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Abstract

We study stable matching in the many-to-one matching model. Substitutabil-
ity, together with consistency, is known to guarantee the existence of a stable
matching. We first observe that in certain applications a stable matching still
exists even in the absence of consistency. We then introduce a weaker condition,
monotonicity, and show that the combination of substitutability and monotonic-
ity ensures the existence of a stable matching. Consistency is the rationalization
axiom introduced in the choice theory literature. Our result suggests that ratio-
nalization is not necessarily required in stable matching theory. Furthermore, we
analyze a stable and strategy-proof mechanism, focusing on the cumulative offer
process, which is widely used in both theory and practice. We derive a necessary
condition for the cumulative offer process to be stable and strategy-proof under
substitutable and weakly monotonic choice functions for any proposal order, pro-
vided that there are sufficiently many doctors. This condition is stringent, high-
lighting that the addition of strategy-proofness imposes significant restrictions.
We apply our conditions to real-life applications such as daycare allocation and
college admissions.

1 Introduction

Matching theory is a central field in market design and has a lot of applications, such
as hospital-resident matching, school choice, and labor markets.1 The core concept of
matching theory is stable matching, which requires no pair prefers each other to their
current partners. Stable matching has several desirable properties. First, it ensures fair-
ness. In the context of school choice, stability respects priority and eliminates justified
envy (Abdulkadiroğlu and Sönmez, 2003). Second, stability contributes to robustness.
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Institutions using stable matching are less likely to incentivize off-market transactions,
making them more sustainable in the long run (Roth, 1991).

However, a stable matching does not always exist in the model of many-to-one match-
ing: a stable matching may fail to exist under some choice functions of multi-unit demand
agents or hospitals. To guarantee the existence of stable matchings, it is necessary to
impose conditions on the choice functions. The two standard conditions are substi-
tutability and consistency (Roth, 1984; Aygün and Sönmez, 2013). Substitutability
excludes complementarity among unit demand agents or doctors. Consistency requires
that removing a rejected doctor does not affect the set of chosen doctors. It also relates
to rationalization, where a choice function can be interpreted as maximizing a hospital’s
utility.

In this paper, we focus on consistency under the assumption of substitutability.
We begin by discussing the necessity for consistency through two examples. The first
example, a simplified version of one found in Aygün and Sönmez (2012), illustrates that
without consistency, there may be no stable matchings.

Example 1. Suppose that there are three doctors d1, d2, d3 and one hospital h. Each
doctor prefers h to her outside option. A choice function Ch is given as follows:

Ch({d1, d2, d3}) = ∅,
Ch({d1, d2}) = {d1},
Ch({d2, d3}) = {d2},
Ch({d1, d3}) = {d3},

and Ch({di}) = {di} for i = 1, 2, 3.

A choice function Ch violates consistency: Ch({d1, d2, d3}) = ∅ and Ch({d1, d2}) =
{d1}. In addition, there is no stable matching: while an empty matching where all
doctors are unmatched is clearly unstable, a matching where a doctor di is matched is
blocked by di−1 where d0 ≡ d3.

We then consider an example that is slightly different from Example 1.

Example 2. Suppose that there are three doctors d1, d2, d3 and one hospital h. Each
doctor prefers h to her outside option. A choice function Ch is given as follows:

Ch({d1, d2, d3}) = ∅,
Ch({d1, d2}) = {d1, d2},
Ch({d2, d3}) = {d2, d3},
Ch({d1, d3}) = {d1, d3},

and Ch({di}) = {di} for i = 1, 2, 3.

In Example 2, the choice function also violates consistency. However, a stable match-
ing exists: the matching where d1 and d2 are matched is stable since d3 /∈ Ch({d1, d2, d3}).
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These examples lead to the following question: what types of consistency violations do
not prevent the existence of a stable matching?

This paper introduces a condition that is weaker than consistency. The key concept
is what we call the maximal choice correspondence. The maximal choice set refers to a
set of doctors in the available set satisfying the following two properties: (i) the hospital
is willing to choose every doctor in the set and (ii) the hospital is not willing to add any
doctor outside the set. In Example 2, {{d1, d2}, {d1, d3}, {d2, d3}} is the maximal choice
sets at {d1, d2, d3} as, for example, Ch({d1, d2}) = {d1, d2} and d3 /∈ Ch({d1, d2, d3}).

Since there can be multiple maximal sets, it forms a correspondence. In Example 1, a
maximal choice set does not exist at {d1, d2, d3}. A crucial property is that constructing a
new substitutable choice function as a selection from the maximal choice correspondence
ensures that it satisfies consistency (Lemma 1). We show that if such selections exist,
then stable matchings exist even under the inconsistent choice functions. However,
there may be no substitutable selection (see Example 3). To address this, we introduce
a condition called monotonicity. We show that under substitutability and monotonicity,
stable matchings exist (Theorem 1).

Our result offers two contributions. First, it suggests that rationalization is not
necessarily required in stable matching theory, thereby broadening the applicability of
the theory. Inconsistent choice functions often appear in real-life applications, such as
daycare allocation and college admissions. Even in such cases, we can apply stable
matching theory. Second, we demonstrate that choice correspondences can be powerful
tools in stable matching theory. By introducing the maximal choice correspondence, sta-
ble matchings can be analyzed even with inconsistent choice functions. Furthermore, our
condition, monotonicity, builds on the condition for choice correspondence introduced
by Sotomayor (1999).

We further investigate stable and strategy-proof (SP) mechanisms. In particular,
we focus on the doctor-proposing cumulative offer process (COP), which is standard
in both theory and applications. Under certain assumptions, we derive a necessary
condition for COP to be both stable and strategy-proof (for any proposal order): the
existence of a substitutable selection (Theorem 3). This condition is stringent because
we also provide a more general condition for the existence of a stable matching (Theo-
rem 2), which is based on conditions in choice correspondences. We employ the choice
correspondence framework to address cases where a substitutable selection is not avail-
able. Therefore, the necessity of a substitutable selection highlights that the addition of
strategy-proofness imposes significant restrictions.

Theoretically, we identify order-independence as a crucial property for COP to be
both stable and strategy-proof. Order-independence means that the outcome of COP
does not depend on the order in which doctors make their proposals. It is known
that the conjunction of substitutability and consistency guarantees that COP is order-
independent (Hirata and Kasuya, 2014). However, without consistency, this property
does not hold. First, we observe that doctors can exploit order-dependence to manipulate
COP (see Example 5). Then, we generalize this observation assuming that there are
sufficiently many doctors (Theorem 3).

We apply our results to real-life applications. First, we consider daycare allocation
(Kamada and Kojima, 2024). In this context, the matching market is subject to a
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constraint called a general upper-bounds, which differs from the usual capacity constraint.
Under such constraints, choice functions are inconsistent, and stable matchings fail to
exist. Therefore, we investigate which types of constraints can guarantee the existence
of stable matchings. According to our findings, if the constraints form a matroid, stable
matchings exist. Furthermore, under matroid constraints, there also exists a stable and
SP mechanism. We also show that matroid constraints are necessary to obtain these
positive results. Next, we consider college admissions. In theory, we often assume a strict
priority ranking; however, in practice many applicants obtain identical scores, meaning
that they are tied. To address this issue, tie-breaking is commonly employed to produce
a strict priority ranking. In contrast, tie-breaking is not used due to fairness concerns in
several countries such as Hungary (Biró and Kiselgof, 2015). The choice functions used
in Hungary violate consistency. Our findings connect these distinct choice functions—
one that uses tie-breaking and one that does not. In addition, our results imply that
stable matchings exist, and a stable and strategy-proof mechanism also exists in college
admissions in Hungary.

1.1 Related Literature

This paper contributes to the literature on stable matching theory. Aygün and Sönmez
(2013) point out that substitutability alone is not sufficient to guarantee the existence
of a stable matching, but they also show that adding consistency ensures its existence.2

We show that while the conjunction of substitutability and consistency is sufficient, this
is not necessary. Fleiner and Jankó (2014) propose alternative concepts of stability in
situations where a choice function violates consistency. In this paper, we adopt the
standard definition of stable matching. Our paper is also closely related to Caspari
and Khanna (ming). They provide conditions for the existence of stable matchings
in settings where doctor preferences are not assumed to be consistent. In contrast,
we analyze situations in which choice functions of hospitals are not required to satisfy
consistency. These studies complement one another.

Consistency is an axiom related to rationalization. Under the assumption of substi-
tutability, Yang (2020) shows that consistency is equivalent to rationalizability. Con-
sistency and substitutability are originally introduced in social choice theory.3 Plott
(1973) introduces the concept of path-independence, and Aizerman and Malishevski
(1981) later show that the conjunction of consistency and substitutability is equiva-
lent to path-independence.4 Our results suggest that rationalization is not necessarily
required in stable matching theory.

This paper employs techniques from the literature on stable matching with choice
correspondences. Sotomayor (1999) extends the notion of substitutability for choice
functions to choice correspondences. Erdil and Kumano (2019) as well as Che et al.
(2019), analyze stable matchings with choice correspondences using this notion. We

2Zhang (2016) extends consistency to matching with contracts. In many-to-many matching with
contracts, Bando et al. (2021) demonstrate the existence of stable matchings by employing the concepts
of substitutability, the law of aggregate demand, and this extended notion of consistency.

3See Moulin (1985) for a reference.
4In matching theory, Blair (1988) shows the equivalence between these concepts.
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apply the conditions proposed by Sotomayor (1999) to a maximal choice correspon-
dence constructed from an inconsistent choice function. Furthermore, we introduce a
condition—weak monotonicity—that further refines the notion of substitutable corre-
spondences. We also develop a technique to analyze stable and strategy-proof mecha-
nisms under correspondences. Thus, our results not only demonstrate the usefulness of
techniques in choice correspondences but also suggest that the methods developed in
this paper could potentially be applied to stable matching with choice correspondences.

This paper has implications for several applications discussed in the literature. Ka-
mada and Kojima (2024) consider choice functions subject to constraints called general
upper-bounds to analyze daycare allocation. A similar constraint arises in refugee re-
settlement (Delacrétaz et al., 2023). In college admissions, some countries do not use
tie-breaking (Biró and Kiselgof, 2015; Rios et al., 2021). In dynamic matching markets,
there may be a constraint requiring a hospital to continue hiring a doctor matched in a
previous period (Bando and Kawasaki, 2024). In all these applications, the choice func-
tion satisfies substitutability but may violate consistency. By employing our results,
we can analyze the existence of stable matchings as well as the design of stable and
strategy-proof mechanisms in each scenario.

The remainder of this paper is organized as follows: Section 2 introduces the model.
Section 3 provides the definition of maximal choice correspondence and presents condi-
tions for the existence of a stable matching. Section 4 analyzes strategic issues of stable
mechanisms. Section 5 provides applications. Section 6 concludes the study. All omitted
proofs are in Appendix.

2 Model

We consider the model of many-to-one matching. Let D be a finite set of doctors and H
be a finite set of hospitals where D ∩ H = ∅. Each doctor d ∈ D has strict preferences
≻d over H∪{∅}, where ∅ means being unmatched (or an outside option). Each hospital
h ∈ H has a choice function Ch : 2D → 2D such that Ch(D) ⊆ D for all D ⊆ D. We
define a rejection function by Rh(D) = D \ Ch(D) for all D ⊆ D.

A matching is a function µ : D → H ∪ {∅}. In words, µ(d) represents a hospital
assigned to d at µ where µ(d) = ∅ means that d is unmatched. Similarly, µ−1(h)
represents a set of doctors assigned to h at µ. We often write µ(h) instead of µ−1(h). A
matching µ is individually rational if µ(d) ⪰d ∅ for all d ∈ D and Ch(µ(h)) = µ(h) for
all h ∈ H. A matching µ is blocked if there exists a hospital h ∈ H and a non-empty set
of doctors D ⊆ D \ µ(h) such that D ⊆ Ch(µ(h) ∪D) and h ≻d µ(d) for all d ∈ D. We
say that a matching µ is stable if it is individually rational and not blocked.

It is well known that a stable matching exists under substitutability and consistency
defined as follows (Roth, 1984; Hatfield and Milgrom, 2005; Aygün and Sönmez, 2013).

Definition 1. Let h ∈ H.

• Ch satisfies consistency if for any D,D′ ⊆ D, Ch(D) ⊆ D′ ⊆ D implies Ch(D) =
Ch(D

′).5

5Consistency is also known as “irrelevance of rejected contracts” in the literature of matching with
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• Ch satisfies substitutability if for any D,D′ ⊆ D with D ⊆ D′, Rh(D) ⊆ Rh(D
′).

It is known that substitutability and consistency are equivalent to another single
axiom called path-independence: a choice function Ch is path-independent if for every
D,D′ ⊆ D, Ch(D∪D′) = Ch(Ch(D)∪Ch(D

′)) (Plott, 1973; Aizerman and Malishevski,
1981; Blair, 1988).

3 Stable Matching

In this section, we analyze the existence of a stable matching. We focus on weakening
consistency under the assumption of substitutability. To deal with inconsistency, we
introduce concepts related to a choice correspondence. Our main sufficient condition
builds on the property for a choice correspondence proposed by Sotomayor (1999).

Motivated by the inconsistent choice functions in Examples 1 and 2, we introduce a
concept.

Definition 2. For every D ⊆ D, a set of doctors D′ ⊆ D is a maximal choice set in D
to h if Ch(D

′) = D′ and d /∈ Ch(D
′ ∪ {d}) for all d ∈ D \D′.

Intutively, d ∈ D \ D′ cannot claim to D′ since d /∈ Ch(D
′ ∪ {d}) even though her

claim may change the choice (i.e., Ch(D
′ ∪ {d}) ̸= D′). Note that when Ch satisfies

consistency, Ch(D) is always a maximal choice set to h for all D ⊆ D. In general, a
maximal choice set does not exist under substitutability. The choice function given in
Example 1 illustrates this fact. We say that Ch is regular if there is a maximal choice set
to h for any D ⊆ D. The choice function given in Example 2 is regular: for {d1, d2, d3},
maximal choice sets are {d1, d2}, {d1, d3}, and {d2, d3}.

Based on these concepts, we introduce a maximal choice correspondence. Since there
would be multiple maximal choice sets as Example 2, we focus on choice correspondence.

Definition 3. A correspondence Ch : 2D ⇒ 2D is maximal choice correspondence for a
choice function Ch if

Ch(D) = {D′ ⊆ D : D′ is a maximal choice set at D}

for every D ⊆ D.

For a choice function Ch, we define a maximal rejection correspondence by

Rh(D) = {D′ : D′ = D \D′′ for some D′′ ∈ Ch(D)}

for every D ⊆ D. Note that Ch(D) = Rh(D) = ∅ when there exists no maximal choice
set in D.

A key property of a maximal choice correspondence is that if we can construct a
new substitutable choice function from this correspondence, it also satisfies consistency.
Thus, if we can obtain substitutable selections for all hospitals, then a stable matching
exists under these constructed choice functions. We show that this stable matching is

contracts (Aygün and Sönmez, 2013).
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also stable under the original choice functions. Now we formally introduce concepts and
results.

A choice function C̃h is a selection from a maximal choice correspondence Ch if
C̃h(D) ∈ Ch(D) for every D ⊆ D. We say that Ch has a substitutable selection if
there exists a selection from Ch that satisfies substitutability. In general, substitutable
selection is not uniquely determined: in Example 2, any choice function C̃h such that
C̃h({d1, d2, d3}) ∈ {{d1, d2}, {d1, d3}, {d1, d3}} and C̃h(D) = D for any other D is a
substitutable selection from Ch. We show that any substitutable selection satisfies con-
sistency.

