at t-2 −0.066 13521
2-period K-history is ((N,N),(N,N)) −0.080 12206
3-period K-history is ((N,K),(N,N),(N,N)) −0.072 2566
R played 2 at t-1, 1 at t-2 0.043 3883
R played 3 at t-1, 3 at t-2 0.331 1976
R played 1 at t-1, 2 at t-2, K at t-3 0.196 1464
R played 2 at t-1, 1 at t-2, K at t-3 0.149 1506
R played 3 at t-1, 3 at t-2, 3 at t-3 0.283 364
R played 3 at t-1, K at t-2, 1 at t-3 −0.199 1325
R played K at t-1, K at t-2, 3 at t-3 −0.120 1476
R played a number at t-1, K at t-2, a number at t-3 0.010 10752
B played K at t-1, K at t-2, 3 at t-3 −0.077 1561
Winners at t-2 was R −0.020 28161
Winners at t-1, t-2, t-3 are R, B, R −0.051 6858
R won by playing 1 at t-4 −0.067 6656
R lost by playing 3 at t-1, lost by playing 3 at t-2 0.144 591
B won by playing K at t-1, lost by playing 1 at t-2 −0.066 1436
R consecutively played a number in the last 8 periods 0.110 1967

Notes: The Value column presents the estimated coefficients based on the entire dataset. If LASSO with
the entire dataset excludes any variable above during the estimation, the corresponding Value entry is
left blank. The Count column specifies the number of histories in which each dummy variable is assigned
a value of 1.
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Table B4—Commonly Selected Variables in LASSO (Black player, Card 1)

βB,1

Value Count

Period dummy (t=10) 0.107 2589
Period dummy (t=16) −0.071 2589
Period dummy (t=19) −0.034 2589
R played 1 at t-1 −0.139 15988
B played 1 at t-1 −0.442 15832
B played 3 at t-1 0.034 13517
Action profile at t-1 was (1,1) −0.070 3978
Action profile at t-1 was (3,2) 0.080 2778
B played 1 at t-2 −0.170 15792
Action profile at t-2 was (3,1) −0.118 3007
Action profile at t-2 was (K,3) −0.056 4380
R played K at t-3 0.037 23380
Action profile at t-3 was (K,1) 0.033 5366
B played K at t-4 0.016 24480
Action profile at t-4 was (K,1) 0.052 5450
Action profile at t-4 was (K,2) −0.030 4315
2-period K-history is ((N,N),(N,N)) 0.021 12206
4-period K-history is ((N,N),(N,N),(N,K),(N,N)) −0.109 1227
R played 2 at t-1, 3 at t-2 0.116 3116
R played 2 at t-1, K at t-2 0.036 5136
R played 3 at t-1, 2 at t-2 0.068 3215
R played 3 at t-1, 1 at t-2, 2 at t-3 0.122 920
R played 3 at t-1, 2 at t-2, 1 at t-3 0.068 956
R played K at t-1, a number at t-2, a number at t-3, a number at t-4 0.039 6600
B played 1 at t-1, 1 at t-2 0.410 2883
B played 1 at t-1, K at t-2 −0.072 6011
B played K at t-1, 1 at t-2 −0.110 5985
B played 1 at t-1, 1 at t-2, 1 at t-3 0.141 718
B played 1 at t-1, K at t-2, 3 at t-3 −0.114 1363
B played K at t-1, 2 at t-2, 3 at t-3 0.068 1181
B played 1 at t-1, 1 at t-2, 1 at t-3, 1 at t-4 0.945 254
B played 1 at t-1, 1 at t-2, K at t-3, K at t-4 0.147 402
B played K at t-1, K at t-2, a number at t-3, K at t-4 −0.042 1937
Winners at t-1, t-2, t-3 are B, R, R 0.077 6808
R lost by playing 1 at t-2 −0.046 9356
R lost by playing 2 at t-4 0.026 8012
B won by playing 1 at t-1, won by playing 1 at t-2 0.193 989
K-profile and winner were (N,N) and B at t-1, (N,N) and B won at t-2,
(N,N) and B won at t-3

0.407 300

Notes: The Value column presents the estimated coefficients based on the entire dataset. If LASSO with
the entire dataset excludes any variable above during the estimation, the corresponding Value entry is
left blank. The Count column specifies the number of histories in which each dummy variable is assigned
a value of 1.
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Table B5—Commonly Selected Variables in LASSO (Black player, Card 2)

