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Abstract

We study the roommate problem with self-matching agents and preferences with

indifferences. Following the approach of Richter and Rubinstein (2024a, 2024b) and

Herings (2024), we define equilibria as constraints shaped by social norms, combined

with outcomes where agents make optimal choices given those constraints. We

propose four new equilibrium notions, conceptually distinct from taboo equilibrium

of Richter and Rubinstein (2024a, 2024b) and expectational equilibrium of Herings

(2024). Each equilibrium allows an agent a personalized set of contracts, with

additional assumptions on minimality of constraints or maximality of permissions.

Motivated by outcome-equivalence, we focus on two out of four of these equilibria,

the minimal aggregate constraint equilibrium (MACE) and the maximal aggregate

permission equilibrium (MAPE), both guaranteed to exist. MACE and MAPE

outcomes are not nested, but with strict preferences, an MAPE is an MACE. We

further show that taboo equilibrium outcomes, MACE outcomes, and individually

rational Pareto-optimal outcomes coincide, while there is an equivalence between

the expectational equilibrium outcomes, stable outcomes, and MAPE outcomes, if

the former two exist. Finally, we argue that MAPE is logically independent of all

concepts that are proposed in the literature to address the non-existence of stable

outcomes in the classical roommate problem.
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1 Introduction

In modern economic theory, there are two dominant methodological approaches. The

first one is the competitive framework, where prices play the role of coordinating agents’

choices and achieve market clearing. The second approach is the game-theoretic one,

where agents interact strategically and their equilibrium behavior is described by a strat-

egy profile such that no agent has an incentive to deviate.

In many practical scenarios, prices are either not involved or do not play an explicit

role. Examples include marriage markets, resource sharing in common property regimes,

and coalition formation. In these cases, agents often behave in ways aligned with social

norms. Richter and Rubinstein (2020) describe the example of birthday pie sharing

between family members, where agents’ choices are driven not by strategic considerations,

but by endogenously emerging social norms that foster harmony.

Several notions of equilibrium have been recently proposed to study outcomes in

matching models. They neither involve prices nor follow the spirit of standard game-

theoretic concepts. One approach results in the notions of para-taboo equilibrium and

taboo equilibrium (TE) as proposed by Richter and Rubinstein (2024a) in the setting of

roommate problems.1 In a para-TE, the social norm determines the set of permissible

alternatives from which agents can choose. Each agent chooses an optimal alternative

from the permissible set. A TE refines the para-TE by requiring the permissible set to

contain as many alternatives as possible.

A different approach is the notion of expectational equilibrium (EE) as proposed by

Herings (2024) in two-sided many-to-one matching models with or without monetary

transfers. At an EE, agents have endogenously determined expectations about whether

it is possible or not to write particular bilateral contracts with other agents. Given

their expectations about contracts that can potentially be signed, every agent makes an

optimal choice. The roots of this concept go back to market-clearing rationing constraints

as formulated in Drèze (1975) in his notion of fix-price equilibrium.

Both approaches have in common that agents’ choices are restricted by endogenously

emerging constraints, but each approach imposes these constraints in its own distinct way.

At a para-TE, the set of permissible contracts is the same across agents and a constrained

contract is infeasible for both parties involved. A TE emerges as the most lenient norm

such that harmony in society is achieved. At an EE, every agent has a personalized set of

permissible contracts. If an agent expects a particular bilateral contract to be impossible,

the counterparty expects it to be permissible but is unwilling to sign. Unlike TE, the

motivation behind EE is not based on social norms that are as lenient as possible, but

1Richter and Rubinstein (2020) study para-TE and TE in general environments, including the cake-

splitting problem, quorum economies with preferences over clubs with minimal quorum requirements,

and Euclidean economies where alternatives form a closed convex subset of some Euclidean space. The

implications of para-TE and TE in voting are discussed in Richter and Rubinstein (2021).
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rather on expectations about what is feasible, and a constrained contract is infeasible to

exactly one party involved.

In this paper, our motivation is to study the emergence of social norms that are

as lenient as possible. However, the most lenient social norms can come in different

forms. They may apply symmetrically to both sides in a bilateral interaction, while

in other cases they may be imposed on a single party. These differences from the two

approaches mentioned above are of critical importance, as they influence not only the

fairness and enforceability of norms, but also the behavior of the involved parties across

diverse socioeconomic contexts. This paper presents conceptual innovations to bridge

those two approaches, offering a more nuanced perspective on how social norms shape

outcomes.

We study the roommate problem of Gale and Shapley (1962), where agents are

matched in a pairwise fashion. The marriage market is obtained as a special case when

making particular choices for the agents’ preferences. We extend the original setting by

allowing self-matching as well as preferences with indifferences. In our context, a match

between two agents is represented as signing a contract, which could be with themselves

in the case of self-matching. An outcome is a list of contracts such that every agent is

involved in exactly one contract. Alternatively, an outcome can be defined as a partition

of the set of agents into singletons and doubletons.

An equilibrium consists of a profile of sets of personalized, constrained contracts,

and an outcome. Every agent faces a personalized set of permissible contracts and then

makes an optimal choice. Unlike TE and EE, a constraint on a contract can apply to

one party or both. We propose four new equilibrium notions, depending on whether

social norms are expressed as minimality of constraints or maximality of permissions,

and whether minimality and maximality are applied at the individual or the aggregate

level. This results in the minimal individual constraint equilibrium (MICE), minimal

aggregate constraint equilibrium (MACE), maximal individual permission equilibrium

(MIPE), and maximal aggregate permission equilibrium (MAPE).

An MICE requires that every agent faces a minimal set of constrained contracts, so it

is not possible to achieve an equilibrium outcome by imposing fewer constrained contracts

on every agent, and strictly so for at least one. An MACE requires that the aggregate set

of constrained contracts, i.e., the union over all individual sets of constrained contracts,

be minimal. An MIPE requires that every agent faces a maximal set of permissible con-

tracts, so it is impossible to achieve an equilibrium outcome by allowing more permissible

contracts for every agent, and strictly so for at least one. An MAPE requires that the

aggregate set of permissible contracts, i.e., the union over all individual sets of permissible

contracts, be maximal. It is immediate that MICE and MIPE are equivalent concepts.

We show that, in terms of equilibrium outcomes, MACE and MICE are also equivalent

concepts. Therefore, we focus our analysis on MACE and MAPE.

We begin by showing the existence of an MACE and an MAPE. While MACE and
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MAPE outcomes are not nested, surprisingly, there is always an outcome which is com-

patible with both concepts. Moreover, an MAPE outcome is also an MACE outcome

when agents have strict preferences.

We then show the underlying connection between MACE, MAPE, TE, and EE, despite

their conceptual differences. A TE is an MACE, but the reverse may not hold. Still, the

outcomes of TE coincide with those of MACE. By definition, an EE is an MAPE, though

the reverse may not be true, as an EE may fail to exist even when all agents have strict

preferences, while an MAPE does exist. We show that if an EE exists, it is equivalent to

an MAPE. Thus, MAPE naturally generalizes EE, extending it to economies where an

EE does not exist. Building on the relation between MACE and MAPE, the connections

between TE and MAPE, and EE and MACE, are clear.

We further study the normative properties of stability and efficiency. MACE out-

comes coincide with individually rational Pareto-optimal outcomes. If at least one stable

outcome exists, then MAPE outcomes coincide with stable outcomes. We conclude that

TE outcomes coincide with individually rational Pareto-optimal outcomes, and EE out-

comes coincide with stable outcomes. In particular, when agents have strict preferences,

the set of EE outcomes is a subset of the set of TE outcomes.

A reformulation of MAPE introduces a weaker, novel, notion of stability, called semi-

stability. We show the equivalence between semi-stable outcomes and MAPE outcomes.

Semi-stability captures the idea that, after removing a minimal set of contracts from

the original economy, the reduced economy possesses a stable outcome. When the origi-

nal economy has a stable outcome, semi-stable outcomes coincide with stable outcomes.

When agents have strict preferences, semi-stable outcomes are a selection of individually

rational Pareto-optimal outcomes, and this selection is strict for some economies. Thus,

semi-stable outcomes address the non-existence issue of stable outcomes while serving as

a proper refinement of individually rational Pareto-optimal outcomes. In particular, we

argue that MAPE, or equivalently semi-stable outcomes, are independent of all existing

concepts addressing the non-existence of stable outcomes in the roommate problem.

Figures 1 and 2 below summarize our main findings. Equivalences in black are always

valid, while those in blue are conditional on existence. Our results shed light on the

important role that indifferences play in determining the relationship between equilibria.

This work makes a twofold contribution to the existing literature. First and foremost,

we make a conceptual contribution to the emerging research on equilibrium notions that

incorporate social norms. We propose new equilibrium notions that accommodate differ-

ent social norms than those embodied in the recently introduced equilibrium notion of

TE. The coincidence between MACE and TE outcomes highlights that different social

norms can generate the same outcomes. MAPE, on the other hand, is logically indepen-

dent of TE and serves as a natural extension of EE. This shows that EE, which is based

on expectations of what is feasible, can also be founded on social norms. Moreover, unlike

EE, MAPE does not suffer from existence issues in the roommate problem. The relation

3



Semi-stability

=

MAPE

=

EE

=

Stability

MACE

=

TE

=

IR+PO

Figure 1: Comparison of equilibrium outcomes under weak preferences.

