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Abstract

Choice correspondences are crucial in decision-making, especially when faced with indifferences or
ties. While tie-breaking can transform a choice correspondence into a choice function, it often introduces
inefficiencies. This paper introduces a novel notion of path-independence (PI) for choice correspondences,
extending the existing concept of PI for choice functions. Intuitively, a choice correspondence is PI if
any consistent tie-breaking produces a PI choice function. This new notion yields several important
properties. First, PI choice correspondences are rationalizabile, meaning they can be represented as
the maximization of a utility function. This extends a core feature of PI in choice functions. Second,
we demonstrate that the set of choices selected by a PI choice correspondence for any subset forms
a generalized matroid. This property reveals that PI choice correspondences exhibit a nice structural
property. Third, we establish that choice correspondences rationalized by ordinally concave functions
inherently satisfy the PI condition. This aligns with recent findings that a choice function satisfies PI
if and only if it can be rationalized by an ordinally concave function. Building on these theoretical
foundations, we explore stable and efficient matchings under PI choice correspondences. Specifically, we
investigate constrained efficient matchings, which are efficient (for one side of the market) within the
set of stable matchings. Under responsive choice correspondences, such matchings are characterized by
cycles. However, this cycle-based characterization fails in more general settings. We demonstrate that
when the choice correspondence of each school satisfies both PI and monotonicity conditions, a similar
cycle-based characterization is restored. These findings provide new insights into the matching theory
and its practical applications.

1 Introduction

Choice is a fundamental concept in economics, central to understanding and modeling the behavior of
economic agents. It plays a key role in both theoretical and empirical analysis. The combinatorial choice
problem, which involves selecting a subset of elements from a set, has diverse applications in market design,
particularly in matching theory. For example, it arises when a school decides which applicants to admit or
when a firm selects a group of workers to hire. Such choice behaviors are typically formalized using choice
functions, which identify the optimal subset from a given set of available options.

In practice, however, choice behavior is often better represented by a choice correspondence rather than a
choice function. A choice correspondence allows multiple subsets to be selected from the same set of available
options. This scenario frequently occurs in settings where ties or indifference exist. For example, a school’s
priority ranking may include ties (e.g., applicants with identical test scores), or affirmative action policies
may account for distributions across applicant types (e.g., gender, race, socioeconomic status). Similarly,
firms may only partially observe worker attributes (e.g., education level, major, job-related skills), making
it impossible to differentiate among candidates with identical observable characteristics. While tie-breaking
can convert a choice correspondence into a choice function, this process often introduces inefficiencies or
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may compromise desirable properties. Consequently, directly addressing choice correspondences is crucial
for preserving these properties and ensuring robust analysis.

Our focus is on the properties of choice correspondences, with particular attention to path-independence
(PI). PI is a fundamental concept for choice functions as it ensures consistency in selection. Formally, a
choice function is PI if the chosen subset from any set remains the same regardless of whether the selection is
made in one step or in multiple stages—first by partitioning the set into smaller subsets, selecting from each,
and then choosing again from the union of those selections. PI choice functions offer several advantages: PI
guarantees rationalizability and is equivalent to being rationalizable by an ordinal concave utility function,
which is a natural form of discrete concavity. In matching theory, PI choice functions ensure the existence
of stable matchings, a central concept in the field.

In this paper, we extend the concept of PI to apply to choice correspondences in a natural way. For
choice functions, PI is known to be equivalent to the conjunction of substitutability and irrelevance of rejected
contracts (IRC) [Aizerman and Malishevski, 1981]. Sotomayor [1999] proposed extensions of substitutability
and IRC for choice correspondences. Consequently, one possible extension of PI for choice correspondences
is to consider the conjunction of these extended notions of substitutability and IRC. However, this approach
has certain limitations. To address these points, we introduce a novel notion of PI for choice correspondences.
Our definition generalizes the classical notion of PI from choice functions while strengthening the conjunction
of substitutability and IRC for choice correspondences. Intuitively, a choice correspondence satisfies PI if
any consistent tie-breaking results in a PI choice function. In the following paragraphs, we explain the
advantages of our proposed notion of PI over substitutability and IRC for choice correspondences.

First, our PI guarantees rationalizability (Theorem 2): any PI choice correspondence can be represented
as the maximization of some utility function. This result extends a key feature of PI choice functions. While
it is established that PI choice functions are rationalizable [Yang, 2020], we further demonstrate that our PI
choice correspondences are likewise rationalizable. Rationalization is essential in economics because agents
are typically assumed to make decisions consistent with a utility function or preference relation. Therefore,
identifying the rationalization underlying observed choice behavior provides the intellectual foundation for
nearly all economic analyses.1 Theoretically, we demonstrate rationalizability by extending a relationship
between PI choice functions and closure operators [Johnson and Dean, 1996, Koshevoy, 1999] to choice
correspondences. In contrast, the conjunction of substitutability and IRC for choice correspondences does
not necessarily ensure rationalizability (see Example 1).

Second, any PI choice correspondence exhibits a desirable combinatorial structure. Specifically, we prove
that for any subset of alternatives, the set of chosen outcomes selected by a PI choice correspondence forms
a generalized matroid (g-matroid) (Theorem 3). This structure provides several benefits. Notably, the
outcome of a PI choice correspondence, including tie-breaking, can be computed efficiently (Proposition 3
and Theorem 4). In contrast, for choice correspondences satisfying the conjunction of substitutability and
IRC, the set of chosen outcomes does not necessarily exhibit a matroidal structure, and the outcome including
time-breaking cannot be computed efficiently (Remark 1).

Third, we show that any choice correspondence rationalized by an ordinally concave function satisfies PI
(Theorem 5). This finding aligns with recent results indicating that a choice function is PI if and only if it
can be rationalized by an ordinally concave function [Yokote et al., 2024]. Thus, a PI choice correspondence
not only admits a rationalization but is also closely linked to this natural form of discrete concavity. This
property is particularly useful in applications. To verify that a given choice correspondence satisfies our
conditions, it suffices to show that it can be rationalized by a discrete concave function within this class.
Various techniques developed in the field of discrete convex analysis facilitate this verification; see Section 5
for detailed discussion.

Building on these theoretical foundations, we examine stable and efficient matchings under PI choice cor-
respondences. In particular, we focus on constrained efficient matchings—those that are efficient within the
set of stable matchings. The conjunction of substitutability and IRC in choice correspondences guarantees
the existence of stable matchings [Che et al., 2019]. Since our PI condition is stronger than these, it also
guarantees existence. Specifically, a stable matching can be obtained by applying the deferred acceptance

1See, for example, Chapter 1 of the textbook by Mas-Colell et al. [1995].
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algorithm to choice functions derived via tie-breaking. However, while this method guarantees stability, it
may not yield an efficient stable matching (see Example 2). Under the standard responsive choice corre-
spondences, Erdil and Ergin [2008] characterized constrained efficient matchings using cycles and provided
an algorithm to find them. Nevertheless, this cycle-based characterization does not necessarily hold in more
general settings, such as acceptant and substitutable correspondences [Erdil and Kumano, 2019]. We demon-
strate that when each school’s choice correspondence satisfies both PI and a monotonicity condition, the
cycle-based characterization is restored (Theorem 6). This monotonicity extends an important condition
in matching theory, known as the law of aggregate demand (LAD), to choice correspondences. Formally, a
choice correspondence satisfies LAD if any consistent tie-breaking results in a choice function that satisfies
LAD.

Our characterization applies to real-life matching markets, particularly those with diversity concerns.
Many choice functions—such as quotas [Abdulkadiroğlu and Sönmez, 2003], reserves [Ehlers et al., 2014,
Hafalir et al., 2013], and overlapping reserves [Sönmez and Yenmez, 2022]—have been proposed. While
most of these models assume strict priorities, our framework accommodates weak priorities (i.e., ties) and
provides cycle-based characterizations of constrained efficient matchings. This ensures that a constrained
efficient matching can be found in polynomial time in each scenario. Additionally, Erdil and Kumano
[2019] introduced a choice correspondence based on reserves and provided a similar characterization of
constrained efficient matchings. Our results offer a structural understanding of their approach: their choice
correspondence satisfies both PI and LAD.

1.1 Related Work

PI for choice functions was first introduced by Plott [1973]. Under PI choice functions, it is known that
stable matchings exist [Aygün and Sönmez, 2013, Blair, 1988, Roth, 1984]. Recently, Yokote et al. [2024]
showed that PI choice functions can be characterized through the rationalization of ordinal concavity. If
a choice function is rationalized by an M♮-concave function, it satisfies both PI and LAD [Fujishige and
Tamura, 2006, Murota and Yokoi, 2015]. Furthermore, any choice correspondence that can be rationalized
by these functions also satisfies PI and LAD.

Johnson and Dean [1996] and Koshevoy [1999] pointed out the relationship between PI choice functions
and (finite) convex geometries. A convex geometry is a combinatorial structure that generalizes the concept
of convexity in Euclidean spaces to more abstract settings. Formally, a convex geometry consists of a finite
set paired with a closure operator that satisfies the anti-exchange property [Edelman and Jamison, 1985].
This structure induces a PI choice function through the extreme operator. For further details, see Chapter 5
in the book by Grätzer and Wehrung [2016]. We generalize some of the results obtained in Johnson and
Dean [1996] and Koshevoy [1999] for PI choice functions to PI choice correspondences. In particular, we
utilize these results to prove the rationalizability of a PI choice correspondence.

Several studies have been conducted on efficient and stable matchings under choice correspondences.
Erdil and Ergin [2008] characterized constrained efficient matchings under responsive choice correspondences,
showing that a stable matching is constrained efficient if and only if it does not admit any stable improvement
cycle. Erdil and Kumano [2019] and Erdil et al. [2022] analyzed constrained efficient matchings under
acceptant and substitutable correspondences. In that setting, constrained efficient matchings may admit
cycles (PSIC), making them difficult to fully characterize. Under our conditions, however, we can generalize
the characterization provided by Erdil and Ergin [2008]. Our PI strengthens substitutability, whereas our
LAD is weaker than acceptance. Therefore, a straightforward comparison with Erdil and Kumano [2019] is
not possible.

Our study also relates to the efficient allocation of indivisible goods under constraints. Specifically, a
constraint on allocations can be represented by a choice correspondence that returns all feasible subsets.
Suzuki et al. [2018, 2023] generalized the top trading cycles mechanism that preserves Pareto efficiency,
individual rationality, and group strategy-proofness for any distributional constraint representable by an
M-convex set on the vector of the number of students assigned to each school, given an initial endowment.
Imamura and Kawase [2024a,b] provided necessary and sufficient conditions for constraints to guarantee the
existence of desired mechanisms.
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Finally, our results have important implications for real-life applications in market design. In matching
with diversity concerns, various choice functions—such as quotas [Abdulkadiroğlu and Sönmez, 2003], re-
serves [Ehlers et al., 2014, Hafalir et al., 2013] and overlapping reserves [Sönmez and Yenmez, 2022]—have
been proposed, typically assuming strict priorities. Using our framework, we can accommodate weak pri-
orities (i.e., ties). In each case, we provide a characterization of constrained efficient matchings in terms of
cycles (PSIC).

1.2 Organization of the Paper

The remainder of this paper is organized as follows: Section 2 provides the necessary definitions used
throughout this study. Section 3 introduces PI choice correspondences and examines their key properties.
Section 4 applies these theoretical foundations to explore stable and efficient matchings under PI choice
correspondences, offering a characterization of constrained efficient matchings. The applicability of our
model to practical settings is discussed in Section 5. Finally, Section 6 concludes with a discussion of our
findings and suggestions for future research directions.

2 Preliminaries

We denote the set of real numbers by R, and the set of all positive real numbers by R++. Additionally, we
write R to denote R∪ {−∞}. Let Z+ represent the set of nonnegative integers. For a set X and an element
i, we define X + i = X ∪ {i} and X − i = X \ {i}. Additionally, we define X + ∅ = X and X − ∅ = X.

Let I = {i1, i2, . . . , in} be a finite set of elements (students). A choice function C : 2I → 2I is a function
that satisfies C(X) ⊆ X for all X ∈ 2I . Here, C(X) is interpreted as the most preferred subset from an
available set X. Such a set is not uniquely determined when preferences involve ties or indifferences. In
this paper, we focus on a choice correspondence, which is a set-valued function C : 2I ⇒ 2I that assigns to
each X ∈ 2I a collection C(X) ⊆ 2X . For each X,Y ∈ 2I , assume that it is possible to determine whether
Y ∈ C(X) in constant time.2

In the following, we introduce important concepts used in this paper.

2.1 Matroids and Generalized Matroids

We will observe that PI choice correspondences exhibit a remarkable connection to the combinatorial struc-
tures of matroids and g-matroids. Therefore, we start by introducing these two concepts.

A nonempty family of subsets F ⊆ 2I is a matroid if, (i) X ⊆ Y ∈ F implies X ∈ F , and (ii) for
any X,Y ∈ F with |X| < |Y |, there is e ∈ Y \ X such that X + e ∈ F . A simple example of a matroid
is the family {I ′ ∈ 2I : |I ′| ≤ q}, where q is a nonnegative integer. This is known as a uniform matroid
of rank q. A family L ⊆ 2I is called a laminar if, for any X,Y ∈ L, we have X ∩ Y = ∅, X ⊆ Y , or
X ⊇ Y . For a laminar family L ⊆ 2I and q : L → Z+, the family {I ′ ∈ 2I : |I ′ ∩ L| ≤ qL (∀L ∈ L)} is
a matroid, which is called a laminar matroid. For a bipartite graph G = (I, J ;E), the family {I ′ ∈ 2I :
there exists a matching in G that covers I ′} is a matroid, known as a transversal matroid.

A nonempty family of subsets F ⊆ 2I is called a generalized matroid (g-matroid)3 if, for any X,Y ∈ F
and e ∈ X \ Y , there is e′ ∈ (Y \ X) ∪ {∅} such that X − e + e′ and Y + e − e′ are in F [Tardos, 1985].
Alternatively, g-matroid can be characterized by another property [Murota and Shioura, 1999]: for any

X,Y ∈ F and e ∈ X \Y , it holds that (i) X − e+ e′ ∈ F for some e′ ∈ (Y \X)∪{∅}, and (ii) Y + e− e′ ∈ F
for some e′ ∈ (Y \X) ∪ {∅}.

2For choice functions, it is standard to assume that one is provided with a choice oracle which directly returns C(X) for
any query X ∈ 2I . However, for choice correspondences, C(X) may potentially have an exponential number of sets. Thus, we
assume only the availability of a membership oracle. In Appendix C, we present a reduction from a membership oracle to a
choice oracle for PI choice functions.

3A g-matroid is also referred to as an M♮-convex family because the corresponding set of 0–1 vectors is an M♮-convex set as
a subset of ZI [Murota, 2016].
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One of the properties of a g-matroid F is that any set X ∈ F that is not maximum size can have an
element added to it to form another set in the g-matroid. This property will be used later.

Proposition 1. For any g-matroid F ⊆ 2I and X ∈ F , if |X| < max{|Y | : Y ∈ F}, then there is an element
i ∈ I such that X + i ∈ F .

Proof. Let Y ∗ ∈ argmin{|X △ Y | : Y ∈ F , |Y | > |X|}. Since |Y ∗| > |X|, there must be some element
e ∈ Y ∗ \X. Then, by the definition of g-matroid, there is e′ ∈ (X \ Y ∗)∪ {∅} such that Y ∗− e+ e′ ∈ F . As
|X△ (Y ∗−e+e′)| < |X△Y ∗|, it follows that e′ = ∅ and |Y ∗−e| = |X|. Consequently, X+e = Y ∗ ∈ F .

2.2 Properties of Choice Functions

A choice function C is called path-independent (PI) if it satisfies C(X ∪ X ′) = C(C(X) ∪ X ′) for any
X,X ′ ⊆ I. A choice function C is called substitutable (SUB) if C(X) ∩X ′ ⊆ C(X ′) for any X ′ ⊆ X ⊆ I.
Additionally, a choice function C satisfies irrelevance of rejected contracts (IRC) if C(X ′) = C(X) for any
X,X ′ ⊆ I with C(X) ⊆ X ′ ⊆ X. It is known that a choice function satisfies PI if and only if it satisfies
both SUB and IRC [Aizerman and Malishevski, 1981]. A choice function C satisfies law of aggregate demand
(LAD)4 if X ′ ⊆ X ⊆ I implies |C(X ′)| ≤ |C(X)|. A choice function C is called acceptant if there exists
a nonnegative integer q such that |C(X)| = min{|X|, q} for every X ∈ 2I . Clearly, each acceptant choice
function satisfies LAD.