Lemma 1. Suppose that Ch satisfies substitutability and has a substitutable selection
C̃h. Then, C̃h satisfies consistency. Therefore, any substitutable selection from a maxi-
mal choice correspondence satisfies path-independence.

Proof. Fix an arbitrary D ⊆ D and d ∈ D\ C̃h(D). Since C̃h is a substitutable selection,
C̃h(D) ∩ (D \ {d}) ⊆ C̃h(D \ {d}). By d /∈ C̃h(D) and C̃h(D) ⊆ D, C̃h(D) = C̃h(D) ∩
(D \ {d}) ⊆ C̃h(D \ {d}).

Suppose that C̃h(D) ⊊ C̃h(D \ {d}). Since C̃h(D \ {d}) is a maximal choice set in
D\{d}, Ch(C̃h(D\{d})) = C̃h(D\{d}). By substitutability of Ch, d

′ ∈ Ch(C̃h(D)∪{d′})
for all d′ ∈ C̃h(D \ {d}) \ C̃h(D). This contradicts that C̃h(D) is a maximal choice set
in D by d′ ∈ D. Hence, C̃h(D) = C̃h(D \ {d}).

Our first existence result uses the substitutable selection property. This result ex-
plains why a stable matching exists in Example 2: the choice function violates consis-
tency but has a substitutable selection.

Proposition 1. Suppose that Ch satisfies substitutability C̃h for every h ∈ H. If Ch

has a substitutable selection for every h ∈ H, then a stable matching exists.

Proof. Let C̃h be a substitutable selection from the maximal correspondence for each
h ∈ H. Since C̃h satisfies substitutability and consistency for all h ∈ H from Lemma 1,
there exists a stable matching µ for the problem where each hospital h has the choice
function C̃h. It is straightforward to see that µ is individually rational for the original
problem. Suppose that µ is blocked. Then, there exist h ∈ H and nonemptyD ⊆ D\µ(h)
such thatD ⊆ Ch(µ(h)∪D) and h ≻d µ(d) for all d ∈ D. Let d ∈ D. Stability of µ (under
(C̃h)h∈H) implies d /∈ C̃h(µ(h) ∪ {d}). By consistency of C̃h, C̃h(µ(h) ∪ {d}) = µ(h).
Thus, µ(h) is a maximal choice set in µ(h) ∪ {d}. On the other hand, substitutability
of Ch implies d ∈ Ch(µ(h) ∪ {d}), a contradiction. Therefore, µ is stable.

We should note that neither doctor-optimal nor hospital-optimal stable matching
may exist even assuming substitutability (Example 2). This contrasts with the setting
with substitutable and consistent choice functions (Roth, 1984; Blair, 1988).

Although a substitutable selection guarantees the existence of a stable matching
under inconsistent choice functions, it does not always exist. The following example
illustrates this point.
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Table 1: choice, maximal choice, and maximal rejection
D Ch(D) Ch(D) Rh(D)

{d1, d2, d3, d4} ∅ {d1, d2, d4}, {d2, d4, d3} {d1}, {d3}
{d1, d2, d3} {d1, d2} {d1, d2} {d3}
{d1, d2, d4} {d1, d2, d4} {d1, d2, d4} ∅
{d1, d3, d4} {d3, d4} {d3, d4} {d1}
{d2, d3, d4} {d2, d3, d4} {d2, d3, d4} ∅

Example 3. Let h ∈ H and D = {d1, d2, d3, d4}. We assume that Ch(D) = D for all
D ⊆ D with |D| ≤ 2. For D with |D| ≥ 3, the choice function Ch, the maximal choice
correspondence Ch, and the maximal rejection correspondence Rh are given in Table 1.

There is no substitutable selection from Ch. To see this, suppose that there exists a
substitutable selection C̄h from Ch. Let R̄h denote the rejection function of C̄h. Then,
R̄h({d1, d2, d3}) = {d3} and R̄h({d1, d3, d4}) = {d1}. By substitutability of C̄h, we have
{d1, d3} ⊆ R̄h({d1, d2, d3, d4}). However, C̄h({d1, d2, d3, d4}) = {d1, d2, d4} or {d2, d3, d4}
imply {d1, d3} ̸⊆ R̄h({d1, d2, d3, d4}), a contradiction.

To deal with the non-existence of substitutable selection, we introduce a condition
on maximal choice correspondence which is based on that in the matching under choice
correspondence (Sotomayor, 1999).

Definition 4. A choice function Ch satisfies monotonicity if for any D ⊆ D, d ∈ D \D,
and X ∈ Rh(D), there exists X ′ ∈ Rh(D ∪ {d}) with X ⊆ X ′.

Note that monotonicity is a stronger condition than regularity since ∅ is a maxi-
mal choice set in ∅, namely, Ch(∅) = {∅}. The choice function in Example 3 satisfies
monotonicity.

Now we provide our main result.

Theorem 1. If a choice function Ch has no substitutable selection but satisfies mono-
tonicity for every hospital h ∈ H, then a stable matching exists.

Unlike the proof of Proposition 1, we directly show the existence of a stable matching
by using the doctor-proposing COP under monotonicity. A formal definition of COP is
given in Section 4.1.

Theorem 1 and Proposition 1 offer two contributions. First, they suggest that ratio-
nalization is not necessarily required in stable matching theory, thereby broadening the
applicability of the theory. As we will see Section 5, inconsistent choice functions often
appear in real-life applications, such as daycare allocation (Kamada and Kojima, 2024)
and college admissions in Hungary (Biró and Kiselgof, 2015). Even in such cases, we
can apply stable matching theory. Second, we demonstrate that choice correspondences
can be powerful tools in stable matching theory. By introducing the maximal choice
correspondence, stable matchings can be analyzed even with inconsistent choice func-
tions. In particular, substitutable selection from maximal choice correspondence restores
consistency. While a substitutable selection may not exist, our condition, monotonicity,
building on the condition for choice correspondence introduced by Sotomayor (1999),
can guarantee the existence of stable matching. A choice function that has no sub-
stitutable selection but satisfies monotonicity arises in applications such as dynamic
matching (Bando and Kawasaki, 2024). We will discuss it in Section 5.
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3.1 Additional Conditions

We introduce two additional conditions for the existence of a stable matching. First, by
observing that the substitutable selection property and monotonicity are independent,
we introduce a condition that includes both. Next, we introduce another sufficient
condition which is also based on Sotomayor (1999).

First, we introduce a general condition that includes both the substitutable selection
property and monotonicity. As seen in Example 3, monotonicity does not imply the
substitutable selection property. The following example illustrates that the substitutable
selection property does not imply monotonicity. Therefore, both are independent.

Example 4. Let h ∈ H and D = {d1, d2, d3}. We assume that Ch({d}) = {d} for all
d ∈ D. For D with |D| ≥ 2, the choice function Ch, the maximal choice correspondence
Ch, and the maximal rejection correspondence Rh are given in Table 2.

Table 2: choice, maximal choice, and maximal rejection
D Ch(D) Ch(D) Rh(D)

{d1, d2, d3} ∅ {d2, d3} {d1}
{d1, d2} ∅ {d1}, {d2} {d1}, {d2}
{d1, d3} {d3} {d3} {d1}
{d2, d3} {d2, d3} {d2, d3} ∅

Then, Ch does not satisfy monotonicity since {d2} ∈ Rh({d1, d2}) andRh({d1, d2, d3}) =
{{d1}}. On the other hand, Ch has a substitutable selection C̃h such that

C̃h({d1, d2, d3}) = {d2, d3}, C̃h({d1, d2}) = {d2}, C̃h({d1, d3}) = {d3}.C̃h({d2, d3}) = {d2, d3}.

To introduce a general condition, we need some additional notations. Let p(D) be
the set of finite sequences of distinct doctors; that is, p(D) = {(d1, · · · , dn) | n ≥ 1, di ∈
D for all i and di ̸= dj for all i ̸= j}. For each d ∈ p(D), let ρ(d) be the set of doctors
that appear in d, that is, ρ(d) = {d1, · · · , dn} where d = (d1, · · · , dn). We often denote
Ch(ρ(d)) and Rh(ρ(d)) by Ch(d) and Rh(d), respectively, for notational simplicity.

Definition 5. A choice function Ch satisfies weak monotonicity if there exists a function
rh : p(D) → 2D such that for any d ∈ p(D), (i) rh(d) ∈ Rh(d) and (ii) rh(d) ⊆ rh(d, d)
for any d ∈ D \ ρ(d).

In the above definition, the function rh is called the rejection function over sequences
(induced from Ch). This function naturally defines a choice function over sequences by
ch(d) = ρ(d) \ rh(d). Note that Ch has substitutable selection if and only if it induces
a rejection function rh over sequences that is order-independent, that is, rh(d) = rh(d

′)
for any d,d′ ∈ p(D) with ρ(d) = ρ(d′). In general, the rejection/choice function may
not be order-independent.

We show that weak monotonicity is sufficient for the existence of a stable matching.
As same as the proof of Theorem 1, the doctor-proposing COP finds a stable matching
where the formal definition is given in Section 4.1. The proof is given in Appendix.

Theorem 2. If Ch satisfies substitutability and weak monotonicity for every h ∈ H,
then a stable matching exists.
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Next, we introduce another condition for the existence of a stable matching. So-
tomayor (1999) generalizes substitutability for a choice function to a choice correspon-
dence. The generalization consists of two conditions. Our monotonicity builds on one of
the conditions. Using the other condition, we provide another condition for the existence.

Definition 6. A choice function Ch satisfies lower monotonicity if for any D ⊆ D,
D′ ∈ Ch(D), and d ∈ D′, there exists D′′ ∈ Ch(D \ {d}) such that D′ \ {d} ⊆ D′′.

Note that the maximal choice correspondence Ch satisfies consistency; that is, for any
D ⊆ D, D′ ∈ Ch(D) and d ∈ D \D′, we have D′ ∈ Ch(D \ {d}). Then, in terms of the
rejection function, lower monotonicity condition is written as follows: for anyD ⊆ D and
any d ∈ D, we have that for any D′ ∈ Rh(D), there exists D′′ ∈ Rh(D \ {d}) such that
D′′ ⊆ D′. We also note that lower monotonicity is independent of weak monotonicity.
We provide an example in Appendix.

We show that lower monotonicity guarantees the existence of a stable matching. Of
theoretical interest, it is worth noting that we use the hospital-proposing COP instead
of the doctor-proposing COP to find a stable matching. The proof is given in Appendix.

Proposition 2. If Ch satisfies substitutability, regularity, and lower monotonicity for
every h ∈ H, then a stable matching exists.

Remark 1. Weak monotonicity generalizes both monotonicity and the substitutable
selection property. We prove this fact in Appendix. Moreover, there is a weak mono-
tonic choice function that satisfies neither monotonicity nor the substitutable selection
property.

Remark 2. Verifying whether weak monotonicity holds is difficult, as it requires demon-
strating the existence of a monotone rejection function over sequences. To address this
problem, we provide an alternative formulation of weak monotonicity, called essential
monotonicity, in Appendix. This condition is defined directly in terms of the maximal
rejection correspondence, rather than via a function over sequences, making it easier to
verify. These facts are further illustrated in Appendix.

Finally, we discuss a necessary condition for the existence of a stable matching. One
approach to establishing necessity is to provide a general condition that incorporates
both weak monotonicity and lower monotonicity and guarantees the existence of a stable
matching. However, the existence under each of these conditions is proven in a different
manner. Under weak monotonicity, we use the doctor-proposing COP to obtain a stable
matching. In contrast, under lower monotonicity, we use the hospital-proposing COP.
Therefore, it is not straightforward to consider a general condition that incorporates
both.

Although it is difficult to derive necessary conditions in the general case, we can do so
under a special case—namely, when the maximal choice correspondence always outputs a
singleton. In that case, we show that weak monotonicity becomes a necessary condition.
While a singleton-valued maximal choice correspondence may seem restrictive, it does
arise in real-life applications, such as daycare allocation, which will be discussed in
Section 5.
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4 Stable and Strategy-proof Mechanism

In this section, we analyze an incentive property (strategy-proofness) under stable mech-
anisms. First, we provide a sufficient condition for the existence of a stable and strategy-
proof mechanism. Next, we discuss a necessary condition for a particular class of stable
mechanisms, COP. Finally, we examine the nonexistence of any stable and strategy-proof
mechanism.

Throughout this section, we assume that only workers are strategic. Therefore, a
mechanism is defined as a function φ that selects a matching φ(≻) for each preference
profile of doctors ≻= (≻d)d∈D. We denote by φ(≻)d a hospital assigned to a doctor
d ∈ D in φ(≻) where φ(≻)d = ∅ when d is unmatched at φ(≻). Given C = (Ch)h∈H,
a mechanism φ is stable if it selects a stable matching φ(≻) at (≻, C) for each ≻. A
mechanism φ is strategy-proof (SP) if φ(≻)d ⪰d φ(≻′

d,≻−d)d for all d ∈ D, ≻′
d and ≻.

It is well-known that there exists a stable and SP mechanism when each hospital
h has a choice function Ch satisfying substitutability and the law of aggregate demand
(LAD), namely, |Ch(D)| ≤ |Ch(D

′)| for any D,D′ ⊆ D with D ⊆ D′ (Hatfield and
Milgrom, 2005).6 This result directly implies the following proposition.

Proposition 3. Suppose that Ch has a substitutable selection from Ch that satisfies
LAD for every h ∈ H. Then, there exists a stable and SP mechanism.

Even this basic fact distinguishes our results from those obtained under consistency.
First, under substitutability and consistency, LAD for choice functions is known to be a
necessary and sufficient condition for the existence of stable and SP mechanisms (Hat-
field and Milgrom, 2005). However, this necessity does not hold without consistency. In
Example 2, the choice function satisfies substitutability but violates LAD. By Proposi-
tion 3, as long as each hospital employs such choice functions, a stable and SP mechanism
exists.7 Next, it is known that there exists at most one stable and SP mechanism under
consistency (Hirata and Kasuya, 2017).8 Without consistency, however, there may be
multiple stable and SP mechanisms. The choice function given in Example 2 illustrates
this fact: every substitutable selection satisfies LAD and thus yields a stable and SP
mechanism. These observations reveal that the existing results depend crucially on the
assumption of consistency.

In Section 3, we demonstrated that a stable mechanism exists under conditions that
are more general than the substitutable selection property. It is natural to ask whether
there are more general conditions that guarantee the existence of a stable and SP mech-
anism. In the following sections, we show that the answer is negative. Therefore, the
substitutable selection property is crucial for the existence of the desired mechanism.

6Note that the conjunction of substitutability and LAD implies consistency.
7Note that Proposition 3 does not require LAD for choice functions; instead, it requires LAD for a

substitutable selection from a maximal choice correspondence.
8The cumulative offer process is the unique stable and SP mechanism under substitutability and

LAD (Sakai, 2011; Hirata and Kasuya, 2017; Hatfield et al., 2021).
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4.1 Cumulative Offer Process

We define a doctor-proposing cumulative offer process (COP). Throughout this section,
we assume that Ch satisfies substitutability and weak monotonicity for all h ∈ H defined
in Section 3.1. By definition, there exists a rejection function rh over sequences for each
h ∈ H. In COP, an unmatched doctor proposes to the best hospital among those who
have not rejected her yet, and then the hospital tentatively accepts doctors by the choice
function over sequences. The output of this process may depend on a proposal order
since the choice function over sequences may be order-dependent. Therefore, we need
to specify a proposal order for COP to be a well-defined mechanism. Here, we define a
proposal order as a linear order > over D×H. This order is used to determine a proposal
when there are multiple possible proposals. Formally, COP is defined as follows for any
given ((rh)h∈H, >).

