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Abstract

In two-sided matching problems, there can be ambiguity regarding whether institutions

such as schools and daycares should be treated as agents who can make decisions, objects

to be assigned, or both. To address this, we consider an extended college admissions model

that incorporates a common priority order, often determined by external criteria such as

exam scores or institutional rules, alongside the preferences of students and colleges. We

define a matching as double stable if it satisfies priority stability and preference stability

simultaneously. Our main finding establishes that a double stable matching exists if and

only if the resulting outcome of the serial dictatorship mechanism coincides with that of the

student-proposing deferred acceptance mechanism.

JEL classification: C78, D47.
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1 Introduction

Matching markets have been extensively studied in the literature for decades. Since the seminal

contribution by Gale and Shapley [5], the college admissions model has been used to analyze
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two-sided matching markets, such as assigning students to colleges and residents to hospitals.

Besides this model, another well-known model is the school choice model (Abdulkadiroğlu

and Sönmez [1]), which is adopted to analyze one-sided matching markets, including assigning

students to schools and tenants to houses. The key difference between these two models is “the

role of participants.” In the college admissions model, participants on each side are agents who

can make decisions, whereas in the school choice model, participants on one side do not reflect

preferences and they are objects to be assigned.

In many real-life matching markets, identifying the role of participants is straightforward.

For example, in the American medical labor market (Roth [7]), hospitals act as agents because

they have preferences over residents. Conversely, in Boston’s school choice market (Abdulka-

diroğlu and Sönmez [1]), schools function as objects, and external criteria, like siblings and

walk zones, determine schools’ priority orders for students. However, in other markets, it can

be challenging to identify participants as either agents or objects. This ambiguity gives rise to

the presence of common priority orders, often determined by exam scores or institutional rules.

These priority orders coexist with the preferences of colleges/schools, influencing the admission

process in some student assignment markets.

An example is the college admissions in China.1 Each student is required to take an exam

and submit a preference list containing at most thirty universities. The government then uses

these preferences to send student applications to universities, employing a method called the

serial dictatorship (SD) mechanism with respect to 105% of university seats.2 After receiving

these applications, universities are responsible for placing students into specific departments.

This task is crucial because different students contribute in different ways to the university’s

growth and development. Therefore, each university has its preferences for selecting students.

Since the number of students admitted cannot exceed the actual quota, some students will

not be accepted. Once the admission decisions are made, the main process concludes, and a

supplementary process begins for those students who were not accepted.

Another example is the public high school choice in Osaka, Japan. Each student takes

an exam and submits a preference list containing only one school. The government then sends

1The descriptions of the following two examples are based on Articles 6 and 7 of Beijing’s University Recruit-
ment Regulation and Article I.3 of Osaka’s Public High School Recruitment in 2023, respectively.

2The original version of the SD mechanism applies to 100% of university seats. The version implemented in
China allows universities to receive more student applications than their actual quotas. A formal description of
the SD mechanism and its two variants is provided in Section 2.
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student applications to schools by using the SD mechanism with respect to 110% of school seats.

After receiving these applications, schools first allocate 90% of their seats to the high-scoring

students. Those who do not secure a seat enter a so-called “border zone”. In this zone, since

test scores may not fully reflect a student’s abilities, schools have the flexibility to use their

preferences, based on personal statements or extracurricular activities, to fill the last 10% of

seats. Once the admission decisions are made, the process concludes, and those students who

were not accepted need to explore the option of attending a private school.

Note that in the above examples, the assignment is determined not only by exam scores but

also significantly by colleges’/schools’ preferences. Historically, these markets were structured

as a school choice model, where colleges/schools lacked the authority to select students. In

1984, the Chinese government changed this by allowing colleges to express their preferences.3

Similarly, Japan has implemented a reform for school choice in 2016, where the local government

in Osaka redesigned its admission system to incorporate schools’ preferences.4 These reforms

have effectively changed the market structure. As a result, colleges/schools play a dual role as

both agents and objects in these markets.

Following the original concept of stability, we can evaluate an assignment in two ways: either

based on exam scores or on colleges’ preferences. In the former, a matching is fair or priority

stable if students with higher priority are matched with their more preferred colleges.5 In the

latter, a matching is stable or preference stable if any pair who prefer each other are matched

together. Ideally, the government aims to design a mechanism that meets both stability criteria.