A choice function C is called rationalizable if there is a utility function u : 2I → R such that {C(X)} =
argmax{u(Y ) : Y ⊆ X} for anyX ∈ 2I . Throughout this paper, we consider only utility functions u : 2I → R
that satisfy u(∅) = 0. This ensures that argmax{u(Y ) : Y ⊆ X} ̸= ∅ for any X ∈ 2I . We say that a utility
function u is unique-selecting if argmax{u(Y ) : Y ⊆ X} is a singleton for all X ∈ 2I . A utility function u
induces a choice function only if it is unique-selecting. It is known that a choice function is rationalizable if
and only if it satisfies the strong axiom of revealed preference (SARP) [Yang, 2020].

Next, we provide important classes of utility functions. A utility function u is said to be M♮-concave if,
for any X,X ′ ⊆ I and i ∈ X \X ′, there exists j ∈ (X ′ \X) ∪ {∅} such that

u(X) + u(X ′) ≤ u(X − i+ j) + u(X ′ + i− j).

We say that a utility function u is associated with a weighted matroid if it can be expressed as

u(X) =

{
v(X) if X ∈ F ,
−∞ if X /∈ F ,

where v is an additive function (i.e., v(X) =
∑

i∈X v({i}) (∀X ∈ 2I)) and F is a matroid. It is not difficult

to verify that every function associated with a weighted matroid is M♮-concave. A utility function u is called
laminar concave if it can be expressed as

u(X) =
∑
L∈L

φL(|X ∩ L|),

where L ⊆ 2I is a laminar family and φL is a univariate concave function for each L ∈ L. Every laminar
concave function is known to be M♮-concave [Murota, 2003, Note 6.11].

A utility function u is called ordinal concave5 if, for any X,X ′ ⊆ I and i ∈ X \ X ′, there exists
j ∈ (X ′ \X)∪{∅} such that: (i) u(X) < u(X− i+ j), (ii) u(X ′) < u(X ′+ i− j), or (iii) u(X) = u(X− i+ j)
and u(X ′) = u(X ′ + i − j). A utility function u satisfies size-restricted concavity if, for any X,X ′ ⊆ I
with |X| > |X ′|, there exists i ∈ X \ X ′ such that: (i) u(X) < u(X − i), (ii) u(X ′) < u(X ′ + i), or (iii)
u(X) = u(X − i) and u(X ′) = u(X ′ + i).

Yokote et al. [2024] characterized PI and LAD through the concepts of ordinal concavity and size-
restricted concavity.

4This notion is also referred to as cardinal monotonicity [Alkan, 2002] or size monotonicity [Alkan and Gale, 2003].
5The notion of ordinal concavity is equivalent to semistrictly quasi M♮-concavity. For more details, see the literature [Chen

and Li, 2021, Farooq and Shioura, 2005, Fujishige et al., 2024, Murota, 2003, Murota and Shioura, 2003].
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Theorem 1 (Yokote et al. [2024]). A choice function is PI if and only if it is rationalizable by a utility
function satisfying ordinal concavity. Furthermore, a choice function is PI and LAD if and only if it is
rationalizable by a utility function satisfying ordinal concavity and size-restricted concavity.

It is known that a choice function associated with an M♮-concave function is PI and LAD [Fujishige and
Tamura, 2006, Murota and Yokoi, 2015].6 This can also be justified by the fact that any M♮-concave function
satisfies both ordinal concavity and size-restricted concavity [Yokote et al., 2024].

2.3 Properties of Choice Correspondences

A choice correspondence C : 2I ⇒ 2I is said to be rationalizable if there exists a utility function u : 2I → R
such that C(X) = argmax{u(Y ) : Y ⊆ X} for every X ∈ 2I . We provide a characterization of this concept
by extending SARP in Appendix A. For a family of subsets F ⊆ 2I with ∅ ∈ F , the choice correspondence
defined by C(X) = {Y ⊆ X : Y ∈ F} is rationalizable. This type of choice correspondence is especially
useful for modeling constraints without imposing priorities.

Sotomayor [1999] introduced the substitutability of a choice correspondence C as follows:

(SC1
ch) For any X1, X2 ∈ 2I with X1 ⊇ X2 and any Z1 ∈ C(X1), there exists Z2 ∈ C(X2) such that
X2 ∩ Z1 ⊆ Z2.

(SC2
ch) For any X1, X2 ∈ 2I with X1 ⊇ X2 and any Z2 ∈ C(X2), there exists Z1 ∈ C(X1) such that
X2 ∩ Z1 ⊆ Z2.

Sotomayor [1999] also introduced the IRC condition of a choice correspondence C: For any X,Y, Y ′ ∈ 2I , if
Y ∈ C(X) and Y ⊆ Y ′ ⊆ X, then Y ∈ C(Y ′). It has been shown that a stable matching exists if the choice
correspondence of each school satisfies substitutability and IRC (see Section 4.1 for more details). On the
other hand, a choice correspondence may not be rationalizable even if it satisfies substitutability and IRC
(see Example 1). Finally, we define the acceptance of a choice correspondence C. A choice correspondence C
is called acceptant if there exists a nonnegative integer q such that for every X ∈ 2I and for every Y ∈ C(X),
it holds that |Y | = min{|X|, q}.

3 PI Choice Correspondences

In this section, we define the central concept of this paper, the path-independent (PI) choice correspondence,
and present its fundamental properties.

Let w : I → R be a weight function. We denote w(X) =
∑

i∈X w(i) for each X ∈ 2I . A weight function
w is called unique maximizing (UM) if, for every nonempty X ⊆ 2I , the set argmaxX∈X w(X) is a singleton
(i.e., w(X) ̸= w(X ′) for any distinct X,X ′ ∈ 2I). For any UM weight w, define Cw to be the choice function
such that {Cw(X)} = argmaxY ∈C(X) w(Y ) (∀X ∈ 2I). Intuitively, Cw represents the outcome of applying
a tie-breaking rule to C, consistently selecting the subset with the highest weight.

Definition 1. A choice correspondence C is PI if, for any UM weight w, the choice function Cw satisfies PI.

Similarly, we define LAD of a choice correspondence as follows.

Definition 2. A choice correspondence C is LAD if, for any UM weight w, the choice function Cw satisfies
LAD.

Table 1 provides some examples of choice correspondences on I = {a, b, c}. C0 and C1 satisfy PI and
LAD. In contrast, C2 satisfies PI but not LAD. To see that C2 fails LAD, note that Cw

2 ({b, c}) = {b, c}
while Cw

2 ({a, b, c}) = {a} for a UM weight w with w(a) > w(b) + w(c). Likewise, C3 satisfies LAD but
not PI. To see that C3fails not PI by Cw

3 ({a, b}) = {b} while Cw
3 ({a, b, c}) = {a} for a UM weight w with

6Murota and Yokoi [2015] also proved that any unique-selecting quasi M♮-concave function induces a choice function that is
PI and LAD, where quasi M♮-concavity is a concept weaker than M♮-concavity.
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X C0(X) C1(X) C2(X) C3(X) C4(X)

∅ ∅ ∅ ∅ ∅ ∅
{a} {a} {a} {a} {a} ∅, {a}
{b} {b} {b} {b} {b} ∅, {b}
{c} {c} {c} {c} {c} ∅, {c}
{a, b} {a}, {b} {a, b} {a} {b} ∅, {a, b}
{a, c} {a}, {c} {a, c} {a} {a} ∅, {a, c}
{b, c} {b}, {c} {b}, {c} {b, c} {c} ∅, {b, c}
{a, b, c} {a}, {b}, {c} {a, b}, {a, c} {a}, {b, c} {a}, {b}, {c} ∅, {a, b, c}

Table 1: Examples of choice correspondences

w(a) > w(b) > w(c). Finally, C4 fails to satisfy both of PI and LAD; this can be verified by considering
the UM weight w with (w(a), w(b), w(c)) = (−1, 2,−4) for which Cw

4 ({a}) = ∅, Cw
4 ({a, b}) = {a, b}, and

Cw
4 ({a, b, c}) = ∅.

3.1 Rationalizability

In general, a choice correspondence that satisfies substitutability and IRC is not necessarily rationalizable,
unlike the case for PI choice functions. The following example illustrates this fact.

Example 1. Consider the choice correspondence C4 given in Table 1. It can be expressed as the union of
two PI choice functions, C(1) and C(2), where C(1)(X) = X and C(2)(X) = ∅ for all X ∈ 2I . Thus, C4
satisfies substitutability and IRC (see Lemma 11 in Appendix B). We already have seen that C4 does not
satisfy PI. Moreover, C4 is not rationalizable because C4({a}) = {{a}, ∅} implies that the utilities of {a} and
∅ are equal, whereas C4({a, b}) = {{a, b}, ∅} implies that the utility of {a} is strictly smaller than that of ∅.

On the other hand, rationalizability is guaranteed under PI choice correspondences. Thus, they inherit
an important property that PI choice functions have.

Theorem 2. Every PI choice correspondence C is rationalizable.

Note that this result implies that PI choice correspondences satisfy IRC. Moreover, it turns out that PI
choice correspondences also satisfy a stronger IRC condition (see Lemma 6). Since the PI condition implies
substitutability, a stable matching is guaranteed to exist when each school has a PI choice correspondence.
The proof of Theorem 2 is given in the following subsubsection where some technically important lemmas
that will be used to prove other results are presented.

3.1.1 Proof of Theorem 2

Throughout this subsubsection, we assume that C : 2I ⇒ 2I is a PI choice correspondence.
We first show that any choice Y ∈ C(X) is revealed as Cw(X) = Y for some UM weight w.

Lemma 1. For every X,Y ∈ 2I with Y ∈ C(X), there exists a UM weight w such that Cw(X) = Y .

Proof. Let Y = {i1, . . . , ik} and let I \ Y = {ik+1, . . . , in}. Define the weight function w : I → R as follows:

w(ij) =

{
2−j if j ≤ k,
−2−j if j ≥ k + 1

(∀ij ∈ I).

Then, w is a UM weight, and we have Cw(X) = Y .
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This lemma implies that C(X) = {Cw(X) : w is a UM weight}. Thus, a PI choice correspondence C
is representable by a union of PI choice functions. Nevertheless, the union of PI choice functions is not
necessarily a PI choice correspondence (see Example 1).

The next lemma states that a PI choice correspondence C satisfies a form of idempotent property.

Lemma 2. Let S ∈ 2I . If S ∈ C(X) for some X ∈ 2I , then S ∈ C(S).

Proof. By Lemma 1, there exists a UM weight w such that Cw(X) = S. As Cw is PI, we have Cw(S) =
Cw(Cw(X)) = Cw(X) = S. Therefore, S ∈ C(S).

A map ψ : 2I → 2I with ψ(∅) = ∅ is said to be a closure operator if the following three properties hold:
(extensivity) X ⊆ ψ(X), (idempotence) ψ(ψ(X)) = ψ(X), and (monotonicity) X ⊆ Y implies ψ(X) ⊆ ψ(Y ).
Define τ(X) =

⋃
{Y ∈ 2I : C(X) ∩ C(Y ) ̸= ∅}. We will demonstrate that τ is a closure operator.7

The following lemma establishes key properties that are essential for demonstrating that τ is a closure
operator.

Lemma 3. For X,S ∈ 2I with S ∈ C(X), we have τ(X) =
⋃
{Y ∈ 2I : S ∈ C(Y )}. Moreover, S ∈ C(τ(X))

and τ(S) = τ(X).

Proof. We write S∗ to denote
⋃
{Y ∈ 2I : S ∈ C(Y )}. Let S = {i1, . . . , ik}, and let I \ S = {ik+1, . . . , in}.

Define a weight function w : I → R as follows:

w(ij) =

{
2−j if j ≤ k,
−2−j if j ≥ k + 1

(∀ij ∈ I).

Then, w is a UM weight, and we have Cw(X) = S.
For Y1, Y2 ∈ 2I with S ∈ C(Y1) and S ∈ C(Y2), we have Cw(Y1) = S and Cw(Y2) = S. Hence,

S = Cw(S) = Cw(Cw(Y1) ∪ Cw(Y2)) = Cw(Y1 ∪ Y2) ∈ C(Y1 ∪ Y2) since Cw is PI. This implies that
S = Cw(

⋃
{Y ∈ 2I : S ∈ C(Y )}) = Cw(S∗) ∈ C(S∗).

We have τ(X) =
⋃
{Y ∈ 2I : C(X) ∩ C(Y ) ̸= ∅} ⊇

⋃
{Y ∈ 2I : S ∈ C(Y )} = S∗. Thus, to obtain τ(X) =

S∗, it is sufficient to prove that τ(X) ⊆ S∗. Suppose to the contrary that τ(X) ̸⊆ S∗. Then, there exists
T,Z ∈ 2I such that T ∈ C(X)∩C(Z) and Z ̸⊆ S∗. Let σ be an order such that I \(S∪T ) = {iσ(1), . . . , iσ(p)},
T \ S = {iσ(p+1), . . . , iσ(q)}, and S = {iσ(q+1), . . . , iσ(n)}, where 0 ≤ p ≤ q ≤ n. Let w′ : I → R be a UM
weight such that

w′(iσ(j)) =

{
−2−j if j ≤ q,
2−j if j ≥ q + 1

(∀iσ(j) ∈ I)

Then, Cw′
(X) = S and Cw′

(Z) ⊆ S ∪ T (⊆ X) because w′(T ) > w′(T ′) for any T ′ ̸⊆ S ∪ T (see Figure 1).
Thus, Cw′

(X ∪ Z) = Cw′
(X ∪ Cw′

(Z)) = Cw′
(X) = S. This implies Z ⊆ S∗, which is a contradiction.

Therefore, τ(X) = S∗ =
⋃
{Y ∈ 2I : S ∈ C(Y )}.

Additionally, C(τ(X)) = C(S∗) ∋ Cw(S∗) = S. Moreover, as S ∈ C(S) by Lemma 2, it follows that
τ(X) =

⋃
{Y ∈ 2I : S ∈ C(Y )} = τ(S).

Now we prove that τ is a closure operator.

Proposition 2. τ is a closure operator.

Proof. We verify the three properties of a closure operator: extensivity, idempotence, and monotonicity.

(Extensivity) ForX ∈ 2I , we haveX ⊆
⋃
{Y ∈ 2I : C(X)∩C(Y ) ̸= ∅} = τ(X) as C(X)∩C(X) = C(X) ̸= ∅.

7For a PI choice function C, Koshevoy [1999] proved that the map ψ(X) =
⋃
{Y ∈ 2I : C(X) = C(Y )} is a closure operator

that satisfies the anti-exchange property. Our result generalizes this to PI choice correspondences; however, in this case, the
anti-exchange property may not hold (e.g., C0 in Table 1).
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S∗

X

TS Z

Figure 1: Relations of X, S, T , Z, and S∗

(Idempotence) Let X,S ∈ 2I with S ∈ C(X). By Lemma 3, we have S ∈ C(τ(X)) and τ(S) = τ(X).
Applying Lemma 3 again to τ(X) and S, we obtain τ(S) = τ(τ(X)). Thus, we concluded that
τ(X) = τ(S) = τ(τ(X)).

(Monotonicity) For X ⊆ Y ⊆ I, let S = {i1, . . . , ik} be a subset that is in C(X), and let I \ S =
{ik+1, . . . , in}. Define a weight function w : I → R as follows:

w(ij) =

{
2−j if j ≤ k,
−2−j if j ≥ k + 1

(∀ij ∈ I).

Then, w is a UM weight, and we have Cw(X) = S. By Lemma 3, we also have Cw(τ(X)) = S.
Moreover, we have Cw(Y ∪ τ(X)) = Cw(Y ∪ Cw(τ(X))) = Cw(Y ∪ S) = Cw(Y ). Hence, Y ∪ τ(X) ⊆
τ(Y ∪τ(X)) = τ(Cw(Y ∪τ(X))) = τ(Cw(Y )) = τ(Y ), where the set inclusion follows from extensivity,
and the first and the third equalities are by Lemma 3. Since Y ⊆ τ(Y ) by extensivity, we conclude
τ(X) ⊆ τ(Y ).