• For each h ∈ H, dh(k) denotes a sequence of doctors who have proposed to h
by step k where dh(0) ≡ ∅. For each d ∈ D, Rd(k) denotes the set of hospitals
that have rejected d by step k where Rd(0) ≡ ∅. Moreover, µk denotes a tentative
matching at step k where µ0(h) = ∅ for each h ∈ H. These are revised as follows.

• Step k ≥ 1: The set of possible proposals is defined by

Pk = {(d, h) ∈ D ×H | µk−1(d) = ∅ and h = max
≻d

H \Rd(k − 1)},

where for any H ⊆ H, max≻d
H is the (unique) element in H ∪ {∅} such that

max≻d
H ⪰d h′ for all h′ ∈ H ∪ {∅}. When Pk = ∅, the algorithm terminates at

this step and outputs µk−1. Otherwise, let (d̂, ĥ) = max> Pk. Then, d̂ proposes to
ĥ with setting dĥ(k) = (dĥ(k − 1), d̂) and dh′(k) = dh′(k − 1) for all h′ ̸= ĥ. For
each d ∈ D, define Rd(k) = {h ∈ H | d ∈ rh(d(k))}. A tentative matching at step
k is defined by µk(h) = ch(dh(k)) for each h ∈ H. Go to Step k + 1.

We call the above algorithm COP w.r.t. ((rh)h∈H, >). The monotonicity of rh guaran-
tees that this procedure terminates in a finite step and produces a matching. Moreover,
the definition of the maximal choice set guarantees that the final matching is stable. A
proof is given in Appendix.

The output of COP depends on a proposal order when the rejection function over se-
quences is order-independent. More importantly, COP may not be SP for some proposal
order in such a case. The following example illustrates this fact.

Example 5. Let H = {h} and D = {d1, d2, d3, d4}. We assume that h has the same
choice function Ch as defined in Example 3. It is straightforward to see that Ch induces
a rejection function rh over sequences such that

rh(d1, d2, d3, d4) = {d3} and rh(d2, d3, d4, d1) = {d1}. (1)

Clearly, rh is not order-independent. Let >1 and >2 be proposal orders such that

>1: (d1, h), (d2, h), (d3, h), (d4, h) and >2: (d2, h), (d3, h), (d4, h), (d1, h).
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Then, COP w.r.t. (rh, >1) outputs the matching µ with µ(h) = {d1, d2, d4} while COP
w.r.t. (rh, >2) outputs the matching ν with ν(h) = {d2, d3, d4} when h ≻di ∅ for all
i = 1, 2, 3, 4. Therefore, the output of COP depends on a proposal order.

We next show that COP may not be SP for some proposal ordering. To this end, we
assume that there are an additional doctor d5 and an additional hospital h′. Moreover,
h is never willing to hire doctor d5. Thus, the choice function of h is given by Ĉh(D) =
Ch(D \ {d5}) for any D ⊆ D. Clearly, Ĉh also induces a rejection function rh over
sequences satisfying (1). Suppose that h′ has a unit demand preference ≻h′ such that
≻h′ : d5, d1, ∅.

Let φ be COP w.r.t. (rh, rh′ , >) where > is a proposal order such that

(d1, h
′′) > (d2, h

′′) > (d3, h
′′) > (d4, h

′′) > (d5, h
′′)

for any h′′ = h, h′. Let ≻ be a preference profile of doctors such that

≻d1 : h
′, h, ∅, ≻d2 : h, ∅, ≻d3 : h, ∅, ≻d4 : h, ∅, ≻d5 : h

′, ∅.

Then, we have φ(≻)d1 = ∅ while φ(≻′
d1
,≻−d1)d1 = h. Therefore, φ does not satisfy SP.

This example suggests that order-independence is a crucial property for COP to be
SP. In fact, we can generalize this observation. The following result shows that order-
independence is a necessary condition for COP to satisfy SP for any proposal order when
there are sufficiently many doctors. The proof is given in Appendix.

Theorem 3. Assume that |H| ≥ 3. Suppose that h ∈ H has a choice function satisfying
weak monotonicity and there are sufficiently many doctors so that max{|Ch(D)||D ⊆
D} + 5 ≤ |D|. Let rh be a rejection function induced from Ch. If rh does not satisfy
order-independence, then there exist two other hospitals h′, h′′ and a proposal order >
such that

• h′ and h′′ have rejection functions rh′ and r′h′′ induced from some unit demand
preferences ≻h′ and ≻h′′ ,

• COP w.r.t. (rh, rh′ , rh′′ , rH\{h,h′,h′′}, >) is not SP for any rH\{h,h′,h′′} = (rh̄)h̄∈H\{h,h′,h′′}.

This means that the substitutable selection property is necessary for COP to satisfy
SP for any proposal order.

4.2 Nonexistence of Stable and SP Mechanism

In the previous section, we focused only on COP while there are possibly other sta-
ble mechanisms. For example, COP can be generalized by considering more complex
proposal orders. In this section, we provide a negative result regarding general stable
mechanisms.

The following condition is a natural extension of LAD into a maximal choice corre-
spondence. We say that Ch satisfies LAD if for any D1, D2 ⊆ D with D1 ⊆ D2, we have
that for any D′

1 ∈ Ch(D1), there exists D′
2 ∈ Ch(D2) such that |D′

1| ≤ |D′
2|. We can

strengthen LAD as follows: Ch satisfies acceptance if there exists an integer q > 0 such
that |A| = min{|D|, q} for any A ∈ Ch(D) and any D ⊆ D.
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Proposition 4. There may not exist a stable and SP mechanism even if every hospi-
tal has a substitutable choice function whose maximal choice correspondence satisfies
monotonicity and acceptance.

The proof is based on an example, which is presented in Appendix.

5 Applications

We present inconsistent choice functions used in some practical problems and how our
results apply to them. We continue to call the agents in these applications “doctors”
and “hospitals” to maintain consistency with the previous sections.

Below, we often use a responsive choice function of a hospital defined as usual. Let
h ∈ H. Assume that h has a linear priority (or preference) order ≻h over D∪{∅}, where ∅
denotes the outside option, and a quota qh > 0. Then, choice function Ch is qh-responsive
w.r.t. ≻h if for any D ⊆ D, Ch(D) = {d ∈ D|d ≻h ∅} if |{d ∈ D|d ≻h ∅}| ≤ qh, and
Ch(D) = D′ ⊆ D such that |D′| = qh and d′ ≻h d′′ for all d′ ∈ D′ and d′′ ∈ D \ D′

otherwise. We call a choice function Ch responsive if it is qh-responsive for some qh > 0.
It is well-known that a responsive choice function satisfies path-independence.

5.1 Daycare Allocation

In Japan, as in many other countries, daycare services for young children are allocated by
the government using matching mechanisms. One complication in this allocation process
is that the required teacher-to-child ratio varies with the age of the children, introduc-
ing a complex constraint that goes beyond those typically discussed in the matching
literature (such as type-specific quotas (Abdulkadiroğlu and Sönmez, 2003) or common
quotas (Abraham et al., 2007)). Kamada and Kojima (2024) introduced a new class
of constraints known as general upper-bounds, designed to accommodate age-dependent
capacity restrictions.

We examine a choice function proposed by Kamada and Kojima (2024). First, we
observe that this choice function satisfies substitutability but violates consistency. We
then analyze the maximal choice correspondence and find that, under general upper
bounds, it violates our conditions. As a result, we narrow our focus to the subclass
of constraints known as matroids, under which our conditions hold. To establish these
results, we provide two key facts. First, we connect two distinct choice functions through
maximal choice correspondences—one proposed by Kamada and Kojima (2024) and the
other derived from a greedy algorithm studied by Fleiner (2001). Next, we exploit
a special structure of this model: the maximal choice correspondence always outputs
a singleton. We show that if maximal correspondences satisfy this single-valuedness
property, then we can apply the results in the standard matching theory (e.g., Hatfield
and Milgrom (2005)).

In a matching problem under general upper-bounds constraints, each hospital h is
endowed with its (linear) priority order ≻h over doctors and a (feasibility) constraint
Fh ⊆ 2D, which defines admissible sets of doctors for h. Therefore, a matching µ is
feasible if and only if µ(h) ∈ Fh for all h ∈ H. A constraint Fh is a general upper-bounds
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constraint for h if D ∈ Fh and D′ ⊆ D implies D′ ∈ Fh. A matching problem is called a
matching problem under general upper-bounds constraints if any hospital has a general
upper-bounds constraint.

Kamada and Kojima (2024) consider a generalization of the cumulative offer process
in a matching problem under general upper-bounds constraints.9 We introduce the
choice function of hospital h used in their generalized cumulative offer process. Assume
that a priority order ≻h and a general upper-bounds constraint Fh are given for h.
Denote D = {d1, · · · , dk} ⊆ D such that d1 ≻h · · · ≻h dk. Then, the choice function is
defined as

Ch(D) =


D if D ∈ Fh,

∅ if {d1} /∈ Fh,

{d1, · · · , dℓ}
such that {d1, · · · , dℓ} ∈ Fh and {d1, · · · , dℓ+1} /∈ Fh otherwise.10

Note that dℓ ∈ Ch(D) if and only if {d1, · · · , dℓ} ∈ Fh since Fh is a general upper-
bounds constraint. It is easy to see that Ch is substitutable by this fact. Meanwhile, Ch

may not be consistent.

Example 6. Let D = {d1, d2, d3, d4} and H = {h}. Hospital h has the following priority
order over the doctors: d1 ≻h d2 ≻h d3 ≻h d4. The constraint for h is given by Fh =
{D ⊆ D| |D ∩ {d1, d3}| ≤ 1}. Then, Ch({d1, d2, d3, d4}) = {d1, d2} by {d1, d2, d3} /∈ Fh.
However, Ch({d1, d2, d4}) = {d1, d2, d4} by {d1, d2, d4} ∩ {d1, d3} = {d1}. This argument
shows that {d1, d2, d4} is a maximal choice set in D. Moreover, it can be confirmed
that {d1, d2, d4} is the unique maximal choice set in D. Thus, Ch({d1, d2, d3, d4}) =
{{d1, d2, d4}}.

Let Ch be the maximal choice correspondence for Ch. For each D ⊆ D, we show that
Ch(D) is a singleton consisting of a set of doctors chosen by another well-investigated
choice function in a matching problem under general upper-bounds constraints. Let Ĉh

be the greedy choice function defined as follows: let D = {d1, · · · , dk} ⊆ D such that
d1 ≻h · · · ≻h dk. Define Ĉ0

h(D) = ∅. For each ℓ = 1, · · · , k, define

Ĉℓ
h(D) =

{
Ĉℓ−1

h (D) ∪ {dℓ} if Ĉℓ−1
h (D) ∪ {dℓ} ∈ Fh

Ĉℓ−1
h (D) otherwise.

Finally, define Ĉh(D) = Ĉk
h(D). Unlike Ch, the greedy choice function Ĉh always satisfies

consistency while it may violate substitutability.
In Example 6, it is easy to verify Ĉh({d1, d2, d3, d4}) = {d1, d2, d4}, which coincides

the unique maximal choice set in D. The following result shows that this observation
holds in general.

9Their main algorithm is called a cutoff adjustment process. They show that both algorithms produce
the same outcome.

10As Kamada and Kojima (2024) note, such ℓ uniquely exists since Fh is a general upper-bounds
constraint.
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Proposition 5. Let h ∈ H. Assume that Fh is a general upper-bounds constraint.
Then, Ch(D) = {Ĉh(D)} for all D ⊆ D.

This result clarifies the relationship between the choice function by Kamada and
Kojima (2024) and the greedy choice function. In particular, it implies that Ch has a
substitutable selection if and only if Ĉh satisfies substitutability.

In general, when the maximal choice correspondence of each hospital’s choice function
is singleton-valued, the stable matching problem with inconsistent choice functions can
be reduced to the one with consistent choice functions. The following proposition shows
this fact. We emphasize that this result applies to any matching problem with singleton-
valued maximal choice correspondences, not just to those under general upper-bounds
constraints.

Proposition 6. Assume that for all h ∈ H, Ch satisfies substitutability and has a
singleton-valued maximal choice correspondence such that Ch(D) = {Ĉh(D)} for all
D ⊆ D. The following facts hold.

(a) Ĉh satisfies consitency for all h ∈ H.11

(b) A matching µ is stable at (≻, (Ch)h∈H) if and only if it is stable at (≻, Ĉh)h∈H).

Proof. (a) Let D ⊆ D. Suppose that d ∈ D and d /∈ Ĉh(D). By definition, Ĉh(D)
is also a maximal choice set in D \ {d}. Since Ch has a singleton-valued maximal
choice correspondence, C̄h(D) is the unique maximal choice set in D \ {d}. Thus,
Ĉh(D \ {d}) = Ĉh(D),

(b) Clearly, Ch(µ(h)) = µ(h) if and only if Ĉh(µ(h)) = µ(h), for any matching µ and
all h ∈ H. Thus, a matching µ is individually rational at (≻, (Ch)h∈H) if and only if µ
is individually rational at (≻, (Ĉh)h∈H).

Suppose that an individually rational matching µ is blocked at (≻, (Ch)h∈H); that is,
there exists h and nonempty D ⊆ D \ µ(h) such that D ⊆ Ch(µ(h) ∪D). We can show
d ∈ Ĉh(µ(h) ∪ {d}) by the same argument as Lemma 1 since Ĉh satisfies consistency.

We show the converse. Suppose that an individually rational µ is blocked at (≻
, (Ĉh)h∈H); that is, there exists h and nonemptyD ⊆ D\µ(h) such thatD ⊆ Ĉh(µ(h)∪D)
and h ≻d µ(d) for all d ∈ D. Suppose that d /∈ Ch(µ(h) ∪ {d}) for all d ∈ D. By
Ch(µ(h)) = µ(h), this implies that µ(h) is the unique maximal choice set in µ(h) ∪D,
contradicting that D ⊆ Ĉh(µ(h) ∪ D) is the unique maximal choice set in µ(h) ∪ D.
Therefore, d ∈ Ch(µ(h)∪ {d}) for some d ∈ D. This implies that µ is blocked via h and
{d} at (≻, (Ch)h∈H).

Proposition 6 enable us to apply all results in the standard matching theory that
assumes consistency such as Hatfield and Milgrom (2005) when each hospital’s choice
function has a singleton-valued maximal choice correspondence. For example, the sub-
stitutable selection property, which is equivalent to weak monotonicity in this setting,
is a necessary condition for the existence of a stable matching in the maximal domain
sense as mentioned at the end of Subsection 3.1.

11Note that Proposition 6 (a) does not require substitutability of Ĉh. Thus, it is independent of
Lemma 1.
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We now provide the implications for daycare allocation problems. The above results
allow us to focus on the greedy choice functions rather than on the original choice
functions. The properties of greedy choice functions have been extensively investigated.
In particular, it has been shown that the greedy choice function has nice properties when
(D,Fh) forms a matroid.

Definition 7. A pair of the set of doctors and a constraint (D,Fh) is a matroid if (i)
∅ ∈ Fh, (ii) D ∈ Fh and D′ ⊆ D imply D′ ∈ Fh, and (iii) for any D,D′ ∈ Fh with
|D| > |D′|, D′ ∪ {d} ∈ Fh for some d ∈ D \D′.

The greedy choice function Ĉh satisfies path-independence and LAD for any priority
order if (D,Fh) is a matroid (Fleiner, 2001; Yokoi, 2019). Therefore, a stable and
strategy-proof mechanism exists under the greedy choice functions when the constraints
are matroids, which in turn implies that the desired mechanism exists for the daycare
allocation problem if the constraints are matroids.