Semi-stability

=

MAPE

=

EE

=

Stability

MACE=TE= IR+PO

Figure 2: Comparison of equilibrium outcomes under strict preferences.

between MACE and TE, together with the relation between MAPE and EE, helps clar-

ify the connection between TE and EE, which may not be immediately apparent from

a direct comparison of their definitions as provided by Richter and Rubinstein (2024a;

Chapter 5, 2024b) and Herings (2024). Notably, TE, with outcomes equivalent to those

that are individual rational and Pareto-optimal, does not generate new solutions for the

roommate problem, while EE does not resolve the non-existence of stable outcomes. On

the contrary, MAPE resolves the existence problem and constitutes a proper selection

of the set of individually rational and Pareto-optimal outcomes. Our results foster the

potential of this research direction by providing new insights into the roommate problem.

Our findings also reinforce the results established by previous works. Richter and

Rubinstein (2024a; Chapter 5, 2024b) already study the notions of para-TE and TE

in the roommate problem with strict preferences and without self-matching and show

the equivalence between TE outcomes and Pareto-optimal outcomes. Our results imply

that, when self-matching is allowed, TE outcomes are equivalent to individually rational

Pareto-optimal outcomes and that such an equivalence result also holds when agents’

preferences admit indifferences. Herings (2024) shows the equivalence between EE and
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stable outcomes in two-sided many-to-one matching models. These models are differ-

ent from the roommate problem studied here. We therefore show that the equivalence

between EE and stable outcomes extends to roommate problems.

Second, we contribute new solution concepts to address the issue of non-existence of

stable outcomes in the roommate problem. This problem was first identified by Gale

and Shapley (1962) and has since become a central issue in the study of the roommate

problem. Various solution concepts have been proposed to tackle this challenge, often

by introducing weaker notions of stability (see, e.g., Tan (1990), Abraham, Biro, and

Manlove (2006), Inarra, Larrea and Molis (2008, 2013), Klaus, Klijn, and Walzl (2010),

Biro, Inarra, and Molis (2016), Atay, Mauleon, and Vannetelbosch (2021), and Hirata,

Kasuya, and Momoeda (2021, 2023)). MAPE, however, is logically independent of all

these solution concepts as is discussed in detail in Section 7. Moreover, MAPE is con-

structed using a different methodological approach, which could be extended beyond the

setting of the roommate problem.

The paper has been organized as follows. Section 2 introduces the model. Section 3

defines TE and EE. Section 4 defines MICE, MACE, MIPE, and MAPE, and analyzes

their relations. Section 5 discusses the relation between MACE, MAPE, TE, and EE,

and their connection to Pareto optimality and stability is studied in Section 6. Section 7

discusses related solution concepts for roommate problems and Section 8 presents the

conclusion.

2 The Roommate Problem

We consider a slight generalization of the matching model as proposed by Gale and

Shapley (1962), which is also known as “the roommate problem.” In Gale and Shapley

(1962), agents have to form matching pairs and matching is one-sided, so agents are not

a priori partitioned in two disjoint groups. In addition, agents have strict preferences

over matching partners and prefer being matched to remaining single. We formulate this

model in terms of bilateral contracts, allow agents to have preferences with indifferences,

and also incorporate the case where agents may prefer to be single over being matched

with some other agent.

LetN be the finite set of agents. The match between agents i and j inN is described as

signing a contract between i and j, which we denote by {i, j}. Let Y = {{i, j} | i, j ∈ N}
be the set of all possible contracts between agents. In case i = j, agent i remains

unmatched and the self-matching contract is given by {i, i} = {i}. The set of contracts

in a subset Y of Y which involve agent i is denoted by Y i = {y ∈ Y | i ∈ y}.
The consumption set of agent i ∈ N is equal to Y i. The preferences of agent i are

represented by a utility function ui : Y i → R. Here we allow agent i to be indifferent

between different contracts in the consumption set. Preferences of agent i are said to be

strict if, for every pair y, y′ ∈ Y i with y 6= y′, ui(y) 6= ui(y′). Let u = (ui)i∈N be the
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profile of utility functions.

A set of contracts A ⊆ Y is an outcome if, for every i ∈ N , |Ai| = 1. By the

requirement A ⊆ Y , this definition guarantees that choices by agents in an outcome are

mutually compatible, i.e., if {i, j} ∈ Ai, then also {i, j} ∈ Aj. Let A be the set of all

possible outcomes. For every i ∈ N , the utility function ui over contracts induces the

utility function U i over outcomes. For every A ∈ A, if Ai = {y}, then U i(A) = ui(y).

The primitives of the economy are summarized by E = (Y , u).

3 Taboo Equilibrium and Expectational Equilibrium

In the following, let S = {{i} | i ∈ N} be the set of contracts that correspond to self-

matching and let D = {{i, j} | i, j ∈ N and i 6= j} be the set of contracts that correspond

to matching pairs. Clearly, we have that S and D are disjoint and Y = S∪D. Let Ri ⊆ Di

be a set of contracts which are not available to agent i, i.e., a set of constrained contracts

for agent i ∈ N. The set Y i \ Ri then corresponds to the set of permissible contracts for

agent i. A self-matching contract is never subject to constraints, so it always belongs to

the set of permissible contracts for that agent. Let R = (Ri)i∈N ∈ Πi∈N2D
i

be the profile

of sets of constrained contracts.2

The budget set of agent i ∈ N given a set of constrained contracts Ri ⊆ Di is equal

to

βi(Ri) = Y i \Ri.

Note that βi(Ri) consists of all contracts involving agent i that are not in Ri. Since

Ri ⊆ Di, it holds that {i} ∈ βi(Ri), so βi(Ri) is non-empty. Accordingly, the demand set

of agent i given a set of constrained contracts Ri is equal to

δi(Ri) = arg max
y∈βi(Ri)

ui(y).

In the following, we first present a unified way to define the equilibrium concepts

proposed by Richter and Rubinstein (2024a; Chapter 5, 2024b) and Herings (2024).

Subsequently, our uniform treatment suggests four new equilibrium concepts, which are

developed in the next section. The primary difference between the equilibria defined in

this section and those in the next section lies in the different conditions they impose on

the sets of constrained or permissible contracts of the agents.

We begin by defining the notion of para-equilibrium. This notion conveys the com-

mon idea behind all our notions of equilibrium, which is that given a set of permissible

contracts, every agent chooses an optimal one.

Definition 3.1 A para-equilibrium of the economy E = (Y , u) is an element (R,A) ∈
Πi∈N2D

i ×A such that, for every i ∈ N , Ai ⊆ δi(Ri).

2The power set of a set X is denoted by 2X .
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In a para-equilibrium (R,A), Ri corresponds to the set of constrained contracts for

agent i ∈ N. The outcome that results in equilibrium is equal to A. Since A is an

outcome, it holds that, for every agent i ∈ N, Ai contains exactly one contract. In a

para-equilibrium that contract must be in agent i′s demand set.

Richter and Rubinstein (2024a; Chapter 5, 2024b) propose para-taboo equilibrium

and taboo equilibrium for the case with strict preferences and no self-matching. Para-

taboo equilibrium imposes the constraints resulting from some common social norm. A

taboo equilibrium is defined as a para-taboo equilibrium with a minimal profile of sets of

constrained contracts.

We begin by defining a para-taboo equilibrium.

Definition 3.2 A para-taboo equilibrium of the economy E = (Y , u) is an element

(R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is para-equilibrium of E ,

(ii) for every {i, j} ∈ D, {i, j} ∈ Ri if and only if {i, j} ∈ Rj.

Para-taboo equilibrium refines para-equilibrium and imposes that constraints apply

mutually. Either a contract is available to both contractual parties or to none. As an

example, consider R = (Di)i∈N , which implies that self-matching is the only available

choice for the agents. It is easy to see that (R, S) is a para-taboo equilibrium.

The profile of sets of constrained contracts R induces the aggregate set of constrained

contracts ∪i∈NRi and the aggregate set of permissible contracts Y = Y \ ∪i∈NRi. It is

therefore also possible to define a para-taboo equilibrium as a pair (Y,A) ∈ 2Y × A
consisting of an aggregate set of permissible contracts and an outcome. This corresponds

to the approach followed in Richter and Rubinstein (2024a).

The definition of a taboo equilibrium is as follows.

Definition 3.3 A taboo equilibrium (TE) of the economy E = (Y , u) is an element

(R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is a para-taboo equilibrium of E ,

(ii) there is no para-taboo equilibrium (Q,B) such that ∪i∈NQi  ∪i∈NRi.

As an equivalent alternative to condition (ii), we could also write more explicitly that,

for every i ∈ N , Qi ⊆ Ri, and there is j ∈ N such that Qj  Rj. A TE is therefore

a para-TE with a minimal profile of sets of constrained contracts. In other words, a

TE corresponds to the refinement of para-TE that requires a maximal aggregate set of

permissible contracts.

The following example illustrates the concept of TE.
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Example 3.4 Take N = {1, 2, 3}, so Y = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Agents’

utility functions are given by:

u1({1, 3}) > u1({1, 2}) > u1({1}),
u2({1, 2}) > u2({2}) > u2({2, 3}),
u3({1, 3}) > u3({3}) > u3({2, 3}).

Let (R,A) be such that R1 = R3 = {{1, 3}}, R2 = ∅, and A = {{1, 2}, {3}}. We show

that (R,A) is a TE. We begin by showing that (R,A) is a para-TE. For agent 1, it holds

that β1(R1) = {{1}, {1, 2}}. Since u1({1, 2}) > u1({1}), we have A1 = {{1, 2}} ⊆ δ1(R1).