It is known that the inverse image C−1(X) for a PI choice function C forms an interval in 2I [Johnson
and Dean, 1996, Koshevoy, 1999]. The next lemma generalizes this result to a PI choice correspondence C.

Lemma 4. For S, T ∈ 2I such that S ∈ C(S), we have S ∈ C(T ) if and only if S ⊆ T ⊆ τ(S).

Proof. Suppose that S ∈ C(T ). By definition, we have S ⊆ T . From Lemma 2, it follows that S ∈ C(S).
Moreover, T ⊆

⋃
{Y ∈ 2I : C(S) ∩ C(Y ) ̸= ∅} = τ(S), since C(S) ∩ C(T ) (∋ S) is nonempty. Hence, we

conclude that S ⊆ T ⊆ τ(S).
Conversely, suppose that S ⊆ T ⊆ τ(S). Let S = {i1, . . . , ik}, and let I \ S = {ik+1, . . . , in}. Define a

weight function w : I → R as follows:

w(ij) =

{
2−j if j ≤ k,
−2−j if j ≥ k + 1

(∀ij ∈ I).

By Lemma 3, we have Cw(τ(S)) = S. Thus, Cw(T ) = Cw(T ∪ S) = Cw(T ∪ Cw(τ(S))) = Cw(T ∪ τ(S)) =
Cw(τ(S)) = S by PI of Cw.

The following two lemmas guarantee that PI choice correspondences satisfy a stronger IRC condition.

Lemma 5. C(X) = C(τ(X)) ∩ 2X holds for any X ∈ 2I .

Proof. First, suppose that S ∈ C(X). By definition, this implies S ⊆ X. Furthermore, from Lemma 3, we
know that S ∈ C(τ(X)). Thus, it follows that S ∈ C(τ(X)) ∩ 2X .

Conversely, suppose that S ∈ C(τ(X)) ∩ 2X . This means that S ∈ C(τ(X)) and S ⊆ X. From Lemma 3
and Proposition 2, we have τ(S) = τ(τ(X)) = τ(X) ⊇ X. Additionally, by Lemma 2, we have S ∈ C(S).
Therefore, applying Lemma 4, it follows that S ∈ C(X).
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Lemma 6. Let X,S ∈ 2I with S ∈ C(X). For any Y ∈ 2I such that S ⊆ Y ⊆ X, it holds that C(Y ) =
C(X) ∩ 2Y .8

Proof. By Lemma 4, we have S ∈ C(Y ). By Lemma 3, we have τ(Y ) = τ(S) = τ(X). Hence, by Lemma 5,
we obtain C(Y ) = C(τ(Y )) ∩ 2Y = C(τ(X)) ∩ 2Y = (C(τ(X)) ∩ 2X) ∩ 2Y = C(X) ∩ 2Y .

Now we prove Theorem 2.

Proof of Theorem 2. Define a utility function u : 2I → R as follows:

u(X) =

{
|τ(X)| if X ∈ C(X),

|τ(X)| − 1 if X /∈ C(X)
(∀X ∈ 2I).

We prove that u rationalizes C. Let S ⊆ X. We show that (i) u(S) = |τ(X)| if S ∈ C(X) and (ii)
u(S) < |τ(X)| if S ̸∈ C(X).

(i) If S ∈ C(X), then S ∈ C(S) by Lemma 2 and τ(S) = τ(X) by Lemma 3. Hence, u(S) = |τ(S)| =
|τ(X)|.

(ii-a) If S ̸∈ C(X) and τ(S) = τ(X), then S ̸∈ C(S) by Lemma 3. Thus, u(S) = |τ(S)|−1 = |τ(X)|−1. (ii-
b) If S ̸∈ C(X) and τ(S) ̸= τ(X), then τ(S) ⊊ τ(X) by Proposition 2. Therefore, u(S) ≤ |τ(S)| ≤ |τ(X)|−1.

Thus, C(X) = {S ⊆ X : u(S) = |τ(X)|} = argmax{u(Y ) : Y ⊆ X} for all X ∈ 2I .

3.2 G-matroid

We show that a PI choice correspondence has a nice combinatorial property. Based on this result, we present
some computational properties of the PI choice correspondence.

Theorem 3. Let C be a PI choice correspondence. Then, for every X ∈ 2I , C(X) is a g-matroid.

Proof. Suppose to the contrary that C(X) is not a g-matroid. Then, there exist S, T ∈ C(X) and e ∈ S \ T
such that (i) S − e+ e′ ̸∈ C(X) for all e′ ∈ (T \ S) ∪ {∅}, or (ii) T + e− e′ ̸∈ C(X) for all e′ ∈ (T \ S) ∪ {∅}.
We consider two cases separately. We remark that, for any Y such that Y ⊇ S or Y ⊇ T , it follows that
C(Y ) = C(X) ∩ 2Y by Lemma 6.

e

x

S T

Z

X

Figure 2: Case (i)

e

iq

ir+1

S T

Z

X

Figure 3: Case (ii)

Case (i). We first consider the case where S − e + e′ ̸∈ C(X) for all e′ ∈ (T \ S) ∪ {∅}. Let us define the
following sets: S − e = {i1, . . . , ip−1}, e = ip, and I \ S = {ip+1, . . . , in}, where 1 ≤ p < n. Next, we define
weight functions w,w′ : I → R as follows:

w(ij) =

{
2−j if j ≤ p,
−2−j if j ≥ p+ 1,

and w′(ij) =

{
2−j if j ≤ p− 1,

−2−j if j ≥ p.

8This is a strictly stronger condition than the IRC condition. Indeed, the choice correspondence C4 given in Table 1 does
not satisfy this condition for S = ∅, Y = {a}, and X = {a, b}.
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Let Z = Cw(S∪T−e) (see Figure 2). Since w(i) = w′(i) for all i ∈ I \{e}, it follows that Z = Cw′
(S∪T−e).

Additionally, we have Cw(X) = S. As S ∪ T − e ⊆ X and Cw is substitutable, we have

S − e = S ∩ (S ∪ T − e) = Cw(X) ∩ (S ∪ T − e) ⊆ Cw(S ∪ T − e) = Z.

Moreover, we observe that |Z \ S| ≥ 2. If this were not the case (i.e., if |Z \ S| ≤ 1), then Z = S − e+ e′ for
some e′ ∈ (T \S)∪{∅}, which contradicts the assumption. Note that, for every Z ′ such that S−e ⊆ Z ′ ⊊ Z,
we have Z ′ ̸∈ C(X) by the definition of Z. Let x be an element in Z \ S.

We now demonstrate that Cw′
(S+ x) = S. Note that S ∈ C(S+ x) by C(S+ x) = C(X)∩ 2S+x. The set

Cw′
(S + x) must include S − e; otherwise we have w′(S) > w′(Cw′

(S + x)), which is a contradiction. Thus,
the possible candidates for Cw′

(S + x) are S − e, S − e+ x, S + x, and S. However, Cw′
(S + x) cannot be

equal to S + x as w′(S) > w′(S + x). Furthermore, it cannot be equal to either S − e or S − e + x, since
both sets are not in C(S + x) = C(X) ∩ 2S+x. Therefore, the only possibility is that Cw′

(S + x) = S.
Next, we show that Cw′

(Z + e) = Z. Note that Z ∈ C(Z + e) since C(Z + e) = C(X) ∩ 2Z+e. The set
Cw′

(Z + e) must include S − e; otherwise w′(Z) > w′(Cw′
(Z + e)). Additionally, it cannot include S, as

w′(Z) > w′(S′) for all S′ ⊇ S. Hence, S − e ⊆ Cw′
(Z + e) ⊆ Z. Moreover, no set Z ′ with S − e ⊆ Z ′ ⊊ Z

belongs to C(Z + e) = C(X) ∩ 2Z+e. Therefore, it follows that Cw′
(Z + e) = Z.

By combining Cw′
(S + x) = S and Cw′

(Z + e) = Z, we get

x ∈ Z = Cw′
(Z + e) = Cw′

((S + x) ∪ (Z − x)) = Cw′
(Cw′

(S + x) ∪ (Z − x))

= Cw′
(S ∪ (Z − x)) = Cw′

(Z + e− x) ̸∋ x.

This is a contradiction.

Case (ii). Next, we consider the case where T + e− e′ ̸∈ C(X) for all e′ ∈ (T \ S) ∪ {∅}. Let us define the
following sets: S − e = {i1, . . . , ip−1}, e = ip, T \ S = {ip+1, . . . , iq}, and I \ (S ∪ T ) = {iq+1, . . . , in}, where
1 ≤ p < q ≤ n. Define a weight function w : I → R as follows:

w(ij) = 2−j (∀ij ∈ I).

Let Z = Cw(T + e) (see Figure 3). Since S ∈ C(X) ∩ 2S∪T = C(S ∪ T ), it follows that Cw(S ∪ T ) ⊇ S. By
the substitutability of Cw, we have

(T ∩ S) + e = S ∩ (T + e) ⊆ Cw(S ∪ T ) ∩ (T + e) ⊆ Cw(T + e) = Z.

Moreover, we observe that |T \Z| ≥ 2. If this were not the case (i.e., if |T \Z| ≤ 1), then Z = T+e−e′ for some
e′ ∈ (T \S)∪{∅}, which contradicts the assumption. Note that, for every Z ′ such that Z ⊊ Z ′ ⊆ T+e, we have
Z ′ ̸∈ C(X) by the definition of Z. Let us set T \Z = {ir+1, . . . , iq}. Then, Z \S = (T \S)∩Z = {ip+1, . . . , ir}
and r + 1 < q. Define another UM weight w′ : I → R as follows:

w′(ij) =

{
(n+ 1) · 2n−j if j < p or p+ 1 ≤ j ≤ r,
1 + (1/2)j if j = p or j ≥ r + 1,

(∀ij ∈ I).

We now demonstrate that Cw′
(T + e) = T . Note that T ∈ C(T + e) by C(T + e) = C(X) ∩ 2T+e. The

set Cw′
(T + e) must include Z − e; otherwise we have w′(T ) > w′(Cw′

(T + e)), which is a contradiction.
Additionally, by the choice of Z, we have Z ′ /∈ C(T + e) for all Z ′ such that Z ⊊ Z ′ ⊆ T + e. Thus, the
possible candidates for Cw′

(T + e) are only Z and T . By the definition of w′, we have

w′(T ) ≥ w′(Z)− w′(e) + w′(iq) + w′(ir+1) > w′(Z).

Therefore, it follows that Cw′
(T + e) = T .

Next, we show that Cw′
(Z + iq) = Z. Note that Z ∈ C(Z + iq) by C(Z + iq) = C(X) ∩ 2Z+iq . The

set Cw′
(Z + iq) must include Z − e; otherwise we have w′(Z) > w′(Cw′

(Z + iq)), which is a contradiction.
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Hence, the possible candidates for Cw′
(Z + iq) are Z, Z − e, Z − e+ iq, and Z + iq. It is straightforward to

verify that w′(Z) > w′(Z − e), w′(Z) > w′(Z − e+ iq), and Z + iq ̸∈ C(T + e). Thus, the only possibility is

Cw′
(Z + iq) = Z.

Together with Cw′
(T + e) = T and Cw′

(Z + iq) = Z, we obtain

iq ∈ T = Cw′
(T + e) = Cw′

((Z + iq) ∪ (T − iq)) = Cw′
(Cw′

(Z + iq) ∪ (T − iq))

= Cw′
(Z ∪ (T − iq)) = Cw′

(T + e− iq) ̸∋ iq,

which is a contradiction.

Note that substitutability and IRC are insufficient to obtain Theorem 3. For example, the choice cor-
respondence C4 in Table 1 does not induce a g-matroid, as C4({a, b}) = {∅, {a, b}}, while it satisfies substi-
tutability and IRC.

This theorem implies that for any positive UM weight w : I → R++, the choice Cw(X) is the maximum
size in C(X) by a property of g-matroid.

Corollary 1. Let C be a PI choice correspondence. Then, for any positive UM weight w : I → R++, we
have |Cw(X)| = max{|Y | : Y ∈ C(X)}.

Proof. Let X∗ = Cw(X) and suppose that |X∗| < max{|Y | : Y ∈ C(X)}. As C(X) is a g-matroid,
there is an element i ∈ I such that X∗ + i ∈ C(X) by Proposition 1. This leads to a contradiction as
w(X∗ + i) > w(X∗).

In addition, for any UM weight w : I → R, we can construct a membership oracle for Cw.

Corollary 2. For any PI choice correspondence C and any UM weight w, we can answer a membership
query for Cw in polynomial time by using the membership oracle for C.

Proof. Let X,Y ∈ 2I . If Y /∈ C(X), then clearly Cw(X) ̸= Y . If Y ∈ C(X), then Cw(X) = Y (i.e.,
w(Y ) = max{w(X ′) : X ′ ∈ C(X)}) if and only if w(Y ) ≥ w(Y + u − v) for all u, v ∈ X ∪ {∅} such that
Y + u − v ∈ C(X) [Murota, 2003, Theorem 6.26]. Since there are at most O(|X|2) such pairs (u, v), this
condition can be verified in O(|X|2) time. Consequently, a membership query for Cw can be answered in
polynomial time.

As we can construct a choice oracle from a membership oracle for PI choice functions (see Appendix C),
we obtain the following theorem.

Theorem 4. Suppose a choice correspondence C : 2I ⇒ 2I is accessible via a membership oracle. Then, for
any X ∈ 2I and any UM weight w : I → R, we can compute Cw(X) in polynomial time.

Moreover, if the choice correspondence C is both PI and LAD, then Cw(X) can be computed more
directly and efficiently for every X ∈ 2I .

Proposition 3. Let C be a choice correspondence that satisfies PI and LAD. Suppose that we are given
X ∈ 2I and a UM weight w : I → R. Then, we can compute Cw(X) in O(|X|2) time.

Proof. Let X = {i1, i2, . . . , ip} and Xj = {i1, i2, . . . , ij} for each j ∈ {0, 1, . . . , p}. We compute Yj iteratively
as follows. Set Y0 = ∅. For j = 1, 2, . . . , p, define the candidate set

Aj := {Yj−1, Yj−1 + ij} ∪ {Yj−1 − i+ ij : i ∈ Yj−1}.

Then, choose Yj such that

{Yj} = argmax{w(Y ) : Y ∈ Aj}.

Note that such a unique maximizer exists since w is a UM weight.
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We claim that Yj = Cw(Xj) for every j. The claim holds for j = 0 because Cw(X0) = Cw(∅) = ∅ = Y0.
Now, assume by induction that Yj−1 = Cw(Xj−1) for some index j > 0. By PI of Cw, we have Cw(Xj) =
Cw(Cw(Xj−1)∪{ij}) = Cw(Yj−1+ij). Moreover, by LAD of Cw, we have |Cw(Xj)| ≥ |Cw(Xj−1)| = |Yj−1|.
Thus, Cw(Xj) is either equal to Yj−1, Yj−1 + ij , or Yj−1 − i + ij for some i ∈ Yj−1. By our construction,
Yj is chosen from the candidate set Aj to maximize w among those candidates. Hence, we conclude that
Cw(Xj) = Yj .

Therefore, Yp = Cw(Xp) = Cw(X). Note that the iterative process involves p steps. In each step, the
candidate set Aj contains at most 2 + |Yj−1| (≤ p + 1) candidates. Hence, each iteration requires only
O(p) basic operations and membership oracle calls. Consequently, the overall computational time is at most
O(p2) = O(|X|2).

Remark 1. Even if a choice correspondence C can be represented as the union of PI and LAD choice
functions, computing Cw(I) for some UM weight w requires an exponential number of queries. Note that,
by Lemma 11, such a choice correspondence also satisfies substitutability and IRC. To illustrate this, let
I = {i1, . . . , in}, k = ⌊n/2⌋, and let X∗ ⊆ I be a randomly selected set of size |X∗| = k+1. Additionally, let
F = {X ⊆ I : |X| ≤ k} ∪ {X∗}. Now, define the choice correspondence C by C(X) = {X ′ ⊆ X : X ′ ∈ F}.
Note that, by Proposition 4, C can be represented as the union of PI and LAD choice functions. With the
UM weight function w specified as w(ij) = 1+(1/2)j for each ij ∈ I, the choice Cw(I) is equal to X∗. When
querying the membership oracle with a set X of size k + 1, the oracle reveals only whether X = X∗. Since
there are exponentially many subsets of size k+1, identifying X∗ requires an exponential number of queries
in expectation.