We can also establish the necessary condition on the constraint structure in daycare
allocation problems. Hafalir et al. (2022) show that a matroid structure of (D,Fh) is
necessary for path-independence of the greedy choice function Ĉh. Namely, if (D,Fh) is
not a matroid, then Ĉh is not path-independent for some priority order. Since greedy
choice functions satisfy consistency, we can apply the maximal domain result of Hatfield
and Milgrom (2005): a stable matching under the greedy choice functions may not
exist when a constraint is not matroid. By Propositions 5 and 6 (b), we find that a
matroid structure is necessary (and sufficient) for the existence of a stable matching in
the daycare allocation problem; in other words, the existence result cannot be extended
to a larger class of constraints, such as general upper-bounds.

Remark 3. In Example 6, COP defined in Section 4.1 (for any proposal order) generates
a matching µ∗ such that µ∗(h) = {d1, d2, d4}, which is stable. Meanwhile, the generalized
cumulative offer process by Kamada and Kojima (2024) generates a matching µ∗∗ such
that µ∗∗(h) = {d1, d2}.12 Therefore, these two algorithms generate different matchings
even if the constraint for each hospital is a matroid.

5.2 College Admissions

College admission problems are prominent applications of matching theory (Balinski and
Sönmez, 1999). In these problems, the choice function reflects the college’s admission
process. In some countries, applicants are admitted based on a priority ranking derived
from scores such as those on entrance exams. In theory, we often assume a strict priority
ranking; however, in practice many applicants obtain identical scores, meaning that they
are tied. This can create difficulties in satisfying capacity constraints (or quotas). To
address this issue, the choice function must specify how ties are resolved. In both theory

12Their algorithm always generates a matching called the doctor (student)-optimal fair matching if
every hospital has a general upper-bounds constraint defined as follows. At a matching µ, doctor d has
justified envy toward doctor d′ if µ(d′) ≻d µ(d) and d ≻µ(d′) d

′. A matching is fair if it is feasible and no
doctor has justified envy toward any doctor. A matching µ is called the doctor-optimal fair matching
if µ is fair and there is no fair matching µ′ such that µ′(d) ⪰d µ(d) for all d ∈ D.
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and practice, tie-breaking is commonly employed to produce a strict priority ranking:
Biró and Kiselgof (2015) report that college admission systems in Ireland and Turkey
break ties according to specific rules such as using birthdates. In contrast, the Hungarian
college admission system treats tied applicants equally. Intuitively, the college sets a
cutoff score to ensure that the total number of admitted students does not exceed the
quota. Thus, all students with a score lower than the cutoff are rejected. This implies
that a student might be rejected even when the college has available capacity, and it is
known that this choice function fails to satisfy consistency.13

Our findings connect these choice functions that adopt different treatments of tied
applicants. We show that the choice function used in the Hungarian college admission
system satisfies the substitutable selection property. Furthermore, the substitutable
selection coincides with that obtained via tie-breaking, as used in college admissions in
other countries.

Let h ∈ H. Assume that h has a complete, transitive, and reflexive binary relation
≿h over D. We call this binary relation a weak priority ordering of h. We denote
≻h and ∼h the antisymmetric part and the symmetric part of ≿h, respectively. Let
I = {I1, · · · , Ik} be a partition of D based on ≿h, that is, d ∼h d′ for all d, d′ ∈ Iℓ for all
ℓ = 1, · · · , k.14 Each element of the partition I is called an indifference class. Without
loss of generality, we assume that d ≻h d′ for all d ∈ Iℓ and d′ ∈ Iℓ′ with ℓ < ℓ′. Assume
that h also has a quota qh > 0.

We introduce the unreceptive choice function that represents the Hungarian college
admission system, which is formulated by Imamura and Tomoeda (2023). We say that
choice function Ch of h is qh-unreceptive w.r.t. ≿h if

Ch(D) =


D if |D| ≤ qh,

(I1 ∪ · · · ∪ Iℓ) ∩D

such that |(I1 ∪ · · · ∪ Iℓ) ∩D| ≤ qh otherwise

and |(I1 ∪ · · · ∪ Iℓ+1) ∩D| > qh

for all D ⊆ D. We say that a choice function is unreceptive if it is q-unreceptive for
some integer q > 0.

Imamura and Tomoeda (2023) show that an unreceptive choice function satisfies
substitutability. Meanwhile, they also show that an unreceptive choice function may
not satisfy consistency by the following example.

Example 7. Let D = {d1, d2, d3}. Suppose that the weak priority order of h is given as
d1 ≻h d2 ∼h d3. Thus, I = {I1, I2} where I1 = {d1} and I2 = {d2, d3}. Let Ch be a 2-
unreceptive choice function. Then, Ch({d1, d2, d3}) = {d1} while Ch({d1, d2}) = {d1, d2}.
Hence Ch does not satisfy consistency.

Note that Ch({d1, d2, d3}) = {{d1, d2}, {d1, d3}}.
13Rios et al. (2021) report that the college admission system in Chile also treats tied applicants

equally, but in a different manner. This choice function, however, satisfies consistency.
14For a given set A, we say that a family B of nonempty subsets of A is a partition of A if

⋃
B∈B B = A

and for any B,B′ ∈ B, B ̸= B′ implies B ∩B′ = ∅.
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For a given weak priority ordering ≿h, we say that ≻̂h is a tie-breaking priority
ordering of ≿h if ≻̂h is a linear rdering and d ≻h d′ implies d≻̂hd

′ for all d, d′ ∈ D. Then,
we can construct a qh-responsive choice function Ĉh w.r.t. the tie-breaking priority
ordering ≻̂h and a given quota qh. We call this choice function Ĉh a tie-breaking choice
function of Ch.

Proposition 7. Let Ch be a qh-unreceptive choice function w.r.t. ≿h, where qh > 0
is a given integer, and Ch be the maximal choice correspondence for Ch. Let Ĉh be a
tie-breaking choice function of Ch. Then, Ĉh is a substitutable selection of Ch.

Proof. It suffices to show that Ĉh is a selection from Ch since Ĉh is a responsive choice
function and a responsive choice function is substitutable. Let ≻̂h be a tie-breaking
priority ordering of ≻h such that Ĉh is responsive w.r.t. ≻̂h.

Fix an arbitrary D ⊆ D. If |D| ≤ qh, then it is easy to see that Ch(D) = Ĉh(D) = D
and D is a maximal choice set in D. Thus, assume that |D| > qh. Denote I∗ = Ch(D)
andD∗ = Ĉh(D). By |D∗| = qh, Ch(D

∗) = D∗. Fix an arbitrary d ∈ D\D∗. Then, d′≻̂hd
for any d′ ∈ D∗. By the definition of the tie-breaking priority, d′ ≿h d for any d′ ∈ D∗.
Let Iℓ ∈ I be the indifference class such that d ∈ Iℓ. Note that |D∗ ∪ {d}| = qh + 1.
Then, Ch(D

∗ ∪ {d}) = D∗ if D∗ ∩ Iℓ = ∅ because d′ ≻h d for any d′ ∈ D∗ in this case.
Meanwhile, Ch(D

∗ ∪ {d}) = D∗ \ Iℓ if D∗ ∩ Iℓ ̸= ∅ by |D∗ \ Iℓ| < qh < |D∗ ∪ Iℓ| and
D∗ \ Iℓ = D∗∩ (I1∪· · ·∪ Iℓ−1). In either case, d /∈ Ch(D

∗∪{d}). Hence D∗ is a maximal
choice set in D.

Proposition 7 connects these choice functions that adopt different treatments of tied
applicants. In particular, the tie-breaking–based choice functions used in theory and
practice can be related to the one employed in Hungary through a maximal choice
correspondence.

Since a tie-breaking choice function is responsive, it satisfies LAD. Therefore, we
obtain the following corollary from Proposition 3.

Corollary 1. There exists a stable and strategy-proof mechanism in a college admission
problem with unreceptive choice functions.

5.3 Dynamic Matching

Real-life matching markets are frequently dynamic, requiring match decisions to be made
across multiple time periods. For instance, in Japanese hospitals, a system known as
rotation assigns medical residents to various departments over successive periods. More
broadly, job rotation practices are common in many workplaces. In this setting, it is
natural that when an agent chooses a partner in the current period, her decision usually
depends on past matchings that cannot be altered. Bando and Kawasaki (2024) propose
a choice function that illustrates the choice of an agent in such a situation.

We observe that this choice function satisfies substitutability but not consistency.
Next, we demonstrate that it satisfies monotonicity, which guarantees the existence of a
stable matching. However, this choice function does not necessarily have a substitutable
selection. Thus, by Theorem 3, we cannot expect the COP to be strategy-proof for any
proposal order, provided that there are sufficiently many doctors.
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Let C̄h be a choice function satisfying substitutability and consistency. Therefore,
C̄h satisfies path-independence. Fix any Dp ⊆ D with C̄h(D

p) = Dp. Suppose that
h has been matched to the doctors in Dp and is required to continue hiring them at
the current period. Then, the period-wise choice function C̄h(D|Dp) that represents the
choice of h from each D ⊆ D \Dp at the current period as follows:

C̄h(D|Dp) =

{
C̄h(D

p ∪D) \Dp if Dp ⊆ C̄h(D
p ∪D)

∅ otherwise .

Note that the second case means that there exists d ∈ Dp such that d /∈ C̄h(D
p∪D).

That is, h cannot continue hiring the worker d that h had hired at the past period. We
assume that such a case is infeasible and ∅ is assigned.

Let Ch(D) = Ch(D|Dp) for all D ⊆ D \ Dp for simplicity. We refer to Ch as the
period-wise choice function of h where Rh denotes the rejection function of Ch.

Proposition 8. Ch satisfies substitutability.

Meanwhile, Ch may not be consistent.15

Example 8. Let D = {d1, d2, d3}. Let C̄h be a responsive choice function w.r.t. a
preference order d3 ≻h d2 ≻h d1 ≻h ∅ and a quota qh = 2. Let Ch(D) = C̄h(D|{d1})
for each D ⊆ {d2, d3}. Then, Ch({d2, d3}) = ∅ by {d1} ⊈ {d2, d3} = C̄h({d1, d2, d3})
whereas Ch({d2}) = {d2} by {d1} ⊆ {d1, d2} = C̄h({d1, d2}). Hence, Ch does not satisfy
consistency. Note that Ch({d2, d3}) = {{d2}, {d3}}.

Although Ch may be inconsistent, it satisfies monotonicity. Thus, a stable matching
exists by Theorem 1 when every hospital has a period-wise choice function.

Proposition 9. Ch satisfies monotonicity.

Therefore, a period-wise choice function satisfies weak monotonicity. Meanwhile, it
may not have a substitutable selection as mentioned in Section 3. By Theorem 3, COP
may not be SP for some proposal order under such a period-wise choice function when
there are sufficiently many doctors. We illustrate this fact with the following example.

Example 9. Let D = {d0, d1, d2, d3, d4}. Let C ′
h be a choice function over {d1, d2, d3, d4}

induced from the following strict preference ordering:

≻′
d: {d1, d2}, {d1, d3}, {d2, d4}, {d3, d4}, {d1}, {d2}, {d3}, {d4}.

Then, C ′
h satisfies substitutability. Define a choice function C̄h over D by

C̄h(D) =

{
{d1, d2} if {d1, d2} ⊆ D

C ′
h(D \ {d0}) ∪ (D ∩ {d0}) if {d1, d2} ⊈ D,

15The example is essentially the same as one raised in Bando and Kawasaki (2024). We show it for
completeness.
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for any D ⊆ D. Then, C̄h satisfies consistency and substitutability. Note that d0 is
chosen whenever d0 ∈ D and {d1, d2} ⊈ D. Consider the choice function Ch defined
on {d1, d2, d3, d4} such that Ch(D) = C̄h(D|{d0}) for all D ⊆ {d1, d2, d3, d4}. Let Ch
be the maximal choice correspondence for Ch. As proved by Proposition 9, Ch satisfies
monotonicity. However, there is even no substitutable selection from Ch.

Suppose that there exists a selection C̃h from Ch that satisfies substitutability. We
are noting that Ch({d2, d3}) = {{d2}} and Ch({d1, d2, d3}) = {{d1, d3}, {d2}}. Thus,
C̃h({d2, d3}) = {d2} and C̃h({d1, d2, d3}) = {d1, d3} or {d2}. If C̃h({d1, d2, d3}) =
{d1, d3}, then C̃h violates substitutability. Thus, we must have C̃h({d1, d2, d3}) = {d2}.
Similarly, we have C̃h({d2, d1, d4}) = {d1} by Ch({d1, d4}) = {{d1}} and Ch({d2, d1, d4}) =
{{d2, d4}, {d1}}. Therefore, R̃h({d1, d2, d3}) = {d1, d3} and R̃h({d2, d1, d4}) = {d2, d4}.
By substitutability, we must have R̃h({d1, d2, d3, d4}) = {d1, d2, d3, d4} and hence C̃h({d1, d2, d3, d4}) =
∅. However, ∅ /∈ Ch({d1, d2, d3, d4}) by d3 ∈ Ch({d3}), a contradiction.

We assume that there are sufficiently many other doctors that does not affect the
choice of h and at least two hospitals h′ and h′′ apart from h. In this case, Theorem 3
implies that we can construct unit demand preferences of h′ and h′′ so that COP is not
SP for some proposal order.

5.4 Aggregation of Choice Functions

In collective decision-making, it is necessary to aggregate the various criteria held by
individual members. For example, when a firm decides whether to hire a worker, the
decision is made by a group rather than by a single individual. Similarly, in college
admissions, an admissions office is responsible for the decision. We model this situation
as one in which individual choice functions are aggregated to form a new choice function.

Let H ⊆ H and let Ch be the choice function for each h ∈ H. We consider an
aggregated choice function CH . There are two criteria to aggregate individual choice
functions:

1. The first criterion is permissive: for all D ⊆ D and every h ∈ H, Ch(D) ⊆ CH(D).
Since this criterion is permissive, we consider the minimally permissive aggregated
choice function given by

CH(D) =
⋃
h∈H

Ch(D).

That is, an element is chosen if at least one individual selects it. For example, in
a firm, hiring new staff might require approval from at least one department.

2. The second criterion is strict: for all D ⊆ D and every h ∈ H, CH(D) ⊆ Ch(D).
Since this criterion is strict, we consider the maximally strict aggregated choice
function given by

CH(D) =
⋂
h∈H

Ch(D).

That is, an element is chosen only if all individuals select it. For example, in a
firm, hiring new staff might require approval from all relevant departments.
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Suppose that each individual choice function is path-independent. Then, it is known
that the minimally permissive aggregated choice function CH =

⋃
h∈H Ch is path-

independent (Aizerman and Malishevski, 1981). However, the maximally strict aggre-
gated choice function CH =

⋂
h∈H Ch, while satisfying substitutability, violates consis-

tency. The following example illustrates this point.

Example 10. Let D = {d1, d2, d3} and H = {h1, h2, h3}. Suppose that the choice
function of each hospital h is induced from the following preference orderings over the
sets of doctors.

≻h1 : {d1, d2}, {d2, d3}, {d1}, {d2}, {d3}, ∅
≻h2 : {d2, d3}, {d3, d1}, {d2}, {d3}, {d1}, ∅
≻h3 : {d3, d1}, {d1, d2}, {d3}, {d1}, {d2}, ∅.

Then, CH({d1, d2, d3}) = ∅, CH({d1, d2}) = {d2}, CH({d2, d3}) = {d3}, CH({d3, d1}) =
{d1}, and CH({d}) = {d} for any d = d1, d2, d3, which is the choice function considered
in Example 1. Hence, CH does not satisfy regularity as we have already mentioned that
CH({d1, d2, d3}) = ∅.

