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Abstract

We highlight that match fixed effects, represented by the coefficients of interaction terms in-

volving dummy variables for two elements, lack identification without specific restrictions on

parameters. Consequently, the coefficients typically reported as relative match fixed effects

by statistical software are not interpretable. To address this, we establish normalization con-

ditions that enable identification of match fixed effect parameters as interpretable indicators

of unobserved match affinity, facilitating comparisons among observed matches. Using data

from middle school students in the 2007 Trends in International Mathematics and Science

Study (TIMSS), we highlight the distribution of comparable match fixed effects within a spe-

cific school.
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1 Introduction

Evaluating the quality of matching and affinity between entities is common in empirical research.

Affinity is divided into observed and unobserved components. Observed affinity is typically mea-

sured by the coefficient of interaction terms involving observable characteristics, while unobserved

affinity is captured through match fixed effects using dummy variables. This approach is widely

used in labor and education economics to analyze and interpret match quality across pairs such

as teacher-student and worker-company relationships. Our study aims to clarify the identification

process of match fixed effects.

As an illustrative example, Inoue and Tanaka (2023) investigate the impact of a teacher’s major

on students’ achievement using the following econometric model:

Yifj = βMajorfj + δf + ηij + εifj, (1)

where Yifj represents the science test score of student i in subfield f within class j. The parameter

β denotes the coefficient of interest, and Majorfj is an indicator variable that indicates whether

the teacher’s major field in natural science matches the subfield of the student’s test score. δf

denotes the fixed effect specific to subfield f , while ηij represents the student-teacher fixed effects,

accounting for any subfield-invariant determinants of science test scores between student i and

teacher j, thereby capturing their unobserved affinity. The authors find a significant increase in

R-squared upon introducing student-teacher fixed effects, underscoring the importance of match

fixed effects in their analysis.

Similar methodologies are utilized in various studies, including pitcher-catcher fixed effects on

strikeout likelihood (Biolsi et al. 2022), worker-company fixed effects on income (Mittag 2019)

and turnover rates (Ferreira and Taylor 2011), student-school fixed effects on student performance

(Ovidi 2022), teacher-school fixed effects on student test scores (Jackson 2013), and student-

university fixed effects on post-graduation income (Dillon and Smith 2020). Additionally, some

studies account for two-way fixed effects by separately considering the fixed effects on each side.

Despite their common use, the interpretation of match fixed effects as affinity indicators for all

matches remains unclear. Our paper addresses this by distinguishing between relative and absolute

match fixed effects within a standard model. We argue that absolute match fixed effects are not

identifiable without specific restrictions, whereas relative match fixed effects are identifiable. We

propose location normalization conditions to enable the identification and interpretation of absolute

match fixed effects, facilitating comparisons of unobserved match quality.

Applying this approach to the data from Inoue and Tanaka (2023), we demonstrate the dis-

tribution of unobserved match quality between students and teachers in a specific school. Our

analysis reveals that one teacher excels with high-achieving students but underperforms with

lower-achieving ones, while another teacher shows the opposite pattern in terms of unobserved
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match affinity.

2 Model

We consider the following typical setting. Suppose that we can observe I students indexed by i

and J teachers indexed by j at time t = 1, · · · , T . Student i makes some outcome with teacher j at

time t. For avoiding later notational complexity, we do not include time fixed effects like a panel

regression, but the inclusion does not affect our findings. We consider the following regression

model:

Yijt = αi + βj + µij +X ′
ijtγ + εijt, (2)

=
I∑

i′=1

αi′1(i = i′) +
J∑

j′=1

βj′1(j = j′) +
I∑

i′=1

J∑
j′=1

µi′j′1(i = i′, j = j′) +X ′
ijtγ + εijt (3)

where Yijt is the test score of student i with teacher j at time t, Xij is d-dimensional covariates

consisting of observed characteristics of student i and teacher j and its interaction at time t, αi is

student i’s fixed effect, βj is teacher j’s fixed effect, and µij is (i, j)-match fixed effect which is of

our interest, γ is a d-dimensional vector of parameters, 1(·) is an indicator function, and εijt is an

error term assumed to be drawn i.i.d from standard normal distribution. Note that we explicitly

decompose affinity between student i and teacher j into two parts, that is, X ′
ijtγ and µij as the

observed and unobserved affinities. For later discussion, we call µij the absolute match effect of

student i and teacher j. Similarly, we call αi and βj the absolute fixed effects.1

In the context of the standard fixed effect model, when there are I groups, typically I− 1 fixed

effects are incorporated, alongside a constant term, to avoid multicollinearity that would arise from

including the I-th group. The match fixed effect case is more complex. Similarly, for a student