βB,2

Value Count

Period dummy (t=8) −0.109 2589
Period dummy (t=12) −0.094 2589
Period dummy (t=17) −0.051 2589
R played 2 at t-1 −0.149 14494
B played 2 at t-1 −0.328 13675
R played 2 at t-2 −0.041 14470
B played 2 at t-2 −0.068 13645
B played K at t-3 −0.015 24427
R played 3 at t-4 −0.046 13425
R played K at t-4 −0.055 23435
B played K at t-4 −0.048 24480
Action profile at t-4 was (1,2) 0.037 3467
Action profile at t-4 was (1,3) −0.063 3189
Action profile at t-4 was (K,2) 0.037 4315
R played K at t-1, a number at t-2, K at t-3, K at t-4 −0.040 1644
B played 2 at t-1, 2 at t-2 0.260 2140
B played 1 at t-1, K at t-2, 3 at t-3 0.049 1363
B played 1 at t-1, K at t-2, K at t-3 −0.026 2027
B played 2 at t-1, 2 at t-2, 2 at t-3 0.210 429
B played 3 at t-1, 1 at t-2, K at t-3 0.099 1376
B played K at t-1, 3 at t-2, 1 at t-3 0.144 1314
B played 2 at t-1, 2 at t-2, 2 at t-3, 2 at t-4 0.694 130
B played K at t-1, K at t-2, K at t-3, K at t-4 −0.135 1497
B played K at t-1, K at t-2, a number at t-3, a number at t-4 −0.056 3170
Winners at t-1, t-2, t-3 are R, R, B −0.033 6852
Winners at t-1, t-2, t-3, t-4 are R, B, B, R −0.035 3972
R lost by playing 1 at t-3 0.047 9411
R lost by playing 1 at t-4 0.001 9450
R won by playing 2 at t-4 0.014 6336
R won by playing 3 at t-4 −0.061 5731
R won by playing 2 at t-1, won by playing K at t-2 −0.190 910
B won by playing 3 at t-1 0.073 7364
B won by playing 3 at t-1, won by playing 1 at t-2 0.106 1084
B consecutively played a number in the last 6 periods 0.077 4447

Notes: The Value column presents the estimated coefficients based on the entire dataset. If LASSO with
the entire dataset excludes any variable above during the estimation, the corresponding Value entry is
left blank. The Count column specifies the number of histories in which each dummy variable is assigned
a value of 1.
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Table B6—Commonly Selected Variables in LASSO (Black player, Card 3)

βB,3

Value Count

Constant −0.033 67314
Period dummy (t=6) −0.101 2589
Period dummy (t=19) 0.027 2589
Period dummy (t=23) −0.044 2589
Period dummy (t=27) 0.023 2589
R played 3 at t-1 −0.080 13449
B played 3 at t-1 −0.172 13517
Action profile at t-1 was (3,3) −0.181 2971
B played 3 at t-2 −0.186 13521
Action profile at t-2 was (3,3) −0.057 2989
Action profile at t-3 was (3,3) −0.138 2970
B played 1 at t-4 −0.050 15877
B played K at t-4 −0.014 24480
Action profile at t-4 was (2,2) 0.049 3115
Action profile at t-4 was (2,K) −0.020 4897
4-period K-history is ((K,N),(N,N),(N,N),(N,N)) −0.089 1018
R played a number at t-1, K at t-2, K at t-3, a number at t-4 −0.035 3239
B played 2 at t-1, 1 at t-2 0.121 3501
B played 3 at t-1, 1 at t-2 −0.163 3423
B played 3 at t-1, 3 at t-2 0.079 2055
B played 3 at t-1, K at t-2 −0.159 4966
B played 1 at t-1, 2 at t-2, K at t-3 0.102 1319
B played 2 at t-1, K at t-2, 1 at t-3 0.168 1360
B played 3 at t-1, 3 at t-2, 3 at t-3 0.550 382
B played 3 at t-1, K at t-2, 2 at t-3 −0.141 1145
B played K at t-1, K at t-2, 2 at t-3 0.081 1563
B played K at t-1, K at t-2, K at t-3 −0.056 3287
Winners at t-1 was R −0.024 28165
Winners at t-2 was R −0.013 28161
Winners at t-1, t-2, t-3 are R, B, R −0.035 6858
R lost by playing 3 at t-2 −0.085 7717
R lost by playing 3 at t-1, lost by playing 2 at t-2 −0.130 993
R lost by playing K at t-1, lost by playing 3 at t-2 0.087 1659
B lost by playing 3 at t-1, won by playing 2 at t-2 −0.165 804
B won by playing 3 at t-1, won by playing 3 at t-2 0.227 547
R consecutively played a number in the last 7 periods −0.060 2879

Notes: The Value column presents the estimated coefficients based on the entire dataset. If LASSO with
the entire dataset excludes any variable above during the estimation, the corresponding Value entry is
left blank. The Count column specifies the number of histories in which each dummy variable is assigned
a value of 1.
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Table B7—Commonly Selected Variables in LASSO (Black player, Card K)

βB,K

Value Count

Constant 0.147 67314
Period dummy (t=5) 0.132 2589
Period dummy (t=20) −0.057 2589
Period dummy (t=30) 0.092 2589
R played K at t-1 0.089 23383
Action profile at t-2 was (1,3) 0.062 3195
B played 2 at t-3 −0.013 13618
B played K at t-3 0.087 24427
K-profile at t-3 was (N,K) 0.054 15057
B played K at t-4 0.158 24480
2-period K-history is ((N,K),(K,K)) 0.069 2295
2-period K-history is ((N,N),(K,N)) 0.059 5873
3-period K-history is ((K,K),(N,K),(N,N)) −0.101 772
3-period K-history is ((K,K),(N,N),(N,N)) −0.099 1789
3-period K-history is ((K,N),(N,N),(N,N)) 0.147 2639
3-period K-history is ((N,N),(K,N),(K,K)) 0.139 769
4-period K-history is ((N,N),(N,K),(K,K),(N,N)) 0.120 498
4-period K-history is ((N,N),(N,N),(N,N),(N,N)) −0.074 2352
R played 1 at t-1, K at t-2, 3 at t-3 −0.085 1305
R played K at t-1, a number at t-2, K at t-3 0.076 5009
B played K at t-1, K at t-2 0.136 8394
B played 1 at t-1, 2 at t-2, 3 at t-3 0.085 844
B played 3 at t-1, 2 at t-2, 1 at t-3 0.172 942
B played K at t-1, 1 at t-2, 1 at t-3 0.125 978
B played K at t-1, K at t-2, K at t-3 0.072 3287
B played a number at t-1, a number at t-2 0.058 27062
B played K at t-1, a number at t-2, K at t-3, K at t-4 0.124 1955
B played K at t-1, a number at t-2, K at t-3, a number at t-4 −0.126 3738
B played a number at t-1, K at t-2, a number at t-3, K at t-4 0.112 3744
B played a number at t-1, a number at t-2, a number at t-3, a number at