Note that the choice function CH appears in Example 1. Therefore, no stable match-
ing exists. This raises the question: under what conditions does the aggregation guar-
antee the existence of a stable matching? The following example suggests that respon-
siveness is key.

Example 11. Let D = {d1, d2, d3} and H = {h1, h2, h3}. Each hospital has a responsive
choice function w.r.t. each of the following preference orderings and quotas qh1 = qh2 =
qh3 = 2.

≻h1 : d1, d2, d3, ∅; ≻h2 : d2, d3, d1, ∅; ≻h3 : d3, d1, d2, ∅.

Then, CH({d1, d2, d3}) = ∅ and CH(D) = D for all D ⊊ D, which is the choice function
considered in Example 2, which is inconsistent.

Note that the choice function CH appears in Example 2. Therefore, a stable matching
exists. We can generalize this observation.

Proposition 10. Assume that Ch is a qh-responsive choice function w.r.t. ≻h for all
h ∈ H. Let CH be the maximal choice correspondence of CH . Define a function C̄ :
2D → 2D as follows: let h̄ = argminh∈H qh. For each D ⊆ D, define a(D) = {d ∈
D| d ≻h ∅ for all h ∈ H} and C̄(D) = Ch̄(a(D)). Then, C̄ is a substitutable selection
from CH .

Note that a(D) ⊆ a(D′) if D ⊆ D′. Then, C̄ satisfies LAD since a responsive choice
function satisfies LAD. Therefore, we can apply Proposition 3.

Corollary 2. A stable and strategy-proof mechanism exists for a many-to-one match-
ing problem where every hospital has a maximally strict aggregated choice function of
responsive choice functions.
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6 Concluding Remarks

This paper considered a many-to-one matching problem where the hospitals’ choice
functions do not necessarily satisfy consistency. We proposed several weaker consistency
conditions: monotonicity, the substitutable selection property, and weak monotonicity.
We demonstrated that a stable matching exists if the choice function of every hospital
satisfies weak monotonicity, the weakest of the three conditions. However, we also
observe that this is insufficient to guarantee the existence of a stable and strategy-proof
mechanism. For that, it is necessary for each hospital’s choice function to satisfy the
substitutable selection property. Additionally, we considered several applications in the
literature and examined when our results are applicable.

There are two directions for future research. The first is to investigate the neces-
sary conditions for the existence of stable matchings under inconsistent choice functions.
The second is to consider the model of matching with contracts, in which weaker con-
ditions for substitutability have been proposed (for example, unilateral and bilateral
substitutes (Hatfield and Kojima, 2010)). Analyzing inconsistency under these weaker
versions of substitutes will be reserved for future research.
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A Omitted arguments in Section 3.1

We introduce the concept of essential monotonicity and show the equivalence between
weak monotonicity and essential monotonicity. We then show that weak monotonic-
ity includes both substitutable selection and monotonicity. Moreover, we provide an
example that illustrates weak monotonicity strictly includes both conditions,

To define essential monotonicity, we inductively define essential rejection set as fol-
lows.

• We say that any D ∈ Rh(D) is an essential rejection set at D.

• Let 0 < k ≤ |D|. Suppose that an essential rejection set at D is defined for any set
D ⊆ D with |D| ≥ k. For any D ⊆ D with |D| ≤ k − 1, we say that D′ ∈ Rh(D)
is an essential rejection set at D if for any d ∈ D \ D, there exists an essential
rejection set D′′ at D ∪ {d} such that D′ ⊆ D′′.

Essential monotonicity is defined as follows.

Definition 8. We say that Ch satisfies essential monotonicity if there exists an essential
rejection set at D for any D ⊆ D.

Essential monotonicity is defined without a function over sequences unlike the defi-
nition of weak monotonicity while the two concepts are equivalent.

Lemma 2. Ch satisfies weak monotonicity if and only if it satisfies essential monotonic-
ity.

Proof. We first show the “only if” part. Suppose that there exists a function rh :
p(D) → 2D satisfying the two conditions. We inductively show that for any D ⊆ D and
any d ∈ p(D) with ρ(d) = D, rh(d) is an essential rejection set at D. The statement
clearly holds when D = D. Fix any 0 < k ≤ |D|. Suppose that the statement is true
for any D ⊆ D with |D| ≥ k. Pick any D ⊆ D with |D| = k − 1 and any d ∈ p(D)
with ρ(d) = D. Suppose that rh(d) is not an essential rejection set at D. Then, there
exists d ∈ D \ D such that there exists no essential rejection set D′ at D ∪ {d} such
that rh(d) ⊆ D′. By the induction hypothesis, rh(d, d) is an essential rejection set at
D ∪ {d}. Thus, rh(d) ⊈ rh(d, d) holds, a contradiction.

We next show the “if” part. Suppose that Ch satisfies essential monotonicity. For
each n ≥ 1, let pn(D) = {d ∈ p(D) | |ρ(d)| ≤ n} be the set of sequences in p(D) whose
length is equal to or less than n. We inductively show that for each n ≥ 1, there exists
a function rnh : pn(D) → 2D such that for any d ∈ pn(D), (i) rnh(d) is an essentially
rejection set at ρ(d) and (ii) rnh(d) ⊆ rnh(d, f) for any f ∈ D \ ρ(d) if |ρ(d)| < n. The
claim clearly holds for n = 1 by essential monotonicity. Suppose that the claim is true
for n− 1(≥ 1) and pick any function rn−1

h : pn−1(D) → 2D satisfying (i) and (ii). Define
rnh(d) = rn−1

h (d) for any d ∈ pn−1(D). Pick any d ∈ pn(D) \ pn−1(D). We denote d by
(d1, · · · , dn). Since rn−1

h (d1, · · · , dn−1) is an essential rejection set at {d1, · · · , dn−1}, there
exists an essential rejection set R′ at {d1, · · · , dn} such that rn−1

h (d1, · · · , dn−1) ⊆ R′.
Define rnh(d) = R′. Then, rnh satisfies (i) and (ii) in the claim.
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We now show that weak monotonicity includes both the substitutable selection prop-
erty and monotonicity.

Proposition 11. Let h ∈ H. If Ch satisfies either monotonicity or the substitutable
selection property, then Ch satisfies weak monotonicity.

Proof. First, suppose that Ch satisfies monotonicity. Then, any D′ ∈ Rh(D) is an
essential rejection set at D for any D ⊆ D. Thus, it satisfies weak monotonicity by
Lemma 2.

Next, suppose that Ch has substitutable selection C̄h. Let R̄h be the rejection func-
tion of C̄h. For each d ∈ p(D), define rh(d) = R̄h(d). Then, rh satisfies (i) and (ii) in
Definition 5. Thus, it satisfies weak monotonicity.

The following example shows that the class of choice functions satisfying weak mono-
tonicity is strictly larger than those satisfying monotonicity or the substitutable selection
property.

Example 12. Let h ∈ H and D = {d1, d2, d3, d4}. We assume that Ch(D) = D for all
D ⊆ D with |D| ≤ 2. For D ⊆ D with |D| ≥ 3, Ch(D), Ch(D), Rh(D), and Eh(D) are
given in Table 4 where Eh(D) denotes the set of all essential rejection sets at D.

Table 3: choice and maximal choice (rejection) and essential rejection
Y Ch(D) Ch(D) Rh(D) Eh(D)

{d1, d2, d3, d4} ∅ {d3, d4}, {d1, d2, d4} {d1, d2}, {d3} {d1, d2}, {d3}
{d1, d2, d3} {d1, d2} {d1, d2} {d3} {d3}
{d1, d2, d4} {d1, d2, d4} {d1, d2, d4} ∅ ∅
{d1, d3, d4} {d3} {d1, d3}, {d3, d4} {d4}, {d1} {d1}
{d2, d3, d4} ∅ {d2, d3}, {d2, d4}, {d3, d4} {d4}, {d3}, {d2} {d3}, {d2}

Then, it can be easily confirmed that Ch satisfies substitutability and essential mono-
tonicity (weak monotonicity). On the other hand, Ch does not satisfy monotonicity since
{d4} ∈ Rh({d1, d3, d4}) but d4 /∈ D for any D ∈ Rh({d1, d2, d3, d4}).

Moreover, Ch does not satisfy the substitutable selection property. To see this, sup-
pose that there exists a substitutable selection C̄h from Ch. Then, C̄h({d1, d2, d3}) =
{d1, d2}. Thus, C̄h({d1, d2, d3, d4}) = {d1, d2, d4} by substitutability of C̄h. Note that
C̄h({d1, d3, d4}) = {d1, d3} or {d3, d4}. But either case violates substitutability of C̄h, a
contradiction.

We next show that weak monotonicity and lower monotonicity is logically indepen-
dent. The choice function defined in Table 5 will show that weak monotonicity does not
imply lower monotonicity. The following example shows that lower monotonicity does
not imply weak monotonicity.

Example 13. Let h ∈ H and D = {d1, d2, d3, d4}. We assume that Ch({d}) = {d} for
all d ∈ D. For D ⊆ D with |D| ≥ 2, Ch(D), Ch(D), Rh(D), and Eh(D) are given in
Table 4 where Eh(D) denotes the set of all essential rejection sets at D.

In the above table, “None” indicates that there exists no essential rejection set at
{d1, d2}. Thus, Ch does not satisfy weak monotonicity by Lemma 2. On the other hand,
it can be confirmed that Ch satisfies lower monotonicity. Therefore, weak monotonicity
does not imply lower monotonicity.
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Table 4: choice and maximal choice (rejection) and essential rejection
Y Ch(D) Ch(D) Rh(D) Eh(D)

{d1, d2, d3, d4} ∅ {d3, d4} {d1, d2} {d1, d2}
{d1, d2, d3} ∅ {d2, d3} {d1} {d1}
{d1, d2, d4} ∅ {d1, d4} {d2} {d2}
{d1, d3, d4} {d3, d4} {d3, d4} {d1} {d1}
{d2, d3, d4} {d3, d4} {d3, d4} {d2} {d2}
{d1, d2} ∅ {d1}, {d2} {d1}, {d2} None
{d1, d3} {d3} {d3} {d1} {d1}
{d1, d4} {d1, d4} {d1, d4} ∅ ∅
{d2, d3} {d2, d3} {d2, d3} ∅ ∅
{d2, d4} {d4} {d4} {d2} {d2}
{d3, d4} {d3, d4} {d3, d4} ∅ ∅

B Omitted Proofs

Proofs of Theorems 1 and 2

We assume that Ch satisfied lower monotonicity for each h ∈ H. We show Theorem
2. Then, it implies Theorem 1. Suppose that Ch satisfies weak monotonicity for all
h ∈ H. We use COP w.r.t. ((rh)h∈H, >) where > is an arbitrary proposal order, which
was formally defined in Subsection 4.1.

We first show that COP terminates in a finite step. By monotonicity of rh, we have
H \Rd(k) ⊇ H \Rd(k + 1) for each step k and d ∈ D. Moreover, for each step k, either
{d ∈ D | µk−1(d) = ∅} ⊋ {d ∈ D | µk(d) = ∅} or H \ Rd(k) ⊋ H \ Rd(k + 1) for some
d ∈ D holds by definition. This implies that COP terminates in a finite step because
there are finite doctors and hospitals. We assume that COP terminates at step k∗ + 1
(k∗ ≥ 0).

We next show that µk is a matching for each step k = 1, · · · , k∗. Pick any k =
1, · · · , k∗. Suppose that µk is not a matching. Then, there exists d′ ∈ µk(ch1(dh1(k))) ∩
µk(ch2(dh2(k))) ̸= ∅ for some h1, h2 ∈ H with h1 ̸= h2. Without loss of generality, we
assume that h1 ≻d′ h2. By d′ ∈ ch2(dh2(k))), d

′ has proposed to h2 by step k. Thus,
d′ has been rejected by h1 by step k − 1. Thus, d′ ∈ rh1(dh1(k − 1)). By monotonicity,
d′ ∈ rh1(dh1(k)), a contradiction.

We finally show that the final matching µk∗ is stable. Clearly, µk∗(d) ⪰ ∅ for all
d ∈ D. We also have Ch(µk∗(h)) = µk∗(h) for all h ∈ H since µk∗(h) = ch(dh(k

∗))
is a maximal choice set in ρ(dh(k

∗)). Thus, µk∗ is individually rational. Suppose that
µk∗ is blocked. Then, there exist h ∈ H and nonempty D ⊆ D \ µk∗(h) such that
D ⊆ Ch(µk∗(h)∪D) and h ≻d µk∗(d) for all d ∈ D. Pick any d̂ ∈ D. By substitutability
of Ch, we have d̂ ∈ Ch(µk∗(h) ∪ {d̂}). Moreover, d̂ has proposed to h by h ≻d̂ µk∗(d̂).

Thus, d̂ ∈ ρ(dh(k
∗)) holds, contradicting µk∗(h) = ch(dh(k

∗)) is a maximal choice set at
ρ(dh(k

∗)).

Proof of Proposition 2

The proof is done by a hospital-proposing DA algorithm defined as follows.
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• For each h ∈ H, Ah(k) denotes the set of all doctors who have rejected h by step
k where Ah(0) ≡ ∅. For each d ∈ D, Ad(k) denotes the set of hospitals that
have proposed to d by step k where Ad(0) ≡ ∅. Moreover, µk denotes a tentative
matching at step k where µ0(h) = ∅ for all h ∈ H. These sets are revised by the
following procedure.

• Step k ≥ 1: If µk−1(h) ∈ Ch(D \ Ah(k − 1)) for all h ∈ H, then the algorithm
terminates at this step and outputs µk−1. Otherwise, for each h ∈ H, pick any
Dh ∈ Ch(D \ Ah(k − 1)) such that µk−1(h) ⊆ Dh. Define Ad(k) = Ad(k − 1) ∪
{h ∈ H | d ∈ Dh} for all d ∈ D. Let µk(d) = max≻d

Ad(k) for all d ∈ D and
Ah(k) = {d ∈ D | h ∈ Ad(k) \ µk(d)} for all h ∈ H. Proceed to the next step.

The following claim guarantees that the above procedure is well-defined.

Claim 1. Suppose that the hospital-proposing DA algorithm proceeds to step k and
does not terminate at step k.

(a) For each h ∈ H, there exists Dh ∈ Ch(D \ Ah(k − 1)) such that µk−1(h) ⊆ Dh.

(b) Ad(k − 1) ⊊ Ad(k) for some d ∈ D.

Proof. When k = 1, the statement holds by the regularity of the choice functions. Thus,
we assume that k ≥ 2.

We first show (a). Since the algorithm does not terminate at step k − 1, for each
h ∈ H, we can take Bh ∈ Ch(D \ Ah(k − 2)) such that µk−2(h) ⊆ Bh. By definition,
Ad(k − 1) = Ad(k − 2) ∪ {h ∈ H | d ∈ Bh} for all d ∈ D. Fix an arbitrary ĥ ∈ H.
By definition, we have Aĥ(k − 2) ⊆ Aĥ(k − 1). By lower monotonicity, there exists

Dĥ ∈ Ch(D \ Ah(k − 1)) such that Bĥ \ Aĥ(k − 1) ⊆ Dĥ. We show that µk−1(ĥ) ⊆ Dĥ.