Analogously, we can show that A2 = {{1, 2}} ⊆ δ2(R2) and A3 = {{3}} ⊆ δ3(R3).

Thus, condition (i) of Definition 3.2 holds. Moreover, for every {i, j} ∈ D, it holds that

{i, j} ∈ Ri if and only if {i, j} ∈ Rj, so condition (ii) of Definition 3.2 holds as well. We

have shown that (R,A) is a para-TE.

We show next that condition (ii) of Definition 3.3 holds for (R,A). We proceed by

contradiction. Let (Q,B) be a para-TE such that ∪i∈NQi  ∪i∈NRi. Since ∪i∈NRi =

{{1, 3}}, it holds that ∪i∈NQi = ∅. Then agents 2 and 3 both strictly prefer signing a

contract with agent 1 to signing any other contract. Thus {1, 2} ∈ B and {1, 3} ∈ B,

contradicting that B is an outcome. Consequently, condition (ii) of Definition 3.3 holds.

In conclusion, (R,A) is a TE. 4

Herings (2024) introduces a new equilibrium notion for two-sided many-to-one match-

ing models, called expectational equilibrium. It formulates expectations regarding trad-

able contracts and, in the current context, is defined as follows.

Definition 3.5 An expectational equilibrium (EE) of the economy E = (Y , u) is an ele-

ment (R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is a para-equilibrium of E ,

(ii) for every {i, j} ∈ D, Ri ∩Rj = ∅.

The EE conveys a different idea to derive the constraints on contracts. The second

condition of Definition 3.5 requires that in equilibrium constraints are one-sided. It

cannot be the case that agents i and j both experience a constraint on contract {i, j}.
Moreover, this condition ensures that the expectations of agents are correct and not the

result of coordination failures. Consider a contract {i, j} ∈ D. If, at an EE (R,A),

agent i expects such a contract not to be available, i.e., {i, j} ∈ Ri, then it follows that

{i, j} /∈ Rj. Agent j can therefore freely choose to sign the contract {i, j}, but, since

{i, j} ∈ Ri implies {i, j} /∈ A, agent j chooses not to do so. Therefore, agent i is correct

in expecting that contract {i, j} is not part of agent i’s budget set.

A remarkable difference between TE and EE exists in the treatment of constraints.

For a TE, if a contract {i, j} is not available to agent i, then it is also not available to

agent j. This reflects a common social norm that emerges endogenously in a society. As
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explained above, this is not true for an EE. Here a constraint indicates that a particular

contract is out of reach for an agent, since the counterparty of the contract is free to sign

it, but chooses not to do so.

The following example illustrates the concept of EE.

Example 3.6 Take N = {1, 2, 3}, so Y = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Agents’

utility functions are given by:

u1({1, 3}) = u1({1, 2}) > u1({1}),
u2({1, 2}) = u2({2}) > u2({2, 3}),
u3({1, 3}) > u3({3}) > u3({2, 3}).

Let (R,A) be such that R1 = ∅, R2 = ∅, R3 = {{1, 3}}, and A = {{1, 2}, {3}}. We

show that (R,A) is an EE. By the construction of R, it follows that for every {i, j} ∈
D, Ri ∩ Rj = ∅, so condition (ii) of Definition 3.5 holds. For agents 1 and 2, it is

straightforward that A1 ⊆ δ1(R1) and A2 ⊆ δ2(R2). For agent 3, it holds that β3(R3) =

{{3}, {2, 3}}. Since u3({3}) > u3({2, 3}), it holds that A3 = {{3}} = δ3(R3). We have

shown that (R,A) is an EE. 4

4 Equilibria with Minimal Constraints or Maximal Permissions

We now propose four new notions of equilibrium, where each agent has a personalized set

of permissible contracts. These equilibria aim to achieve societal harmony by imposing

minimal constraints or maximal permissions, either at the individual or the aggregate

level. They are conceptually distinct from TE, which targets only a common set of

permissible contracts, and from EE, which also rules out common constraints but imposes

no minimality assumptions on the set of constrained contracts. We formally examine the

relationship between TE, EE, and our proposed equilibria in the next section. We refer

to all those equilibria as harmonious equilibria.

We begin by defining a notion of equilibrium that imposes minimal individual sets of

constrained contracts.

Definition 4.1 A minimal individual constraint equilibrium (MICE) of the economy E =

(Y , u) is an element (R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is a para-equilibrium of E ,

(ii) there is no para-equilibrium (Q,B) of E such that, for every i ∈ N , Qi ⊆ Ri and there

is j ∈ N with Qj  Rj.

The second condition of Definition 4.1 states that an MICE imposes minimal con-

straints on contracts for each individual agent.

The same idea that requires constraints to be minimal can also be applied at the

aggregate level, which results in our next concept.
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Definition 4.2 A minimal aggregate constraint equilibrium (MACE) of the economy

E = (Y , u) is an element (R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is a para-equilibrium of E ,

(ii) there is no para-equilibrium (Q,B) of E such that ∪i∈NQi  ∪i∈NRi.

The second condition of Definition 4.2 states that at an MACE, the aggregate set of

constrained contracts ∪i∈NRi is minimal. This is a feature that MACE has in common

with TE. Differently from TE, MACE allows for constraints that are one-sided only.

In Example 3.4, (R,A) is both an MICE and an MACE, but this equivalence does not

hold in general. In the same example, it is easily verified that (Q,B) such that Q1 = Q3 =

∅, Q2 = {{1, 2}}, and B = {{1, 3}, {2}} and (Q′, B) such that Q′1 = Q′2 = {{1, 2}}, and

Q′3 = ∅ are both MACEs with the same aggregate set of constrained contracts {{1, 2}}.
Nevertheless, (Q′, B) fails to be an MICE, since (Q,B) is a para-equilibrium with fewer

constrained contracts at the individual level. The next result demonstrates that the

reverse implication does hold, i.e., an MICE is an MACE.

Proposition 4.3 Consider an economy E = (Y , u). If (R∗, A∗) ∈
∏

i∈N 2D
i × A is an

MICE of E , then (R∗, A∗) is an MACE of E .

Proof. Let (R∗, A∗) ∈
∏

i∈N 2D
i × A be an MICE of E . Suppose (R∗, A∗) is not an

MACE of E . Then there is a para-equilibrium (Q,B) of E such that ∪i∈NQi ( ∪i∈NR∗i.
A contract in A∗ is not part of R∗, and therefore also not of Q. It follows that, for every

i ∈ N, U i(B) ≥ U i(A∗). For every i ∈ N, let Q∗i = Qi ∩ R∗i. Since for every i ∈ N,

the contracts in Qi \Q∗i do not belong to R∗i, it holds that the utility of such a contract

for agent i is at most U i(B). Thus, for every i ∈ N , Bi ⊆ δi(Q∗i), so (B,Q∗) is a

para-equilibrium of E . Clearly, for every i ∈ N, Q∗i ⊆ R∗i. By ∪i∈NQi ( ∪i∈NR∗i, there

is j ∈ N such that Q∗j ( R∗j. Thus (R∗, A∗) violates condition (ii) of Definition 4.1,

contradicting that (R∗, A∗) is an MICE. Consequently, (R∗, A∗) is an MACE of E .

The main idea behind the proof of Proposition 4.3 is as follows. Suppose an MICE

fails to be an MACE. Then there is a para-equilibrium with a smaller aggregate set of

constrained contracts. By taking intersections with the sets of constrained contracts in

the MICE, this para-equilibrium can be used to construct a para-equilibrium with weakly

smaller sets of constrained contracts for each agent and strictly so for at least one agent

than in the MICE, which would lead to a contradiction.

Although we presented an example of an MACE that is not an MICE, the next result

shows that the two concepts are equivalent when we focus only on equilibrium outcomes.

Theorem 4.4 Consider an economy E = (Y , u). The set of MACE outcomes of E coin-

cides with the set of MICE outcomes of E .

10



Proof. In the light of Proposition 4.3, we only have to show that every MACE outcome

of E is also an MICE outcome of E . Let (R,A) be an MACE of E . For every i ∈ N, let

R∗i = Ri\{{i, j} ∈ Di | ui({i, j}) ≤ U i(Ai)}.

Clearly, (R∗, A) is a para-equilibrium such that for every i ∈ N , R∗ ⊆ Ri. Thus, it follows

that ∪i∈NR∗i ⊆ ∪i∈NRi. Since (R,A) is an MACE, it holds that (R∗, A) is an MACE.

We show that (R∗, A) is an MICE. By contradiction, suppose not. Then there is a

para-equilibrium (Q,B) of E such that, for every i ∈ N, Qi ⊆ R∗i, and there is j ∈ N
such that Qj  R∗j. Since (R∗, A) is an MACE, it must hold that ∪i∈NQi = ∪i∈NR∗i. By

definition of R∗j, for every y ∈ R∗j, uj(y) > U j(Aj). Since Qj  R∗j, there is y ∈ βj(Qj)

with uj(y) > U j(Aj). It follows that there is {j, k} ∈ D such that Bj = {{j, k}} and

{j, k} ∈ R∗j\Qj. By ∪i∈NQi = ∪i∈NR∗i, we have that {j, k} ∈ Qk, so Bk 6= {{j, k}},
leading to a contradiction. Consequently, (R∗, A) is an MICE and A is an MICE outcome.

