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Abstract

As a generalization of ordinal concavity we introduce a new notion of discrete concavity
called tandem concavity defined for a function over the subsets of a finite set E endowed with
an ordered partition (E1, E2) of E. Every function expressed as a lexicographic composition
of two ordinally concave functions satisfies tandem concavity. We apply tandem concavity
to the rationalization of choice rules in stable matching problems. Moreover, we show that
tandem concavity rationalizes a wider class of choice rules in matching markets than ordinal
concavity.
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1. Introduction

Consider a finite set E and a function u : 2E → R. There are several notions of discrete concavity
for this function, such as M♮-concavity [11] and semi-strict quasi M♮-concavity [5], also known as
ordinal concavity [7, 16]. In some economic applications, E is endowed with an ordered partition
(E1, E2) and the function u has a property that depends on the partition. For example, in a job-
matching context, a firm separates the set of workers E into two types, skilled workers E1 and
unskilled workers E2, and its profit function u depends on the composition of the two types of
workers (see [4, 8]). Similarly, in dynamic matching problems, agents separate the whole set of
contracts E into the set E1 of contracts signed in period 1 and the set E2 signed in period 2 (see
[2]).

In the present note, we investigate concavity of a function defined over the subsets of a par-
titioned set. For analytical simplicity, we consider a partition consisting of two parts, but it is
straightforward to generalize our results to the case with multiple parts (see Remark 4 in Sec-
tion 3.1). We introduce a new notion called tandem concavity as a generalization of ordinal con-
cavity. For two functions u1, u2 : 2E → R that satisfy ordinal concavity, we apply an operation
called lexicpgraphic composition of the two functions and show that the resulting function satisfies
tandem concavity under the unique maximizer condition (to be precisely defined in Section 3.2).
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We also apply the new notion to stable matching problems. Recent studies [2, 4, 8] show that a
stable matching exists if every agent’s choice rule satisfies a certain form of substitutability be-
tween contracts in a partitioned set. We show that a choice rule satisfies the substitutability if
and only if it is rationalized by a tandem-concave function, i.e., the outcome of the choice rule is
supported as the maximizers of a tandem-concave function. This result implies that, if every agent
in a matching market has a tandem-concave utility function, then a stable matching exists.

The present note is organized as follows. Section 2 introduces some notation used here and
describes a definition of ordinal concavity. In Section 3 we define tandem concavity and examine
its relationship to ordinal concavity via lexicographic composition. Section 4 applies tandem
concavity to the problem of rationalizing choice rules in stable matching problems. Section 5
gives concluding remarks.

2. Preliminaries

We introduce notation following [6]. Note in particular that ∅ denotes the empty set as usual
while it also means a symbol that does not belong to the underlying set E. For any X ∈ 2E let
X + x = X ∪ {x} for all x ∈ E \X and X − x = X \ {x} for all x ∈ X . Also for x = ∅ let
X ± x = X .

Ordinal concavity is defined as follows.

Definition 2.1 (Ordinal Concavity): A function u : 2E → R satisfies ordinal concavity if for
every X,X ′ ∈ 2E the following statement holds :

For every x ∈ X \X ′ there exists x′ ∈ (X ′ \X) ∪ {∅} such that

(i) u(X) < u(X − x+ x′), or

(ii) u(X ′) < u(X ′ − x′ + x), or

(iii) u(X) = u(X − x+ x′) and u(X ′) = u(X ′ − x′ + x).

Remark 1: Ordinal concavity was originally called semi-strict quasi M♮-concavity in [5] (also see
[12, 13] and [3]). The name of ordinal concavity was used by [7, 16] in the economics literature,
which we adopt in the present note. 2

Remark 2: Ikebe and Tamura [9] introduce discrete concavity called twisted M♮-concavity de-
fined for functions over the subsets of a partitioned set (also see [15]). This notion captures con-
cavity of utility functions in markets with money transfers. Meanwhile, our tandem concavity
to be precisely defined below captures concavity of utility functions in markets without money
transfers (see Section 4). 2

3. Tandem concavity

Throughout this section, we fix an ordered partition (E1, E2) of E.

2



3.1. Definition of tandem concavity

We focus on the following new notion of discrete concavity.

Definition 3.1 (Tandem Concavity): A function u : 2E → R satisfies tandem concavity with re-
spect to (E1, E2) if the following three statements hold :

(a1) For every X,X ′ ∈ 2E and every x ∈ (X \X ′)∩E1 there exists x′ ∈ (X ′ \X)∪ {∅} such
that

(i) u(X) < u(X − x+ x′), or

(ii) u(X ′) < u(X ′ − x′ + x), or

(iii) u(X) = u(X − x+ x′) and u(X ′) = u(X ′ − x′ + x).

(a2) For every X,X ′ ∈ 2E with X ∩ E1 = X ′ ∩ E1 and every x ∈ X \ X ′ there exists
x′ ∈ (X ′ \X) ∪ {∅} such that

(i) u(X) < u(X − x+ x′), or

(ii) u(X ′) < u(X ′ − x′ + x), or

(iii) u(X) = u(X − x+ x′) and u(X ′) = u(X ′ − x′ + x).