t-4

0.130 10619

Winner at t-1 was R 0.038 28165
R lost by playing 2 at t-1, lost by playing 1 at t-2 0.046 1278
B won by playing K at t-1, won by playing a number at t-2 −0.202 5619
B won by playing a number at t-1, lost by playing K at t-2 −0.105 3092
B won by playing a number at t-1, won by playing a number at t-2 0.060 8485
K-profile and winner were (N,N) and B at t-1 −0.058 10109
K-profile and winner were (N,N) and B at t-1 −0.054 10092
K-profile and winner were (N,K) and B at t-1, (K,K) and R won at t-2,
(N,N) and R won at t-3

0.102 780

K-profile and winner were (N,N) and B at t-1 0.000 10046
B consecutively played K in the last 5 periods 0.159 735
B consecutively played K in the last 7 periods 0.447 232
B consecutively played a number in the last 6 periods −0.058 4447
B consecutively played a number in the last 8 periods −0.172 2175
B consecutively played a number in the last 9 periods −0.148 1612
B consecutively played a number in the last 11 periods −0.281 954
B consecutively played a number in the last 13 periods −0.199 616

Notes: The ‘Value’ column presents the estimated coefficients based on the entire dataset. If LASSO
with the entire dataset excludes any variable above during the estimation, the corresponding ‘Value’
entry is left blank. The ‘Count’ column specifies the number of histories in which each dummy variable
is assigned a value of 1.
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C. Additional Performance Comparison

In Appendix C, we provide more detailed performance comparisons that were
omitted in the main text. Appendix C.1 enumerates the performance metrics
for all the models discussed in the paper. We also include additional results
from new models to assess robustness. Appendix C.2 presents the performance
scores of the selected models (as same as Table 8 and 9 in the main text) using
alternative criteria. Here, we calculate (i) L1 and L2 losses using the test data
and (ii) traditional econometric measures of model selection, AIC and BIC, based
on the training data. We will compare those measures with KL divergence and
strategic error rates.

C.1. Omitted Model Performances

Table C8 presents the performance metrics (KL divergence, strategic error rates,
and relative completeness) for all the models we estimated. We computed the
scores in exactly the same way as outlined in the main text — we partitioned
the data into five disjoint groups, trained each model on four of these groups,
evaluated errors using the remaining group, and then averaged the scores across
the five cross-validation splits.
For the sake of robustness, we estimated two additional models: (i) Serial

Correlation of Order 4 and (ii) ME2, both without the constraint of identical
coefficients for the number cards. The respective lines for Serial Correlation
(Order 4, no restriction) and ME2 (no restriction) correspond to those models.
As noted earlier, these unrestricted versions exhibit marginally lower performance
than their restricted counterparts.28 For instance, the relative completeness (RC)
of the unrestricted ME2 for the red player is 0.852, slightly lower than the 0.870
RC for the restricted version.
In addition, we include the models that mix EWA and Serial Correlation. The

lines for EWA+Serial Correlation (Order 1, 4) in Table C8 correspond to those
models. We can see that the RC of EWA+Serial Correlation (Order 4) is 0.628
for the red player and 0.587 for the black player, which is better than the original
EWA (0.276 and 0.195) and Serial Correlation or Order 4 (0.293 and 0.334) but
worse than ME1 (0.825 and 0.753). This result indicates that our specific form
of serial correlation—(1) whether the card was chosen consecutively in the last t
periods and (2) whether the card was not chosen in the last t periods—explains
a greater portion of real human behavior.

28Except for KL and RC of ME2 for the black player.
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Table C8—Prediction Performance Comparison (All Models)