The proof of Theorem 4.4 reveals that if all irrelevant constrained contracts in an

MACE are removedthat is, those with utility less than or equal to the utility of the

equilibrium outcomean MICE is obtained.

As an alternative to para-equilibria with minimal constraints, one can also consider

para-equilibria with maximal permissions. Again, this can be done either at the individual

or the aggregate level. We start with the individual level.

Definition 4.5 A maximal individual permission equilibrium (MIPE) of the economy

E = (Y , u) is an element (R,A) ∈ Πi∈N2D
i ×A such that

(i) (R,A) is a para-equilibrium of E ,

(ii) there is no para-equilibrium (Q,B) of E such that, for every i ∈ N, Y i \Qi ⊇ Y i \Ri

and there is j ∈ N with Y j \Qj ! Y j \Rj.

The second condition of Definition 4.5 is equivalent to the absence of a para-equilibrium

(Q,B) of E such that, for every i ∈ N, Qi ⊆ Ri and there is j ∈ N with Qj  Rj, which

corresponds to the definition of an MICE. We have the following result.

Proposition 4.6 Consider an economy E = (Y , u). Then (R,A) ∈ Πi∈N2D
i × A is an

MIPE of E if and only if (R,A) is an MICE of E .

Proposition 4.3, Theorem 4.4, and Proposition 4.6 motivate us to focus on MACE,

since in terms of outcomes this concept is equivalent to MICE and MIPE.

We next consider maximal permissions at the aggregate level. This leads to the

following definition.

Definition 4.7 A maximal aggregate permission equilibrium (MAPE) of the economy

E = (Y , u) is an element (R,A) ∈ Πi∈N2D
i ×A such that

11



(i) (R,A) is a para-equilibrium of E ,

(ii) there is no para-equilibrium (Q,B) of E such that ∪i∈N(Y i\Qi) ! ∪i∈N(Y i\Ri).

The second condition of Definition 4.7 states that an MAPE is such that the aggregate

set of permissible contracts is maximal. At an EE, the aggregate set of permissible

contracts is equal to Y , as all constraints are one-sided. It therefore follows immediately

that an EE is an MAPE. On the other hand, at an MAPE, constraints can be two-sided,

making MAPE a weaker concept than EE. We elaborate on the comparison between

MAPE and EE in Section 5.

Unlike a TE (R,A), where a contract in the aggregate set of permissible contracts

∪i∈N(Y i\Ri) is permissible for both parties, in an MAPE (R,A), a contract in the ag-

gregate set of permissible contracts ∪i∈N(Y i\Ri) can be permissible for only one party.

MAPE and MACE can be different in terms of outcomes. First, consider (R,A) in

Example 3.4. It is an MACE, but not an MAPE. Consider a para-equilibrium (Q,B) such

that Q1 = Q3 = ∅, Q2 = {{1, 2}}, and B = {{1, 3}, {2}}. Since ∪i∈N(Y i \ Qi) = Y and

∪i∈N(Y i \Ri) = Y \ {{1, 3}}, it follows that condition (ii) of Definition 4.7 is violated at

(R,A), so (R,A) is not an MAPE. It also follows easily that A is not an MAPE outcome.

Next, consider (R,A) in Example 3.6. It qualifies as an MAPE because (R,A) is a

para-equilibrium with a maximal aggregate set of permissible contracts ∪i∈N(Y i\Ri) = Y .

Nevertheless, (R,A) is not an MACE. Let (Q,B) be such that Q1 = Q2 = Q3 = ∅ and

B = {{1, 3}, {2}}. Then (Q,B) is a para-equilibrium with ∪i∈NQi = ∅. However, we

have ∪i∈NRi = {{1, 3}}. Thus condition (ii) of Definition 4.2 is violated at (R,A), so

(R,A) is not an MACE. It also follows that B is the only MACE outcome.

Below, we conduct a thorough analysis of the relation between MAPE and MACE.

Theorem 4.8 Consider an economy E = (Y , u).

(i) The economy E has an MACE and an MAPE.

(ii) There is an outcome that is both an MACE outcome and an MAPE outcome of E.

(iii) If agents have strict preferences, then an MAPE outcome of E is also an MACE

outcome of E.

Proof. We prove the three parts in order.

Part (i): It is clear that ((Di)i∈N , S) is a para-equilibrium of E : The only available

contract for an agent is the self-matching contract. The finiteness of the number of

contracts implies that there are only finitely many para-equilibria, which ensures the

existence of MACE and MAPE.

Before proving Part (ii) and Part (iii), we prove the following claim. A para-equilibrium

(R,A) is said to be a para-equilibrium supported by a minimal constraint profile R if

there is no Q ∈
∏

i∈N 2D
i

such that ∪i∈NQi  ∪i∈NRi and (Q,A) is a para-equilibrium.
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Claim: Let (R,A) be a para-equilibrium supported by a minimal constraint profile R.

Suppose that A is not an MACE outcome. Then there is a para-equilibrium (Q,B) such

that for every i ∈ N , U i(Bi) ≥ U i(Ai) and there is j ∈ N such that U j(Bj) > U j(Aj).

Since A is not an MACE outcome, there is a para-equilibrium (Q,B) such that

∪j∈NQj  ∪j∈NRj. For every i ∈ N , let R′i = (∪j∈NRj)i, R′ = (R′i)i∈N , Q′i = (∪j∈NQj)i,

and Q′ = (Qi′)i∈N . Since (R,A) and (Q,B) are para-equilibria, it holds that (Q′, B) and

(R′, A) are also para-equilibria. Since ∪i∈NQi  ∪i∈NRi, it holds that, for every i ∈ N ,

Q′i ⊆ R′i, so U i(Bi) ≥ U i(Ai).

Now we show that there is j ∈ N such that U j(Bj) > U j(Aj). By contradiction,

suppose that for every i ∈ N , U i(Bi) = U i(Ai). Since (Q′, B) and (R′, A) are both

para-equilibria and, for every i ∈ N , Q′i ⊆ R′i, it holds that (Q′, A) is also a para-

equilibrium with ∪i∈NQ′i = ∪i∈NQi  ∪i∈NRi, contradicting that (R,A) is a para-

equilibrium supported by a minimal constraint profile R.

Thus the claim holds.

Now we are ready to prove Part (ii) and Part (iii).

Part (ii): An MAPE outcome A ∈ A is said to be a Pareto-optimal outcome in the set

of MAPE outcomes if there does not exist an MAPE outcome B ∈ A such that, for every

i ∈ N , U i(Bi) ≥ U i(Ai) and, for some j ∈ N , U j(Bj) > U j(Aj).

By Part (i), an MAPE of E exists. The finiteness of the number of contracts implies

that there is a finite number of MAPE outcomes. Therefore, there is an MAPE (R∗, A∗)

such that A∗ is Pareto optimal within the set of MAPE outcomes. Moreover, we can

choose (R∗, A∗) such that it is supported by a minimal constraint profile R∗.

We show that A∗ is an MACE outcome of E . Clearly, A∗ is a para-equilibrium

outcome. Suppose that A∗ is not an MACE outcome. By the above claim, there is a para-

equilibrium (Q,B) such that, for every i ∈ N , U i(Bi) ≥ U i(A∗i) and there is j ∈ N such

that U j(Bj) > U j(A∗j). For every i ∈ N , let Q∗i = R∗i\Bi. For every i ∈ N, it follows

that Bi ⊆ δi(Q∗i), so (Q∗, B) is a para-equilibrium with ∪i∈N(Y i\Q∗i) ⊇ ∪i∈N(Y i\R∗i).
Since (R∗, A∗) is an MAPE, it holds that ∪i∈N(Y i\Q∗i) = ∪i∈N(Y i\R∗i), so (Q∗, B)

is also an MAPE. For every i ∈ N, U i(Bi) ≥ U i(A∗i) and there is j ∈ N such that

U j(Bj) > U j(A∗j), so we derive a contradiction to A∗ being Pareto optimal within the

set of MAPE outcomes. Consequently, A∗ is an MACE outcome.

Part (iii): Let A∗ be an MAPE outcome. Let (R∗, A∗) be an MAPE which is supported

by a minimal constraint profile R∗.

Suppose that A∗ is not an MACE outcome. By the above claim, there is a para-

equilibrium (Q,B) such that, for every i ∈ N , U i(Bi) ≥ U i(A∗i) and there is j ∈ N

such that U j(Bj) > U i(A∗j). Clearly, it holds that Bj 6= A∗j. Let k ∈ N be such

that Bj = {{j, k}}. It holds that k 6= j and A∗k 6= {{j, k}}. Since agent k has strict

preferences, we have that Uk(Bk) > Uk(A∗k). As (R∗, A∗) is an MAPE, it holds that

{j, k} ∈ R∗j and {j, k} ∈ R∗k. For every i ∈ N, let Q∗i = Ri\Bi. It follows that, for
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every i ∈ N, Bi ⊆ δi(Q∗i), so (Q∗, B) is a para-equilibrium. Note that ∪i∈N(Y i\Q∗i) ⊇
(∪i∈N(Y i\R∗i)∪{{j, k}}, which contradicts that (R∗, A∗) is an MAPE. Consequently, A∗

is an MACE outcome.