However, as the following example shows, a double stable matching does not always exist.

Example 1 There are three students s1, s2, s3, and three colleges c1, c2, c3. Each college is

assumed to have only one seat. Students’ preferences, colleges’ preferences, and a common

priority order are given as follows.

3In 1979, four university presidents in Shanghai petitioned the government for the autonomy to select their
students (Xiao [11]). In response to this appeal, the government introduced a so-called “dummy quota policy”,
under which colleges could freely choose students from the applicants they received. See Articles 6 and 7 of
National University Recruitment Regulation in 1984.

4In 2014, Osaka released its Public High School Recruitment Reform Guideline, which emphasizes the impor-
tance of respecting schools’ preferences as a primary policy goal in the first section.

5The formal definitions of these concepts are provided in Section 2.
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Ps1: c1, c3, c2, Pc1: s3, s2, s1, �: s1, s2, s3,

Ps2: c1, c2, c3, Pc2: s3, s2, s1,

Ps3: c2, c1, c3 Pc3: s3, s2, s1.

The unique priority stable matching is µ =
(
s1 s2 s3
c1 c2 c3

)
. Since s2 prefers c1 to c2 = µ(s2) and c1

prefers s2 to s1 = µ(c1), this matching is not preference stable. Therefore, there is no double

stable matching in this problem.

The above example shows that priority stability and preference stability are incompatible.

To achieve priority stability, colleges’ preferences must be ignored, while ensuring preference

stability requires compromising the importance of exam scores. Faced with this dilemma, the

governments of China and Japan have attempted to balance both types of rankings in their

admission processes. Therefore, double stability is only partially achieved in these markets.

In this paper, we explore the challenges of fully achieving double stability. Specifically, we

aim to identify the conditions under which priority stability and preference stability can coexist.

To address this, we introduce a common priority order into the college admissions model. We

show that (i) both the SD mechanism and the student-proposing DA mechanism6 produce a

double stable matching whenever possible (Propositions 2 and 3), and surprisingly, (ii) the

college-proposing DA mechanism may fail to produce a double stable matching even if it exists

(Example 2). Based on these findings, we conclude that a double stable matching exists if, and

only if, the outcome of the SD mechanism coincides with that of the student-proposing DA

mechanism (Theorem 1). This is our main result, reflecting the difficulties of satisfying both

stability criteria. Given that double stability is characterized by two well-known mechanisms,

our result offers a straightforward method to determine if a dilemma may arise in a particular

matching problem.

Beyond our analysis of double stability, we also consider an alternative notion of stability. A

matching is minimally stable if it is not priority blocked and preference blocked by the same

pair. Since this notion only requires the elimination of a double-blocking pair, the existence of

a minimally stable matching is always guaranteed (Remark 4). Moreover, the set of minimally

stable matchings is larger than the union of the priority stable matching and the preference

6In this paper, we extensively mention and use both the serial dictatorship (SD) mechanism and the deferred
acceptance (DA) mechanism. The formal descriptions of these mechanisms are provided in Section 2.
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stable matchings (Example 17). Based on these observations, we might regard minimal stability

as the weakest notion and suggest that any other stability notion should be laid on between

minimal stability and double stability.

Recently, Chen et al. [3] and Miyazaki and Okamoto [6] studied an extended matching

model where participants on each side have multiple preference rankings. They analyzed the

difficulties of finding stable matchings by discussing a wide range of ranking structures, such as

how many choices can be listed in each ranking or how many rankings participants can have. In

contrast, our paper focuses on a specific ranking structure that reflects many real-life scenarios,

incorporating both a common priority order and colleges’ preferences over students. In Fang

and Yasuda [4], we use a similar framework to examine the performance of different mechanisms,

including the mechanism currently practiced in China and its improved alternatives.8

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3

provides the main result and several associated results. In Section 4, we consider two possible

extensions: minimal stability and college-specific priority orders. Section 5 concludes.

2 College Admissions Problem with Common Priority

In this paper, we examine an extended college admissions model in which students are ranked

by two distinct types of rankings. We call this model a college admissions problem with common

priority, or simply a problem, which is denoted by G and consists of the following elements.

1. a set of students, S = {s1, · · · , sn},

2. a set of colleges, C = {c1, · · · , cm},

3. a capacity vector, q = (qc1 , · · · , qcm),

4. a list of strict student preferences, PS = (Ps1 , · · · , Psn),

5. a list of strict college preferences, PC = (Pc1 , · · · , Pcm),

6. a strict priority order over students, �.