Pick any d ∈ µk−1(ĥ). Then, ĥ = max≻d
Ad(k− 1) and d /∈ Aĥ(k− 1). If ĥ ∈ Ad(k− 2),

then ĥ = max≻d
Ad(k − 2) = µk−2(d), which implies d ∈ Dĥ by d ∈ µk−2(ĥ) ⊆ Bĥ and

Bĥ \ Aĥ(k − 1) ⊆ Dĥ. If ĥ ∈ Ad(k − 1) \ Ad(k − 2), then d ∈ Bĥ by definition, which

implies d ∈ Dĥ by d /∈ Aĥ(k − 1) and Bĥ \ Aĥ(k − 1) ⊆ Dĥ.
We next show (b). By (a), for each h ∈ H, there exists Dh ∈ Ch(D \Ah(k− 1)) such

that µk−1(h) ⊆ Dh. Since the algorithm does not terminate at step k, there exists h̃ ∈ H

such that µk−1(h̃) /∈ Ch̃(D \ Ah̃(k − 1)). Then, we must have µk−1(h̃) ⊊ Dh̃. Therefore,

there exists d′ ∈ Dh̃ \ µk−1(h̃). Suppose that h̃ ∈ Ad′(k − 1). By d′ /∈ Ah̃(k − 1), we
have h̃ = µk−1(d

′), contradicting that d′ /∈ µk−1(h̃). Thus, h̃ /∈ Ad′(k−1) and h̃ ∈ Ad′(k)

where the latter follows from d′ ∈ Dh̃. Therefore, Ad′(k − 1) ⊊ Ad′(k) holds.

By (b) of the above claim, the algorithm terminates in a finite step k∗ + 1 (k∗ ≥ 0)
since the set of hospitals is finite. We show that µk∗ is stable. Clearly, µk∗(d) =
max≻d

Ad(k
∗) ⪰d ∅ for all d ∈ D. Moreover, Ch(µk∗(h)) = µk∗(h) for all h ∈ H since

µk∗(h) ∈ Ch(D \ Ah(k
∗)). Thus, µk∗ is individually rational.

Suppose that µk∗ is blocked. Then, there exist h ∈ H and nonempty D ⊆ D\µk∗(h)
such that D ⊆ Ch(µk∗(h) ∪ D) and h ≻d µk∗(d) for all d ∈ D. Pick any d̂ ∈ D. By
substitutability of Ch, we have d̂ ∈ Ch(µk∗(h) ∪ {d̂}). By h ≻d̂ µk∗(d̂) = max≻d̂

Ad̂(k
∗),

we have d̂ ∈ D \ Ah(k
∗). By the definition of maximal choice set, this implies d̂ /∈

Ch(µk∗(h) ∪ {d̂}) since µk∗(h) ∈ Ch(D \ Ah(k
∗)), a contradiction.
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Proof of Theorem 3

We introduce some notation used throughout this proof. For any d = (d1, · · · , dn) ∈
p(D) and any di ∈ {d1, · · · , dn}, define ch(d)[di] = di if di ∈ ch(d) and ch(d)[di] = ∅ if
di ∈ rh(d). For any d = (d1, · · · , dn) ∈ p(D) and i = 1, · · · , n, define d(i) = di. For any
d = (d1, · · · , dn) ∈ p(D) and any i, j ∈ {1, · · · , n} with i < j, let d[i, j] be a sequence
constructed from d by moving i’th term into j’s term without changing the ordering of
the other terms, that is,

d[i, j] = (d1, · · · , di−1, di+1, · · · , dj−1, dj, di, dj+1, · · · , dn).

For example, when d = (d1, d2, d3, d4, d5), d[1, 4] = (d2, d3, d4, d1, d5). Such a move is
called a simple move. We define d[i, j] = d when i = j.

We introduce two conditions that are used in the proof.

• rh satisfies condition A if for any sequence d = (d1, · · · , dn) ∈ p(D), there exist no
i, j ∈ {1, · · · , n} such that i < j and ch(d)[di] ̸= ch(d[i, j])[di].

• rh satisfies condition B if for any sequence d = (d1, · · · , dn) ∈ p(D), there exists
no i = 1, · · · , n− 1 such that ch(d)[dn] ̸= ch(d[i− 1, i])[dn].

Lemma 3. rh satisfies order-independence if and only if it satisfies conditions A and B.

Proof. The “only if” part clearly holds. We show the “if” part. Suppose that rh sat-
isfies conditions A and B while it does not satisfy order-independence. Then, there
are sequences d,d′ ∈ ρh(X) with ρ(d) = ρ(d′) and rh(d) ̸= rh(d

′). We denote
d = (d1, · · · , dn).

We first transform d′ into d by simple moves.

• Step 1. Set y1 = d′.

• Step k. If {i = 1, · · · , n | yk(i) ̸= d(i)} = ∅, then output yk. Otherwise, let î =
max{i = 1, · · · , n|yk(i) ̸= d(i)}. Then, there exists i′ < î such that yk(i′) = d(̂i)
(by ρ(yk) = ρ(d)). Set yk+1 = y[i′, î] and go to step k + 1.

It is straightforward to see that this procedure terminates in a finite step k∗(≥ 2) with
yk∗ = d. By ch(d) ̸= ch(d

′), we have that ch(y
k) ̸= ch(y

k+1) for some k = 1, · · · k∗ − 1.
From the above argument, we assume, without loss of generality, that there exist

i, j ∈ {1, · · · , n} such i < j and ch(d) ̸= ch(d[i, j]). We denote d′ = d[i, j]. Consider
dl ∈ {d1, · · · , dn} such that ch(d)[dl] ̸= ch(d

′)[dl]. By condition A, we have dl ̸= di. Let
l′ ∈ {1, · · · , n} with d′(l′) = dl. By condition A, we have ch(d)[dl] = ch(d[l, n])[dl] and
ch(d

′)[dl] = ch(d
′[l′, n])[dl]. Note that the only difference between d[l, n] and d′[l′, n]

is the position of di. Therefore, starting from d[l, n], simple adjacent moves of di lead
to d′[l′, n]. By condition B, ch(d[l, n])[dl] = ch(d

′[l′, n])[dl]. Thus, we have ch(d)[dl] =
ch(d

′)[dl] from ch(d)[dl] = ch(d[l, n])[dl] and ch(d
′)[dl] = ch(d

′[l′, n])[dl], contradicting
the choice of dl.

Lemma 4. Suppose that there are sufficiently many doctors so that max{|Ch(D
′)||D′ ⊆

D} + 2 ≤ |D|. Suppose that rh does not satisfy condition A. Then, there exist h′ ̸= h
and a proposal order > such that
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• h′ has a rejection function rh′ over sequences induced from a unit demand prefer-
ence ≻h′ ,

• COP w.r.t. (rh, rh′ , rH\{h,h′}, >) is not SP for any rH\{h,h′} = (rh̄)h̄∈H\{h,h′}.

Proof. We first characterize condition A by a simpler condition.

Claim 2. rh satisfies condition A if and only if for any sequence d = (d1, · · · , dn) ∈ p(D),
there exist no i = 1, · · · , n− 1 such that ch(d)[di] ̸= ch(d[i, n])[di].

Proof. The “only if” part clearly holds. We show that the “if” part. We assume that
for any sequence d = (d1, · · · , dn) ∈ p(D), there exist no i = 1, · · · , n − 1 such that
ch(d)[di] ̸= ch(d[i, n])[di]. Suppose that condition A is not satisfied. Then, we can
take a sequence d = (d1, · · · , dn) ∈ p(D) such that there exist i, j (i < j < n) satis-
fying ch(d)[di] ̸= ch(d[i, j])[di]. We denote d′ = d[i, j]. By assumption, ch(d)[di] =
ch(d[i, n])[di] and ch(d

′)[di] = ch(d
′[j, n])[di]. By d[i, n] = d′[j, n], ch(d[i, n])[di] =

ch(d
′[j, n])[di]. Thus, ch(d)[di] = ch(d

′)[di], contradicting the choice of i, j.

We now show this lemma. Suppose that rh does not satisfy condition A. From Claim
2, we can take a sequence d = (d1, · · · , dn) ∈ p(D) such that there exists i = 1, · · · , n−1
satisfying ch(d)[di] ̸= ch(d[i, n])[di].

By the assumption of max{|Ch(D
′)||D′ ⊆ D} + 2 ≤ |D|, we can take d′ ∈ D such

that
d′ /∈ ch(d1, · · · , di−1, di+1, · · · , dn) ∪ {di}.

Recall that we are assuming that there is a hospital h′ ̸= h. There are two cases to
consider.

Case 1. ch(d)[di] = di and ch(d[i, n])[di] = ∅.
We assume that h′ has a unit demand preference ≻h′ : d′, di, ∅. Consider any rh̄ for

any h̄ ∈ H \ {h, h′}. Define ≻d1 , · · · ,≻dn by

• ≻d: h, h
′, ∅ for all d ∈ {d1, · · · , dn} \ {di},

• ≻di : h
′, h, ∅.

If d′ ∈ {d1, · · · , dn}, ≻d′ has already been defined in the above way. If d′ /∈ {d1, · · · , dn},
define ≻d′ by

• ≻d′ : h
′, ∅.

We assume that ≻d ranks ∅ first for any d ∈ D\({d1, · · · , dn}∪{d′}). By the construction
of doctors’ preference orders, we may ignore hospitals besides h and h′. Thus, we may
assume that H = {h, h′} without changing the property of COP.

Consider a proposal order > over D × {h, h′} such that

(d1, h), · · · , (di−1, h), (di, h
′), (di, h), (di+1, h), · · · , (dn, h), · · · .

Let φ be COP w.r.t. (rh, rh′ , >).

31



We first show φ(≻)di = ∅. Let us consider COP w.r.t. (rh, rh′ , >). In the first n
steps, d1, · · · , di−1 propose to h, di proposes to h′, and di+1, · · · , dn propose to h. Thus,
the sequence of proposals for each hospital is given by(

h h′

(d1, · · · , di−1, di+1, · · · , dn) (di)

)
.

At this moment, d′ is unmatched since d′ ̸∈ ch(d1, · · · , di−1, di+1, · · · , dn) ∪ {di} and the
definition of >. Thus, d′ proposes to h′ and di is rejected at some subsequent step. Then,
according to >, di proposes to h and rejected because ch(d[i, n])[di] = ∅. This implies
φ(≻)di = ∅.

We next show φ(≻′
di
,≻−di)di = h where ≻′

di
: h, ∅. Let us consider COP w.r.t.

(rh, rh′ , >). In the first n steps, d1, · · · , dn propose to h;(
h h′

(d1, · · · , di−1, di, di+1, · · · , dn)

)
.

This implies φ(≻)di = h by ch(d)[di] = di. Therefore, φ is not SP.

Case 2. ch(d)[di] = ∅ and ch(d[i, n])[di] = di.
We assume that hospital h′ has a unit demand preference ≻h′ : d′, di, ∅. Consider any

rh̄ for any h̄ ∈ H \ {h, h′}. Define ≻d1 , · · · ,≻dn by

• ≻d: h, h
′, ∅ for all d ∈ {d1, · · · , dn} \ {di},

• ≻di : h, ∅.

If d′ ∈ {d1, · · · , dn}, ≻d′ has already been defined in the above way. If d′ /∈ {d1, · · · , dn},
define ≻d′ by

• ≻d′ : h
′, ∅.

We assume that ≻d ranks ∅ first for any d ∈ D \ ({d1, · · · , dn} ∪ {d′}). Again, we may
assume that H = {h, h′} because any other hospital is unacceptable for any doctor.

Consider the proposal ordering > over D × {h, h′} such that

(d1, h), · · · , (di−1, h), (di, h
′), (di, h), (di+1, h), · · · , (dn, h), · · · .

Let φ be COP w.r.t. (rh, rh′ , >). We first show φ(≻)di = ∅. Let us consider COP
w.r.t. (rh, rh′ , >). In the first n steps, d1, · · · , dn propose to h;(

h h′

(d1, · · · , di−1, di, di+1, · · · , dn)

)
.

This implies φ(≻)di = ∅ by ch(d)[di] = ∅.
We next show φ(≻′

di
,≻−di)di = h where ≻′

di
: h′, h, ∅. Let us consider COP w.r.t.

(rh, rh′ , >). In the first n steps, d1, · · · , di−1 propose to h, di proposes to h′, di+1, · · · , dn
propose to h. Thus, the sequence of proposals for each hospital is given by(

h h′

(d1, · · · , di−1, di+1, · · · , dn) (di)

)
.
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At this moment, d′ is unmatched since d′ ̸∈ ch(d1, · · · , di−1, di+1, · · · , dn) ∪ {di} and the
definition of >. Thus, d′ proposes to h′ and di is rejected at some subsequent step. Then,
according to >, di proposes to h and rejected because ch(d[i, n])[di] = ∅. This implies
φ(≻)di = h. Therefore, φ is not SP.

Lemma 5. Suppose that there are sufficiently many doctors so that max{|Ch(D) | D ⊆
D} + 5 ≤ |D|. Suppose that rh does not satisfy condition B. Then, there exist two
hospitals h′, h′′ ̸= h and a proposal order > such that

• h′ and h′′ have rejection functions rh′ and rh′′ induced from some unit demand
preferences ≻h′ and ≻h′′ ,

• COP w.r.t. (rh, rh′ , rh′′ , rH\{h,h′,h′′}, >) is not SP for any rH\{h,h′,h′′} = (rh̄)h̄∈H\{h,h′,h′′}.

Proof. Suppose that rh does not satisfy condition B. We can take a sequence d =
(d1, · · · , dn) ∈ p(D) such that there exists i = 1, · · · , n−1 satisfying ch(d)[dn] ̸= ch(d[i−
1, i])[dn]. Without loss of generality, we assume that ch(d)[dn] = ∅ and ch(d[i−1, i])[dn] =
dn. Let d1, · · · , dn be doctors corresponding to (d1, · · · , dn).

Case 1. i ≤ n− 2.
By the assumption of max{|Ch(D) | D ⊆ D} + 5 ≤ |D|, we can take d′, d′′ ∈ D so

that

d′ /∈ ch(d1, · · · , dn−2) ∪ {di−1, dn−1, dn} and d′′ /∈ ch(d1, · · · , dn−1) ∪ {di, dn, d′}.

Moreover, we can take d̂′ ∈ D so that

d̂′ /∈ ch((d1, · · · , dn−2)[i− 1, i]) ∪ {di−1, dn−1, dn, d
′′}.

Note that d′ ̸= d′′ and d̂′ ̸= d′′ by definition while d′ = d̂′ is possible.
Recall that we are assuming that there are two hospitals h′ and h′′ apart from h. We

assume that h′ has a unit demand preference ≻h′ such that

• d′ is ranked first,

• dn−1 ≻h′ dn ≻h′ di−1 ≻h′ ∅,

• d ≻h′ dn−1 for all d ∈ {d1, · · · , dn−2, d̂
′} \ {di−1, d

′}.

Hospital h′′ has a unit demand preference ≻h′′ : d′′, dn, di, ∅. Consider any rh̄ for any
h̄ ∈ H \ {h, h′, h′′}.

Define ≻d1 , · · · ,≻dn by

• ≻d: h, h
′, h′′, ∅ for all d ∈ {d1, · · · , di−2},

• ≻di−1
: h′, h, h′′, ∅,

• ≻di : h
′′, h, h′, ∅,

• ≻d: h, h
′, h′′, ∅ for all d ∈ {di+1, · · · , dn−2},
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• ≻dn−1 : h
′, h, h′′, ∅,

• ≻dn : h
′, h′′, h, ∅.

If d′, d′′ ∈ {d1, · · · , dn}, ≻d′ and ≻d′′ have already been defined in the above way. If
d′, d′′ /∈ {d1, · · · , dn}, define ≻d′ and ≻d′′ by

• ≻d′ : h
′, ∅,

• ≻d′′ : h
′′, ∅.