Part (i) of Theorem 4.8 shows the existence of both an MACE and an MAPE. If we

impose constraints such that every agent is only allowed to choose self-matching contracts,

combined with an outcome that contains only self-matching contracts, we obtain a para-

equilibrium. The finiteness of the number of contracts ensures the existence of both an

MACE and an MAPE. As discussed above Theorem 4.8, the outcomes of MACE and

MAPE could differ. Therefore, it is surprising that part (ii) of Theorem 4.8 asserts the

existence of an outcome that is compatible with both an MACE and an MAPE. If we

further restrict our attention to case with strict preferences, part (iii) shows that every

MAPE outcome is also an MACE outcome. Still, the reverse may not hold.3 Reconsider

the discussion above Theorem 4.8. Agents in the economy in Example 3.4 all have strict

preferences. In such an economy, there is an MACE outcome which is not an MAPE

outcome. Thus, part (iii) indicates that MAPE is a stronger concept than MACE (as

well as MICE and MIPE). Thus, parts (ii) and (iii) together show that the strictness

of preferences plays an important role in determining the relation between MACE and

MAPE.

Figures 3 and 4 below summarize the relations between our proposed equilibria.

5 Relation between Harmonious Equilibria

This section analyzes the relation between TE, EE, MACE, and MAPE.

The foundations for defining these equilibria are para-equilibrium and para-TE. We

begin by discussing their relation.

First, we present the standard definition of an individually rational outcome.

Definition 5.1 An outcome A ∈ A of the economy E = (Y , u) is individually rational

if, for every i ∈ N , U i(Ai) ≥ ui({i}).

We now present our first equivalence result.

Proposition 5.2 Consider an economy E = (Y , u). The sets of individually rational

outcomes, para-equilibrium outcomes, and para-TE outcomes of E all coincide.

Proof. It is straightforward that both para-equilibrium outcomes and para-TE outcomes

are individually rational. Let A∗ be an individually rational outcome of E . We show that

3We remark that even when agents have strict preferences, an MAPE may not be an MACE. Take

N = {1, 2} so Y = {{1}, {2}, {1, 2}}. Assume that u1({1}) > u1({1, 2}) and u2({2}) > u2({1, 2}). Let

R1 = {{1, 2}}, R2 = ∅, and A = {{1}, {2}}. Then (R,A) is an MAPE, but not an MACE. To see this,

let Q1 = ∅ and Q2 = ∅. Then (Q,A) is a para-equilibrium with ∪i∈NQi  ∪i∈NRi.
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MACE

=

MIPE

=

MICE

MAPE

Equilibria MIPE=MICE ⊆ MACE

Outcomes

Figure 3: Relation between equilibria with weak preferences.

MAPE

MACE=MIPE=MICE

Equilibria MIPE=MICE ⊆ MACE

Outcomes

Figure 4: Relation between equilibria with strict preferences.

A∗ is both a para-equilibrium outcome and a para-TE outcome of E . For every i ∈ N , let

R∗i = Di\A∗i. Clearly, Definition 3.1 holds for (R∗, A∗), so (R∗, A∗) is a para-equilibrium

outcome of E .

It follows that Condition (i) of Definition 3.2 of a TE holds for (R∗, A∗).

Let y = {i, j} ∈ D. Clearly, y /∈ A∗i if and only if y /∈ A∗j. By the construction of R∗i

and R∗j, it holds that y ∈ R∗i if and only if y ∈ R∗j. Thus condition (ii) of Definition 3.2

holds as well. We have shown that (R∗, A∗) is a para-TE of E .

It is clear that S is an individually rational outcome, so the existence of para-

equilibrium and para-TE is ensured. Clearly, a para-TE is a para-equilibrium. Despite

the coincidence of their outcomes, a para-equilibrium need not be a para-TE. For in-

stance, consider the economy with strict preferences as described in Example 3.4. Let

(Q,B) be such that Q1 = Q3 = ∅, Q2 = {{1, 2}}, and B = {{1, 3}, {2}}. Then (Q,B)

is a para-equilibrium, but not a para-TE since only agent 2 is constrained to demand
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contract {1, 2}.
The following result clarifies the relation between TE and MACE.

Theorem 5.3 Consider an economy E = (Y , u).

(i) A TE of E is an MACE of E.

(ii) The set of TE outcomes of E coincides with the set of MACE outcomes of E.

Proof.

Part (i): Let (R∗, A∗) be a TE. By contradiction, suppose that (R∗, A∗) is not an MACE.

Then there is a para-equilibrium (Q,B) such that ∪i∈NQi  ∪i∈NR∗i. For every i ∈ N , let

Ri = (∪j∈NQj)i. Clearly, we have that B ∩ (∪j∈NQj) = ∅ and, for every i ∈ N, Ri ⊇ Qi.

It follows that, for every i ∈ N, Bi ⊆ δi(Ri). Thus, (R,B) is a para-equilibrium. By the

construction of R, {i, j} ∈ Ri if and only if {i, j} ∈ Rj, so condition (ii) of Definition 3.2

holds and (R,B) is a para-TE with ∪i∈NQi = ∪i∈NRi  ∪i∈NR∗i. Thus, condition (ii) of

Definition 3.3 is violated at (R∗, A∗), contradicting that (R∗, A∗) is a TE. Consequently,

(R∗, A∗) is an MACE.

Part (ii): By Part (i), we only need to show that an MACE outcome of E is a TE

outcome of E .

Let (R∗, A∗) be an MACE. For every i ∈ N, let Ri = (∪j∈NR∗j)i. For every {i, j} ∈ D,

it holds that {i, j} ∈ Ri if and only if {i, j} ∈ Rj. It is easy to see that (R,A∗) is a para-

TE. Moreover, it holds that ∪i∈NRi = ∪i∈NR∗i.
Suppose (R,A∗) is not a TE. Then there is a para-TE (Q,B) such that ∪i∈NQi  

∪i∈NRi. Clearly, (Q,B) is a para-equilibrium. Since ∪i∈NRi = ∪i∈NR∗i, it holds that

∪i∈NQi  ∪i∈NR∗i. Thus (R∗, A∗) violates condition (ii) of Definition 4.2, contradicting

that (R∗, A∗) is an MACE. Consequently, (R,A∗) is a TE.

In terms of outcomes, TE and MACE are equivalent. This shows that it does not

make a difference whether constraints are required to be applied on both sides of the

contract or not at all, or whether constraints can also be only one-sided. In terms of the

equilibria themselves, a TE is an MACE, but the reverse may not be true. For instance,

consider the economy with strict preferences described in Example 3.4. Let (Q,B) be

such that Q1 = Q3 = ∅, Q2 = {{1, 2}}, and B = {{1, 3}, {2}}. Clearly (Q,B) is an

MACE. However, it is not a TE since only agent 2 is constrained to demand contract

{1, 2}.
Replacing MACE with TE in Theorem 4.8, the existence of TE and the relation

between MAPE and TE follow.

Corollary 5.4 Consider an economy E = (Y , u).

(i) The economy E has a TE.

(ii) There is an outcome that is both an MAPE outcome and a TE outcome of E.
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(iii) If agents have strict preferences, then an MAPE outcome of E is also a TE outcome

of E.

In terms of outcomes, the difference between MACE and MAPE carries over to the

difference between TE and MAPE.

Based on the definition, it is clear that an EE is an MAPE. However, the reverse may

not hold, since an EE may fail to exist, as illustrated below.4

Example 5.5 Take N = {1, 2, 3}, so Y = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Agents’

utility functions are given by:

u1({1, 2}) > u1({1, 3}) > u1({1}),
u2({2, 3}) > u2({1, 2}) > u2({2}),
u3({1, 3}) > u3({2, 3}) > u3({3}).

This economy is obtained by removing the fourth agent from Example 3 in Gale and

Shapley (1962). In this economy, there is no EE. 4

It may therefore be surprising that, when the primitives of the economy are such that

an EE does exist, there is a full coincidence between EE and MAPE.

Theorem 5.6 Consider an economy E = (Y , u).

(i) An EE of E is an MAPE of E.

(ii) Assume that an EE of E exists. Then an MAPE of E is an EE of E.

Proof. For Part (i), let (R∗, A∗) be an EE of E . Since constraints are one-sided, it holds

that ∪i∈N(Y i\R∗i) = Y . Clearly, (R∗, A∗) is an MAPE.

For Part (ii), let (R∗, A∗) be an MAPE of E . By contradiction, suppose that (R∗, A∗)

is not an EE. Then there is {i, j} ∈ D such that {i, j} ∈ R∗i and {i, j} ∈ R∗j, so

∪i∈N(Y i\R∗i) ( Y . By assumption, the economy E has an EE, say (Q,B). By Part (i),

(Q,B) is an MAPE with ∪i∈N(Y i\Qi) = Y , contradicting that (R∗, A∗) is an MAPE.

Given the existence of an EE, the relationship between EE and MACE is straightfor-

ward, as it simply involves replacing MAPE with EE in Theorem 4.8.

We would like to emphasize that, when requiring equilibrium existence and assuming

strict preferences, Theorem 4.8, Corollary 5.4, and Theorem 5.6 together suggest that

MAPE should be regarded as the strictest concept.

Below, we summarize the relation between TE and EE in a corollary, which follows

from Theorem 4.8, Theorem 5.3, and Theorem 5.6. This corollary clarifies the connection

between TE and EE as studied in Richter and Rubinstein (2024b) and Herings (2024).

4In the roommate problem, if the agents’ preferences satisfy the conditions proposed by Tan (1991)

or Chung (2000), an EE exists.
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Corollary 5.7 Let E = (Y , u) be an economy.