Each student s ∈ S has a strict preference relation Ps over colleges and her outside option

∅. The notation cPsc
′ means that s prefers c to c′. Let Rs denote the weak preference relation

7We will revisit this example in Section 4.
8In Fang and Yasuda [4], motivated by the college admissions in China, we examine the dummy quota policy,

which sets an upper bound on the number of applications each college can receive. This key exogenous constraint
cannot be ignored, as it significantly complicates the mechanism design issues.
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induced by Ps, i.e., cRsc
′ if and only if cPsc

′ or c = c′. The common priority order � is

also assumed to be strict, which can be based on some exogenous factors such as exam scores

or institutional rules. We use the notation s � s′ to denote that s has a higher priority than s′.

Each college c ∈ C has a strict preference relation Pc over the set of subsets of students.

The notation S′PcS
′′ means that c would like to admit a group of students S′ than another group

S′′. Let Rc denote the weak preference relation induced by Pc. We say that Pc is responsive

(Roth [8]) if for any S′ ⊂ S with |S′| < qc, and s, s′ ∈ S \ S′, (i) S′ ∪ sPcS
′ ∪ s′ if and only if

sPcs
′, and (ii) S′ ∪ sPcS

′ if and only if sPc∅. Throughout the paper, we assume that colleges’

preferences are responsive.

Now, we introduce several definitions that are needed for our analysis. A matching is a

set valued function µ : S ∪ C ⇒ 2S∪C such that (i) µ(s) ⊂ C ∪ ∅, |µ(s)| = 1 for any s ∈ S, (ii)

µ(c) ⊂ S, |µ(c)| ≤ qc for any c ∈ C, and (iii) c ∈ µ(s) if and only if s ∈ µ(c) for any s ∈ S

and c ∈ C. A matching µ is individually rational for students if for any s ∈ S, µ(s)Rs∅,

and for colleges if for any c ∈ C, (i) |µ(c)| ≤ qc and (ii) for any s ∈ µ(c), sRc∅. A matching

µ is priority blocked by a pair (s, c) if (i) cPsµ(s) and (ii) either (a) |µ(c)| < qc and s � ∅,

or (b) for some s′ ∈ µ(c), s � s′; such a pair is called a priority blocking pair. The concept of

“preference blocked” is defined analogously; A matching µ is preference blocked by a pair

(s, c) if (i) cPsµ(s) and (ii) either (a) |µ(c)| < qc and sPc∅, or (b) for some s′ ∈ µ(c), sPcs
′; such

a pair is called a preference blocking pair.

Using these blocking conditions, we define three essential stability notions.

Definition 1 A matching µ is fair or priority stable if it is individually rational for students,

and there is no priority blocking pair. A matching µ is stable or preference stable if it is

individually rational for both students and colleges, and there is no preference blocking pair. A

matching µ is said to be double stable if it is priority stable and preference stable.

In other words, a matching µ is double stable if it satisfies the following three properties: (i)

individually rational for both students and colleges, (ii) not priority blocked by any pair, and

(iii) not preference blocked by any pair. Additionally, for a given matching µ′, a pair (s, c) is

defined as a double-blocking pair if µ′ is both priority blocked and preference blocked by the

pair (s, c). Apparently, there exists no double-blocking pair for a double stable matching.

A mechanism φ is a procedure that selects a matching for each problem. Let φ(G) denote
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the matching selected by mechanism φ. In this paper, we focus on two specific mechanisms: the

serial dictatorship (SD) mechanism and the deferred acceptance (DA) mechanism. Below we

describe each mechanism in detail. The first one is the SD mechanism, in which the assignment

is based on a common priority order and students’ preferences.9

The SD mechanism

Step 1: The student with the highest priority is assigned to her top choice.

Step t ≥ 2: The student with the t-th highest priority is assigned to her top choice among

all colleges except the ones whose quotas have been filled. Note that the mechanism is

terminated when all students have chosen a college or all colleges have filled their quotas.

The second one is the (student-proposing) DA mechanism, in which the assignment is based

on colleges’ preferences and students’ preferences.10

The student-proposing DA mechanism

Step 1: Each student proposes to her top choice. Each college (i) considers its applicants in

this step; (ii) tentatively accepts those applicants up to its quota, one at a time, following

its preferences; and (iii) rejects the remaining applicants.