If d̂′ = d′ or d̂′ ∈ {d1, · · · , dn}, ≻d̂′ has already been defined. If d̂′ ̸= d′ and d̂′ /∈
{d1, · · · , dn}, define

• ≻d̂′ : h
′, ∅.

We assume that ≻d ranks ∅ first for any d ∈ D \ ({d1, · · · , dn} ∪ {d′, d′′, d̂′}). By the
construction of doctors’ preference orders, we may ignore hospitals besides h, h′, and h′′.
Thus, we may assume that H = {h, h′, h′′} without changing the property of COP.

Consider a proposal ordering > over D × {h, h′, h′′} such that

(d1, h), · · · , (di−2, h), (dn, h
′), (dn, h

′′), (dn, h), (di−1, h
′), (di−1, h), (di, h

′′), (di, h),

(dn−1, h
′), (dn−1, h), (di+1, h), · · · , (dn−2, h), · · · · · · , (d′′, h′′).

Note that (d′′, h′′) is ranked at the bottom.
Let φ be COP w.r.t. (rh, rh′ ,≻h′′ , >). The following two claims show that φ is not

SP.

Claim 3. φ(≻)dn = ∅.

Proof. In the following argument, we omit any step at which h′ and h′′ are proposed by
unacceptable doctors to them.

In the first i − 1 steps, d1, · · · , di−2 propose to h and dn proposes to h′. Then, the
sequence of proposals for each hospital is given by(

h h′ h′′

(d1, · · · , di−2) (dn)

)
.

In the next three steps, di−1 proposes to h′ while rejected, di−1 proposes to h, and di
proposes to h′′. Thus, (

h h′ h′′

(d1, · · · , di−2, di−1) (dn, di−1) (di)

)
.

In the next three steps, dn−1 proposes to h′ while dn is rejected, dn proposes to h′′ while
di is rejected, and di proposes to h. Thus,(

h h′ h′′

(d1, · · · , di−2, di−1, di) (dn, di−1, dn−1) (di, dn)

)
.
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In the subsequent steps, di+1, · · · , dn−2 propose to h;(
h h′ h′′

(d1, · · · , di−2, di−1, di, di+1, · · · , dn−2) (dn, di−1, dn−1) (di, dn)

)
.

At this moment, d′ is unmatched since d′ ̸∈ ch(d1, · · · , dn−2) ∪ {dn−1, dn} and the def-
inition of >. Note that d′ ̸= di−1, d

′′ and (d′, h′) > (d′′, h′′) by definition. This implies
that d′ proposes to h′ while accepted in some subsequent step. Moreover, this happens
before d′′ proposes to h′′. Therefore, dn−1 is rejected by h′ and proposes to h before d′′

proposes to h′′. Thus,(
h h′ h′′

(d1, · · · , di−2, di−1, di, di+1, · · · , dn−2, dn−1) (dn, di−1, dn−1, · · · , d′) (di, dn)

)
.

At this moment, d′′ is unmatched since d′′ ̸∈ ch(d1, · · · , dn−1)∪{d′, dn} and the definition
of >. Note that d′′ ̸= di and d′′ is never accepted by h′ since d′ is ranked first at
≻h′ . Therefore, d′′ proposes h′′ in some subsequent step by the construction of >.
Then, dn is rejected since d′′ is ranked first at ≻h′′ . This implies φ(≻)dn = ∅ by dn /∈
ch(d1, · · · , dn).

Claim 4. φ(≻′
dn
,≻−dn)dn ̸= ∅ where ≻′

dn
: h′′, h′, h, ∅.

Proof. In the following argument, we omit any step at which h′ and h′′ are proposed by
unacceptable doctors to them.

In the first i − 1 steps, d1, · · · , di−2 propose to h and dn proposes to h′′. Then, the
sequence of proposals for each hospital is given by(

h h′ h′′

(d1, · · · , di−2) (dn)

)
.

In the next three steps, di−1 proposes to h′, di proposes to h′′ while rejected, and di
proposes to h; (

h h′ h′′

(d1, · · · , di−2, di) (di−1) (dn, di)

)
.

In the next two steps, dn−1 proposes to h′ while di−1 is rejected, di−1 proposes to h.
Thus, we have (

h h′ h′′

(d1, · · · , di−2, di, di−1) (di−1, dn−1) (dn, di)

)
.

In the subsequent steps, di+1, · · · , dn−2 propose to h;(
h h′ h′′

(d1, · · · , di−2, di, di−1, di+1, · · · , dn−2) (di−1, dn−1) (dn, di)

)
.

At this moment, d̂′ is unmatched since d̂′ ̸∈ ch((d1, · · · , dn−2)[i−1, i])∪{di−1, dn−1, dn, d
′′}

and the definition of >. Note that d̂′ ̸= di−1, d
′′. This implies that at least one doctor in

{d1, · · · , dn−2, d̂
′, d′} \ {di−1}, who is ranked higher than dn−1 at ≻h′ , proposes to h′ in

some subsequent step. Moreover, this happens before d′′ proposes to h′′ since (d′′, h′′) is
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ranked at the bottom in >. Therefore, dn−1 is rejected by h′ and proposes to h before
d′′ proposes to h′′. Thus,(

h h′ h′′

(d1, · · · , di−2, di, di−1, di+1, · · · , dn−2, dn−1) (di−1, dn−1, · · · , d̂′, · · · ) (di, dn)

)
.

If dn is not rejected by h′′ in any subsequent step, φ(≻)dn = h′′. Otherwise, φ(≻)dn = h
by dn ∈ ch((d1, · · · , dn)[i− 1, i]). Hence φ(≻)dn ̸= ∅.

Case 2. i = n− 1.
By the assumption of max{|Ch(D) | D ⊆ D}+ 5 ≤ |D|, we can take d′, d′′ ∈ D such

that

d′ /∈ ch(d1, · · · , dn−2) ∪ {dn−2, dn−1, dn} and d′′ /∈ ch(d1, · · · , dn−1) ∪ {dn−1, dn, d
′}.

Moreover, we can take d̂′ ∈ D such that

d̂′ /∈ ch(d1, · · · , dn−3, dn−1) ∪ {dn−2, dn, d
′′}.

Note that d′ ̸= d′′ and d̂′ ̸= d′′ by definition while d′ = d̂′ is possible.
Recall that we are assuming that there are two hospitals h′ and h′′ apart from h. We

assume that h′ has a unit demand preference ≻h′ such that

• d′ is ranked first,

• dn ≻h′ dn−2 ≻h′ ∅,

• d ≻h′ dn for all d ∈ {d1, · · · , dn−1, d̂
′} \ {d′, dn−2}.

Hospital h′′ has a unit demand preference ≻h′′ : d′′, dn, dn−1, ∅. Consider any rh̄ for any
h̄ ∈ H \ {h, h′, h′′}.

Define ≻d1 , · · · ,≻dn by

• ≻d: h, h
′, h′′, ∅ for all d ∈ {d1, · · · , dn−3},

• ≻dn−2 : h
′, h, h′′, ∅,

• ≻dn−1 : h
′′, h, h′, ∅,

• ≻dn : h
′, h′′, h, ∅.

If d′, d′′ ∈ {d1, · · · , dn}, ≻d′ and ≻d′′ have already been defined in the above way. If
d′, d′′ /∈ {d1, · · · , dn}, define ≻d′ and ≻d′′ by

• ≻d′ : h
′, ∅,

• ≻d′′ : h
′′, ∅.

If d̂′ = d′ or d̂′ ∈ {d1, · · · , dn}, ≻d̂′ has already been defined. If d̂′ ̸= d′ and d̂′ /∈
{d1, · · · , dn}, define
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• ≻d̂′ : h
′, ∅.

We assume that ≻d ranks ∅ first for any d ∈ D \ ({d1, · · · , dn} ∪ {d′, d′′, d̂′}). Again,
we may assume that H = {h, h′, h′′} without changing any property of COP since any
other hospital is unacceptable for any doctors.

Consider the proposal ordering > over D × {h, h′, h′′} such that

(d1, h), · · · , (dn−3, h), (dn, h
′), (dn, h

′′), (dn, h), (dn−2, h
′), (dn−2, h),

(dn−1, h
′′), (dn−1, h), · · · · · · , (d′′, h′′).

Note that (d′′, h′′) is ranked at the bottom.
Let φ be COP w.r.t. (rh, rh′ , rh′′ , >). The following two claims show that φ is not

SP.

Claim 5. φ(≻)dn = ∅.

Proof. In the following argument, we omit any step at which h′ and h′′ are proposed by
unacceptable doctors to them.

In the first n− 2 steps, d1, · · · , dn−3 propose to h and dn proposes to h′. Then, the
sequence of proposals for each hospital is given by(

h h′ h′′

(d1, · · · , dn−3) (dn)

)
.

In the next three steps, dn−2 proposes to h′ while rejected, dn−2 proposes to h, and dn−1

proposes to h′′. Thus,(
h h′ h′′

(d1, · · · , dn−3, dn−2) (dn, dn−2) (dn−1)

)
.

At this moment, d′ is unmatched since d′ ̸∈ ch(d1, · · · , dn−2) ∪ {dn−2, dn−1, dn} and the
definition of >. Note that d′ ̸= dn−2, d

′′ and (d′, h′) > (d′′, h′′) by definition. This implies
that d′ proposes to h′ while accepted in some subsequent step. Moreover, this happens
before d′′ proposes to h′′. Therefore, dn is rejected by h′ and proposes to h′′ (while dn−1

is rejected) before d′′ proposes to h′′. Thus,(
h h′ h′′

(d1, · · · , dn−3, dn−2) (dn, dn−2, · · · , d′) (dn−1, dn)

)
.

In the next step, dn−1 proposes to h,(
h h′ h′′

(d1, · · · , dn−3, dn−2, dn−1) (dn, dn−2, · · · , d′) (dn−1, dn)

)
.

At this moment, d′′ is unmatched since d′′ ̸∈ ch(d1, · · · , dn−1) ∪ {dn−1, dn, d
′} and the

definition of >. Note that d′′ ̸= dn−1 and d′′ is never accepted by h′ since d′ is ranked
first at ≻h′ . Therefore, d′′ proposes h′′ in some subsequent step by the construction of
≻. Then, dn is rejected since d′′ is ranked first at ≻h′′ . This implies φ(≻)dn = ∅ by
dn /∈ ch(d1, · · · , dn).
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Claim 6. φ(≻′
dn
,≻−dn)dn ̸= ∅ where ≻′

dn
: h′′, h′, h, ∅.

Proof. In the following argument, we omit any step at which h′ and h′′ are proposed by
unacceptable doctors to them.

In the first n− 2 steps, d1, · · · , dn−3 propose to h and dn proposes to h′′. Then, the
sequence of proposals for each hospital is given by(

h h′ h′′

(d1, · · · , dn−3) (dn)

)
.

In the next three steps, dn−2 proposes to h′, dn−1 proposes to h′′ while rejected, and dn−1

proposes to h. Thus, (
h h′ h′′

(d1, · · · , dn−3, dn−1) (dn−2) (dn, dn−1)

)
.

At this moment, d̂′ is unmatched since d̂′ ̸∈ ch(d1, · · · , dn−3, dn−1) ∪ {dn−2, dn, d
′′} and

the definition of >. Note that d̂′ ̸= d′′. This implies that at least one doctor in
{d1, · · · , dn−1, d̂

′, d′} \ {dn−2}, who is ranked higher than dn−2 at ≻h′ , proposes to h′

in some subsequent step. Moreover, this happens before d′′ proposes to h′′ since (d′′, h′′)
is ranked at the bottom in >. Therefore, dn−2 is rejected by h′ and proposes to h before
d′′ proposes to h′′. Thus,(

h h′ h′′

(d1, · · · , dn−3, dn−1, dn−2) (dn−2, · · · , d̂′, · · · ) (dn, dn−1)

)
.

If dn is not rejected by h′′ in any subsequent step, φ(≻)dn = h′′. Otherwise, φ(≻)dn = h
by dn ∈ ch((d1, · · · , dn)[i− 1, i]). Hence φ(≻′

dn
,≻−dn)dn ̸= ∅.

Therefore, dn can be better off by misreporting her preference order in both Case 1
(Claims 3 and 4) and Case 2 (Claims 5 and 6).

We now show Theorem 3. Suppose that rh is not order-independent. Thus, rh does
not satisfy conditon A or condition B from Lemma 3. In either case, we have the desired
result from Lemmas 4 and 5.

Proof of Proposition 4

Let H = {h1, h2} and D = {d1, d2, d3, d4}. We assume that Ch1(D) = D for all D ⊆ D
with |D| ≤ 2. For D with |D| ≥ 3, Ch1 , Ch1 , and Rh1 are given in Table 5.

Then, Ch1 satisfies substitutability, monotonicity, and acceptance.16 On the other
hand, Ch1 does not have a substitutable selection. To see this, suppose that there
exists a substitutable selection C̄h1 from Ch1 . Then, C̄h1({d1, d2, d3}) = {d1, d3} and
C̄h({d1, d2, d4}) = {d2, d4}. By substitutability of C̄h1 , we have C̄h1({d1, d2, d3, d4}) =

16Note that Ch1
does not satisfy lower monotonicity since {d2, d4} ∈ Ch1

(D) but Ch1
(D \ {d4}) =

{{d1, d3}}. Therefore, monotonicity does not imply lower monotonicity.
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Table 5: choice and maximal choice (rejection)
D Ch1(D) Ch1(D) Rh1(D)

{d1, d2, d3, d4} ∅ {d1, d3}, {d2, d4} {d2, d4}, {d1, d3}
{d1, d2, d3} {d1, d3} {d1, d3} {d2}
{d1, d2, d4} {d2, d4} {d2, d4} {d1}
{d1, d3, d4} {d1, d3} {d1, d3} {d4}
{d2, d3, d4} {d2, d4} {d2, d4} {d3}

{d1, d3} and C̄h1({d1, d2, d3.d4}) = {d2, d4}, a contradiction. Let Ch2 be the choice
function induced from the unit demand preferences given by

≻h2 : d3, d4, d1, d2, ∅.

We denote C = (Ch1 , ch2).
Suppose that there exists a stable and SP mechanism φ in this example for contra-

diction. Let ≻1 be the preference profile of doctors defined by

≻d1 : h2, h1, ∅, ≻d2 : h2, h1, ∅ ≻d3 : h1, h2, ∅ ≻d4 : h1, h2, ∅.

At (≻1, C), the set of all stable matchings consists of

µ1 =

(
h1 h2 ∅

d1, d3 d4 d2

)
and µ2 =

(
h1 h2 ∅

d2, d4 d3 d1

)
.

Case 1. φ(≻1) = µ1.
Let ≻2 be the preference profile of doctors defined by

≻d1 : h2, h1, ∅, ≻′
d2
: h1, ∅ ≻d3 : h1, h2, ∅ ≻d4 : h1, h2, ∅.

At (≻2, C), the set of all stable matchings is still {µ1, µ2}. By SP, we must have φ(≻2

) = µ1. Let ≻3 be the preference profile of doctors defined by

≻d1 : h2, h1, ∅, ≻′
d2
: h1, ∅ ≻′

d3
: h1, ∅ ≻d4 : h1, h2, ∅.

At (≻3, C), the set of all stable matchings is {µ1, µ3} where

µ3 =

(
h1 h2 ∅

d2, d4 d1 d3

)
.

By SP, we must have φ(≻3) = µ1. Let ≻4 be the preference profile of doctors defined by

≻′
d1
: h2, ∅, ≻′

d2
: h1, ∅ ≻′

d3
: h1, ∅ ≻d4 : h1, h2, ∅.