1Using Equation (3), matrix representation is described as Y = Xγ + 1Iα + 1Jβ + 1IJµ + ε = Xγ + X̃δ + ε
where Y is IJT × 1, X is IJT × d, γ is d × 1, 1I is IJT × I, α is I × 1, 1J is IJT × J , β is J × 1, 1IJ is
IJT × IJ , µ is IJ × 1, ε is IJT × 1, and denote X̃ = [1I1J1IJ ] and δ = [αTβTµT ]T . Then, define I as IJT × 1
one vector and M = I − X̃(X̃T X̃)−1X̃T as the annihilator matrix for X̃. The OLS estimator of δ is obtained as

δ̂ = (X̃TMX̃)−1(X̃TMY ), so the standard full rank condition for δ is Rank(X̃TMX̃) = (I + J + IJ). See Hansen
(2022) Chapter 3.16 for reference. However, the condition does not hold due to multicollinearity.
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i ̸= 1 and teacher j ̸= 1, Equation (2) can be rewritten as

Yijt = α1 + β1 + µ11︸ ︷︷ ︸
constant

+ (βj − β1) + (µ1j − µ11)︸ ︷︷ ︸
teacher j’s relative fixed effect

+ (αi − α1) + (µi1 − µ11)︸ ︷︷ ︸
student i’s relative fixed effect

+ (µij + µ11 − µ1j − µi1)︸ ︷︷ ︸
(i,j)’s relative match effect

+X ′
ijtγ + εijt, (4)

where the first line is a constant parameter normalized to student 1 and teacher 1 which are

arbitrarily chosen, the second line is called teacher j’s relative fixed effect which is the fixed effect

relative to teacher 1’s fixed effects, the third line is called student i’s relative fixed effect which is

the fixed effect relative to student 1’s fixed effects, the third line is called the relative match effect

of student i and teacher j relative to student 1 and teacher 1. Avoiding multicollinearity, we can

identify and estimate these relative fixed effects and γ instead of absolute fixed effects. Statistical

software automatically reports the estimates of the relative fixed effects.

Relative fixed effects indicate how a match compares to a specific reference match, rather than

categorizing it as ”good” or ”bad” compared to all other matches. For controlling match fixed

effects or obtaining overall affinity without distinguishing observed from unobserved components,

relative fixed effects are adequate. However, for measuring and understanding unobserved affinity,

such as personality match quality, relative fixed effects are insufficient. In these cases, absolute

fixed effects are crucial for meaningful comparison and interpretation of unobserved affinity.

Our central question posed is: “Can we derive the absolute fixed effects from the estimated

relative fixed effects without imposing any restrictions?” In mathematical terms, “Can we solve

the system of equations involving relative fixed effects for absolute fixed effects without restric-

tions?” Our conclusion is in the negative: No, we cannot achieve this without imposing constraints.

Subsequently, we propose location normalization restrictions that are necessary for identifying the

absolute fixed effects µij, summarized in Proposition 1.

Proposition 1. For regression model (2), the following results hold.

1. Without any restriction, the absolute match effect µij is not identified.

2. With
∑

i µij =
∑

j µij = 0, the absolute match effect µij for all i and j is identified by relative

fixed effects.

3. With restriction
∑

i µij =
∑

j µij =
∑

i αi =
∑

j βj = 0 for all i and j, the absolute fixed

effects αi, βj, and absolute match effect µij for all i and j are identified by relative fixed
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effects.

See the proof and illustrative example in Appendix A. Intuitively, the conditions outlined are

effective for location normalization. The restricted match effect indicates how much better the

match is compared to the average match, rather than a specific match. Consequently, it yields

positive values when the match is relatively superior and negative values when it is relatively

inferior compared to the average match. This approach ensures interpretability across students

and teachers, facilitating meaningful comparisons of unobserved affinity.

3 Empirical exercise

Figure 1: Heatmap of absolute match fixed effects
Notes: The blank cell shows no match in the data.

To illustrate our approach, we use data from the 2007 Trends in International Mathematics

and Science Study (TIMSS), as in Inoue and Tanaka (2023). This dataset includes middle school
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students’ test scores in various science subfields (physics, chemistry, biology, and Earth science)

and teacher-related variables. For details, refer to Inoue and Tanaka (2023). We focus on data

from a specific school (ID 228) with five teachers and 90 students, using Equation (1) to estimate

absolute match fixed effects with location normalization. We exclude subfield variables to avoid

multicollinearity with student-teacher interaction dummies, as some subjects are taught exclusively

by certain teachers. The author’s GitHub page provides replication files for our Monte Carlo

simulation and empirical exercises.