(b) For every X,X ′ ∈ 2E , If u(X ∩ E1) > u(X ′ ∩ E1), then u(X) > u(X ′).

Remark 3: Here we allow that E1 (resp. E2) is the empty set. If so, then (a1) (resp. (a2)) becomes
null, while (a2) (resp. (a1)) becomes equivalent to the condition for ordinal concavity, and (b)
always holds. Hence in this case tandem concavity means ordinal concavity. 2

Remark 4: Consider X,X ′ ∈ 2E . Condition (a1) requires the same condition as ordinal concav-
ity for x ∈ X \ X ′ with x ∈ E1. Condition (a2) requires the same condition for x ∈ E2 while
assuming that X and X ′ have the same intersection with E1. Condition (b) intuitively states that
elements from E1 are more important for achieving a higher function value than those from E2.

The above interpretation leads us to the following generalization of (a1) and (a2) for an ordered
partition (E1, . . . , Em) with m ≥ 2: we require ordinal concavity for X,X ′ ∈ 2E and x ∈ X \X ′

with x ∈ Ei while assuming that X and X ′ have the same intersection with Ek for all k < i, where
i ∈ {1, . . . ,m}. A similar generalization can be made for (b) as well. 2

A formal definition of generalized tandem concavity is given as follows.

Definition 3.2 (Generalized Tandem Concavity): A function u : 2E → R satisfies generalized
tandem concavity with respect to (E1, . . . , Em) if the following two statements hold (with E0

being the empty set ) :

(a)g For every i ∈ {1, . . . ,m}, every X,X ′ ∈ 2E with X∩Ek = X ′∩Ek (∀k ∈ {0, . . . , i−1}),
and every x ∈ (X \X ′) ∩ Ei there exists x′ ∈ (X ′ \X) ∪ {∅} such that
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(i)g u(X) < u(X − x+ x′), or

(ii)g u(X ′) < u(X ′ − x′ + x), or

(iii)g u(X) = u(X − x+ x′) and u(X ′) = u(X ′ − x′ + x).

(b)g For every X,X ′ ∈ 2E , if there exists i ∈ {1, . . . ,m} such that

u
(
X ∩

(
∪ik=1Ek

))
> u

(
X ′ ∩

(
∪ik=1Ek

))
,

then, u(X) > u(X ′).

If m = 2, then Condition (a)g for i = 1 (resp. i = 2) is equivalent to Condition (a1) (resp. (a2))
in Definition 3.1, and Condition (b)g is equivalent to Condition (b) in Definition 3.1. The results
in this note can be restated in obvious ways in terms of an ordered partition (E1, . . . , Em) of E.

3.2. Lexicographic composition

We introduce an operation called lexicographic composition, which clarifies the connection be-
tween ordinal concavity and tandem concavity. For any nonempty X ⊆ E define uX : 2X → R
by

uX(Z) = u(Z) (∀Z ∈ 2X).

We call uX the restriction of u on X . Also for any X ⊂ E define uX : 2E\X → R by

uX(Y ) = u(Y ∪X)− u(X) (∀Y ⊆ E\X).

We call uX the fixing of u by X .
We say that u : 2E → R satisfies the unique-maximizer condition (UM) if the following

condition holds:

(UM) For every X ∈ 2E there uniquely exists a maximizer of max{u(Y ) | Y ⊆ X}.

Let us consider the lexicographical order ≤ℓ on R2 defined by (a, b) <ℓ (c, d) ⇐⇒ (i) a <

c or (ii) a = c and b < d, for all a, b, c, d ∈ R. Let (R2)ℓ be the set R2 endowed with the
lexicographical order ≤ℓ.

Let u1 : 2E → R be an ordinally concave function with the unique maximizer condition (UM)
and u2 : 2

E → R be an ordinally concave function. Now we define the lexicographic composition
u1 • u2 of u1 and u2 as follows. For any X ∈ 2E define X∗ to be the (unique) maximizer of the
restriction of u1 on E1. Moreover, let Y ∗

X∗ be a maximizer of the restriction, of the fixing uX
∗

2 by
X∗, to X ∩ E2. Here note that Y ∗

X∗ may not be unique but the value of u2 (Y ∗
X∗ ∪X∗) is, with

respect to the given X . Then define (u1 • u2) : 2E → (R2)ℓ by

(u1 • u2)(X) = (u1 (X
∗) , u2 (Y

∗
X∗ ∪X∗))

(
X ∈ 2E

)
.

For any X ∈ 2E we write û1(X) and û2(X) to denote u1 (X
∗) and u2 (Y

∗
X∗ ∪X∗), respectively.

To interpret the lexicographic composition, consider an agent who maximizes two utility func-
tions u1 and u2 in stages: given X ∈ 2E , she first maximizes u1 among the subsets of X ∩ E1,
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with the maximizer denoted X∗, and then maximizes u2 among the subsets of X∩E2 while fixing
the choice X∗ from X ∩ E1. The function value (u1 • u2)(X) represents her maximized utilities
(called indirect utilities in economics) for the first and second stages.