At (≻4, C), µ3 is the unique stable matching. Thus, φ(≻4)d1 = h2 ≻d1 h1 = φ(≻3)d1 ,
contradicting the assumption that φ satisfies SP.

Case 2. φ(≻1) = µ2.
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We can show that φ does not satisfy SP by a similar argument as in Case 1 as follows.
Let ≻̂2

be the preference profile of doctors defined by

≻′
d1
: h1, ∅, ≻d2 : h2, h1, ∅ ≻d3 : h1, h2, ∅ ≻d4 : h1, h2, ∅.

At (≻̂2
, C), the set of all stable matchings is still {µ1, µ2}. By SP, we must have φ(≻̂2

) =

µ2. Let ≻̂
3
be the preference profile of doctors defined by

≻′
d1
: h1, ∅, ≻d2 : h2, h1, ∅ ≻d3 : h1, h2, ∅ ≻′

d4
: h1, ∅.

At (≻̂3
, C), the set of all stable matchings is {µ2, µ4} where

µ4 =

(
h1 h2 ∅

d1, d3 d2 d4

)
.

By SP, we must have φ(≻̂3
) = µ2. Let ≻̂

4
be the preference profile of doctors defined by

≻′
d1
: h1, ∅, ≻′

d2
: h2, ∅ ≻d3 : h1, h2, ∅ ≻′

d4
: h1, ∅.

At (≻̂4
, C), µ4 is the unique stable matching. Thus, φ(≻̂4

)d2 = h2 ≻d2 h1 = φ(≻̂3
)d2 ,

contradicting the assumption that φ satisfies SP.

Proof of Proposition 5

Fix an arbitrary h. Let Fh be a general upper-bounds constraint for h, and ≻h be a
priority order over D of h. Fix an arbitrary D ⊆ D. Denote D = {d1, · · · , dk} with
d1 ≻h · · · ≻h dk.

We begin by showing that Ĉh(D) ∈ Ch(D). Denote Ĉh(D) = {d′1, · · · , d′k′} with

d′1 ≻h · · · ≻h d′k′ . By definition, Ĉh(D) ∈ Fh. Therefore, Ĉh(D) = Ch(Ĉh(D)).

Fix an arbitrary dℓ ∈ D \ Ĉh(D). Then, Ĉℓ−1
h (D) ∪ {dℓ} /∈ Fh. By the construction

of Ĉh, we have
d′1 ≻h · · · ≻h d′ℓ′︸ ︷︷ ︸
Doctors in Ĉℓ−1

h (D)

≻h dℓ ≻h d′ℓ′+1 ≻h · · · ≻h d′k′︸ ︷︷ ︸
Doctors in Ĉh(D) \ Ĉℓ−1

h (D)

.

Then, by the definition of Ch and Ĉℓ−1
h (D) ∈ Fh, Ĉ

ℓ−1
h (D) ∪ {dℓ} /∈ Fh implies that

Ch(Ĉh(D) ∪ {dℓ}) = Ĉℓ−1
h (D). Thus, dℓ /∈ Ch(Ĉh(D) ∪ {dℓ}). Hence, Ĉh(D) ∈ Ch(D).

We turn to showing that Ĉh(D) is the unique element in Ch(D). Fix an arbitrary
D′ ∈ Ch(D). Note that D′ ∈ Fh.

Claim 7. D′ ∩ {d1} = Ĉ1
h(D).

Proof. It suffices to show that d1 ∈ D′ if and only if d1 ∈ Ĉ1
h(D). First, assume that

d1 ∈ D′. We have Ch(D
′) = D′ by D′ ∈ Ch(D). Thus, D′ ∈ Fh. Since Fh is a general

upper-bounds constraint, {d1} ∈ Fh. Thus, Ĉ
1
h(D) = {d1}.

Next, assume that d1 /∈ D′. Then, {d1} /∈ Fh; otherwise, {d1} ⊆ Ch(D
′ ∪ {d1})

by definition, contradicting that D′ ∈ Ch(D). By Ĉ0
h(D) ∪ {d1} = {d1} /∈ Fh, d1 /∈

Ĉ1
h(D).
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Claim 8. Let ℓ = 2, · · · , k. Assume that D′ ∩ {d1, · · · , dℓ−1} = Ĉℓ−1
h (D). Then,

D′ ∩ {d1, · · · , dℓ} = Ĉℓ
h(D).

Proof. By the definition of Ĉℓ
h and Ĉℓ−1

h (D) = D′ ∩ {d1, · · · , dℓ−1},

Ĉℓ
h(D) =

{
Ĉℓ−1

h (D) ∪ {dℓ} if (D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ∈ Fh,

Ĉℓ−1
h (D) otherwise.

Thus, it suffices to show that dℓ ∈ D′ if and only if (D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ∈ Fh.
Assume that dℓ ∈ D′. Then, (D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ⊆ D′. Since D′ ∈ Fh and

Fh is a general upper-bounds constraint, (D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ∈ Fh.
Assume that dℓ /∈ D′. Suppose that (D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ∈ Fh. Then,

(D′ ∩ {d1, · · · , dℓ−1}) ∪ {dℓ} ⊆ Ch(D
′ ∪ {dℓ}) by

d′1 ≻h · · · ≻h d′ℓ′︸ ︷︷ ︸
Doctors in D′ ∩ {d1, · · · , dℓ−1} = Ĉℓ−1

h (D)

≻h dℓ ≻h d′′1 ≻h · · · ≻h d′′k′′︸ ︷︷ ︸
Doctors in D′ \ {d1, · · · , dℓ−1}

.

Thus, dℓ ∈ Ch(D
′∪{dℓ}). This contradicts thatD′ ∈ Ch(D). Thus, (D′∩{d1, · · · , dℓ−1})∪

{dℓ} /∈ Fh.

By D′ ⊆ D = {d1, · · · , dk} and Claims 7, 8, D′ = D′ ∩ {d1, · · · , dk} = Ĉk
h(D) =

Ĉh(D). ■

Proof of Proposition 7

It suffices to show that Ĉh is a selection from Ch since Ĉh is a responsive choice function
and a responsive choice function is substitutable. Let ≻̂h be a tie-breaking priority
ordering of ≻h such that Ĉh is responsive w.r.t. ≻̂h.

Fix an arbitrary D ⊆ D. If |D| ≤ qh, then it is easy to see that Ch(D) = Ĉh(D) = D
and D is a maximal choice set in D. Thus, assume that |D| > qh. Denote I∗ = Ch(D)
andD∗ = Ĉh(D). By |D∗| = qh, Ch(D

∗) = D∗. Fix an arbitrary d ∈ D\D∗. Then, d′≻̂hd
for any d′ ∈ D∗. By the definition of the tie-breaking priority, d′ ≿h d for any d′ ∈ D∗.
Let Iℓ ∈ I be the indifference class such that d ∈ Iℓ. Note that |D∗ ∪ {d}| = qh + 1.
Then, Ch(D

∗ ∪ {d}) = D∗ if D∗ ∩ Iℓ = ∅ because d′ ≻h d for any d′ ∈ D∗ in this case.
Meanwhile, Ch(D

∗ ∪ {d}) = D∗ \ Iℓ if D∗ ∩ Iℓ ̸= ∅ by |D∗ \ Iℓ| < qh < |D∗ ∪ Iℓ| and
D∗ \ Iℓ = D∗∩ (I1∪· · ·∪ Iℓ−1). In either case, d /∈ Ch(D

∗∪{d}). Hence D∗ is a maximal
choice set in D. ■

Proof of Proposition 8

Let D,D′ ⊆ D\Dp with D ⊆ D′. Pick any d ∈ Rh(D). There are two cases to consider.
We first assume that Dp ⊆ C̄h(D

p ∪ D). Then, d /∈ C̄h(D
p ∪ D) by d ∈ Rh(D). By

substitutability of C̄h, we have d /∈ C̄h(D
p ∪ D′). This implies d ∈ Rh(D

′) regardless
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of whether Dp ⊆ C̄h(D
p ∪ D′) or not. We next assume that Dp ⊈ C̄h(D

p ∪ D). By
substitutability of C̄h, we also have Dp ⊈ C̄h(D

p ∪D′) and thus Ch(D
′) = ∅. Therefore,

d ∈ D ⊆ D′ = Rh(D
′). Hence Rh(D) ⊆ Rh(D

′) holds. ■

Proof of Proposition 9

Let D ⊆ D\Dp and d ∈ (D\Dp)\D. Pick any R ∈ Rh(D). Note that d /∈ R by R ⊆ D.
It is sufficient to show that R ⊆ (D∪{d})\D′ for some D′ ∈ Ch(D∪{d}). By definition,
D̄ = D \R is a maximal choice set in D. Thus, Ch(D̄) = D̄ and d′ /∈ Ch(D̄∪{d′}) for all
d′ ∈ D \ D̄. Therefore, when d /∈ Ch(D̄∪{d}), D̄ is a maximal choice set in D∪{d}, and
the proof is done. Thus, we assume that d ∈ Ch(D̄ ∪ {d}). Note that Ch(D̄ ∪ {d}) ̸= ∅
implies that Dp ⊆ C̄h(D

p ∪ D̄ ∪ {d}). Therefore, the assumption that d ∈ Ch(D̄ ∪ {d})
holds if and only if d ∈ C̄h(D

p ∪ D̄ ∪ {d}) and Dp ⊆ Ch(D
p ∪ D̄ ∪ {d}) hold. Note also

that C̄h(D
p ∪ D̄ ∪ {d}) = Dp ∪ Ch(D̄ ∪ {d}).

Let D∗ = Ch(D̄ ∪ {d}). Then, R ∩ D∗ = ∅ by D∗ ⊆ D̄ ∪ {d}, R ∩ D̄ = ∅, and
d /∈ R. It follows that R ⊆ (D ∪ {d}) \ D∗ from R ⊆ D. It remains to show that D∗

is a maximal choice set in D ∪ {d}. We first show that Ch(D
∗) = D∗. Suppose that

Ch(D
∗) ⊊ D∗. Then, there exists some d′ ∈ D∗ = Ch(D̄∪{d}) such that d′ /∈ Ch(D

∗). By
substitutability of Ch (Proposition 8) and D∗ ⊆ D̄∪{d}, we have d′ /∈ Ch(D̄∪{d}) = D∗,
contradicting the choice of d′. Hence Ch(D

∗) = D∗. Pick any d̄ ∈ D ∪ {d} \D∗. Note
that d̄ ∈ D by d ∈ Ch(D̄∪{d}) = D∗. We prove that d̄ /∈ Ch(D

∗∪{d̄}) by distinguishing
two cases.

Case 1. d̄ ∈ D̄.
By d̄ /∈ D∗ = Ch(D̄ ∪ {d}), d̄ /∈ C̄h(D

p ∪ D̄ ∪ {d}). By consistency of C̄h, d̄ /∈
C̄h(C̄h(D

p∪ D̄∪{d})∪{d̄}) = C̄h(D
p∪Ch(D̄∪{d})∪{d̄}) = C̄h(D

p∪D∗∪{d}). Thus,
d̄ /∈ Ch(D

∗ ∪ {d̄}).

Case 2. d̄ /∈ D̄.
We have d̄ /∈ Ch(D̄ ∪ {d̄}) since D̄ is a maximal choice set in D and d̄ ∈ D. We

further consider the following two subcases. First, assume that Dp ⊈ C̄h(D
p ∪ D̄∪{d̄}).

Then, Dp ⊈ C̄h(D
p∪ D̄∪{d, d̄}) by substitutability of C̄h. By path-independence of C̄h,

Dp ⊈ C̄h(C̄h(D
p ∪ D̄ ∪{d})∪{d̄}) = C̄h(D

p ∪Ch(D̄ ∪{d})∪{d̄}) = C̄h(D
p ∪D∗ ∪{d̄}),

which implies d̄ /∈ Ch(D
∗ ∪ {d̄}) = ∅. Next, assume that Dp ⊆ C̄h(D

p ∪ D̄ ∪ {d̄}).
Then, d̄ /∈ C̄h(D

p ∪ D̄ ∪ {d̄}) by d̄ /∈ Ch(D̄ ∪ {d̄}). By substitutability of C̄h, d̄ /∈
C̄h(D

p ∪ D̄ ∪ {d, d̄}). By path-independence of C̄h, d̄ /∈ C̄h(C̄h(D
p ∪ D̄ ∪ {d}) ∪ {d̄}) =

C̄h(D
p ∪ Ch(D̄ ∪ {d}) ∪ {d̄}) = C̄h(D

p ∪ D∗ ∪ {d̄}). Thus, d̄ /∈ Ch(D
∗ ∪ {d̄}) holds

regardless of whether Dp ⊆ C̄h(D
p ∪D∗ ∪ {d̄}) or not.

Since d̄ /∈ Ĉh(D
∗ ∪ {d̄}) holds for both cases, D∗ is a maximal choice set in D ∪ {d}.

Hence Ĉh satisfies monotonicity. ■

42



Proof of Proposition 10

We first show that C̄(D) is a maximal choice set in any D ⊆ D. Fix an arbitrary D ⊆ D.
First, assume that |a(D)| ≤ qh̄. Note that |a(D)| ≤ qh for all h ∈ H. Then,

a(D) = Ch(a(D)) for all h ∈ H. Thus, CH(a(D)) = a(D). Note that C̄(D) = a(D) in
this case. For any d′ ∈ D \ a(D), d′ /∈ Ch′(a(D) ∪ {d′}) for some h′ ∈ H such that d′ is
unacceptable for h′. It follows that d′ /∈ CH(a(D) ∪ {d′}) for any d′ ∈ D \ a(D). Hence
C̄(D) = a(D) ∈ CH(D).

Next, assume that |a(D)| > qh̄. Denote D̄ = C̄(D) = Ch̄(a(D)). By the choice of h̄
and |a(D)| > qh̄, we have that |D̄| = qh̄ ≤ qh for all h ∈ H. By D̄ ⊆ a(D), Ch(D̄) = D̄
for all h ∈ H. Hence CH(D̄) = D̄.

Fix an arbitrary d′ ∈ D \ D̄. If d′ /∈ a(D), then d′ /∈ Ch(D̄ ∪ {d}) for some h ∈ H
such that d′ is unacceptable for h. Thus, d′ /∈ CH(D̄ ∪ {d′}) if d′ /∈ a(D). Therefore,
assume that d′ ∈ a(D). Since D̄ = Ch̄(a(D)) and d′ ∈ a(D) \ D̄, we have that d̄ ≻h̄ d′

for all d̄ ∈ D̄. Since |D̄| = qh̄, D̄ = Ch̄(D̄ ∪ {d′}). Therefore, d′ /∈ CH(D̄ ∪ {d′}). Thus,
D̄ ∈ CH(D). Hence C̄ is a selection from Ch̄.

It remains to show that C̄ is substitutable. To show this, we use the well-known
fact that a responsive choice function is substitutable. Fix an arbitrary d̂ ∈ D \ D. If
d̂ /∈ a(D ∪ {d̂}), then a(D) = a(D ∪ {d̂}). Thus, C̄(D ∪ {d̂}) ∩ D = Ch̄(a(D ∪ {d̂}) ∩
D = Ch̄(a(D)) ∩ D = C̄(D) ∩ D = C̄(D) if d̂ /∈ a(D ∪ {d̂}). Therefore, assume that
d̂ ∈ a(D ∪ {d̂}). By a(D ∪ {d̂}) = a(D) ∪ {d̂} and a responsive choice function is
substitutable, C̄(D ∪ {d̂}) ∩D = Ch̄(a(D ∪ {d̂})) ∩D ⊆ Ch̄(a(D)) = C̄(D). Thus, C̄ is
substitutable. ■
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