Figure 1 presents a heatmap of absolute match fixed effects. Teacher ID 22802 shows bet-

ter effects with high-performing students but poorer effects with low-performing students, while

teacher ID 22804 displays the opposite pattern. This suggests that teacher 22802 excels with high

achievers but underperforms with lower achievers, whereas teacher 22804 performs better with

lower achievers. Furthermore, absolute match effects offer a more comparable measure than rela-

tive match effects. For instance, the absolute match effect for student ID 2280201 and teacher ID

22802 is 76.34, compared to 44.57 for student ID 2280115 and teacher ID 22804, indicating that

the former match has 1.75 times higher unobserved affinity. Thus, absolute fixed effects are crucial

for meaningful comparisons and interpretations of unobserved affinity.

4 Conclusion

We examine the estimation of affinities using match fixed effects, distinguishing between observed

and unobserved components. We emphasize that, without proper restrictions, only relative fixed

effects—fixed effects relative to normalized values—can be estimated, which do not provide inter-

pretable measures of unobserved affinity. To enable meaningful interpretation of absolute match

effects, we introduce theoretical constraints on parameters. Using 2007 TIMSS data on middle

school students, we illustrate the distribution of absolute match fixed effects and underscore their

significance.
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A Proof (Online appendix)

Proof. Before showing the proof, we provide the overview. The system of linear equations about

parameters to be solved without any restrictions isA

B

C


α

β

µ

 =

α′

β′

µ′


where A,B and C are the coefficient matrix for relative effects and α′, β′ and µ′ are calculated

relative fixed effects defined later. Let T denote transpose. Then if rank
(
[AT BT CT ]T

)
=

rank
(
[αT βT µT ]T

)
= I+J+IJ , the absolute fixed effects and match effects are just identified.

Thus, we will check the rank conditions to determine whether a system of linear equations is

underdetermined (i.e., underidentified), meaning there are fewer equations than unknowns.

Since there are I students and J teachers, there are I+J unknown absolute fixed effect parameters

and IJ unknown absolute match effect parameters. The fixed effects of (i, j) relative to (i0, j0),

α′
i0j0,i

, β′
i0j0,j

, µ′
i0j0,ij

is calculated by

α′
i0j0,i

= αi − αi0 + µij0 − µi0j0 (5)

β′
i0j0,j

= βj − βj0 + µi0j − µi0j0 (6)

µ′
i0j0,ij

= µij + µi0j0 − µij0 − µi0j. (7)

First, we prove that absolute match effects are not identifiable without any restrictions. Let

coefficient matrices A, B and C represent coefficient of αi, βj and µij in Equations (5), (6), and
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(7) respectively as follows:

A =


a11,21 · · · a11,2I 0 · · · 0 c11,211 · · · c11J · · · c11,2I1 · · · c11,2IJ

a11,31 · · · a11,3I 0 · · · 0 c11,311 · · · c11,31J · · · c11,3I1 · · · c11,3IJ
...

...
...

...
...

...
...

...
...

...
...

...
...

aIJ,I−1
1 · · · aIJ,I−1

I 0 · · · 0 cIJ,I−1
11 · · · cIJ,I−1

1J · · · cIJ,I−1
I1 · · · cIJ,I−1

IJ

B =


0 · · · 0 b11,21 · · · b11,2J c11,211 · · · c11,21J · · · c11,2I1 · · · c11,2IJ

0 · · · 0 b11,31 · · · b11,3J c11,311 · · · c11,31J · · · c11,3I1 · · · c11,3IJ
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 bIJ,J−1
1 · · · bIJ,J−1

J cIJ,J−1
11 · · · cIJ,J−1

1J · · · cIJ,J−1
I1 · · · cIJ,J−1

IJ

C =


0 · · · 0 0 · · · 0 c11,211 · · · c11,21J · · · c11,2I1 · · · c11,2IJ

0 · · · 0 0 · · · 0 c11,311 · · · c11,31J · · · c11,3I1 · · · c11,3IJ
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 cIJ,J−1
11 · · · cIJ,J−1

1J · · · cIJ,J−1
I1 · · · cIJ,J−1

IJ︸ ︷︷ ︸
I

︸ ︷︷ ︸
J

︸ ︷︷ ︸
IJ

where ai0j0,ik and bj0j0,ik represent the coefficients of αk and βk, and ci0j0,ikl represents the coefficient

of µkl in the equation µ′
i0j0,ij

= αi − αi0 + µij0 − µi0j0 . Every element in each matrix is either 0, 1

or −1.