(i) Assume that an EE of E exists. Then there is an outcome that is both an EE and a

TE outcome of E.

(ii) If agents have strict preferences, then the set of EE outcomes of E is a subset of the

set of TE outcomes of E.

Finally, we note that the set of outcomes corresponding to any of the equilibrium

notions defined in Section 3 and Section 4 may not satisfy the standard “lattice property”

or the “rural hospital theorem.” For a detailed discussion, see Appendix A.

6 Efficiency and Stability

We now study the normative properties of efficiency and stability for MACE and MAPE.

We first give the definition of a Pareto-optimal outcome.

Definition 6.1 An outcome A ∈ A of the economy E = (Y , u) is Pareto optimal if there

does not exist an outcome B ∈ A such that

(i) for every i ∈ N , U i(Ai) ≥ U i(Bi),

(ii) for some j ∈ N , U j(Aj) > U j(Bj).

A stable outcome is defined as follows.

Definition 6.2 An outcome A ∈ A of the economy E = (Y , u) is stable if

(i) A is individually rational,

(ii) there does not exist {i, j} ∈ D such that ui({i, j}) > U i(Ai) and uj({i, j}) > U j(Aj).

Condition (ii) of Definition 6.2 says that no two agents can mutually benefit from

re-matching. It coincides with the standard “no blocking pair” condition when defining

a stable outcome (Gale and Shapley, 1962).

In our setting, there is a finite number of contracts, which implies a finite number of

outcomes. Therefore, there exists a Pareto-optimal outcome. However, there may be no

stable outcome, e.g., in the economy described in Example 5.5.

The following result shows the relation between MACE outcomes and MAPE out-

comes on the one hand and stable outcomes and Pareto-optimal outcomes on the other.

Theorem 6.3 Let E = (Y , u) be an economy.

(i) The set of MACE outcomes of E coincides with the set of individually rational Pareto-

optimal outcomes of E.

(ii) Assume that a stable outcome of E exists. Then the set of MAPE outcomes of E
coincides with the set of stable outcomes of E.
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Proof.

Part (i): We first show that an MACE outcome of E is individually rational and Pareto

optimal. Let (R∗, A∗) be an MACE of E . Condition (i) of Definition 4.2 and Proposi-

tion 5.2 imply that A∗ satisfies individual rationality.

Suppose that A∗ is not Pareto optimal. Let B ∈ A be such that, for every i ∈ N ,

U i(Bi) ≥ U i(A∗i) and, for some j ∈ N , U j(Bj) > U j(A∗j). For every i ∈ N , let Qi =

R∗i \Bi. Since U j(Bj) > U j(A∗j), it holds that ∪i∈NQi  ∪i∈NR∗i. It is easy to see that,

for every i ∈ N, Bi ⊆ δi(Qi) and (Q,B) is a para-equilibrium. Then ∪i∈NQi  ∪i∈NR∗i

implies that (R∗, A∗) violates condition (ii) of Definition 4.2, contradicting that (R∗, A∗)

is an MACE. Consequently, A∗ is Pareto optimal.

We show next that an individually rational Pareto-optimal outcome of E is an MACE

outcome of E . Let A∗ ∈ A be an individually rational Pareto-optimal outcome of E . For

every i ∈ N , let

R∗i = {{i, j} ∈ Di | ui({i, j}) > U i(A∗i) or uj({i, j}) > U j(A∗j)}.

Clearly, (R∗, A∗) is a para-equilibrium of E .

Suppose that (R∗, A∗) is not an MACE. Then there is a para-equilibrium (Q,B) such

that ∪i∈NQi  ∪i∈NR∗i. By the construction of R∗, for every {i, j} ∈ D, {i, j} ∈ R∗i

if and only if {i, j} ∈ R∗j. Thus, for every i ∈ N , Qi ⊆ R∗i and there is j ∈ N

such that Qj ( R∗j. Clearly, for every i ∈ N , it holds that U i(Bi) ≥ U i(A∗i). Let

k ∈ N be such that {j, k} ∈ R∗j \ Qj. By the construction of R∗j and R∗k it holds

that uj({j, k}) > U j(A∗j) or uk({j, k}) > Uk(A∗k). Moreover, we have that U j(Bj) ≥
uj({j, k}) and Uk(Bk) ≥ uk({j, k}), so U j(Bj) > U j(A∗j) or Uk(Bk) > Uk(A∗k). Recall

that, for every i ∈ N, U i(Bi) ≥ U i(A∗i). This contradicts that A∗ is a Pareto-optimal

outcome. Consequently, (R∗, A∗) is an MACE.

Part (ii): Assume that a stable outcome of E exists.

We show first that a stable outcome of E is an MAPE outcome of E . Let A∗ be a

stable outcome. For every i ∈ N , let

R∗i = {{i, j} ∈ Di | ui({i, j}) > U i(A∗i)}.

We show that (R∗, A∗) is an MAPE.

By the construction of R∗, it is easy to verify that condition (i) of Definition 4.7

holds. To show that condition (ii) of Definition 4.7 holds, we proceed by contradiction.

Suppose that (Q,B) is a para-equilibrium with ∪i∈N(Y i\Qi) ! ∪i∈N(Y i\R∗i). Then there

is {i, j} ∈ D such that {i, j} ∈ (∪i∈N(Y i\Qi)) \ (∪i∈N(Y i\R∗i). By the construction of

R∗i and R∗j, it follows that ui({i, j}) > U i(A∗i) and uj({i, j}) > U j(A∗j), contradicting

that A∗ is a stable outcome. Consequently, (R∗, A∗) is an MAPE.

By the construction of R∗ and the fact that A∗ is a stable outcome, it also follows that

{i, j} ∈ R∗i implies {i, j} /∈ R∗j. Thus (R∗, A∗) is an MAPE with ∪i∈N(Y i \R∗i) = Y .

We show next that an MAPE outcome of E is stable. Let (R∗, A∗) be an MAPE of E .
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Since a stable outcome of E exists, the above analysis implies that such a stable

outcome, paired with some aggregate set of permissible contracts equal to Y , becomes

an MAPE. Thus, by condition (ii) of Definition 4.7, it follows that ∪i∈N(Y i \R∗i) = Y .

Suppose that A∗ is not stable. By condition (i) of Definition 4.7 and Proposition 5.2,

for every i ∈ N , U i(Ai) ≥ ui({i}). Thus, there is {i, j} ∈ D such that ui({i, j}) >
U i(A∗i) and uj({i, j}) > U j(A∗j). It follows that {i, j} ∈ R∗i ∩ R∗j, which contradicts

∪i∈N(Y i \R∗i) = Y . Consequently, A∗ is stable.

Theorem 6.3 compares our equilibrium concepts in terms of efficiency and stability.

An MACE outcome is Pareto optimal but not always stable, while an MAPE outcome is

stable when a stable outcome exists, though not necessarily Pareto optimal.

By Theorems 4.8, 5.3, and 6.3, we have the following result.

Corollary 6.4 Let E = (Y , u) be an economy.

(i) The set of TE outcomes of E coincides with the set of individually rational Pareto-

optimal outcomes of E.

(ii) If agents have strict preferences, then the set of stable outcomes of E is a subset of the

set of individually rational Pareto-optimal outcomes of E.

Richter and Rubinstein (2024a; Chapter 5, 2024b) show the equivalence between TE

outcomes and Pareto-optimal outcomes. They assume that every agent strictly prefers to

match with someone else, rather than being self-matched. Under this assumption, every

Pareto-optimal outcome is individually rational. Without this assumption, a Pareto-

optimal outcome may not be individually rational. Thus, part (i) of Corollary 6.4 is a

natural generalization of earlier results in the current context, i.e., both Pareto optimality

and individual rationality are necessary to characterize the TE outcomes.5

As shown above, EE and stable outcomes may not exist. Theorems 5.6 and 6.3 imply

the equivalence between EE outcomes and stable outcomes, conditional on their existence.

However, this equivalence holds independently of the existence result.

Proposition 6.5 Let E be an economy. The set of EE outcomes of E coincides with the

set of stable outcomes of E.

Proof. We first show that an EE outcome of E is stable. Let (R∗, A∗) be an EE.

Clearly, condition (i) of Definition 3.5 and Proposition 5.2 imply that condition (i) of

Definition 6.2 holds at A∗. For every {i, j} ∈ D such that ui({i, j}) > U i(A∗), condition

(i) of Definition 3.5 implies {i, j} ∈ R∗i. By condition (ii) of Definition 3.5, it follows that

5If, as an alternative, we define para-TE and TE by taking R ∈
∏

i∈N 2Y
i

rather than R ∈
∏

i∈N 2D
i

,

then it is possible that some agents cannot choose self-matching contracts. Then a para-TE and a TE

may not be individually rational, but it is still possible to obtain an equivalence between TE outcomes

and Pareto-optimal outcomes.
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{i, j} /∈ R∗j, so by condition (i) of Definition 3.5, uj({i, j}) ≤ U j(A∗). Thus condition (ii)

of Definition 6.2 holds at A∗. Consequently, A∗ is stable.

We show next that a stable outcome of E is an EE outcome of E . Let A∗ be a stable

outcome. For every i ∈ N , let

R∗i = {{i, j} ∈ Di | ui({i, j}) > U i(A∗i)}.