Red Players Black Players

#Params KL SER RC #Params KL SER RC

Conventional Models

Constant (Baseline) 3 1.360 0.350 0.000 3 1.354 0.562 0.000

1-period Nonparametric 48 1.354 0.351 0.202 48 1.347 0.540 0.281

2-period Nonparametric 768 1.354 0.341 0.215 768 1.347 0.539 0.297

1-period KN history 12 1.360 0.350 0.003 12 1.353 0.562 0.052

2-period KN history 48 1.357 0.347 0.082 48 1.352 0.559 0.099

3-period KN history 192 1.355 0.337 0.155 192 1.352 0.558 0.102

4-period KN history 768 1.357 0.336 0.083 768 1.355 0.560 −0.036

RL 4 1.359 0.350 0.036 4 1.352 0.559 0.088

BL 4 1.354 0.335 0.213 4 1.360 0.563 −0.244

EWA 8 1.352 0.332 0.276 8 1.349 0.559 0.195

Nested EWA 9 1.351 0.331 0.310 9 1.349 0.560 0.184

Serial Correlation

Order 1 5 1.354 0.350 0.204 5 1.349 0.541 0.199

Order 2 7 1.353 0.348 0.235 7 1.348 0.537 0.235

Order 3 9 1.353 0.348 0.251 9 1.347 0.537 0.268

Order 4 11 1.351 0.343 0.293 11 1.346 0.536 0.334

Order 5 13 1.351 0.339 0.322 13 1.345 0.532 0.367

Order 6 15 1.349 0.336 0.359 15 1.344 0.527 0.411

Order 4, no restriction 19 1.351 0.344 0.291 19 1.346 0.536 0.330

Machine Learning Models

LASSO 408.2 1.344 0.324 0.562 476.0 1.339 0.526 0.589

Decision Tree 40.4 1.352 0.343 0.273 41.6 1.348 0.536 0.248

LightGBM 30.0 1.344 0.325 0.547 30.0 1.340 0.527 0.556

DNN 6208.0 1.347 0.332 0.455 6428.0 1.343 0.534 0.432

LSTM 5524.0 1.331 0.308 1.000 11204.0 1.329 0.507 1.000

Improved Models

ME1 (t = 4) 24 1.336 0.314 0.825 24 1.335 0.521 0.753

ME2 (t = 4) 38 1.335 0.311 0.870 38 1.333 0.517 0.848

ME2 (t = 4, no restriction) 68 1.335 0.312 0.852 68 1.332 0.518 0.852

ME2* 126 1.332 0.311 0.961 110 1.330 0.516 0.932

ME2* (no restriction) 244 1.337 0.312 0.792 212 1.332 0.517 0.854

EWA + Serial Correlation

Order 1 11 1.344 0.327 0.536 11 1.342 0.528 0.486

Order 4 17 1.342 0.321 0.628 17 1.339 0.522 0.587

Human 0.419 0.581

Notes: Average prediction performance measured in the test data. KL, SER, and RC denote Kullback-
Leibler divergence, strategic error rate, and relative completeness. Each performance score is the average
of five train-test CV splits. Hyperparameters of the machine learning models are determined by cross-
validation within each training data. The number of model parameters (#Params) is the average of the
five models for each red and black player.
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C.2. Other Performance Measures

Table C9—Prediction Performance Comparison (L1 loss, L2 loss, KL divergence, and strate-

gic error rates)

Red Players Black Players

L1 L2 KL SER L1 L2 KL SER

Conventional Models

Constant (Baseline) 1.472 0.854 1.360 0.350 1.466 0.852 1.354 0.562

2-period Nonparametric 1.459 0.851 1.354 0.341 1.451 0.847 1.347 0.539

EWA 1.466 0.851 1.352 0.332 1.464 0.850 1.349 0.559

Serial Correlation

Order 1 1.467 0.853 1.354 0.350 1.460 0.850 1.349 0.541

Order 4 1.463 0.851 1.351 0.343 1.455 0.848 1.346 0.536

Machine Learning Models

LASSO 1.454 0.847 1.344 0.324 1.448 0.845 1.339 0.526

Decision Tree 1.459 0.850 1.352 0.343 1.454 0.848 1.348 0.536

LightGBM 1.456 0.848 1.344 0.325 1.452 0.846 1.340 0.527

DNN 1.458 0.849 1.347 0.332 1.455 0.847 1.343 0.534

LSTM 1.437 0.839 1.331 0.308 1.436 0.839 1.329 0.507

Improved Models

ME1 (t = 4) 1.449 0.844 1.336 0.314 1.449 0.844 1.335 0.521

ME2 (t = 4) 1.447 0.843 1.335 0.311 1.447 0.843 1.333 0.517

ME2* 1.443 0.842 1.332 0.311 1.445 0.842 1.330 0.516

Notes: Average prediction performance measured in the test data. L1, L2, KL, and SER stand for
L1 loss, L2 loss, Kullback-Leibler divergence, and strategic error rates. Each performance score is the
average of five train-test CV splits. Hyperparameters of the machine learning models are determined by
cross-validation within each training data.

Table C9 lists L1 loss and L2 loss of the selected models listed in Table 8 and
9 measured by test data (averages of the five cross-validation splits). Readers
will observe that among all models, the baseline “Constant” model exhibits the
poorest performance, while the LSTMmodel outperforms others across all metrics
for both red and black players. Based on this foundation, we define relative
completeness measured by metric ℓ, RCℓ, in the following manner:

(RCℓ of a model) =
(Average loss of the model) - (Average loss of Constant)

(Average loss of LSTM) - (Average loss of Constant)
.