First, consider the matrix C. Assume ci0j0,ijkl = 1 (k ̸= i0, l ̸= j0), then ci0j0,iji0j0
= 1, ci0j0,iji0l

=

ci0j0,ijkj0
= −1 and ci0j0,ijk′l′ = 0 for k′ /∈ {k, i0}, l′ /∈ {l, j0}. Then, cij,i0j0 = ci0j0,ij, cij0,i0j = −ci0j0,ij,

and ci
′
0j

′
0,ij = ci0j0,ij + ci0j0,i

′
0j

′
0 − ci0j0,i

′
0j − ci0j0,ij

′
0 hold. Here fix i0 = j0 = 1. Then ci

′
0j

′
0,i

′j′ can

be obtained from c11,ij. Thus, rank(C) = (I − 1)(J − 1). Similarly, because ai0j0,i = aij0,i0 and

ai
′
0j

′
0,i = a11,i−a11,i

′
0+cij

′
0,i

′
01, rank

(
[AT CT ]T

)
= (I−1)+(I−1)(J−1) = (I−1)J . Also, because

bi0j0,j = bi0j,j0 and bi
′
0j

′
0,j = b11,j−b11,j

′
0+ci

′
0j,1j

′
0 , rank

(
[AT BT CT ]T

)
= (J−1)+(I−1)J = IJ−1.

This concludes that rank
(
[AT BT CT ]T

)
= IJ − 1 < IJ and absolute match effects are not

identifiable. Note that without match fixed effect, then all elements in C is 0, rank
(
[AT BT ]T

)
=

I + J − 2, and thus α and β is not identifiable without additional restrictions.

Next, we prove that absolute match effects are identifiable with restrictions
∑

i µij =
∑

j µij =

1. Each restriction is independent from every equation above and the number of independent

restrictions is I + J − 1. Therefore, rank
(
[CT RT

1 ]
T
)
= IJ where R1 is the coefficient matrix for
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the restrictions
∑

i µij =
∑

j µij = 1 as

R1 =

IJ︷ ︸︸ ︷

0 · · · 0 0 · · · 0 1 · · · 1 0 · · · 0 · · · 0 · · · 0


I
0 · · · 0 0 · · · 0 0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 · · · 1 · · · 1

0 · · · 0 0 · · · 0 1 · · · 0 1 · · · 0 · · · 1 · · · 0
J...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 · · · 1 0 · · · 1 · · · 0 · · · 1︸ ︷︷ ︸
I

︸ ︷︷ ︸
J

︸ ︷︷ ︸
I

︸ ︷︷ ︸
I

︸ ︷︷ ︸
I

.

Then the absolute match effect can be identified since the rank is the same as the number of

absolute match effect parameters.

Finally, we prove that absolute match effect and fixed effects are identifiable with restrictions∑
i µij =

∑
j µij =

∑
i αi =

∑
j βj = 0. Each row in the coefficient matrix for restrictions∑

i αi =
∑

j βj = 0, R2 and R3 defined as

R2 =
(
1 · · · 1 0 · · · 0 0 · · · 0

)
R3 =

(
0 · · · 0 1 · · · 1 0 · · · 0

)
︸ ︷︷ ︸

I

︸ ︷︷ ︸
J

︸ ︷︷ ︸
IJ

are independent from every row in A,B,C and R1 and they have rank of 1. This is because the

number of a’s in a row which is not zero is 2 while at least I elements remains not zero by adding the

rows in R2, and similar for R3 independence. Therefore, rank
(
[AT BT CT RT

1 RT
2 RT

3 ]
T
)
=

IJ + I + J which equals to the number of parameters, and thus absolute match effect and fixed

effect parameters are identifiable.

A.1 Illustrative example

Consider an illustrative example with I = 2 and J = 3. The relative match effect is estimated as

µ′
1 = µ11 + µ22 − µ12 − µ21

µ′
2 = µ11 + µ23 − µ13 − µ21
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and all the other relative match effect is calculated from µ′
1 and µ′

2. Without zero sum restrictions,

absolute match effect µij is not identifiable, but with restrictions
∑

i µij =
∑

j µij = 0, the match

effect is calculated as2

µ11 =
µ′
1

6
+

µ′
2

6

µ12 = −µ′
1

3
+

µ′
2

6

µ13 =
µ′
1

6
− µ′

2

3

µ21 = −µ′
1

6
− µ′

2

6

µ22 =
µ′
1

3
− µ′

2

6

µ23 = −µ′
1

6
+

µ′
2

3
.

2You can derive µ11 from µ′
1 + µ′

2 = 2µ11 + µ22 + µ23 − µ12 − µ13 − 2µ21 = 6µ11 by using the restrictions. And
µ11 = −µ21 = (µ′

1 + µ′
2)/6. Then, from the equations, you get µ12 = −µ21 = (2µ11 − µ′

1)/2 and µ13 = −µ23 =
(2µ11 − µ′

2)/2.
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