We show that (R∗, A∗) is an EE. By the construction of R∗, condition (i) of Definition 3.5

clearly holds. If there is {i, j} ∈ D such that R∗i ∩R∗j 6= ∅, then {i, j} forms a blocking

pair, which would violate condition (ii) of Definition 6.2. Thus condition (ii) of Definition

3.5 holds. Consequently, (R∗, A∗) is an EE.

Herings (2024) shows the equivalence between EE outcomes and stable outcomes

in two-sided matching models with and without transfers. The current setting is not

subsumed by two-sided matching models, so Proposition 6.5 demonstrates that such an

equivalence relation extends to the roommate problem.

7 Stability in Roommate Problems

The roommate problem has been long studied in the literature. The central issue is

resolving the non-existence of stable outcomes. One approach is to impose restrictions

on agents preferences to ensure a stable outcome (Tan, 1991; Chung, 2000).

The other approach is to consider alternative solution concepts. The literature has

focused on proposing new solutions that weaken the notion of stability (see, e.g., Tan

(1990), Abraham et al. (2006), Inarra et al. (2008, 2013), Klaus et al. (2010), Biro et al.

(2016), Atay et al. (2021), and Hirata et al. (2021, 2023)). In the following, we study the

implications of MAPE as a new stability concept and compare MAPE with the solution

concepts proposed in the literature.

If the set of stable outcomes of an economy is non-empty, it coincides with the set of

MAPE outcomes. Even if the economy does not have a stable outcome, an MAPE still

exists.6 This suggests using MAPE outcomes as a solution for roommate problems.

In the following, we first propose a weaker notion of stability called semi-stability, and

show that semi-stable outcomes are equivalent to MAPE outcomes. Next, we argue that

the set of semi-stable outcomes refines the set of individually rational Pareto-optimal

outcomes. Finally, we compare semi-stable outcomes with existing solution concepts and

conclude that semi-stability is a novel concept distinct from all the others.

Let E = (Y , u) and C ⊆ D be given. We denote the economy EC = (Y \C, u′), where

Y \C is the set of all possible contracts, and u′ is the restriction of u to Y \C, i.e., for

every i ∈ N, for every y ∈ Y i\Ci, u′i(y) = ui(y). If C = ∅, then obviously E∅ = E .
6If an economy has a stable outcome, then every MAPE of such an economy shares the same aggre-

gate set of permissible contracts Y . Otherwise, different MAPEs may have different aggregate sets of

permissible contracts. Appendix B provides an illustrative example.
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Definition 7.1 An outcome A ∈ A of the economy E = (Y , u) is semi-stable if

(i) there is C ⊆ D such that A is a stable outcome of EC ,

(ii) there does not exist C ′ ⊆ D such that C ′  C and the economy EC′ has a stable

outcome.

The first condition indicates that semi-stability is weaker than stability, as removing

some contracts from the original economy results in fewer blocking pairs. Clearly, if A

is a stable outcome of E , then C = ∅. The second condition requires the set of removed

contracts to be minimal. Notably, if the original economy has a stable outcome, then an

outcome is semi-stable if and only if it is stable.

Now we are ready to present the following equivalence result.

Theorem 7.2 Let E = (Y , u) be an economy. The set of MAPE outcomes of E coincides

with the set of semi-stable outcomes of E.

Proof.

Step 1: An MAPE outcome of E is a semi-stable outcome of E .

Let (R∗, A∗) be an MAPE of E . Let C = D\ ∪i∈N (Di\R∗i). It is easy to verify that

A∗ is an EE outcome of EC . By Proposition 6.5, A∗ is a stable outcome of EC .
Suppose that A∗ is not semi-stable of E . Then there is C ′ ⊆ D such that C ′  C and

EC′ has a stable outcome. Let B be a stable outcome of EC′ . By Proposition 6.5, B is an

EE outcome of EC′ . Thus, there is R ∈
∏

i∈N 2D
i

such that, for every i ∈ N, Ri ⊆ Di\C ′i

and (R,B) is an EE of EC′ .

For every i ∈ N , let R′i = Ri ∪ C ′i. Clearly, (R′, B) is a para-equilibrium of E . It

also holds that, for every i ∈ N, Y i\R′i = (Y i\C ′i)\Ri. Since (R,B) is an EE of EC′ ,

it holds that ∪i∈N((Y i\C ′i)\Ri) = Y \C ′. Together with C = Y \ ∪i∈N (Y i\R∗i) and

C ! C ′, we have that ∪i∈N(Y i\R′i) = Y \C ′ ! Y \C = ∪i∈N(Y i\R∗i). Thus condition (ii)

of Definition 4.7 is violated at (R∗, A∗), contradicting that (R∗, A∗) is an MAPE of E .

Consequently, A∗ is semi-stable.

Step 2: A semi-stable outcome of E is an MAPE outcome of E .

Let A∗ be a semi-stable outcome of E . Thus, there is C ⊆ D such that A∗ is a stable

outcome of EC and there does not exist C ′ ⊆ D such that C ′  C and EC′ has a stable

outcome. By part (ii) of Theorem 6.3, there is R ∈
∏

i∈N 2D
i

such that, for every i ∈ N,
Ri ⊆ Di\Ci and (R,A∗) is an MAPE of EC .

For every i ∈ N, let R′i = Ri ∪ Ci. Clearly, (R′, A∗) is a para-equilibrium of E .

Suppose that (R′, A∗) is not an MAPE of E . Then there is a para-equilibrium

(Q,B) of E such that ∪i∈N(Y i\Qi) ! ∪i∈N(Y i\R′i). For every i ∈ N, it holds that

Y i\R′i = Y i\(Ri ∪ Ci) = (Y i\Ci)\Ri. Since (R,A∗) is an MAPE of EC , it holds that

∪i∈N((Y i\Ci)\Ri) = Y \C, so ∪i∈N(Y i\R′i) = Y \C. Now let C ′′ ⊆ D be such that

Y \C ′′ = ∪i∈N(Y i\Qi). By ∪i∈N(Y i\Qi) ! ∪i∈N(Y i\R′i), we have that C ′′ ( C. It is easy

to verify that (Q,B) is an EE of EC′′ . By Proposition 6.5, B is a stable outcome of EC′′
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with C ′′ ( C. Thus condition (ii) of Defintion 7.1 is violated at A∗, contradicting that

A∗ is semi-stable. Consequently, (R′, A∗) is an MAPE of E .

By parts (i) and (iii) of Theorem 4.8, part (i) of Theorem 6.3, and Thereom 7.2, we

obtain the following result.

Corollary 7.3 Let E = (Y , u) be an economy. If all agents have strict preferences, the

set of semi-stable outcomes of E is non-empty and, moreover, it is a subset of the set of

individually rational Pareto-optimal outcomes of E.

In the canonical roommate problem where all agents have strict preferences, Corol-

lary 7.3 shows that semi-stable outcomes resolve the issue regarding the existence of stable

outcomes. In particular, the set of semi-stable outcomes refines the set of Pareto-optimal

outcomes. In some economies, both with and without stable outcomes, this refinement

is proper as illustrated by the following two examples.

First, consider the economy described in Example 3.4. This economy has a stable

outcome, {{1, 3}, {2}}, which is both Pareto optimal and semi-stable. In contrast, the

outcome {{1, 2}, {3}} is Pareto optimal, but it is not a semi-stable outcome. Second,

consider an economy that merges the one of Example 3.4 with the one in Example 5.5,

where the agents in the latter economy are relabeled as 4, 5, and 6. Agents retain the same

preferences over contracts with agents from their own economy, but regard contracts with

agents from the other economy as strictly inferior to self-matching contracts. It is easy

to verify that, in the combined economy, there is no stable outcome, and an individually

rational Pareto-optimal outcome may not be semi-stable.

We end this section by providing a thorough comparison which shows that semi-stable

outcomes are distinct from all existing concepts addressing the non-existence of stable

outcomes in the roommate problem where agents have strict preferences.

Abraham et al. (2006) propose a notion of stability called “almost stability.” The key

idea is to remove the minimum number of contracts, each representing a blocking pair, so

that there is a stable outcome in the reduced economy. Almost stability is stronger than

semi-stability and the set of almost stable outcomes is a subset of the set of semi-stable

outcomes. In Appendix B, we give an example of an economy with two different semi-

stable outcomes. Only the one where a smaller number of contracts is removed from the

economy is almost stable.

Tan (1990) proposes a notion of stability called “maximum stability,” which is also

known as maximum internal stability when agents are allowed to remain unmatched

(Biro et al., 2016). Inarra et al. (2008) propose a notion of stability called “P−stability.”

Biro et al. (2016) propose “maximum irreversibility” and “Q−stability.” Biro et al.

(2016) provide an example (Example 3, Page 78) to show that the intersection of the

set of individually rational Pareto-optimal outcomes and the set of “maximum internally

stable” outcomes can be empty. When agents have strict preferences, by Corollary 7.3,
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the set of semi-stable outcomes is a subset of the set of individually rational Pareto-

optimal outcomes. Moreover, Biro et al. (2016) show that the sets of Q−stable outcomes

and P−stable outcomes are subsets of the set of maximum internally stable outcomes.

Thus semi-stability is independent of Q−stability, P−stability, and maximum internally

stability. Notice that a Q−stable outcome is also a maximum irreversible outcome and

the matching µ mentioned in Example 4 of Biro et al. (Page 78, 2016) yields a semi-

stable outcome which is not a maximum irreversible outcome. Thus, semi-stability is

independent of “maximum irreversibility.”