Step t ≥ 2: Each student that has been rejected in the previous step proposes to her next

choice. Each college (i) considers its applicants in this step and all tentatively matched

applicants in the previous step; (ii) tentatively accepts those applicants up to its quota,

one at a time, following its preferences; and (iii) rejects the remaining applicants. Note

that the mechanism is terminated when no student’s proposal is rejected.

Recall that, in our model, students are ranked by two distinct types of rankings. If only one

type of rankings affects assignments, i.e., either common priority or colleges’ preferences are

completely irrelevant, then such a mechanism could be considered extreme. Conversely, if both

types of rankings are utilized to determine assignments, the mechanism would be moderate. We

formally define these two concepts as follows.

9The SD mechanism described here is the one with respect to 100% of colleges’ quotas. The SD mechanism
with respect to 105% or 110% of colleges’ quotas is defined in the same way by slightly increasing colleges’ quotas.

10The college-proposing DA mechanism can be defined in almost the same way by swapping the roles of colleges
and students, hence we do not describe it here.
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Definition 2 A mechanism φ is called extreme if for any problem G = (PS , PC ,�), either (i)

φ(PS , P
′
C ,�) = φ(PS , PC ,�) for any P ′C or (ii) φ(PS , PC ,�′) = φ(PS , PC ,�) for any �′, where

P ′C is an arbitrary list of colleges’ preferences and �′ is an arbitrary common priority order. A

mechanism φ is moderate if it is not extreme.

Most related papers in the matching literature assume that participants on each side have

only one type of ranking over those on the other side. Consequently, nearly all known mech-

anisms are extreme by their definitions. For example, the SD mechanism is extreme because

it disregards colleges’ preferences. Similarly, both the student-proposing and college-proposing

DA mechanisms are extreme because common priority plays no role in the admission process.11

3 Characterizations of Double Stable Matching

In this section, we investigate the conditions that allow for the coexistence of priority stability

and preference stability. As discussed in Section 1, double stability is an attractive and natural

stability notion. However, its existence is not always guaranteed.

Proposition 1 There may exist no double stable matching.

Given this non-existence result, a natural next question is whether there exists a mechanism

that satisfies double stability whenever possible. The answer is affirmative, and there are at

least two mechanisms that fulfill this purpose. The first one is the SD mechanism.

Proposition 2 The SD mechanism produces a unique priority stable matching, hence it always

eliminates a double-blocking pair.12 Moreover, the SD mechanism produces a double stable

matching whenever it exists.

Proof. Under the SD mechanism, a student with a higher priority always faces a (weakly) larger

set of available colleges than a student with lower priority does, hence no student constitutes a

priority blocking pair. To establish the uniqueness, suppose on the contrary that there are two

distinct priority stable matchings, say µ and µ′. Let s be a student with the highest priority

11In Fang and Yasuda [4], motivated by the fact that the government in China has abandoned the use of extreme
mechanisms, we analyze moderate mechanisms, including the current mechanism and its improved alternatives.

12Note that a unique priority stable matching can also be derived by the student proposing DA mechanism
under which each college’s preferences are replaced by the common priority order. See Balinski and Sönmez [2].
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who is assigned to different colleges between µ and µ′. Assume, without loss of generality,

µ(s)Psµ
′(s). Since each priority stable matching is individually rational for students, µ(s) 6= ∅

must hold, i.e., µ(s) must be a college. By our presumption, under the matching µ′, college

µ(s) either (i) has an empty seat or (ii) is assigned to some student who has a lower priority

than s. In either case, µ′ is priority blocked by a pair of s and µ(s). A contradiction.

The last part is immediate from the definition of double stability and the uniqueness of the

priority stable matching.

Since every double stable matching must be priority stable and the priority stable matching

is always unique in our model, there cannot exist more than one double stable matchings. Thus,

Proposition 2 implies the following.

Remark 1 There exists at most one double stable matching.

While the SD mechanism may look attractive, it is extreme and cannot take any college’s

preferences into account. Therefore, the uniqueness of the priority stable matching (Proposition

2) implies that, if a mechanism respects colleges’ preferences even a little, it has to give up

priority stability. That is, incorporating colleges’ preferences is never compatible with priority

stability, which is formally expressed as follows.