3.3 PI and Ordinal concavity

It is known that a choice correspondence associated with an ordinally concave function also has the g-
matroid property [Fujishige et al., 2024]. Thus, it is natural to examine the relationship between the PI
condition and ordinal concavity. The following result shows that a choice correspondence associated with
an ordinally concave function is PI, and that size-restricted concavity ensures it is LAD. In particular, this
result guarantees that a wide class of choice correspondences arising in real-life applications satisfy both PI
and LAD.

Theorem 5. Any choice correspondence associated with an ordinally concave function satisfies PI. Fur-
thermore, any choice correspondence associated with a function that satisfies both ordinal concavity and
size-restricted concavity satisfies both PI and LAD.

Proof. Let u : 2I → R be a utility function. Fix a UM weight w : I → R, define a utility function uw : 2I → R
as follows:

uw(X) = u(X) + δ · w(X) (∀X ∈ 2I),

where δ is a sufficiently small positive real number such that u(X) > u(Y ) implies uw(X) > uw(Y ). For
example, we can select

δ =

{
1 if u is a constant function,
min{|u(X)−u(Y )|:u(X) ̸=u(Y )}
max{1,max{|w(X)|:X∈2I}} otherwise.

Let C be the choice function associated with u, and let Cw be its tie-breaking with respect to w. It is
straightforward to verify that the choice function Cw is associated with uw.

Suppose that u is an ordinal concave function, i.e., for any X,X ′ ∈ 2I and i ∈ X \ X ′, there exists
j ∈ (X ′ \X)∪{∅} such that: (i) u(X) < u(X− i+ j), (ii) u(X ′) < u(X ′+ i− j), or (iii) u(X) = u(X− i+ j)
and u(X ′) = u(X ′ + i− j). We will show that uw satisfies ordinal concavity. In case (i), we have uw(X) <
uw(X − i+ j). Similarly, in case (ii), we have uw(X ′) < uw(X ′ + i− j). In case (iii), we have

uw(X) = u(X) + δ · w(X) = u(X − i+ j) + δ · w(X)

= uw(X − i+ j)− δ · w(X − i+ j) + δ · w(X) = uw(X − i+ j) + δ · (w(i)− w(j))
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and

uw(X ′) = u(X ′) + δ · w(X ′) = u(X ′ + i− j) + δ · w(X ′)

= uw(X ′ + i− j)− δ · w(X ′ + i− j) + δ · w(X ′) = uw(X ′ + i− j)− δ · (w(i)− w(j)).

As w is a UM weight, w(i) ̸= w(j). Consequently, either uw(X) < uw(X − i+ j) or uw(X) < uw(X − i+ j).
Hence, uw is ordinally concave. As a choice function associated with an ordinal concavity function is PI, it
follows that Cw is PI. Therefore, C satisfies PI.

Suppose that u additionally satisfies size-restricted concavity, i.e., for any X,X ′ ∈ 2I with |X| > |X ′|,
there exists i ∈ X \X ′ such that: (i) u(X) < u(X − i), (ii) u(X ′) < u(X ′ + i), or (iii) u(X) = u(X − i) and
u(X ′) = u(X ′+i). In case (i), we have uw(X) < uw(X−i), and in Case (ii), we have uw(X ′) < uw(X ′+i). In
case (iii), we have uw(X) = uw(X−i)+δ ·w(i) and uw(X ′) = uw(X ′+i)−δ ·w(i). Hence, uw(X) > uw(X−i)
if w(i) > 0 and uw(X ′) > uw(X ′ + i) if w(i) < 0. Thus, uw also satisfies size-restricted concavity, and hence
Cw is PI and LAD.

One might expect that the converse of this result holds—that is, every PI choice correspondence is
rationalizable by some ordinally concave function. However, whether this is true remains an open question.
Even if the answer is negative, we believe that the PI condition is a crucial property for characterizing a
class of choice correspondences induced by ordinally concave functions.

M♮-concavity is a stronger condition than both ordinal concavity and size-restricted concavity. Therefore,
the above result implies that any choice correspondence associated with an M♮-choice function satisfies both
PI and LAD. This fact is particularly useful for applications (see Section 5). The relationships between these
classes of choice correspondences, as well as among the classes defined by substitutability and acceptance,
are summarized in Figure 4.

Substitutable and IRC

PI LADPI and LAD

M♮-concave

acceptant

Figure 4: Classes of choice correspondences

Remark 2. Farooq and Tamura [2004] proved that for a utility function u : 2I → R, the following three
conditions are equivalent:

(i) u satisfies M♮-concavity,

(ii) for any w ∈ RI , C(X) := argmax{u(X ′) + w(X ′) : X ′ ⊆ X} satisfies (SC1
ch), and

(iii) for any w ∈ RI , C(X) := argmax{u(X ′) + w(X ′) : X ′ ⊆ X} satisfies (SC2
ch).

In contrast to their conditions, our property of PI only considers tie-breaking. Specifically, we focus on
C(X) := {u(X ′) + w(X ′) : X ′ ⊆ X} for w ∈ RI where

∑
i∈I |wi| is sufficiently small.

4 Constrained Efficient Matching

In this section, we explore stable and efficient matchings under PI choice correspondences.
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4.1 Matching Model

A market is a tuple (I, S, (≻i)i∈I , (Cs)s∈S), where I is a finite set of students and S is a finite set of schools.
Each student i ∈ I has a strict preference ≻i over S ∪ {∅}, where ∅ means being unmatched (or an outside
option). We write s ⪰i s

′ if either s ≻i s
′ or s = s′ holds.

Each school s ∈ S is endowed with a choice correspondence Cs : 2I ⇒ 2I . The set Cs(X) represents the
most preferred subsets of students in 2X for school s, for each X ∈ 2I . For a school s ∈ S and a UM weight
w, let Cw

s denote the choice function such that {Cw
s (X)} = argmaxY ∈Cs(X) w(Y ) for every X ∈ 2I .

A matching µ is a subset of I × S such that each student i appears at most in one pair of µ; that is,
|µ∩{(i, s) : s ∈ S}| ≤ 1 for all i ∈ I. For each i ∈ I, we write µ(i) to denote the school to which i is assigned
at µ, that is, µ(i) = s if (i, s) ∈ µ and µ(i) = ∅ if (i, s) ̸∈ µ for all s ∈ S. Similarly, for each s ∈ S, we write
µ(s) to denote the set of students assigned to s at µ, that is, µ(s) = {i ∈ I : (i, s) ∈ µ}. A matching µ is
called stable if it satisfies the following properties:

• Individual Rationality: µ(i) ⪰i ∅ for every i ∈ I, and

• No Blocking Coalition: µ(s) ∈ Cs(µ(s) ∪X) for every X ⊆ {i ∈ I : s ≻i µ(i)} and s ∈ S.

A matching µ′ Pareto dominates another matching µ if µ′(i) ⪰i µ(i) for all i ∈ I and µ′(i) ≻i µ(i) for
some i ∈ I. A stable matching µ is constrained efficient if it is not Pareto dominated by any other stable
matching.

Remark 3. Our model can be viewed as a generalization of distributing indivisible goods under constraints
studied in [Imamura and Kawase, 2024a,b, Suzuki et al., 2018, 2023]. In these works, a market is defined
as a tuple (I, S, (≻i)i∈I , (Fs)s∈S , µ0), where Fs ⊆ 2I is the family of subsets of students that school s ∈ S
can accept, and µ0 is the initial matching. A matching µ is called feasible if µ(i) ⪰i ∅ (∀i ∈ I) and
µ(s) ∈ Fs (∀s ∈ S). A feasible matching µ is called Pareto efficient (PE) if there is no other feasible
matching µ′ that Pareto dominates µ. Additionally, a feasible matching µ is called individual rational (IR)
if µ(i) ⪰i µ0(i) (∀i ∈ I). We assume that µ0 is feasible.

For each school s ∈ S, define the choice correspondence Cs(X) = {Y ⊆ X : Y ∈ F} (∀X ∈ 2I). With
this definition, a matching is feasible if and only if it is stable. Moreover, a feasible matching that is both
PE and IR coincides with a constrained efficient matching that Pareto dominates µ0, and vice versa. By
Theorem 5, Cs satisfies PI and LAD when Fs ⊆ 2I is a matroid.

Moreover, for the case when every two sets X ′, X ′′ ∈ Fs satisfy |X ′| = |X ′′| for each s ∈ S, define the
choice correspondence C′s(X) = {Y ⊆ X : Y ⊆ Y ′ ∈ F} (∀X ∈ 2I). Then, a feasible matching that is
both PE and IR coincides with a constrained efficient matching that Pareto dominates µ0, and vice versa.
Furthermore, by Theorem 5, C′s satisfies PI and LAD when Fs ⊆ 2I is a set of matroid bases (i.e., an
M-convex set).

Thus, our results in this section are also applicable in these settings.

As we mentioned in Section 2.3, a stable matching exists whenever Cs satisfies substitutability and IRC
for all s ∈ S. Since PI is a stronger condition than these, a stable matching exists if Cs is PI for all s ∈ S. In
particular, if Cws

s is PI for all s ∈ S, we can obtain a stable matching in the market (I, S, (≻i)i∈I , (Cs)s∈S) by
applying the deferred acceptance (DA) algorithm to the market (I, S, (≻i)i∈I , (C

ws
s )s∈S) [Aygün and Sönmez,

2013, Roth, 1984]. This is because the outcome of the DA algorithm, µ, satisfies µ(i) ⪰i ∅ for every i ∈ I
and µ(s) = Cws

s (µ(s)∪X) ∈ Cs(µ(s)∪X) for every X ⊆ {i ∈ I : s ≻i µ(i)} and s ∈ S. However, the outcome
µ of the DA may not be constrained efficient, as illustrated in the following example. Thus, tie-breaking may
not lead to an efficient stable matching. This motivates us to explore methods for obtaining a constrained
efficient matching from an inefficient stable matching.

Example 2. Suppose that I = {i1, i2, i3, i4} and S = {s1, s2, s3}. The preference ≻i of each student i ∈ I
is given as follows:

≻i1 = (s2 s1 ∅ s3), ≻i2 = (s1 s2 ∅ s3), ≻i3 = (s3 s1 ∅ s2), ≻i4 = (s1 s3 ∅ s2).
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School s1 has one seat for {i1, i4} and one seat for {i2, i3}. Schools s2 and s3 have one seat for {i1, i2} and
one seat for {i3, i4}, respectively. We assume that each school prefers to fill the seats as much as possible
(without prioritizing any specific student). The resulting choice correspondences (Cs)s∈S are given as

Cs1(X) = argmax{|Y | : Y ⊆ X, |Y ∩ {i1, i4}| ≤ 1, |Y ∩ {i2, i3}| ≤ 1},
Cs2(X) = argmax{|Y | : Y ⊆ X, |Y ∩ {i1, i2}| ≤ 1, |Y ∩ {i3, i4}| = 0}, (∀X ∈ 2I).

Cs3(X) = argmax{|Y | : Y ⊆ X, |Y ∩ {i1, i2}| = 0, |Y ∩ {i3, i4}| ≤ 1}

These choice correspondences are PI and LAD as they are derived from weighted matroids.
Consider a matching µ = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)}. Then, this matching is stable because

µ(i) ⪰i ∅ for every student i ∈ I, and µ(s) ∈ Cs(µ(S) ∪ X) for every X ⊆ {i ∈ I : s ≻i µ(i)} and
s ∈ S. However, µ is not constrained efficient because it is Pareto dominated by another stable matching
µ′ = {(i1, s2), (i2, s1), (i3, s3), (i4, s1)}. Moreover, the matching µ = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)} is the
outcome of DA with weights (ws1(i1), ws1(i2), ws1(i3), ws1(i4)) = (1, 4, 2, 8).

4.2 Main Result

Under responsive choice correspondences, constrained efficient matchings are characterized by cycles [Erdil
and Ergin, 2008]. However, in more general settings, this cycle characterization fails [Erdil and Kumano,
2019]. We show that if a choice correspondence satisfies our notions, a similar cycle-based characterization of
constrained efficient matchings is restored (Theorem 6). This result has implications for real-life applications
that, for example, incorporate diversity requirements.

We introduce two key properties to characterize constrained efficient stable matchings. First, we call a
stable matching maximal if |µ(s)| = max

{
|X| : X ∈ Cs({i ∈ I : s ⪰i µ(i)})

}
for every s ∈ S. We will show

that any constrained efficient stable matching must be maximum (Lemma 8). Next, we define the notion of
a cycle called a potentially-stable improvement cycle (PSIC), which was introduced by Erdil and Kumano
[2019].

Definition 3. A PSIC is a sequence of distinct students (i0, i1, . . . , im−1) with m ≥ 2 such that

• sℓ := µ(iℓ) for all ℓ ∈ {0, 1, . . . ,m− 1},

• sℓ+1 ≻iℓ sℓ for all ℓ ∈ {0, 1, . . . ,m− 1}, and

• µ(sℓ+1)− iℓ+1 + iℓ ∈ Csℓ+1
({i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1) for all ℓ ∈ {0, 1, . . . ,m− 1},

where we treat im = i0 and sm = s0.

We will show that a necessary and sufficient condition for a stable matching to be constrained efficient
is that it is maximal and admits no PSIC.

Theorem 6. Suppose that Cs is PI and LAD for every school s ∈ S. Then, a stable matching µ is constrained
efficient if and only if it is both maximal and admits no PSIC. Moreover, for a given stable matching µ, we
can compute a constrained efficient stable matching that Pareto dominates µ in polynomial time.

It is worth noting that any mechanism that always produces a constrained efficient stable matching
is not strategy-proof, even under the standard responsive choice correspondences [Erdil and Ergin, 2008].
Consequently, we do not consider strategy-proofness in this work.

The condition of PI takes an important role in Theorem 6. The following example shows that a constrained
efficient matching may admit a PSIC when PI is violated.

Example 3. Consider a market that is almost identical to Example 2, but differs only in the choice cor-
respondence of school s1. In addition to Example 2, assume that school s1 cannot accept i2 and i4 at the
same time. The resulting choice correspondence C′s1 is given as

C′s1(X) = argmax{|Y | : Y ⊆ X, |Y ∩ {i1, i4}| ≤ 1, |Y ∩ {i2, i3}| ≤ 1, |Y ∩ {i2, i4}| ≤ 1} (∀X ∈ 2I).
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For this market, it is not difficult to verify that the matching µ = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)} is stable
and constrained efficient. Indeed, C′s1 satisfies LAD but fails to satisfy PI since the choice function induced
by any UM weight w with w(i3) > w(i4) > w(i2) > w(i1) does not satisfy PI. Moreover, (i1, i2, i3, i4) is a
PSIC for a constrained efficient matching µ = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)}.

Conversely, Erdil et al. [2022] provided an example where a stable matching that is not constrained
efficient but admits no PSIC. In their example, the choice correspondence satisfies substitutability and
acceptance but violates PI.9

In the rest of this section, we provide the proof of Theorem 6. The following lemma characterizes both
stable matchings and maximal stable matchings using tie-breaking.

Lemma 7. Suppose that Cs is PI for all s ∈ S. Then, a matching µ is stable if µ(i) ⪰i ∅ for every i ∈ I and
µ(s) = Cws

s

(
{i ∈ I : s ⪰i µ(i)}

)
for some UM weight ws, for every s ∈ S. Moreover, a stable matching µ is

maximal if µ(s) = C
w+

s
s ({i ∈ I : s ⪰i µ(i)}) for some positive UM weight w+

s : I → R++, for every s ∈ S.