(C1)

In Table C10, we present RCL1, RCL2, and RCSER along with RCKL. While
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Table C10—Prediction Performance Comparison (Relative Completeness measured by L1 loss,

L2 loss, KL divergence, and strategic error rates)

Red Players Black Players

RCL1 RCL2 RCKL RCSER RCL1 RCL2 RCKL RCSER

Conventional Models

Constant (Baseline) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2-period Nonparametric 0.372 0.239 0.215 0.210 0.491 0.331 0.297 0.411

EWA 0.177 0.245 0.276 0.429 0.044 0.125 0.195 0.049

Serial Correlation

Order 1 0.147 0.108 0.204 0.000 0.185 0.133 0.199 0.383

Order 4 0.251 0.209 0.293 0.169 0.345 0.296 0.334 0.464

Machine Learning Models

LASSO 0.516 0.486 0.562 0.623 0.573 0.522 0.589 0.641

Decision Tree 0.367 0.287 0.273 0.176 0.380 0.281 0.248 0.458

LightGBM 0.448 0.434 0.547 0.594 0.461 0.446 0.556 0.630

DNN 0.388 0.370 0.455 0.430 0.360 0.340 0.432 0.506

LSTM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Improved Models

ME1 (t = 4) 0.661 0.676 0.825 0.850 0.571 0.595 0.753 0.744

ME2 (t = 4) 0.713 0.732 0.870 0.928 0.619 0.651 0.848 0.808

ME2* 0.818 0.851 0.961 0.938 0.703 0.750 0.932 0.823

Notes: Relative completeness computed by L1 loss, L2 loss, KL-divergence, and strategic error rates
listed in Table C9.
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the ranking of model scores is generally consistent across all metrics, some dif-
ferences exist. For conventional models, the L1 loss metric favors the 2-period
Nonparametric model, whereas KL divergence shows a preference for EWA.
ME2* ranks as the second-best performer for both RCL1 and RCL2. However,

its relative performance sees a significant drop from 96% (RCKL) to 82-85% for
the red player, and from 93% (RCKL) to 70-75% for the black player.
In contrast, Table C11 displays the Akaike Information Criteria (AIC) and the

Bayes Information Criteria (BIC) measured in the entire data. More precisely,
we estimate (train) each model using all 2589 pairs in the data and compute the
log-likelihood using 26 periods (from period 5 to 30) × 2589 pairs. Then, the AIC
and BIC of a model are calculated as

AIC of a model = −2× (log-likelihood) + 2× (#Params)

BIC of a model = −2× (log-likelihood) + (#Params) × log((sample size)).

Both AIC and BIC incorporate a trade-off between the goodness of fit of the model
(log-likelihood) and the simplicity of the model (the number of parameters). The
model with a lower AIC (BIC) is considered to be preferred.
Table C11 shows that the best model chosen by the AIC (BIC) is quite different

compared to those chosen by RC (measured by KL divergence in test data). The
machine learning models with large parameter sizes are regarded as bad models
according to the two information criteria. One reason is that DNN and LSTM
are singular models, which means the Fisher information matrix of a model is a
singular matrix. For those models, traditional information criteria are known to
be inappropriate in the machine learning literature.
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Table C11—Prediction Performance Comparison (AIC, BIC, and RC)

Red Players

#Params Log-Likelihood AIC BIC RC

Conventional Models

Constant (Baseline) 3 -18305.8 36617.7 36640.2 0.000

2-period Nonparametric 768 -18223.0 37982.0 43747.9 0.215

EWA 8 -18199.9 36415.8 36475.9 0.276

Serial Correlation

Order 1 5 -18227.4 36464.7 36502.2 0.204

Order 4 11 -18193.3 36408.6 36491.2 0.293

Machine Learning Models

LASSO 408.2 -18089.8 36996.1 39296.6 0.562

Decision Tree 40.4 -18201.0 37009.7 39692.4 0.273

LightGBM 30.0 -18095.5 36251.1 36476.3 0.547

DNN 6208.0 -18130.8 48677.6 95285.3 0.455

LSTM 5524.0 -17921.4 46890.9 88364.0 1.000

Improved Models

ME1 24 -17988.7 36025.4 36205.6 0.825

ME2 38 -17971.2 36018.4 36303.7 0.870

ME2* 126 -17936.5 36125.0 37071.0 0.961

Black Players

#Params Log-Likelihood AIC BIC RC

Conventional Models

Constant (Baseline) 0.000 -18231.4 36468.7 36491.3 0.000

2-period Nonparametric 0.297 -18129.2 37794.5 43560.4 0.297

EWA 0.195 -18164.3 36344.6 36404.6 0.195

Serial Correlation

Order 1 5 -18163.1 36336.1 36373.6 0.199

Order 4 11 -18116.5 36255.1 36337.6 0.334

Machine Learning Models

LASSO 476.0 -17972.7 35993.4 36173.6 0.589

Decision Tree 41.6 -17940.0 35956.0 36241.3 0.248

LightGBM 30.0 -17911.1 36042.2 36868.0 0.556

DNN 6428.0 -18028.8 36555.3 38423.2 0.432

LSTM 11204.0 -18146.1 36375.3 36687.6 1.000

Improved Models

ME1 24 -18040.1 36140.2 36365.4 0.753

ME2 38 -18082.7 49021.4 97281.1 0.848

ME2* 110 -17887.6 58183.3 142291.9 0.932

Notes: Log-likelihood shows the sum of the log-likelihood of 26 periods × 2,589 pairs. AIC and BIC are
computed by the log-likelihood the number of parameters (#Params). Hyperparameters of the machine
learning models are determined by cross-validation within each training data. We repeat the RC (relative
completeness) measured by KL divergence of each model shown in Table 8 and 9 for comparison.
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D. Best History Length of Mixing EWA Models

In this section, we examine the prediction performance of the ME2(t) models
across different history lengths t. In addition to using the full training dataset,
we report results obtained from training datasets limited to 100, 200, and 400
pairs.
Figure D3 presents the average KL divergence for ME2(t) models with history

lengths ranging from t = 1 to t = 20. The results indicate that the optimal
history lengths are t = 15 for red players and t = 13 for black players. With
smaller training datasets, shorter optimal history lengths are identified. The
specific optimal values of t are detailed in Table D12.