Remark 2 The SD mechanism is a unique priority stable mechanism. Thus, there exists no

mechanism which is both moderate and priority stable.

The second mechanism that fulfills our purpose, i.e., achieving double stability whenever it

is possible, is the student-proposing DA mechanism. This mechanism ignores priority stability

but always achieves preference stability.

Proposition 3 The DA mechanisms, both student-proposing and college-proposing, produce a

preference stable matching, hence they always eliminate a double-blocking pair. Moreover, the

student-proposing DA mechanism produces a double stable matching whenever it exists.

For the proof of Proposition 3, we use the following well-known properties of the priority

stable matching and the preference stable matching. Lemma 1 is derived by Balinski and

Sönmez [2] and Lemma 2 is established by Gale and Shapley [5], hence we omit the proofs.
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Lemma 1 Every priority stable matching is Pareto efficient for students.13

Lemma 2 There always exist (possibly multiple) preference stable matchings. Among them,

one outcome, called the student optimal stable matching (SOSM), Pareto dominates (based on

students’ preferences) all other stable outcomes. The SOSM is derived by the student-proposing

DA mechanism.

Proof of Proposition 3. For any college admissions problem (with responsive preferences),

it is widely known that the DA mechanism always produces a preference stable matching (See

Gale and Shapley [5] or Roth and Sotomayor [9]).

To prove the second part, suppose that the student-proposing DA mechanism produces a

matching µ̂, which is different from the double stable matching µ∗. Note that µ∗ should satisfy

both priority stability and preference stability. Lemma 2 implies that µ∗ is Pareto dominated

by µ̂, hence µ∗ is not a Pareto efficient matching for students. This contradicts Lemma 1.

When there exists a double stable matching, the student-proposing DA mechanism can find

it by Proposition 3. One may wonder if the college-proposing DA mechanism also has the same

property. However, the following example shows that the answer is negative.

Example 2 Let S = {s1, s2, s3}, C = {c1, c2, c3}, and q = (1, 1, 1). Students’ preferences,

colleges’ preferences, and a common priority order are given as follows.

Ps1: c1, c2, c3, Pc1: s1, s2, s3, �: s1, s2, s3,

Ps2: c1, c2, c3, Pc2: s1, s3, s2,

Ps3: c1, c3, c2, Pc3: s1, s2, s3.

The unique double stable matching is µ∗ =
(
s1 s2 s3
c1 c2 c3

)
. We can calculate it by using either the

SD or the student-proposing DA mechanism. However, the college-proposing DA mechanism

produces a different matching µ̂ =
(
s1 s2 s3
c1 c3 c2

)
.

In the matching literature, the student-proposing DA mechanism is typically preferred to

the college-proposing DA mechanism because the former is superior to the latter in students’

13A matching µ is Pareto dominated for students by another matching µ′, if (i) for each s ∈ S, µ′(s)Rsµ(s) and
(ii) for some s′ ∈ S, µ′(s′)Psµ(s′). By using this notion, we say that a matching is Pareto efficient for students
if it is not Pareto dominated for students by any other matching.
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welfare (see Lemma 2) and incentives (see Roth [8]).14 We provide a different and additional

rationale for preferring the student-proposing DA mechanism; it always produces a double

stable matching when possible, whereas the college-proposing DA mechanism does not. Since

the outcomes of these two mechanisms coincide when the preference stable matching is unique,

we can also derive the following property.

Remark 3 If the college-proposing DA mechanism produces a double stable matching, the pref-

erence stable matching must be unique.

We are now ready to present the main result of the paper.

Theorem 1 A double stable matching exists if and only if a unique priority stable matching

coincides with a student optimal stable matching; that matching becomes a unique double stable

matching.

Proof. The “if” part is trivial by the definition of double stability. To prove the “only if” part,

suppose on the contrary that a double stable matching exists when a priority stable matching

and a student optimal stable matching are strictly distinct. Then, at least one of Propositions

2 and 3 must be violated. A contradiction.

Theorem 1 implies that a double stable matching exists if and only if the resulting outcome of

the SD mechanism using the common priority order coincides with that of the student-proposing

DA mechanism using the colleges’ preferences. Since these two mechanisms are computationally

simple, one can easily figure out if a double stable matching exists or not.15

Now, we consider a problem G = (PS , PC ,�) that has a known double stable matching µ∗.