Proof. Assume that a matching µ satisfies µ(i) ⪰i ∅ for every i ∈ I and µ(s) = Cws
s ({i ∈ I : s ⪰i µ(i)}) for

a UM weight ws, for every s ∈ S. To prove the stability of µ, it is sufficient to show that µ(s) ∈ Cs(µ(s)∪X)
for every X ⊆ {i ∈ I : s ≻i µ(i)} and s ∈ S. By the PI property of Cws

s , we have

Cws
s (µ(s) ∪X) = Cws

s (Cws
s ({i ∈ I : s ⪰i µ(i)}) ∪X)

= Cws
s ({i ∈ I : s ⪰i µ(i)} ∪X) = Cws

s ({i ∈ I : s ⪰i µ(i)}) = µ(s).

Thus, we obtain that µ(s) = Cws
s (µ(s) ∪X) ∈ Cs(µ(s) ∪X).

Next, assume that µ is a stable matching and µ(s) = C
w+

s
s ({i ∈ I : s ⪰i µ(i)}) for a positive UM weight

w+
s : I → R++, for every s ∈ S. Then, by Corollary 1, we have

|µ(s)| = |Cw+
s

s ({i ∈ I : s ⪰i µ(i)})| = max
{
|X| : X ∈ Cs({i ∈ I : s ⪰i µ(i)})

}
,

for every s ∈ S. This means that µ is maximal.

It is worth mentioning that, if the choice correspondences are acceptant, every stable matching is maximal.
Unlike the analysis by Erdil and Kumano [2019] and Erdil et al. [2022], we do not assume acceptance; instead,
we assume only LAD. This is important for real-life applications since acceptance is violated while LAD is
satisfied under a diversity constraint.

4.3 Proof of Theorem 6

In this subsection, we prove Theorem 6.

4.3.1 Sufficiency Part of Theorem 6

We now demonstrate the sufficiency direction of Theorem 6: if a stable matching is constrained efficient,
then it is both maximal and admits no PSIC. Unlike the case with responsive choice correspondences studied
by Erdil and Ergin [2008], not every PSIC necessarily preserves stability. Therefore, it is crucial to select
the cycle carefully. The following example illustrates these points.

Example 4. Suppose that I = {i1, i2, i3, i4, i5} and S = {s1, s2}. The choice correspondence Cs1 for school
s1 is associated with the utility function:

us1(X) =

{
|X ∩ {i5}|+ 2 ·

√
|X ∩ {i1, i3}|+ 3 · |X ∩ {i2, i4}| if |X| ≤ 2,

−∞ if |X| > 2,
(∀X ∈ 2I).

9They provide a condition to obtain the necessity part of Theorem 6. We will discuss this in Appendix D.
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Similarly, the choice correspondence Cs2 for school s2 is associated with:

us2(X) =

{
|X| if |X| ≤ 2,

−∞ if |X| > 2,
(∀X ∈ 2I).

Since us1 and us2 are laminar concave functions, both choice correspondences Cs1 and Cs2 satisfy PI and
LAD. Assume that students i ∈ {i1, i3, i5} have preferences ≻i = (s1 ≻ s2 ≻ ∅), while students i ∈
{i2, i4} have preferences ≻i = (s2 ≻ s1 ≻ ∅). It is straightforward to verify that the matching µ =
{(i1, s2), (i2, s1), (i3, s2), (i4, s1)} is stable.

In this instance, (i1, i2, i3, i4) is a PSIC for µ. By applying this PSIC to µ, we obtain another matching
ν = {(i1, s1), (i2, s2), (i3, s1), (i4, s2)}. However, ν is not stable since

Cs1({i ∈ I : s1 ⪰ ν(i)}) = Cs1({i1, i3, i5}) = {{i1, i5}, {i3, i5}} ̸∋ {i1, i3}.

Instead, by applying another PSIC (i1, i2), we obtain ν′ = {(i1, s1), (i2, s2), (i3, s2), (i4, s1)}, which can be
verified to be stable.

The key distinction between the two cycles lies in the presence of a shortcut in the first PSIC. We
demonstrate that a PSIC without any shortcuts can preserve stability.10

In what follows, we first show that if a stable matching is not maximal, then it is not constrained efficient.
Second, we demonstrate that if a maximal stable matching admits a PSIC, it cannot be constrained efficient.

Lemma 8. Suppose that Cs satisfies PI and LAD for every school s ∈ S. If a stable matching µ is not
maximal, then µ is not constrained efficient. Moreover, in this case, we can compute another stable matching
ν that Pareto dominates µ in polynomial time.

Proof. Suppose that µ is a stable matching that is not maximal. Then, there exists a school s ∈ S such that
µ(s) ̸∈ Cw

s ({i ∈ I : s ⪰i µ(i)}) for any positive UM weight w : I → R++. Fix such a school s∗. By Theorem 3
and Proposition 1, there exists a student i∗ such that s∗ ≻i∗ µ(i

∗) and µ(s∗)+ i∗ ∈ Cs∗({i ∈ I : s∗ ⪰i µ(i)}).
For each s ∈ S \ {s∗}, let ws be a UM weight such that µ(s) = Cws

s ({i ∈ I : s ⪰i µ(i)}). In addition,
let ws∗ be a UM weight such that µ(s∗) + i∗ = Cws∗

s∗ ({i ∈ I : s∗ ⪰i µ(i)}). Note that such UM weights can
be constructed by setting as in Lemma 1. We construct sequences of matchings (µ0, µ1, . . . , µr), students
(i0, i1, . . . , ir−1), and schools (s0, s1, . . . , sr) as follows:

1. Initialization:

• Set µ0 = µ, i0 = i∗, and s0 = s∗.

2. Inductive Step (k = 1, 2, . . .):

• Define µk as the matching obtained from µk−1 by changing the assignment of ik−1 from µk−1(ik−1)
to sk−1.

• Set sk = µk−1(ik−1).

• If (i) sk = ∅ or (ii) sk ∈ S and C
wsk
sk ({i ∈ I : sk ⪰i µk(i)}) = µk(sk), then terminate the process

by setting r = k. Otherwise, select ik such that sk ≻ik µk(ik) and µk(sk) + ik = C
wsk
sk ({i ∈ I :

sk ⪰i µk(i)}).

We now show that such sequences are always well defined and that the final matching µr is stable and Pareto
improves upon the initial matching µ.

We observe that we can select a student ik at each step k < r. Since i0 = i∗, we only consider the case
where k > 0. Because C

wsk
sk satisfies PI, we have

C
wsk
sk ({i ∈ I : sk ⪰i µk(i)}) = C

wsk
sk ({i ∈ I : sk ⪰i µk−1(i)} − ik−1) ⊇ µk−1(sk)− ik−1.

10A PSIC is closely related to a top trading cycle (TTC). Specifically, if each school employs a choice correspondence that
returns all feasible subsets of a matroid, then a generalized TTC studied in Imamura and Kawase [2024a,b], Suzuki et al. [2018,
2023] corresponds to a PSIC.
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Since C
wsk
sk satisfies LAD, the set C

wsk
sk ({i ∈ I : sk ⪰i µk(i)}) is either µk−1(sk)− ik−1, or µk−1(sk)− ik−1+a

for some student a ∈ I with sk ≻a µk(a). If C
wsk
sk

(
{i ∈ I : sk ⪰i µk(i)}

)
= µk−1(sk)− ik−1 (= µk(sk)), then

k = r. Otherwise, if C
wsk
sk

(
{i ∈ I : sk ⪰i µk(i)}

)
= µk−1(sk) − ik−1 + a for some student a ∈ I such that

sk ≻a µk(a), the process continues by setting ik = a.
Next, we prove the following conditions by induction on the step k:

(i) µk(i) ⪰i µ(i) for every i ∈ I,

(ii) µk(s) = Cws
s ({i ∈ I : s ⪰i µk(i)}) for every s ∈ S − sk, and

(iii) if k < r, then µk(sk) + ik = C
wsk
sk

(
{i ∈ I : sk ⪰i µk(i)}

)
, and

if k = r, then sk = ∅, or sk ∈ S and µk(sk) = C
wsk
sk

(
{i ∈ I : sk ⪰i µk(i)}

)
.

These conditions hold for the base case (k = 0) by construction. For k > 0, the conditions hold by the choice
of µk, ik, and sk as follows. First, µk(i) = µk−1(i) ⪰i µ(i) for every i ∈ I − ik−1 and µk(ik−1) = sk−1 ≻ik−1

µk−1(ik−1). Second, for every s ∈ S \ {sk−1, sk}, we have

µk(s) = µk−1(s) = Cws
s

(
{i ∈ I : s ⪰i µk−1(i)}

)
= Cws

s

(
{i ∈ I : s ⪰i µk(i)}

)
.

Third,

µk(sk−1) = µk−1(sk−1) + ik−1 = C
wsk−1
sk−1

(
{i ∈ I : sk−1 ⪰i µk−1(i)}

)
= C

wsk−1
sk−1

(
{i ∈ I : sk−1 ⪰i µk(i)}

)
.

Finally, µk(sk) + ik = C
wsk
sk

(
{i ∈ I : sk ⪰i µk(i)}

)
if k < r and µr(sr) = C

wsr
sr

(
{i ∈ I : sr ⪰i µk(i)}

)
if

sr ∈ S. Therefore, the conditions (i)–(iii) hold.
By condition (i), each step in the process results in a Pareto improvement for students. Since there

are finitely many students (|I|) and schools (|S|), the process must terminate after at most |I| · |S| steps.
By conditions (ii) and (iii), we have µr(s) = Cws

s ({i ∈ I : s ⪰i µr(i)}). Hence, µr is a stable matching.
Therefore, if a stable matching µ is not maximal, then it cannot be constrained efficient.

Finally, we discuss the computational complexity. By Proposition 3, we can compute Cws
s (X) for each

s ∈ S and X ∈ 2I in polynomial time. Since the process has at most |I| · |S| steps and each step involves
computations that run in polynomial time, the overall computational complexity is bounded by a polynomial
with respect to |I| and |S|. Hence, we can find the desired matching µr in polynomial time.

Lemma 9. Suppose that Cs satisfies PI and LAD for every school s ∈ S. If a maximal stable matching
µ admits a PSIC, then µ is not constrained efficient. Moreover, in this case, we can find another stable
matching ν that Pareto dominates µ in polynomial time.

Proof. Let (i0, i1, . . . , im−1) be any PSIC for µ that does not contain a shortcut. Define sℓ = µ(iℓ) for
ℓ = 0, 1, . . . ,m− 1.

First, we show that there exists a positive UM weight w : I → R++ such that for each ℓ = 0, 1, . . . ,m−1,

µ(sℓ+1)− iℓ+1 + iℓ = C
wsℓ+1
sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
,

where we defineim = i0 and sm = s0.
For each s ∈ S, let σ : I → {1, 2, . . . , n} be a permutation of I such that

• σ(i) < σ(j) for all i ∈ µ(s) and j ∈ I \ µ(s),

• σ(ik) < σ(iℓ) for all ik, iℓ ∈ {i0, i1, . . . , im−1} ∩ ν(s) (= ν(s) \ µ(s)) with k < ℓ, and

• σ(i) < σ(j) for all i ∈ ν(s) and j ∈ I \ (µ(s) ∪ ν(s)).
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Define positive UM weight ws : I → R++ by ws(i) = 2n−σ(i) for all i ∈ I.
Suppose, for the sake of contradiction, that there exists ℓ ∈ {0, 1, . . . ,m− 1} such that

µ(sℓ+1)− iℓ+1 + iℓ ̸= C
wsℓ+1
sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.

By the definition of PSIC, we have

µ(sℓ+1)− iℓ+1 + iℓ ∈ Csℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.

Since µ is maximal and wsℓ+1
is a positive weight, it follows that |µ(sℓ+1)| = |C

wsℓ+1
sℓ+1 ({i ∈ I : sℓ+1 ⪰i µ(i)})|.

By the construction of wsℓ+1
, we also have

µ(sℓ+1)− iℓ+1 ⊆ C
wsℓ+1
sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.

By LAD, we have
∣∣Cwsℓ+1

sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)}−iℓ+1

)∣∣ ≤ |µ(sℓ+1)|. Hence, there exists ik ∈ {i0, i1, . . . , iℓ−1}
such that

µ(sℓ+1)− iℓ+1 + ik = C
wsℓ+1
sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.

This implies that we can construct another PSIC (i0, i1, . . . , ik, iℓ+1, . . . , im−1), which contradicts the as-

sumption that (i0, i1, . . . , im−1) does not contain a shortcut. Therefore, µ(sℓ+1) − iℓ+1 + iℓ = C
wsℓ+1
sℓ+1

(
{i ∈

I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
for all ℓ ∈ {0, 1, . . . ,m− 1}.

Next, we show that the matching obtained by the cycle (i0, i1, . . . , im−1) is stable. Fix any s ∈ S. Let
X = {i0, i1, . . . , im−1} ∩ µ(s) and Y = {i0, i1, . . . , im−1} ∩ ν(s). For each iℓ ∈ Y , we have iℓ ∈ Cws

s ({i ∈ I :
s ⪰i µ(i)} − iℓ+1) and iℓ+1 ∈ X. Hence, since Cws

s satisfies PI, we obtain

ν(s) = Y ∪ (µ(s) \X) ⊆ Cws
s ({i ∈ I : s ⪰i µ(i)} \X).

Moreover, because Cws
s satisfies LAD, we have

|Cws
s ({i ∈ I : s ⪰i µ(i)} \X)| ≤ |Cws

s ({i ∈ I : s ⪰i µ(i)})| = |µ(s)|.

Furthermore, we have |µ(s)| = |ν(s)|. Together, these facts imply that

ν(s) = Cws
s ({i ∈ I : s ⪰i µ(i)} \X).

Thus, we have ν(s) ∈ Cs({i ∈ I : s ⪰i µ(i)} \ X), which implies that the matching obtained by the cycle
(i0, i1, . . . , im−1) is (maximal) stable.

Finally, we observe that a PSIC that does not contain a shortcut can be computed in polynomial time.
We can construct the exchange graph G = (I, E) with directed edges

E :=
{
(i, j) ∈ I × I : s = µ(j) ≻i µ(i) and µ(s)− j + i ∈ Cs({i′ ∈ I : s ⪰i′ µ(i

′)} − j)
}

in polynomial time by the membership oracle. Then, a PSIC is a cycle in this graph G and vice versa. Thus,
our task reduces to finding a minimal cycle in G, which can be achieved in polynomial time via breadth-first
search.

4.3.2 Necessity Part of Theorem 6

Next, we prove the necessity part of Theorem 6.

Lemma 10. If a stable matching µ is maximal and does not admit any PSIC, then it is constrained efficient.
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Proof. It suffices to prove that if a maximal stable matching µ is not constrained efficient, then it admits a
PSIC. Suppose that µ is Pareto dominated by a constrained efficient stable matching ν. By Lemma 8, ν is
maximal. Define I ′ = {i ∈ I : ν(i) ̸= µ(i)}. Note that each i ∈ I ′ strictly prefers ν to µ.

First, we show that |µ(s)| = |ν(s)| for each s ∈ S. Since ν Pareto dominates µ, we have {i ∈ I : s ⪰i

ν(i)} ⊆ {i ∈ I : s ⪰i µ(i)}. By Corollary 1 and maximality of ν and µ, we have

|ν(s)| = |Cw
s ({i ∈ I : s ⪰i ν(i)})| ≤ |Cw

s ({i ∈ I : s ⪰i ν(i)})| = |µ(s)|,

for any positive UM weight w : I → R++, where the inequality follows from LAD of Cw
s . Suppose to the

contrary that |ν(s)| < |µ(s)|. Then, we have
∑

s′∈S |ν(s′)| <
∑

s′∈S |µ(s′)|. This implies that there exists
i ∈ I such that ν(i) = ∅ and µ(i) ∈ S, contradicting the assumption that ν Pareto dominates µ. Hence,
|µ(s)| = |ν(s)| for all s ∈ S.

Next, we show that there is a cycle on the following directed bipartite graph (I ′, J ;E), where

J :=
{
(i, µ(i)) : i ∈ I ′

}
,

E :=
{(

(i, µ(i)), i
)
: i ∈ I ′

}
∪

{(
j, (i, s)

)
: j ̸∈ µ(s) and µ(s)− i+ j ∈ Cs

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)}
.