Figure D3. Average KL divergence of ME2(t) models over different t

Note: The average KL divergence of ME2 models over different lengths of history t for various numbers
of training data pairs (left: red players, right: black players). Different line styles and colors represent
different numbers of pairs in training data: 100, 200, 400, and all pairs. Vertical dotted lines indicate
the optimal length of history t for each number of pairs.

Table D12—Best History Length of ME2(t) when Training Data is Small

Number of Pairs

in Training Data

Red Players Black Players

Best t #Params KL Best t #Params KL

100 3 28 1.342 2 20 1.338

200 3 28 1.338 4 36 1.336

400 3 28 1.336 7 60 1.333

All (2071.2) 15 124 1.332 13 108 1.330
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E. Estimated Parameters of EWA Models

E.1. EWA Models

In this section, we provide the complete estimation results of the EWA model,
previously omitted in Section III.C. Using the full dataset, we estimate the EWA
model via maximum likelihood, along with three variant models: reinforcement
learning (RL), belief learning (BL, also known as fictitious play), and nested
EWA.
Following Camerer and Ho (1999), we impose the parameter restrictions ρ = 0

and δ = 0 in the RL model, and ρ = ϕ and δ = 1 in the BL model. To reflect
the inherent symmetry among the numbered cards, we also estimate the nested
EWA model, whose choice probabilities are defined as:

P a
i (t) ∝


(∑

k=1,2,3 e
λi
ηi

Ak
i (t−1)

)ηi−1

× e
λi
ηi

Aa
i (t−1)

if a = 1, 2, 3

eλiA
a
i (t−1) if a = K.

Note that when ηi = 1, the choice probability simplifies to the standard EWA
model form: P a

i (t) ∝ eλiA
a
i (t−1) for all cards a for all cards a.

Table E13 summarizes the estimation results. The key parameter estimates for
the EWA model are δR = 0.385 and δB = 0.000, indicating that the red player’s
strategy combines reinforcement learning and belief learning, whereas the black
player relies exclusively on reinforcement learning.
We conduct likelihood-ratio (LR) tests to compare the EWA model against RL

and BL models, since these two models represent special cases of EWA under the
aforementioned parameter restrictions. An LR test is also performed to compare
the EWAmodel with the nested EWAmodel. The LR test statistics reveal that all
differences are statistically significant at the 1% level, although this significance
does not directly imply superiority in test-data prediction performance. Indeed,
as indicated in Table C8, the standard EWA model for the black player exhibits
better predictive performance (lower KL divergence) compared to the nested EWA
model.
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Table E13—Estimation results of EWA-variant models

Models Logit Nested logit

EWA RL BL Nested EWA

Discount factors
ϕR 1.021∗∗∗ 2.527∗∗∗ 1.008∗∗∗ 1.011∗∗∗

(0.016) (0.632) (0.006) (0.013)
ϕB 1.037∗∗∗ 2.314∗∗∗ 0.985∗∗∗ 1.026∗∗∗

(0.025) (0.432) (0.008) (0.019)
ρR 0.928∗∗∗ 0.000 = ϕR 0.912∗∗∗

(0.096) (0.134)
ρB 1.017∗∗∗ 0.000 = ϕB 0.994∗∗∗

(0.005) (0.004)
Mixing parameters
δR 0.385∗∗∗ 0.000 1.000 0.356∗∗∗

(0.056) (0.060)
δB 0.000 0.000 1.000 0.000

(0.071) (0.057)
Accuracy parameters
λR 0.796 0.561∗∗∗ 0.046∗∗∗ 0.899

(0.742) (0.151) (0.004) (1.106)
λB 1.142∗ 0.656∗∗∗ 0.018∗∗∗ 1.370∗∗

(0.601) (0.120) (0.005) (0.651)
Nest parameters
ηR 1.000 1.000 1.000 1.410∗∗∗

(0.247)
ηB 1.000 1.000 1.000 1.330∗∗∗

(0.247)
Initial values
A1

R(0) −0.518 −1.059∗∗ −7.477∗∗∗ −0.919
(0.555) (0.428) (0.806) (1.182)

A2
R(0) −0.677 −1.350∗∗ −9.963∗∗∗ −1.105

(0.723) (0.541) (0.942) (1.418)
A3

R(0) −0.777 −1.552∗∗ −11.447∗∗∗ −1.222
(0.823) (0.611) (1.033) (1.562)

A1
B(0) −0.484 −1.048∗∗∗ −20.149∗∗∗ −0.674∗

(0.323) (0.312) (5.190) (0.389)
A2

B(0) −0.644 −1.398∗∗∗ −27.542∗∗∗ −0.840∗

(0.427) (0.420) (7.084) (0.477)
A3

B(0) −0.670 −1.447∗∗∗ −28.275∗∗∗ −0.866∗

(0.446) (0.436) (7.075) (0.492)
NR(0) 7.071 1.000 1.000 7.917

(7.144) (9.563)
NB(0) 6.692 1.000 1.000 8.304∗

(4.167) (4.475)

Number of Observations 77670 77670 77670 77670
Number of Parameters 8 5 5 9
Log Likelihood (Red) -105059.3 -105569.0 -105160.5 -105010.2
Log Likelihood (Black) -104831.7 -104945.9 -105319.1 -104804.5
LR Statistic (Red) 1019.4∗∗∗ 202.4∗∗∗ 98.3∗∗∗