Inarra et al. (2013) propose the “absorbing set” as the solution concept. An outcome

in the absorbing set may not be semi-stable while a semi-stable outcome may not be in the

absorbing set.7 Thus the absorbing set and our solution concept are logically independent.

Klaus et al. (2010) propose a notion of stability, called “stochastic stability.” They show

that the set of stochastically stable outcomes coincide with the set of outcomes in the

absorbing sets, so stochastic stability is distinct from semi-stability.

Hirata et al. (2021) propose a notion of stability against robust deviations up to

depth k. A deviation is robust up to depth k if no deviators are worse-off after at most k

subsequent deviations compared to the status quo. An outcome is stable against robust

deviations up to depth k if there is no deviation that is robust up to depth k. They

show that there is a stable outcome against robust deviations up to depth 3. However,

we use an example from their introduction (replicated in Appendix C) to show that a

stable outcome against robust deviations up to depth 3 may not be semi-stable while a

semi-stable outcome may not be stable against robust deviations up to depth 3.

Atay et al. (2021) show the non-emptiness and coincidence of the “bargaining set”

and the set of “weakly stable” and “weakly efficient” outcomes. Taking Example 3 in

their paper for instance, there is a unique weakly stable and weakly efficient outcome, i.e.,

the bargaining set is a singleton. This outcome is not semi-stable. Nevertheless, there is

a semi-stable outcome in the same example, which does not belong to the bargaining set.

Hirata et al. (2023) propose a notion called “weak stability against robust deviations,”

which has a non-empty intersection with the bargaining set. Thus, using Example 3 in

Atay et al. (2021), the fact that the bargaining set is a singleton implies that a weakly

stable outcome against robust deviations may not be semi-stable. One may verify that

the semi-stable outcome A in Appendix B is not weakly stable against robust deviations.8

7In Example 3 given by Inarra et al. (2013), they show that the almost stable outcome µ8, which is

also a semi-stable outcome, is not in the absorbing set. In the same example, one can easily verify that

the outcome µ5 in the absorbing set is not a semi-stable outcome.
8Consider the MAPE (R,A) as derived in Appendix B. The deviation formed by agents 1 and 3

is strongly robust because agents 1 and 3 are each other’s top choice, and once these two agents are

matched, no beneficial rematching with other agents occurs. Note that a weakly stable outcome should

not permit any strongly robust deviations.
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8 Conclusion

This paper studies the classical roommate problem while allowing for self-matching agents

and preferences with indifferences. Building on the equilibrium approach of Richter and

Rubinstein (2024a; 2024b) and Herings (2024), we propose four new equilibrium concepts.

One of these concepts, MAPE, is used to address the non-existence of stable outcomes in

roommate problems.

In the current context, agents can freely sign contracts with one another. Our results

naturally extend to scenarios where agents are limited in their contracting options or

where contracts take more abstract forms - such as involving the same pair of agents but

differing in terms. Although existence of an equilibrium is ensured, an issue for further

research is the study of adjustment processes that end up in an equilibrium.

Standard competitive equilibrium concepts, where prices coordinate agent choices,

and game-theoretic solutions, such as Nash equilibrium, are well-studied in the matching

literature. However, little is known about equilibria based on social norms or expecta-

tions, which differ methodologically and conceptually from the standard concepts. This

paper, along with Richter and Rubinstein (2024a; 2024b) and Herings (2024), highlights

the potential of these equilibrium concepts to provide new insights into existing frame-

works.

Appendix

A The Lattice Property and the Rural Hospital Theorem

Take N = {1, 2, 3}, so Y = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Agents’ utility functions

are given by:

u1({1, 3}) > u1({1}) > u1({1, 2}),
u2({2, 3}) > u2({2}) > u2({1, 2}),
u3({1, 3}) = u3({2, 3}) > u3({3}).

In such an economy, there are only two stable outcomes: A = {{1, 3}, {2}} and

B = {{2, 3}, {1}}. Agent 1 prefers A to B, while agent 2 prefers B to A. Consequently,

there is no stable outcome that is unanimously preferred by all agents over the other stable

outcome. Furthermore, agent 1 is assigned a self-matching contract in B, while agent

2 is assigned a self-matching contract in A. This implies that different stable outcomes

assign self-matching contracts to different agents. As a result, the lattice property and

the rural hospital theorem, as defined in the standard sense (Roth and Sotomayor, 1990),

fail to hold for stable outcomes.

In the above economy, the sets of MACE outcomes, MAPE outcomes, stable out-

comes, and individually rational Pareto-optimal outcomes all coincide. Therefore, the

observations made above apply to other equilibrium outcomes as well.
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B Multiplicity of the Aggregate Set of Permissible Contracts

Take N = {1, 2, 3, 4, 5, 6}, so Y = {{1}, {2}, {3}, {4}, {5}, {6}} ∪ {{i, j} | i, j ∈ N with

i 6= j}. Agents have strict preferences over contracts. For simplicity, we omit contracts

strictly less preferred than self-matching ones. Agents’ utility functions are given by:

u1({1, 3}) > u1({1}),
u2({2, 3}) > u2({2}),
u3({1, 3}) > u3({2, 3}) > u3({3, 4}) > u3({3}),
u4({3, 4}) > u4({4, 5}) > u4({4, 6}) > u4({4}),
u5({5, 6}) > u5({4, 5}) > u5({5}),
u6({4, 6}) > u6({5, 6}) > u6({6}).

Let A = {{1}, {2}, {3, 4}, {5, 6}}, R1 = {{1, 3}}, R2 = {{2, 3}}, R3 = {{1, 3}, {2, 3}},
R4 = R5 = ∅, and R6 = {{4, 6}}. Then (R,A) is an MAPE with ∪i∈N(Y i\Ri) =

Y \{{1, 3}, {2, 3}}. Let B = {{1, 3}, {2}, {4, 5}, {6}}, Q1 = ∅, Q2 = {{2, 3}}, Q3 = ∅,
Q4 = {{3, 4}}, Q5 = {{5, 6}}, and Q6 = {{4, 6}, {5, 6}}. Then (Q,B) is an MAPE with

∪i∈N(Y i\Qi) = Y \{{5, 6}}. Both (R,A) and (Q,B) are MAPEs, but ∪i∈N(Y i\Qi) and

∪i∈N(Y i\Ri) are different, even in terms of cardinality.

C Stability against Robust Deviations and MAPE

Take N = {1, 2, 3, 4, 5, 6, 7, 8, 9}, so Y = {{i} | i ∈ N} ∪ {{i, j} | i, j ∈ N with i 6= j}.
Agents have strict preferences over contracts. For simplicity, we omit contracts strictly

less preferred than self-matching ones. Agents’ utility functions are given by:

u1({1, 2}) > u1({1, 9}) > u1({1}),
u2({2, 3}) > u2({1, 2}) > u2({2}),
u3({3, 4}) > u3({2, 3}) > u3({3}),
u4({4, 5}) > u4({3, 4}) > u4({4}),
u5({5, 6}) > u5({4, 5}) > u5({5}),
u6({6, 7}) > u6({5, 6}) > u6({6}),
u7({7, 8}) > u7({6, 7}) > u7({7}),
u8({8, 9}) > u8({7, 8}) > u8({8}),
u9({1, 9}) > u9({8, 9}) > u9({9}).

This economy corresponds to the one described in the introduction of Hirata et al. (2021)

for the case with nine agents.

Let A = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9}}, which corresponds to µ(9) in Hirata et al.

(2021). Let R1 = R3 = R5 = R7 = ∅, R2 = {{2, 3}}, R4 = {{4, 5}}, R6 = {{6, 7}},
R8 = {{8, 9}}, and R9 = {{1, 9}, {8, 9}}. One can verify that (R,A) is an MAPE with

∪i∈N(Y i\Ri) = Y \{{8, 9}}. However, Hirata et al. (2021) argue that µ(9) is not stable
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against robust deviations up to depth 3. Let B = {{1, 2}, {3}, {4, 5}, {6}, {7, 8}, {9}},
which corresponds to µ′(9) in Hirata et al. (2021). They argue that µ′(9) is stable against

robust deviations up to depth 2, which implies that µ′(9) is stable against robust deviations

up to depth 3. Nevertheless, B is not an MAPE outcome. To see this, for any Q such

that (Q,B) is a para-equilibrium, it holds that ∪i∈N(Y i\Qi) ⊆ Y \{{2, 3}, {5, 6}, {8, 9}}.
Since (R,A) is a para-equilibrium with ∪i∈N(Y i\Ri) = Y \{{8, 9}}, we conclude that B

is not an MAPE outcome.

References

[1] Abraham, D. J., Biro P., Manlove, D.F., 2006. “Almost stable” matchings in the

roommates problem. In R. Fleischer and G. Trippen (Eds.), Proceedings of WAOA

2005: the 3rd International Workshop on Approximation and Online Algorithms,

6-7 October, 2005, Lecture Notes in Computer Science Vol. 3879, (pp. 1-14). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[2] Atay, A., Mauleon, A., Vannetelbosch, V., 2021. A bargaining set for roommate

problems. Journal of Mathematical Economics 94, 102465.

[3] Biro, P., Inarra, E., Molis, E., 2016. A new solution concept for the roommate

problem: Q-stable matchings. Mathematical Social Sciences, 79, 74-82.

[4] Chung, K.S., 2000. On the existence of stable roommate matchings. Games and

Economic Behavior 33(2), 206-230.
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