To explore how stability is affected by changes, we modify this problem by replacing � with �′,

while keeping all other elements unchanged, resulting in a new problem, G = (PS , PC ,�′). Since

the only difference between G and G′ is the common priority, the student optimal matching for

G′ should still be µ∗. This leads us to the following corollary.

14The student-proposing DA mechanism is strategy-proof for students, i.e., for any problem G, truthful report-
ing is a dominant strategy for each student. By contrast, the college-proposing DA mechanism does not exhibit
this incentive property.

15Borrowing a concept from computer science, the time complexity of the SD mechanism is linear (O(n)) and
that of the DA mechanism is quadratic (O(n2)), where n is a number of inputs (i.e., students in our case).

11



Corollary 1 Suppose that G = (PS , PC ,�) has a double stable matching. Then, a modified

problem G′ = (PS , PC ,�′) also has a double stable matching if and only if the (unique) priority

stable matching of G′ is identical to that of G.

In light of Corollary 1, a common priority order that guarantees the existence of a double

stable matching is essentially pinned down as unique; any significant changes to this order would

eliminate the possibility of such existence. Similarly, changing colleges’ preferences, rather than

the priority order, yields almost the same result.

Corollary 2 Suppose that G = (PS , PC ,�) has a double stable matching. Then, a modified

problem G′′ = (P ′′S , P
′′
C ,�) also has a double stable matching if and only if the (unique) student

optimal stable matching of G′′ is identical to that of G.

4 Extensions

In this section, we consider two extensions of our model. First, we introduce a weaker version of

double stability. Then, we allow college-specific priority orders and examine whether the results

obtained in Section 3 still hold in this broader context.

4.1 Minimally Stable Matching

As discussed earlier, the notion of double stability is often too strong to guarantee its existence.

To address this issue, we explore a weaker version of double stability. There are various methods

to weaken this notion. For example, one could count the number of blocking pairs for each

stability criterion, then call the matching stable as long as this number does not exceed some

predetermined upper bound.16 In this paper, we focus on an extremely weak version of double

stability, called “minimal stability”. It requires only the elimination of a double-blocking pair;

any violation of a single stability criterion is allowed unlimited.

Definition 3 A matching µ is called minimally stable if there is no double-blocking pair

under µ, i.e., µ is not priority blocked and preference blocked by the same student-college pair.

16According to this definition, our original double stability coincides with its special case in which the upper
bound is set equal to 0. Clearly, choosing any positive upper bound weakens the notion of double stability.
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By Propositions 2 and 3, the SD and DA mechanisms both eliminate a double-blocking pair,

hence they are minimally stable mechanisms. This implies that, in contrast to double stability,

the existence of minimal stability is always guaranteed.

Remark 4 There always exist minimally stable matchings.

In what follows, we revisit Example 1 to illustrate that a matching, which is neither priority

stable nor preference stable, can still be minimally stable.

Example 3 Let S = {s1, s2, s3}, C = {c1, c2, c3}, and q = (1, 1, 1). Students’ preferences,

colleges’ preferences, and a common priority order are given as follows.

Ps1: c1, c3, c2, Pc1: s3, s2, s1, �: s1, s2, s3,

Ps2: c1, c2, c3, Pc2: s3, s2, s1,

Ps3: c2, c1, c3 Pc3: s3, s2, s1.

In this example, the unique priority stable matching is µ1 =
(
s1 s2 s3
c1 c2 c3

)
, and the unique preference

stable matching is µ2 =
(
s1 s2 s3
c3 c1 c2

)
. Now consider a different matching µ3 =

(
s1 s2 s3
c3 c2 c1

)
. Since µ3

is different from µ1 and µ2, it is neither priority stable nor preference stable. However, since

there is no double-blocking pair, µ3 is a minimally stable matching.

Example 3 shows that the condition for minimal stability is very weak; thus, the set of

minimally stable matchings is large. More precisely, this set is strictly larger than the union

of the (unique) priority stable matching and preference stable matchings. This finding may

broaden the scope of research in market design. For example, it would be interesting to explore

a moderate mechanism that achieves minimal stability while also satisfying some additional

desirable properties. We leave such investigation for future research.17

Additionally, one might be interested in a mathematical structure of the set of minimally

stable matchings.18 Unfortunately, this set does not form a lattice with respect to a partial order

of students’ preferences. To verify this property, let us first introduce the following mapping λ.