LR Statistic (Black) 228.3∗∗∗ 974.7∗∗∗ 54.5∗∗∗

Notes: Maximum likelihood estimates for parameters of the EWA model variants. Standard errors are
reported in parentheses. Underlined values indicate parameters determined by model restrictions rather
than estimation. The number of observations and parameters refer to each of the models for red and
black players, respectively. The LR Statistic represents the likelihood ratio test statistic comparing each
variant model against the original EWA model. *p<0.1; **p<0.05; ***p<0.01.
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E.2. Mixing EWA Models

We report the estimated parameters of the improved models for ME2(t = 4)
(Table E14) and ME2* (Table E15). Although most additional parameters are
insignificant even at the 10% level, both ME2(t = 4) and ME2* outperform the
original EWA in predicting the test data.

Table E14—Estimated Parameters of ME2 (t = 4)

(a) Red Players

EWA
parameters

δR ρR ϕR λR A1
R(0) A2

R(0) A3
R(0) NR(0)

0.230 0.882∗∗∗ 1.004∗∗∗ 0.844∗∗∗ −0.448∗∗∗ −0.616 −0.718 6.284∗

(3.721) (0.048) (0.003) (0.076) (0.105) (0.509) (0.521) (3.294)

Additional
parameters

a = K a = 1, 2, 3

αaτ
R1 αaτ

R2 γaτR1 γaτR2 αaτ
R1 αaτ

R2 γaτR1 γaτR2

τ = 1 0.075 0.096 −0.177 −0.190 0.082 −0.015
(1.894) (1.724) (0.526) (2.019) (1.804) (0.112)

2 0.123 0.222 0.014 0.133 0.257 0.220 0.042 −0.020
(0.512) (0.760) (0.451) (0.516) (0.340) (0.217) (0.176) (0.130)

3 0.290 0.148 0.149 0.004 0.508 0.121 0.006 −0.010
(1.220) (0.530) (0.993) (0.609) (2.792) (0.385) (0.278) (0.462)

4 0.360 −0.077 0.170 −0.129 0.330 −0.009 −0.076 −0.050
(4.890) (1.492) (8.365) (1.065) (40.514) (0.660) (5.309) (0.806)

(b) Black Players

EWA
parameters

δB ρB ϕB λB A1
B(0) A2

B(0) A3
B(0) NB(0)

0.000 0.933∗∗∗ 0.989∗∗∗ 1.064∗∗∗ −0.360∗∗∗ −0.591∗∗∗ −0.635∗∗∗ 5.177∗∗∗

(0.108) (0.005) (0.009) (0.044) (0.132) (0.073) (0.058) (0.344)

Additional
parameters

a = K a = 1, 2, 3

αaτ
B1 αaτ

B2 γaτB1 γaτB2 αaτ
B1 αaτ

B2 γaτB1 γaτB2

τ = 1 0.076 0.194 −0.098 −0.256 0.017 −0.111∗

(1.058) (1.042) (0.237) (1.028) (1.037) (0.061)
2 0.156 0.197 0.038 −0.127 0.244∗ 0.241∗ −0.038 0.115

(0.265) (0.238) (0.231) (0.296) (0.131) (0.139) (0.068) (0.132)
3 0.187 0.030 0.038 −0.045 0.265 0.139 −0.041 −0.006

(0.375) (0.314) (0.289) (0.499) (1.178) (0.427) (0.102) (0.235)
4 0.265 −0.113 −0.075 0.038 0.964 −0.014 −0.011 0.040

(3.626) (0.360) (0.332) (1.617) (2.658) (0.392) (0.124) (0.474)

Notes: Maximum likelihood estimates of the parameters of mixing EWA models. Robust standard
errors are in parentheses. *p<0.1; **p<0.05; ***p<0.01.
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Table E15—Estimated Parameters of ME2* (Red Players)

(a) Red Players

EWA
parameters

δR ρR ϕR λR A1
R(0) A2

R(0) A3
R(0) NR(0)

0.310 0.895∗∗∗ 1.007∗∗∗ 0.814∗∗∗ −0.496 −0.669∗∗∗ −0.774∗∗∗ 6.646∗∗∗

(1.000) (0.008) (0.007) (0.030) (0.402) (0.168) (0.138) (0.373)

Additional
parameters

a = K a = 1, 2, 3

αaτ
R1 αaτ

R2 γaτR1 γaτR2 αaτ
R1 αaτ

R2 γaτR1 γaτR2

τ = 1 0.069 0.090 −0.176 −0.179 0.091 −0.016
(2.084) (2.187) (0.360) (1.961) (2.050) (0.139)

2 0.128 0.222 0.016 0.134 0.262 0.218 0.042 −0.019
(0.469) (0.673) (0.715) (0.354) (1.023) (0.220) (0.199) (0.148)

3 0.289 0.146 0.152 0.004 0.510 0.118 0.007 −0.010
(0.937) (0.585) (0.882) (0.720) (9.222) (0.706) (0.288) (0.176)

4 −0.002 −0.019 0.175 −0.075 0.074 0.040 −0.006 −0.090
(1.404) (0.977) (4.154) (0.759) (14.689) (0.855) (1.428) (0.177)