To prove the existence of a cycle, it suffices to show that for each (i, µ(i)) ∈ J there exists j ∈ I ′ such
that

(
j, (i, µ(i))

)
∈ E. Let s = µ(i). Since ν Pareto dominates µ, we have ν(s)\µ(s) ⊆ {i′ ∈ I ′ : s ≻i′ µ(i

′)}.
Additionally, µ(s) ∩ ν(s) ⊆ µ(s) and i ∈ µ(s) \ ν(s). Hence, it follows that

ν(s) ⊆
(
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i ⊆ {i′ ∈ I : s ⪰i′ µ(i

′)}. (1)

Since µ is a maximal stable matching, there is a positive UM weight w such that µ(s) = Cw
s ({i′ ∈ I : s ⪰i′

µ(i′)}). By the substitutability of Cw
s and (1), we have

µ(s)− i = Cw
s ({i′ ∈ I : s ⪰i′ µ(i

′)}) ∩
((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)
⊆ Cw

s

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)
.

Moreover, by the stability of ν, we have ν(s) ∈ Cs(ν(s)). Hence, by LAD of Cw
s and (1), we have

|ν(s)| = |Cw
s (ν(s))| ≤

∣∣Cw
s

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)∣∣
≤

∣∣Cw
s

(
{i′ ∈ I : s ⪰i′ µ(i

′)}
)∣∣ = |µ(s)|.

Together with |µ(s)| = |ν(s)|, we have |µ(s)| =
∣∣Cw

s

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)∣∣. Thus, there exists
j ∈ I ′ \ µ(s) such that

µ(s)− i+ j = Cw
s

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)
∈ Cs

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(s)
)
− i

)
.

Hence, a cycle must exist in the graph.
Finally, we show the existence of a PSIC. Consider any cycle ((i0, s0), i0, (i1, s1), i1, . . . , (ip, sp), ip) on

(I ′, J ;E). We will show that (i0, i1, . . . , ip) is a PSIC. By definition, we have sℓ = µ(iℓ) ̸= sℓ+1, and for
every ℓ ∈ {0, 1, . . . , p}

µ(sℓ+1)− iℓ+1 + iℓ ∈ Csℓ+1

((
{i′ ∈ I ′ : sℓ+1 ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

)
. (2)

This implies that sℓ+1 ≻iℓ sℓ for every ℓ ∈ {0, 1, . . . , p}. Thus, to prove that (i0, i1, . . . , ip) is a PSIC, it
suffices to show that for all ℓ ∈ {0, 1, . . . , p},

µ(sℓ+1)− iℓ+1 + iℓ ∈ Csℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.
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Assume for contradiction that there exists some index ℓ such that

µ(sℓ+1)− iℓ+1 + iℓ /∈ Csℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
. (3)

Fix such an index ℓ.
Similar to (1), we have

ν(sℓ+1) ⊆
(
{i′ ∈ I ′ : sℓ+1 ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

⊆ {i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1 ⊆ {i ∈ I : sℓ+1 ⪰i µ(i)}.
(4)

By (2), (3), and Lemma 4, we have

Csℓ+1

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

)
∩ Csℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
= ∅. (5)

Let σ : {1, 2, . . . , n} → I be a bijection such that µ(sℓ+1) = {σ(1), . . . , σ(p)}, ν(sℓ+1) \ µ(sℓ+1) = {σ(p+
1), . . . , σ(q)}, and I \ (ν(sℓ) ∪ µ(sℓ)) = {σ(q + 1), . . . , σ(n)}. Let w be a positive UM weight defined by
w(σ(t)) = 2n−t for each t ∈ {1, 2, . . . , n}. Then, µ(sℓ+1) = Cw

sℓ+1
({i ∈ I : sℓ+1 ⪰i µ(i)}) and ν(sℓ+1) =

Cw
sℓ+1

(ν(sℓ+1)). By the substitutability of Cw
sℓ+1

and (4), we have

µ(sℓ+1)− iℓ+1 = Cw
sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)}

)
∩
(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
⊆ Cw

sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
. (6)

By (4) and LAD of Cw
sℓ
, we obtain

|ν(sℓ+1)| = |Cw
sℓ+1

(ν(sℓ+1))| ≤ |Cw
sℓ+1

({i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1)|
≤ |Cw

sℓ+1
({i ∈ I : sℓ+1 ⪰i µ(i)})| = |µ(sℓ+1)|. (7)

By combining (6), (7), and |µ(sℓ+1)| = |ν(sℓ+1)|, there exists a student j ∈ {i ∈ I : sℓ+1 ≻i µ(i)} such that

µ(sℓ+1)− iℓ+1 + j = Cw
sℓ+1

({i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1) ∈ Csℓ+1
({i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1). (8)

In what follows, we consider two cases depending on whether (a) j ∈ I ′ and (b) j /∈ I ′.

Case (a): Suppose that j ∈ I ′. Then, by (4), (8), and PI of Cw
sℓ+1

, we have

µ(sℓ+1)− iℓ+1 + j = Cw
sℓ+1

((
{i′ ∈ I ′ : sℓ+1 ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

)
∈ Csℓ+1

((
{i′ ∈ I ′ : sℓ+1 ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

)
.

Consequently, Lemma 4 implies that

Csℓ+1

((
{i′ ∈ I ′ : s ≻i′ µ(i

′)} ∪ µ(sℓ+1)
)
− iℓ+1

)
⊆ Csℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
.

This contradicts (5).

Case (b): Suppose that j /∈ I ′. Then, j ∈ I \ (µ(sℓ+1)∪ ν(sℓ+1)) and sℓ+1 ≻j µ(j) = ν(j). Since ν is stable,
we have ν(sℓ+1) ∈ Csℓ+1

({i ∈ I : sℓ+1 ⪰i ν(i)}). Moreover,

µ(sℓ+1) \ ν(sℓ+1) ⊆ {i ∈ I : ν(i) ≻i sℓ+1} = I \ {i ∈ I : sℓ+1 ⪰i ν(i)}

since ν Pareto dominates µ. Thus, by the construction of w, we have ν(sℓ+1) = Cw
sℓ+1

({i ∈ I : sℓ+1 ⪰i ν(i)}).
Hence, by (4), (8), and the substitutability of Cw

sℓ+1
, we have

j ∈ (µ(sℓ+1)− iℓ+1 + j) ∩ {i ∈ I : sℓ+1 ⪰i ν(i)}
= Cw

sℓ+1

(
{i ∈ I : sℓ+1 ⪰i µ(i)} − iℓ+1

)
∩ {i ∈ I : sℓ+1 ⪰i ν(i)}

⊆ Cw
sℓ+1

({i ∈ I : sℓ+1 ⪰i ν(i)}) = ν(sℓ+1) ̸∋ j,

which is a contradiction.
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Finally, we prove Theorem 6.

Proof of Theorem 6. By Lemmas 8 and 9, every constrained efficient stable matching is maximal and admits
no PSIC. Conversely, by Lemma 10, any stable matching that is maximal and does not admit a PSIC is
constrained efficient.

If a given stable matching is not maximal, we can compute a Pareto-improving stable matching in
polynomial time, as demonstrated in Lemma 8. Additionally, if a maximal stable matching admits a PSIC,
a Pareto-improving stable matching can be obtained in polynomial time, as shown in Lemma 9. Since the
number of possible Pareto improvements is at most |I| · |S|, the overall computational time is bounded by a
polynomial.

Remark 4. Imamura and Kawase [2024b] proved that checking whether the initial matching µ0 is PE for a
market (I, S, (≻i)i∈I , (Fs)s∈S , µ0) is coNP-hard, even when the constraints Fs are budget constraints (i.e.,
constants that can be represented in the form {X ⊆ I :

∑
i∈X ai ≤ b}). Hence, checking the constrained

efficiency of a given stable matching is a difficult task when the choice correspondences may not satisfy PI
and LAD. Note that for such a constraint, the associated choice correspondence Cs(X) = {Y ⊆ X : Y ∈ Fs}
satisfies substitutability and IRC (see Appendix B).

5 Applications

In this section, we explore several examples of practical choice correspondences and demonstrate their diverse
applications, particularly in the context of matching theory. Notably, recall that every choice correspondence
rationalized by an M♮-concave function satisfies PI and LAD.

Responsive Choice Correspondences

Abdulkadiroğlu and Sönmez [2003] studied school choice problems using responsive choice functions. In
practice, however, a school’s priority ranking often includes ties. For example, if priority is determined by
test scores, applicants with the same test score are tied. Moreover, in situations such as the Boston public
school choice system—where only neighborhood and sibling priorities are considered—many ties can occur.
In such cases, each school should have a responsive choice correspondence.

Each school s has a capacity qs ∈ Z+ and a weak order ⪰s over I. For every school s ∈ S, a responsive
choice correspondence Cs is rationalized by utility function us that is defined as follows: there exists a
valuation vs : I → R++ satisfying vs(i) ≥ vs(j) if and only if i ⪰s j for all i, j ∈ I such that for each X ∈ 2I ,

us(X) =

{∑
i∈X vs(i) if |X| ≤ qs,

−∞ if |X| > qs.

Since us is derived from a weighted matroid with a uniform matroid of rank qs, the utility function us induces
a choice correspondence that is PI and LAD.

It is worth mentioning that the resulting choice correspondence remains the same for any other valuation
v′ : I → R++ satisfying v′(i) ≥ v′(j) if and only if i ⪰s j for all i, j ∈ I due to a property of matroids.

Erdil and Ergin [2008] provided a cycle-based characterization of constrained efficient matching under
responsive choice correspondences. We obtain this result as a corollary of our Theorem 6 because any
responsive choice correspondence satisfies PI and LAD.

Controlled School Choice

A school district may require specific diversity in the student body at each school. Abdulkadiroğlu and
Sönmez [2003] formalized this requirement by imposing type-specific quotas for each school. Hafalir et al.
[2013] proposed an affirmative action policy based on minority reserves. Ehlers et al. [2014] incorporated
these ideas and introduced type-specific (soft) quotas and reserves.
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Kojima et al. [2018, online appendix] showed that these choice functions can be rationalized by M♮-concave
functions. Moreover, we observe that this result applies to weak priorities (i.e., choice correspondence).

Suppose that (It)t∈T is a partition of students with types T , i.e.,
⋃

t∈T It = I and It ∩ It′ = ∅ for all
t, t′ ∈ T with t ̸= t′. We write t(i) to denote the type of i ∈ I. Thus, i ∈ It(i). Each school s has a capacity
qs ∈ Z+ and soft minimum and maximum bounds for each type t, denoted by q

s,t
and qs,t, respectively. We

assume
∑

t∈T qs,t ≤ qs holds. In addition, each school s has a weak order ⪰s over I. Let vs : I → R++ be a

valuation satisfying vs(i) ≥ vs(j) if and only if i ⪰s j for all i, j ∈ I. Then, the choice correspondence Cs is
rationalizable by

us(X) =

{∑
i∈X

(
1 + ϵ2vs(i)

)
+ ϵ

∑
t∈T

(
min

{
|Xt|, qs,t

}
+min

{
|Xt|, qs,t

})
if |X| ≤ qs,

−∞ if |X| > qs,

where ϵ is a sufficiently small positive real number. Thus, Cs is rationalizable by a laminar concave function
for L = {{i} : i ∈ I} ∪ {It : t ∈ T} ∪ {I}, and hence, Cs is PI and LAD.

Evenly Distributed and Constrained Responsive Choice Correspondences

Erdil and Kumano [2019] studied how symmetric treatment of types can be implemented with type-specific
reserves. Suppose that (It)t∈T is a partition of students with types T , i.e.,

⋃
t∈T It = I and It∩It′ = ∅ for all

t, t′ ∈ T with t ̸= t′. We write t(i) to denote the type of i ∈ I. Thus, i ∈ It(i). Each school s has a capacity
qs ∈ Z+ and type-specific reserves rs ∈ ZT

+ with
∑

t∈T rs,t ≤ qs. In addition, each school s has a weak
order ⪰s over I. For each X ∈ 2I , surplus seats (qs −

∑
t∈T min{|Xt|, rs,t}) are distributed evenly among

types. They introduced evenly distributed and constrained responsive (EDCR) choice correspondences Cs.
This choice correspondence satisfies acceptance. For each X ∈ 2I with |X| > qS , this choice proceeds in two
stages.

1. It selects subsets of students X ′ ⊆ X of size qs that minimizes
∑

t∈T (rs,t − |X ′
t|)2.

2. Among the subsets chosen in the first stage, it selects best subsets with respect to a weak priority ⪰s.

For each s ∈ S, let vs : I → R++ be a positive weight such that vs(i) ≥ vs(j) if and only if i ⪰s j for all
i, j ∈ I. Then, the choice correspondence Cs is rationalizable by

us(X) =

{
|X| − ϵ

∑
t∈T (rs,t − |Xt|)2 + ϵ2

∑
i∈X vs(i) + ϵ

∑
t∈T r

2
s,t if |X| ≤ qs,

−∞ if |X| > qs,

where ϵ is a sufficiently small positive real number. By a simple calculation, we obtain

|X| − ϵ
∑
t∈T

(rs,t − |Xt|)2 + ϵ2
∑
i∈X

vs(i) + ϵ
∑
t∈T

r2s,t = −ϵ
∑
t∈T

|Xt|2 +
∑
i∈X

(1 + 2ϵrs,t(i) + ϵ2vs(i)).

Thus, us is a laminar concave function for L = {{i} : i ∈ I} ∪ {It : t ∈ T} ∪ {I}. Hence, Cs is PI and LAD.

Overlapping Reserves

In practice, each student can have multiple types. In practice, each student can have multiple types. One
example is affirmative action policies that account for both racial and income minorities. There are several
ways to count a student with multiple types toward a reserved seat [Kurata et al., 2017]. Let T be the
set of types and It ⊆ I be the set of students with type t ∈ T . Each school s has a capacity qs ∈ Z+

and type-specific reserves rs ∈ ZT
+ with

∑
t∈T rs,t ≤ qs

11. In addition, each school s has a weak order ⪰s

over I. We focus on one-to-one counting, where a student counts toward a reserved seat as only one of her

11This condition could be removed without affecting the construction of the PI choice correspondence. However, it is included
to ensure that the concept of “reserve” is guaranteed.
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types. This model includes important real-life applications, such as affirmative action in India [Sönmez and
Yenmez, 2022] and Brazil [Aygün and Bó, 2021].

In this setting, Sönmez and Yenmez [2022] proposed a meritorious horizontal choice function for cases
where each school has strict priority ≻s over I. This function is designed to maximize the reserve utilization.
Formally, the sets of students that can be assigned to reserved seats for s are represented by

Fs = {X ⊆ I : ∃π : X → T such that π−1(t) ⊆ It (∀t ∈ T ) and |π−1(t)| ≤ rs,t (∀t ∈ T )}.

It is known that Fs is a (transversal) matroid. A meritorious horizontal choice function consists of two
stages:

1. In the first stage, the best subset of students in Fs is selected based on ≻s.

2. In the second stage, the remaining seats are assigned to the best remaining students based on ≻s.

In what follows, we observe that a meritorious horizontal choice function is rationalizable by an M♮-
concave function. Construct a bipartite graph G = (I, J ;E) with weight we ∈ R for each e ∈ E, where

• J := H ∪
⋃

t∈T Pt with Pt := {pt,1, . . . , pt,rs,t} (∀t ∈ T ) and H := {h1, . . . , hqs},

• E := {(i, h) : i ∈ I, h ∈ H} ∪
⋃

t∈T {(i, p) : i ∈ It, p ∈ Pt}.

Additionally, let J = {J ′ ⊆ J : |J ′| ≤ qs} be the uniform matroid of rank qs on J . ForM ⊆ E, we denote by
∂M the set of the vertices incident to some edge inM , and callM a matching if |I ∩∂M | = |M | = |J ∩∂M |.
For X ⊆ I, we write us(X) to denote the maximum weight of a matching M such that the end-vertices in I
are equal to X and the end-vertices in J form an independent set, i.e.,

us(X) = max

{∑
e∈M

we :M ⊆ E is a matching, I ∩ ∂M = X, J ∩ ∂M ∈ J

}
,

where us(X) = −∞ if no such M exists for X. Such us is called an independent assignment valuation. It
is known that an independent assignment is an M♮-concave function [Murota, 2016, Section 3.6]). Thus, us
induces a choice correspondence that is PI and LAD.