17In Fang and Yasuda [4], we analyze a few moderate mechanisms and show that, while our proposal satisfies
minimal stability, the assignment mechanism currently used in Chinese college admission does not.

18In a standard one-to-one or one-to-many matching problem, it is widely known that the set of stable matchings
has a lattice structure. For a detailed discussion of these lattice properties, see chapters 2 and 3 of [9].
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Given any pairs of matchings µ and µ′, λ is defined as

λ(s) = µ(s) if µ(s)Rsµ
′(s)

= µ′(s) otherwise,

for each student s ∈ S. In example 3, µ1 and µ2 are minimally stable matchings. By applying

λ, we have

λ(s1) = c1, λ(s2) = c1, λ(s3) = c2,

which is not even a matching, as both s1 and s2 are assigned to the same college c1 (Note that

c1 has a quota of 1). Thus, the following result holds.

Remark 5 The set of minimally stable matchings is not a lattice under students’ preferences.

4.2 College-specific Priority Orders

Until now, we have assumed that priority order is common across colleges. Our model, based

on this assumption, includes many real-life examples, such as college admissions in China and

public high school choice in Osaka, as mentioned in Section 1. However, there could be other

situations in which different colleges have different priority orders over students. For example,

each college may assign different weights to each subject. In such a case, priority orders are no

longer common across colleges, even if students take the same exam.

To analyze these situations, we consider an extended version of our original model. We call

this model a college admission problem with college-specific priority and represent it by

a 6-tuple G = (S,C, q, PS , PC ,�C). Elements 1 through 5 are identical to the original setting;

the extended model only replaces 6 (a common priority) with 6′ (college-specific priority orders).

This generalization leads us to modify the stability notions.19

Definition 4 In a college admission problem with college-specific priority, we say that a student-

college pair (s, c) is a priority blocking pair for the matching µ, if (i) cPsµ(s) and (ii) either

(a) |µ(c)| < qc and sPc∅, or (b) for some student s′ ∈ µ(c), s �c s
′. A matching µ is prior-

ity stable if it is individually rational for students and there is no priority blocking pair. A

matching µ is double stable if it is priority stable and preference stable.

19Note that the definition of preference stability is unchanged since it is independent of priority orders.
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Since colleges’ preferences and college-specific priority orders are both strict rankings, there

is no mathematical distinction between them. Therefore, the mathematical structure of priority

stable matchings must be the same as that of preference stable matching. This implies that

there are possibly multiple priority stable matchings. Consequently, the uniqueness of priority

stable matching cannot be guaranteed, which implies that Proposition 2 no longer holds. Our

next example shows that most of the results in Section 3 do not hold in the extended model.

Example 4 Let S = {s1, s2, s3}, C = {c1, c2}, and q = (1, 1). Students’ preferences, colleges’

preferences, and college-specific priority orders are given as follows.

Ps1: c2, c1, Pc1: s1, s2, s3, �c1 : s1, s2, s3,

Ps2: c1, c2, Pc2: s2, s1, s3, �c2 : s2, s3, s1,

Ps3: c2, c1.

There is a unique double stable matching µ∗ =
(
s1 s2 s3
c1 c2 ∅

)
, which is different from (and also

Pareto dominated for students by) a student optimal preference stable matching µ′ =
(
s1 s2 s3
c2 c1 ∅

)
.

In the above example, the student-proposing DA mechanism (with respect to PC) produces

a matching µ′, which is different from the matching µ∗. This implies that Proposition 3 is

no longer true. The failure of Proposition 3 automatically implies that Theorem 1, our main

result, does not hold either. Given these negative findings, we now understand that the common

priority structure is indeed the key to rich properties derived in Section 3.

5 Concluding Remarks

In this paper, we study an extended college admissions model where students are ranked by two

distinct types of rankings. We introduce the concept of double stability and derive some useful

properties of this new stability concept. Moreover, we also provide its characterization through

two existing well-known mechanisms.

While most of our findings rely on the structure of common priority and may not directly

apply to more general settings, several important questions arise. For example, in the broader

context, one may wonder if there exists a mechanism that produces a double stable matching

whenever possible? Another natural question is how we can impose certain restrictions on the
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preference domain to guarantee the existence of a double stable matching? The questions raised

here may be an interesting research direction in the future.
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