5 0.004 0.017 0.090 −0.014 0.220 −0.036 −0.058 0.073
(9.353) (0.733) (15.356) (1.117) (7.501) (0.747) (3.698) (0.335)

6 0.462 −0.055 −0.343 −0.082 0.047 0.009 −0.118 −0.061
(9.136) (1.599) (14.391) (4.706) (12.692) (0.822) (7.987) (0.448)

7 0.051 −0.060 0.120 0.119 1.029 −0.053 −0.021 0.008
(2.804) (1.894) (4.196) (5.111) (24.607) (0.538) (4.727) (0.626)

8 0.306 −0.140 0.869 −0.209 0.634 0.072 0.349 0.236
(1.748) (7.754) (3.877) (28.005) (15.880) (0.852) (13.629) (0.700)

9 0.171 0.178 −0.520 −0.057 −0.638 −0.094 −0.023 −0.168
(9.849) (2.423) (9.037) (31.503) (10.890) (0.663) (38.267) (0.685)

10 1.385 −0.311 −0.038 0.180 −0.037 −0.066 −0.495 −0.159
(5.519) (41.644) (8.879) (104.568) (20.359) (0.854) (28.645) (0.811)

11 0.722 −0.170 −0.890 −0.071 −0.008 −0.037 0.034 −0.214
(14.586) (25.781) (103.658) (61.595) (8.354) (0.508) (8.544) (0.794)

12 −0.480 0.296 0.815 −0.433 1.860 0.053 −0.219 0.519
(6.155) (51.490) (102.494) (48.341) (5.815) (1.271) (8.400) (2.703)

13 1.576 −0.434 −0.180 0.153 1.561 −0.068 −1.143 −0.288
(1.556) (53.412) (8.205) (5.708) (18.143) (1.511) (3.055) (5.364)

14 1.263 0.240 −0.892 −0.135 1.417 −0.098 0.084 −0.451
(5.159) (53.211) (68.606) (4.209) (29.540) (2.902) (6.325) (3.378)

15 1.172 −0.581 1.163 0.471 1.398 −0.079 −1.684 0.977
(4.589) (28.655) (74.036) (10.713) (17.968) (0.759) (2.454) (3.557)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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(b) Black Players

EWA
parameters

δR ρR ϕR λR A1
R(0) A2

R(0) A3
R(0) NR(0)

0.000 0.970∗∗∗ 1.006∗∗∗ 1.099∗∗∗ −0.334∗∗∗ −0.562∗∗∗ −0.608∗∗∗ 5.199∗∗∗

(0.076) (0.004) (0.009) (0.046) (0.110) (0.069) (0.052) (0.289)

Additional
parameters

a = K a = 1, 2, 3

αaτ
R1 αaτ

R2 γaτR1 γaτR2 αaτ
R1 αaτ

R2 γaτR1 γaτR2

τ = 1 0.097 0.211 −0.098 −0.264 0.008 −0.112
(0.676) (0.552) (0.243) (0.839) (0.764) (0.153)

2 0.167 0.193 0.043 −0.135 0.250∗ 0.238∗ −0.039 0.113
(0.285) (0.292) (0.333) (0.486) (0.134) (0.141) (0.150) (0.153)

3 0.193 0.023 0.043 −0.057 0.269 0.135 −0.040 −0.008
(0.446) (0.337) (0.388) (0.561) (1.360) (0.445) (0.175) (0.330)

4 0.133 0.003 −0.033 0.074 0.266 −0.005 −0.015 0.026
(0.807) (0.607) (0.741) (0.814) (2.786) (0.516) (0.407) (0.580)

5 0.105 −0.047 0.046 −0.183 0.834 0.029 −0.077 0.029
(2.090) (0.793) (0.676) (1.228) (25.224) (0.490) (0.250) (0.895)

6 −0.048 −0.062 −0.070 −0.123 −0.527 0.032 0.063 −0.055
(3.631) (0.930) (0.688) (8.002) (100.963) (1.062) (0.476) (6.132)

7 0.467 −0.042 0.026 0.200 1.502 −0.039 0.164 0.096
(3.728) (2.312) (1.019) (4.873) (115.510) (0.874) (1.346) (6.806)

8 −0.313 −0.147 −0.062 −0.102 0.333 −0.018 −0.077 −0.253
(6.476) (1.581) (1.118) (39.659) (2.632) (0.970) (1.713) (10.644)

9 0.068 −0.213 −0.014 0.131 −0.836 −0.032 −0.029 −0.183
(7.308) (7.371) (2.119) (34.732) (9.611) (0.542) (1.125) (2.017)

10 0.967 0.131 −0.015 0.216 1.055 −0.042 0.016 −0.284
(4.176) (13.010) (2.528) (27.977) (3.996) (0.439) (1.708) (4.036)

11 0.055 −0.543 −0.009 0.021 1.434 −0.005 −0.067 0.527
(0.973) (4.738) (3.671) (10.290) (2.113) (0.869) (5.612) (7.747)

12 0.451 0.475 −0.106 0.157 1.214 −0.009 0.028 0.467
(0.751) (34.726) (31.318) (6.021) (20.709) (0.701) (4.552) (46.812)

13 −0.566 −0.552 −0.320 0.466 1.130 −0.203 0.347 −1.202
(1.694) (36.281) (33.586) (48.211) (6.072) (0.375) (31.985) (39.794)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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