Let vs : I → R++ be a positive weight such that vs(i) > vs(j) if and only if i ≻s j for all i, j ∈ I. Then,
the utility function us induces the meritorious horizontal choice function by setting w(i,p) = vs(i) +M for
(i, p) ∈

⋃
t∈T (It×Pt) and w(i,h) = vs(i) for (i, h) ∈ I×H, whereM is a sufficiently large positive real number

(e.g., M = 1+
∑

i∈I vs(i)). Moreover, by adjusting the weight settings, it is also possible to represent choice
correspondences in cases where the priority is weakly ordered or where the priority changes depending on
which type is adopted.

6 Conclusion

In this paper, we introduced PI choice correspondences and examined their key properties, including ratio-
nalizability and the g-matroid structure. Building on these properties, we developed a characterization of
constrained efficient stable matching using a PSIC. Additionally, we highlighted the broad applicability of PI
choice correspondences by leveraging M♮-concave functions within the framework of discrete convex analysis.

Some choice correspondences lie outside the scope of our framework. For instance, Che et al. [2019]
examines those motivated by multidivisional organizations and regional caps; however, these correspondences
are not rationalizable. Furthermore, Erdil and Kumano [2019] introduced a choice correspondence—termed
admissions by a committee—and showed that constrained efficient matchings can still be characterized by
cycles. Nonetheless, as we demonstrate in Example 5 in the appendix, this type of correspondence may not
be rationalizable. Developing a more general theory that incorporates such choice correspondences remains
a promising direction for future research.
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A Characterization of Rationalizability

In this section, we present a characterization of rationalizability for choice correspondences. Our result
generalizes the characterization of rationalizability for choice functions provided by Yang [2020] to choice
correspondences. Yang demonstrated that a choice function is rationalizable if and only if it satisfies the
strong axiom of revealed preference (SARP) [Aygün and Sönmez, 2013]. Unlike choice functions, where a
single unique choice is considered, choice correspondences allow for multiple selections from the same set,
requiring us to account for situations where different sets are assigned the same value. This additional
consideration is crucial when analyzing rationalizability.

Define

Γ := {X ∈ 2I : X ∈ C(Y ) for some Y ⊆ I},
P :=

{
(X,Y ) ∈ Γ× Γ : {X,Y } ⊆ C(Z) for some Z ⊇ X ∪ Y

}
.

If a utility function u induces C, then we have u(X) = u(Y ) for all (X,Y ) ∈ P . Note that P is a symmetric
(i.e., if (X,Y ) ∈ P , then (Y,X) ∈ P ) and reflexive (i.e., (X,X) ∈ P for all X ∈ Γ) binary relation. Let ∼
denote the transitive closure of P . Then, ∼ is an equivalence relation. Define

Γ′ = {[X] : X ∈ Γ},

where [X] = {Y ∈ Γ : X ∼ Y } is the equivalence class of X under ∼. If a utility function u induces C, then
it holds that u(X) = u(Y ) for all X,Y ∈ Γ such that X ∼ Y . Next, define

Q :=
{
([X], [Y ]) : X ∈ C(Z) and Y /∈ C(Z) for some X,Y ∈ Γ and Z ⊆ I with Z ⊇ X ∪ Y

}
.

Finally, let ≻ denote the transitive closure of Q. Intuitively, if a utility function u induces C, then we have
u(X) > u(Y ) for all X,Y ∈ Γ such that X ≻ Y .

We characterize rationalizability by using a strict partial order. A homogeneous relation ≻ is strict partial
order if it satisfies (i) transitivity, (ii) irreflexivity (i.e., X ̸≻ X), and (iii) asymmetry (i.e., X ≻ Y implies
Y ̸≻ X).

Theorem 7. A choice correspondence C is rationalizable if and only if ≻ is a strict partial order.

Proof. Suppose that ≻ is a strict partial order. Let ≻̂ be a linear extension of ≻ (which can be obtained by
an algorithm such as topological sorting). For each X ∈ 2I , define

f(X) =

{
|{Y ∈ Γ : X ≻̂ Y }| if X ∈ Γ,

−1 if X ̸∈ Γ.
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Then, it is not difficult to see that f induces C.
Conversely, suppose that ≻ is not a strict partial order. As ≻ is the transitive closure of Q, it must fail

irreflexivity or asymmetry. In either case, we have X ≻ X for some X ∈ Γ by transitivity. This implies that
there are sequences of subsets X1, X2, . . . , Xk ∈ Γ and Z1, Z2, . . . , Zk−1 ⊆ I such that

• k ≥ 2,

• X1 = Xk,

• Xi ∈ C(Zi) and Zi ⊇ Xi ∪Xi+1 for all i ∈ {1, . . . , k − 1}, and

• Xi∗+1 ̸∈ C(Zi∗) for some i∗ ∈ {1, . . . , k − 1}.

Suppose to the contrary that C is rationalizable by a function u : 2I → R. Then, we have u(X1) ≥ u(X2) ≥
· · · ≥ u(Xk) = u(X1) and u(Xi∗) > u(Xi∗+1), which is a contradiction. Thus, C is not rationalizable.

B Relationship between PI and the conjunction of Substitutabil-
ity and IRC

In this section, we discuss the relationship between PI and the conjunction of substitutability and IRC.

Lemma 11. Suppose that a choice correspondence C can be represented as the union of choice functions
C(1), . . . , C(k) : 2I → 2I , i.e.,

C(X) =
{
C(1)(X), . . . , C(k)(X)

}
(∀X ∈ 2I).

If C(1), . . . , C(k) are substitutable, then C is also substitutable Moreover, if C(1), . . . , C(k) satisfy IRC, then
C satisfies IRC.

Proof. Let X1, X2 ∈ 2I with X1 ⊇ X2. Let Z1 ∈ C(X1), and suppose that Z1 = C(j)(X1). If C(j) is
substitutable, it follows that X2 ∩ Z1 = X2 ∩ C(j)(Z1) ⊆ C(j)(X2). Similarly, let Z2 ∈ C(X2) and suppose
that Z2 = C(j)(X2). If C(j) is substitutable, it follows that X2 ∩ C(j)(X1) ⊆ C(j)(X2) = Z2. Thus, any
choice correspondence that can be represented as the union of substitutable choice functions satisfies (SC1

ch)
and (SC2

ch).
For IRC, consider X,Y, Y ′ ∈ 2I with Y ∈ C(X) and Y ⊆ Y ′ ⊆ X. Suppose that Y = C(j)(X). Then, if

C(j) is IRC, it follows that C(j)(Y ′) = Y . Thus, any choice correspondence that can be represented as the
union of IRC choice functions satisfies IRC.

From this lemma, any choice correspondence that can be represented as the union of PI choice functions
satisfies both substitutability and IRC.

Theorem 8. Every PI choice correspondence satisfies substitutability and IRC. Moreover, there is a choice
correspondence C that is not PI, but satisfies substitutability and IRC.

Proof. If C is a PI choice correspondence, then we have C(X) = {Cw(X) : w is a UM weight} by Lemma 1.
Thus, by Lemma 11, C satisfies substitutability and IRC.

Now, we consider the choice correspondence C4 given in Table 1. Then, we have C4(X) = {C(1)(X), C(2)(X)}
where C(1)(X) = X and C(2)(X) = ∅ for all X ∈ 2I . As observed, C4 is not PI. However, it satisfies substi-
tutability and IRC by Lemma 11.

From this theorem, we can conclude that PI is a strictly stronger condition than substitutability and IRC
for choice correspondences.

Finally, we examine the representation of a general upper bound in terms of choice correspondences. A
nonempty family of subsets F ⊆ 2I is called general upper bound if X ⊆ Y ∈ F implies Y ∈ F .

29



Proposition 4. For a general upper bound F , define a choice correspondence C(X) = {Y ⊆ X : Y ∈ F}.
Then, C satisfies both substitutability and IRC. Moreover, C can be represented as a union of PI and LAD
choice functions.

Proof. We have
C(X) = {CY (X) : Y ∈ F},

where CY is defined by CY (X) = X ∩ Y for each X ∈ 2I . Each CY is a choice function that satisfies PI and
LAD. Hence, C can be represented as a union of PI and LAD choice functions. Moreover, by Lemma 11, C
satisfies substitutability and IRC.

C Constructing a Choice Oracle from a Membership Oracle

Let C : 2I → 2I be a PI choice function that is accessible via a membership oracle—that is, for any X,Y ∈ 2I ,
we can query whether C(X) = Y . In this section, we construct a choice oracle that returns C(X) in
polynomial time for any X ∈ 2I , given access to the membership oracle.

If C(X) = X, then we are done. Otherwise (i.e., C(X) ̸= X), we search an element x ∈ X that is not
C(X). Once we obtain such an element x, it follows that C(X) = C(X − x). Thus, C(X) can be computed
by recursively applying the above procedure to C(X − x). Note that, by PI of C, if there exist x ∈ X and
X ′ ⊆ X such that x ∈ X ′ \ C(X ′), then x ∈ X \ C(X) by X ′ \ C(X ′) ⊆ X \ C(X).

We now describe a procedure to find such an element x. Suppose X = {i1, . . . , ip} and for each k ∈
{0, 1, . . . , p} define Xk = {i1, . . . , ik}. Since C(X0) = C(∅) = ∅ = X0 and C(Xp) = C(X) ̸= X = Xp,
there exists an index k∗ ∈ {1, . . . , p} such that C(Xk∗−1) = Xk∗−1 and C(Xk∗) ̸= Xk∗ . We can find such
a k∗ by a linear search. Now, if C(Xk∗) = Xk∗−1, then ik∗ is a desired element. Otherwise, we have
C(Xk∗−1) = Xk∗−1, C(Xk∗) ̸= Xk∗−1, and C(Xk∗) ̸= Xk∗ = Xk∗−1 + ik∗ . In this case, we must have
ik∗ ∈ C(Xk∗); otherwise, by PI of C, we have

C(Xk∗) = C(Xk∗ ∪Xk∗−1) = C(C(Xk∗) ∪Xk∗−1) = C(Xk∗−1) = Xk∗−1,

which contradicts C(Xk∗) ̸= Xk∗−1. Define a choice function C ′ : 2Xk∗−1 → 2Xk∗−1 by C ′(X ′) = C(X ′ +
ik∗)− ik∗ (∀X ′ ⊆ Xk∗−1). This choice function C ′ satisfies PI since, for all X ′, X ′′ ⊆ I,

C ′(C ′(X ′) ∪X ′′) = C((C ′(X ′) ∪X ′′) + ik∗)− ik∗ = C(((C(X ′ + ik∗)− ik∗) ∪X ′′) + ik∗)− ik∗

= C((X ′ ∪X ′′) + ik∗)− ik∗ = C ′(X ′ ∪X ′′),

where the third equality uses PI of C. Our task is now to find an element x ∈ X ′ \ C ′(X ′) for some
X ′ ⊆ Xk∗−1 because X ′ \ C ′(X ′) = (X ′ + ik∗) \ C(X ′ + ik∗) for all X ′ ⊆ Xk∗−1. We recursively apply the
above procedure to C ′ to find such an element x, which will output a desired element x for X.

The above procedure is summarized in Algorithm 1.

Theorem 9. For any PI choice function C : 2I → 2I accessible via a membership oracle and any set X ∈ 2I ,
we can compute the set C(X) in O(|X|3) time using Algorithm 1.

Proof. We first show that, under the condition that Z ⊆ C(X ∪ Z) ⊊ X ∪ Z, the procedure Discard(X,Z)
outputs an element x ∈ (X ∪ Z) \ C(X ∪ Z) in O(|X|2) time. Since Z ⊊ X ∪ Z, it follows that X ̸= ∅.

If X is a singleton, i.e., X = {i1}, then Discard(X,Z) returns i1. This follows from the fact that
Z ⊆ C(Z + i1) ⊊ Z + i1 implies C(Z + i1) = Z. In this case, i1 is a desired element since i1 ∈ (Z + i1) \
C(Z + i1) = (X ∪ Z) \ C(X ∪ Z).

Otherwise, the procedure selects an element ik∗ such that C(Xk∗−1∪Z)\Z = Xk∗−1 and C(Xk∗∪Z)\Z ̸=
Xk∗ . If C(Xk∗ ∪ Z) \ Z = Xk∗−1, then it outputs ik∗ /∈ Xk∗−1 = C(Xk∗ ∪ Z) \ Z. Alternatively, if
C(Xk∗ ∪ Z) \ Z ̸= Xk∗−1, then we have ik∗ ∈ C(Xk∗ ∪ Z). Thus, we have

Z + ik∗ ⊆ C(Xk∗ ∪ Z) = C(Xk∗−1 ∪ (Z + ik∗)) ⊆ Xk∗ ∪ Z = Xk∗−1 ∪ (Z + ik∗).
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Algorithm 1: Computation of C(X) for a PI choice function C : 2I → 2I and X ∈ 2I

/* Compute C(X) */

1 Function Choice(X ):
2 if C(X) = X then return X;
3 else
4 x← Discard(X, ∅);
5 return Choice(X − x);

/* Compute x ∈ (X ∪ Z) \ C(X ∪ Z) under the condition that Z ⊆ C(X ∪ Z) ⊊ X ∪ Z */

6 Function Discard(X,Z):
7 Let X = {i1, . . . , ip−1, ip};
8 For each k ∈ {0, 1, . . . , p}, let Xk = {i1, . . . , ik};
9 Find k∗ ∈ {1, . . . , p} such that C(Xk∗−1 ∪ Z) = Xk∗−1 ∪ Z and C(Xk∗ ∪ Z) ̸= Xk∗ ∪ Z;

10 if C(Xk∗ ∪ Z) = Xk∗−1 ∪ Z then return ik∗ ;
11 else return Discard(Xk∗−1, Z + ik∗);

Hence, the recursive call Discard(Xk∗−1, Z + ik∗) satisfies the required condition.
Since the size of the first argument decreases strictly with each call runs in O(|X|) time, the total time

complexity for computing Discard(X,Z) is O(|X|2).
Next, we show that Choice(X) correctly computes C(X) in O(|X|3) time. If C(X) = X, then it

correctly outputs X. Otherwise, it calls Discard(X, ∅) where ∅ ⊆ C(X) ⊊ X. Thus, it obtains an element
x ∈ X \ C(X) in O(|X|2) time. Since C(X − x) = C(X), the function recursively calls Choice(X − x) to
compute C(X − x). As the size of the argument decreases strictly with each recursive call and each call
requires O(|X|2) time, the overall time complexity for computing C(X) is O(|X|3).

D Bridging

In this section, we explore the relationship between our results and those presented by Erdil et al. [2022]. They
introduced the bridging property, which applies to acceptant choice correspondences. Recall that a choice
correspondence C is called acceptant if there exists a nonnegative integer q such that |C(X)| = min{|X|, q} for
every X ∈ 2I . We remark that acceptance is a stronger condition than LAD. Indeed, choice correspondences
with type-specific quotas discussed in Section 5 do not satisfy acceptance.

Definition 4 (Erdil et al. [2022]). An acceptant choice correspondence C is said to satisfy bridging if the
following condition holds: Let X,Y be subsets of I with Y ⊆ X and |Y | ≥ q. Let A ∈ C(X) and B ∈ C(Y )
be such that (Y ∩ A) ⊆ B. Then, for each i ∈ A \ B, there exists j ∈ (B \ A) ∪ ((X \ Y ) \ A) such that
A− i+ j ∈ C(X − i) (see Figure 5).

X

Y
A

B

i

Figure 5: Illustration of the bridging property. The green region represent the set (B \ A) ∪ ((X \ Y ) \ A),
which contains the element j required to satisfy the condition.

Erdil et al. [2022] demonstrated that if choice correspondences satisfy acceptance and bridging, then the
necessity of Theorem 6 holds.
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Theorem 10 (Erdil et al. [2022]). Suppose that Cs is an acceptant choice correspondence that satisfies
bridging for each school s ∈ S. If a stable matching does not admit a PSIC, then it is constrained efficient.

They also proved that if an acceptance choice correspondence fails to satisfy the bridging property, then
one can construct a market in which a stable matching exists that is neither constrained efficient nor admits
a PSIC.

Proposition 5 (Erdil et al. [2022]). Suppose that Cs∗ : 2I ⇒ 2I is acceptant, but violates the bridging
property. Then, there exists a market (I, S, (≻i)i∈I , (Cs)s∈S) with s

∗ ∈ S satisfying the following conditions:

• There is a stable matching that is not constrained efficient and does not admit a PSIC.

• All schools except s∗ have strict responsive choice correspondences.

This proposition, together with Theorem 6, implies that any PI and acceptant choice correspondence
must satisfy bridging. We now show this directly.

Proposition 6. Any PI and acceptant choice correspondence C satisfies bridging.

Proof. Let X,Y,A,B ∈ 2I be Y ⊆ X, |Y | ≥ q, A ∈ C(X), B ∈ C(Y ), and (Y ∩ A) ⊆ B. Assume, without
loss of generality, that there exists an element i ∈ A \ B; if no such i exists, then the bridging condition
holds trivially.

Since the acceptant property implies |A| = |B| = q, we have B \ A ̸= ∅. Let A = {i1, . . . , ip}, B \ A =
{ip+1, . . . , iq}, and I \ (A ∪ B) = {iq + 1, . . . , in}. Define a UM weight w such that w(ik) = 2n−k for
each ik ∈ I. By the construction of w, we have A ⊆ Cw(X). Since acceptance ensures |Cw(X)| = q, we
have A = Cw(X). Similarly, by the construction of w, we have B ⊆ Cw(Y ). Since acceptance implies
|Cw(Y )| = q, we have B = Cw(Y ).

Since Y ⊆ X− i, we have |X− i| ≥ |Y | ≥ q. Thus, there exists j ∈ X \A such that A− i+j = Cw(X− i).
We prove that j ∈ (B \A)∪ ((X \Y )\A) by contradiction. Suppose, toward a contradiction, that j ∈ Y \B.
By PI of Cw and B = Cw(Y ), we have

j ∈ Y \B = Y \ Cw(Y ) ⊆ (X − i) \ Cw(X − i).

This contradicts A − i + j = Cw(X − i). Therefore, we have j ∈ (B \ A) ∪ ((X \ Y ) \ A), which completes
the proof.

From this proposition, we conclude that the combination of the PI and acceptant conditions is weaker
than the bridging property. Additionally, we will show that an acceptant choice correspondence satisfying
bridging need not satisfy PI. Moreover, even for a market in which every school employs an acceptant choice
correspondence that satisfies bridging, a constrained efficient stable matching admitting a PSIC may still
exist. We illustrate these facts in the following subsections.

D.1 Admissions by a Committee

Suppose that a school has q ∈ Z+ seats to fill. Let H be a set of referees, each of whom h ∈ H has a strict
order ≻h over the set of students I. A function π : {1, . . . , q} → H induces a choice function Cπ as follows:

Cπ(X) = {i1, . . . , imin{q,|X|}} (∀X ∈ 2I),

where {i1} = argmax≻π(1)
X, and iℓ = argmax≻π(ℓ)

X \ {i1, . . . , iℓ−1} for ℓ = 2, . . . ,min{q, |X|}. Let Π be
the set of all functions π. A choice correspondence induced by admissions by a committee is defined as

CH(X) = {Cπ(X) : π ∈ Π} (∀X ∈ 2I).

Clearly, CH is acceptant. Erdil and Kumano [2019] showed that CH satisfies substitutability. Moreover,
they demonstrated that it also satisfies bridging.

Furthermore, Erdil and Kumano [2019] and Erdil et al. [2022] proved that no PSIC is a necessary
and sufficient condition to be constrained efficient if every school has a choice correspondence induced by
admissions by a committee.
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Proposition 7 (Erdil and Kumano [2019], Erdil et al. [2022]). Suppose every school s ∈ S has a choice
correspondence induced by admissions by a committee. A stable matching is constrained efficient if and only
if it does not admit a PSIC.

However, a choice correspondence induced by admissions by a committee may not satisfy PI.

Example 5. Let I = {i1, i2, i3, i4} and q = 2. Suppose that the set of referees is H = {h1, h2, h3}, where
each referee has a strict preference order given by

≻h1 = (i1 i2 i3 i4), ≻h2 = (i1 i3 i2 i4), ≻h3 = (i2 i4 i1 i3).

Then, CH({i1, i2, i3, i4}) =
{
{i1, i2}, {i1, i3}, {i2, i4}

}
is not a g-matroid. Moreover, CH is not rationalizable

because CH({i1, i2, i3, i4}) =
{
{i1, i2}, {i1, i3}, {i2, i4}

}
implies that {i2, i3} is strictly worse than {i2, i4},

while CH({i2, i3, i4}) =
{
{i2, i3}, {i2, i4}

}
implies that {i2, i3} and {i2, i4} are equally valuable.

D.2 Restricted Admissions by a committee

In the admissions by a committee framework described in the previous subsection, all possible combinations
of referee assignments are considered. However, this generality may not align with certain practical scenarios
where only specific subsets of referee assignments are relevant or permissible. To address this, we consider a
restricted setting in which the set of possible functions π : {1, . . . , q} → H is limited to a subset of interest.

Formally, let Π be a subset of Π, where Π is the set of all functions from {1, . . . , q} to H. A choice
correspondence induced by admissions by a committee in this restricted setting is defined as

CH,Π′
(X) = {Cπ(X) : π ∈ Π′} (∀X ∈ 2I).

where Π′ is the set of all injective functions from {1, . . . , q} to H. This restriction allows us to model practical
scenarios better while maintaining flexibility.

It is not difficult to see that a choice correspondence induced by restricted admissions by a committee is
substitutable and acceptant. Whether the bridging property is satisfied depends on the particular instance.
However, the following example illustrates that even when the bridging property holds, there exists a market
in which a constrained efficient stable matching admits a PSIC.

Example 6. Let I = {i1, i2, i3, i4, i5} and S = {s1, s2, s3, s4}. Assume that the preferences of students are
given by

≻i1 = (s2 s1 ∅ s3 s4), ≻i2 = (s3 s1 ∅ s2 s4), ≻i3 = (s1 s2 ∅ s3 s4),

≻i4 = (s1 s3 ∅ s2 s4), ≻i5 = (s1 s4 ∅ s2 s3).

The choice correspondences for s2, s3, and s4 are given as

Cs2(X) = Cs3(X) = Cs4(X) = argmax{|Y | : Y ⊆ X, |Y | ≤ 1} (∀X ∈ 2I).

Note that these can be represented as admissions by a committee. Suppose that the set of referees for s1 is
H = {h1, h2, h3}, where each referee has a strict preference order given by

≻h1 = (i1 i2 i3 i5 i4), ≻h2 = (i1 i3 i2 i5 i4), ≻h3 = (i2 i4 i1 i5 i3).

Let q = 2 and consider the restricted setting where the same referee is selected, i.e., Π′ = {(h1, h1), (h2, h2), (h3, h3)}.
Then, the choice correspondence for s1 is defined by Cs1 ≡ CH,Π′

. We can verify that Cs1 satisfies bridging
by enumerating all the possible combinations of X,Y,A,B ∈ 2I and i ∈ A \ B such that Y ⊆ X, |Y | ≥ q,
A ∈ Cs1(X), B ∈ Cs1(Y ), and (Y ∩A) ⊆ B (see Table 2).

In this market, the matching µ = {(i1, s1), (i2, s1), (i3, s2), (i4, s3), (i5, s4)} is a constrained efficient stable
matching. For this matching µ, there is a unique PSIC (i1, i3, i2, i4) (see Figure 6).
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X Y A B i j

{i1, i2, i3, i4} {i1, i2, i3} {i2, i4} {i1, i2} i4 i1
{i1, i2, i3, i4} {i1, i2, i4} {i1, i3} {i1, i2} i3 i2
{i1, i2, i3, i4} {i1, i3, i4} {i2, i4} {i1, i4} i2 i1
{i1, i2, i3, i4} {i1, i3, i4} {i1, i2} {i1, i4} i2 i4
{i1, i2, i3, i4} {i1, i3, i4} {i1, i2} {i1, i3} i2 i3
{i1, i2, i3, i4} {i2, i3, i4} {i1, i3} {i2, i3} i1 i2
{i1, i2, i3, i4} {i2, i3, i4} {i1, i2} {i2, i4} i1 i4
{i1, i2, i3, i4} {i2, i3, i4} {i1, i2} {i2, i3} i1 i3
{i1, i2, i3, i5} {i1, i2, i5} {i1, i3} {i1, i2} i3 i2
{i1, i2, i3, i5} {i1, i3, i5} {i1, i2} {i1, i5} i2 i5
{i1, i2, i3, i5} {i1, i3, i5} {i1, i2} {i1, i3} i2 i3
{i1, i2, i3, i5} {i2, i3, i5} {i1, i3} {i2, i3} i1 i2
{i1, i2, i3, i5} {i2, i3, i5} {i1, i2} {i2, i5} i1 i5
{i1, i2, i3, i5} {i2, i3, i5} {i1, i2} {i2, i3} i1 i3
{i1, i2, i4, i5} {i1, i2, i5} {i2, i4} {i1, i2} i4 i1
{i1, i2, i4, i5} {i1, i4, i5} {i2, i4} {i1, i4} i2 i1
{i1, i2, i4, i5} {i1, i4, i5} {i1, i2} {i1, i4} i2 i4
{i1, i2, i4, i5} {i1, i4, i5} {i1, i2} {i1, i5} i2 i5
{i1, i2, i4, i5} {i2, i4, i5} {i1, i2} {i2, i4} i1 i4
{i1, i2, i4, i5} {i2, i4, i5} {i1, i2} {i2, i5} i1 i5
{i1, i3, i4, i5} {i1, i3, i5} {i1, i4} {i1, i5} i4 i5
{i1, i3, i4, i5} {i1, i3, i5} {i1, i4} {i1, i3} i4 i3
{i1, i3, i4, i5} {i1, i4, i5} {i1, i3} {i1, i4} i3 i4
{i1, i3, i4, i5} {i1, i4, i5} {i1, i3} {i1, i5} i3 i5
{i1, i3, i4, i5} {i3, i4, i5} {i1, i4} {i4, i5} i1 i5
{i1, i3, i4, i5} {i3, i4, i5} {i1, i3} {i3, i5} i1 i5
{i2, i3, i4, i5} {i2, i3, i5} {i2, i4} {i2, i5} i4 i5
{i2, i3, i4, i5} {i2, i3, i5} {i2, i4} {i2, i3} i4 i3
{i2, i3, i4, i5} {i2, i4, i5} {i2, i3} {i2, i4} i3 i4
{i2, i3, i4, i5} {i2, i4, i5} {i2, i3} {i2, i5} i3 i5
{i2, i3, i4, i5} {i3, i4, i5} {i2, i4} {i4, i5} i2 i5
{i2, i3, i4, i5} {i3, i4, i5} {i2, i3} {i3, i5} i2 i5
{i1, i2, i3, i4, i5} {i1, i2, i3} {i2, i4} {i1, i2} i4 i1
{i1, i2, i3, i4, i5} {i1, i2, i4} {i1, i3} {i1, i2} i3 i2
{i1, i2, i3, i4, i5} {i1, i2, i5} {i2, i4} {i1, i2} i4 i1
{i1, i2, i3, i4, i5} {i1, i2, i5} {i1, i3} {i1, i2} i3 i2
{i1, i2, i3, i4, i5} {i1, i3, i4} {i2, i4} {i1, i4} i2 i1
{i1, i2, i3, i4, i5} {i1, i3, i4} {i1, i2} {i1, i4} i2 i4
{i1, i2, i3, i4, i5} {i1, i3, i4} {i1, i2} {i1, i3} i2 i3
{i1, i2, i3, i4, i5} {i1, i3, i5} {i2, i4} {i1, i5} i2 i1
{i1, i2, i3, i4, i5} {i1, i3, i5} {i2, i4} {i1, i5} i4 i1
{i1, i2, i3, i4, i5} {i1, i3, i5} {i2, i4} {i1, i3} i2 i1
{i1, i2, i3, i4, i5} {i1, i3, i5} {i2, i4} {i1, i3} i4 i1
{i1, i2, i3, i4, i5} {i1, i3, i5} {i1, i2} {i1, i5} i2 i4
{i1, i2, i3, i4, i5} {i1, i3, i5} {i1, i2} {i1, i3} i2 i3
{i1, i2, i3, i4, i5} {i1, i4, i5} {i2, i4} {i1, i4} i2 i1
{i1, i2, i3, i4, i5} {i1, i4, i5} {i1, i3} {i1, i4} i3 i2
{i1, i2, i3, i4, i5} {i1, i4, i5} {i1, i3} {i1, i5} i3 i2
{i1, i2, i3, i4, i5} {i1, i4, i5} {i1, i2} {i1, i4} i2 i3
{i1, i2, i3, i4, i5} {i1, i4, i5} {i1, i2} {i1, i5} i2 i3
{i1, i2, i3, i4, i5} {i2, i3, i4} {i1, i3} {i2, i3} i1 i2
{i1, i2, i3, i4, i5} {i2, i3, i4} {i1, i2} {i2, i4} i1 i4
{i1, i2, i3, i4, i5} {i2, i3, i4} {i1, i2} {i2, i3} i1 i3
{i1, i2, i3, i4, i5} {i2, i3, i5} {i2, i4} {i2, i5} i4 i1
{i1, i2, i3, i4, i5} {i2, i3, i5} {i2, i4} {i2, i3} i4 i1
{i1, i2, i3, i4, i5} {i2, i3, i5} {i1, i3} {i2, i3} i1 i2
{i1, i2, i3, i4, i5} {i2, i3, i5} {i1, i2} {i2, i5} i1 i4
{i1, i2, i3, i4, i5} {i2, i3, i5} {i1, i2} {i2, i3} i1 i3
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i3} {i2, i4} i1 i2
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i3} {i2, i4} i3 i2
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i3} {i2, i5} i1 i2
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i3} {i2, i5} i3 i2
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i2} {i2, i4} i1 i3
{i1, i2, i3, i4, i5} {i2, i4, i5} {i1, i2} {i2, i5} i1 i3
{i1, i2, i3, i4, i5} {i3, i4, i5} {i2, i4} {i4, i5} i2 i1
{i1, i2, i3, i4, i5} {i3, i4, i5} {i1, i3} {i3, i5} i1 i2
{i1, i2, i3, i4, i5} {i3, i4, i5} {i1, i2} {i4, i5} i1 i4
{i1, i2, i3, i4, i5} {i3, i4, i5} {i1, i2} {i4, i5} i2 i4
{i1, i2, i3, i4, i5} {i3, i4, i5} {i1, i2} {i3, i5} i1 i3
{i1, i2, i3, i4, i5} {i3, i4, i5} {i1, i2} {i3, i5} i2 i3
{i1, i2, i3, i4, i5} {i1, i2, i3, i5} {i2, i4} {i1, i2} i4 i1
{i1, i2, i3, i4, i5} {i1, i2, i4, i5} {i1, i3} {i1, i2} i3 i2
{i1, i2, i3, i4, i5} {i1, i3, i4, i5} {i2, i4} {i1, i4} i2 i1
{i1, i2, i3, i4, i5} {i1, i3, i4, i5} {i1, i2} {i1, i4} i2 i4
{i1, i2, i3, i4, i5} {i1, i3, i4, i5} {i1, i2} {i1, i3} i2 i3
{i1, i2, i3, i4, i5} {i2, i3, i4, i5} {i1, i3} {i2, i3} i1 i2
{i1, i2, i3, i4, i5} {i2, i3, i4, i5} {i1, i2} {i2, i4} i1 i4
{i1, i2, i3, i4, i5} {i2, i3, i4, i5} {i1, i2} {i2, i3} i1 i3

Table 2: Existence of j ∈ (B \A)∪((X \Y )\A) for every possible combination of (X,Y,A,B, i) with |Y | > 2
and X ⊋ Y
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(s2 s1 ∅ s3 s4) i1

(s3 s1 ∅ s2 s4) i2

(s1 s2 ∅ s3 s4) i3

(s1 s3 ∅ s2 s4) i4

(s1 s4 ∅ s3 s4) i5

s1

s2

s3

s4

{i1, i2}
{i1, i3}
{i2, i4}

Figure 6: Stable matching µ (red) and the unique PSIC (green)
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