Remark 5: Fujishige et al. [6] defined an operation of lexicographic composition for two func-
tions in a different way. 2

We say that (u1 • u2) : 2E → (R2)ℓ satisfies tandem concavity if it satisfies conditions (a1),
(a2) and (b) in Definition 3.1 with < replaced by <ℓ.

Proposition 3.3: If u1 : 2E → R is an ordinally concave function that satisfies the unique-
maximizer condition (UM) and u2 : 2

E → R is ordinally concave, then the lexicographic compo-
sition u1 • u2 is tandem concave.

(Proof) We first prove that u1 • u2 satisfies (a1). Consider X,X ′ ∈ 2E and x ∈ (X \X ′) ∩ E1.
We consider two cases.
Case 1: Suppose x /∈ X∗. Then, because of the definitions of X∗ and û1 we have

û1(X) = û1(X − x), (3.1)

û1(X
′) ≤ û1(X

′ + x). (3.2)

If the weak inequality of (3.2) holds with strict inequality, then (a1)(ii) holds for x′ = ∅. Suppose
that the weak inequality of (3.2) holds with equality. By the unique-maximizer condition (UM)
of u1, we have (X ′)∗ = (X ′ + x)∗. By this equation and x ∈ E1, we have Y ∗

(X′)∗ = Y ∗
(X′+x)∗ ,

which implies û2(X ′) = û2(X
′+x). Similarly, by (3.1) and (UM), we have X∗ = (X −x)∗ and

Y ∗
X∗ = Y ∗

(X−x)∗ , which implies û2(X) = û2(X − x). Therefore, (a1)(iii) holds for x′ = ∅.
Case 2: Suppose x ∈ X∗. For X∗, (X ′)∗ and x ∈ X∗ \ (X ′)∗, the ordinal concavity of u1 implies

that there exists x̂′ ∈ ((X ′)∗ \X∗) ∪ {∅} such that

(i)1 u1(X
∗) < u1(X

∗ − x+ x̂′), or

(ii)1 u1((X
′)∗) < u1((X

′)∗ − x̂′ + x), or

(iii)1 u1(X
∗) = u1(X

∗ − x+ x̂′) and u1((X
′)∗) = u1((X

′)∗ − x̂′ + x).

Case 2(i): Suppose x̂′ /∈ X . If (i)1 holds, then (a1)(i) holds for x′ = x̂′. If (ii)1 holds, then (a1)(ii)
holds for x′ = x̂′. Suppose that (iii)1 holds. By the latter equality, (X ′)∗ and (X ′)∗− x̂′+x attain
the same value of u1. Since these two subsets are included in (X ′+x)∩E1, the unique-maximizer
condition (UM) of u1 implies that there is a subset of (X ′ + x)∩E1 that attains a higher value of
u1 than the two subsets, i.e., û1(X ′ + x) > û1(X

′). Therefore, (a1)(ii) holds for x′ = ∅.
Case 2(ii): Suppose x̂′ ∈ X . If (i)1 holds, then we obtain a contradiction to the definition of X∗

that maximizes u1 among all subsets of X ∩E1. Similarly, if (iii)1 holds, then the former equality
of (iii)1 implies that X∗ and X∗− x+ x′ attain the maximum of u1 among all subsets of X ∩E1,
contradicting the unique-maximizer condition (UM) of u1. The remaining possibility is that (ii)1
holds. Since (X ′)∗ − x̂′ + x ⊆ X ′ + x, (a1)(ii) holds for x′ = ∅.
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Next, we prove that u1 • u2 satisfies (a2). Consider X,X ′ ∈ 2E with X ∩E1 = X ′ ∩E1 and
x ∈ X \X ′. Note that x ∈ E2. Since X ∩ E1 = X ′ ∩ E1 and because of the unique-maximizer
condition (UM) of u1, we have X∗ = (X ′)∗. We choose Y ∗

X∗ and Y ∗
(X′)∗ in the following way:

first, choose Y ∗
(X′)∗ as an arbitrary maximizer of the restriction of u(X

′)∗

2 to X ′∩E2. Then, choose
Y ∗
X∗ as a maximizer of the restriction of uX

∗
2 to X ∩E2 in such a way that the following (∗) holds:

(∗) Y ∗
X∗ attains the minimum of |Y ∗

X∗∆Y ∗
(X′)∗ |.

We consider two cases.
Case 1′: Suppose x /∈ Y ∗

X∗ . Then,

û2(X) = û2(X − x), (3.3)

û2(X
′) ≤ û2(X

′ + x). (3.4)

If the weak inequality of (3.4) holds with strict inequality, then by (X ′)∗ = (X ′ + x)∗ and
û1(X

′) = û1(X
′ + x) (which follows from x ∈ E2), (a2)(ii) holds for x′ = ∅. Similarly, if

the weak inequality of (3.4) holds with equality, then together with (3.3), it implies that (a2)(iii)
holds for x′ = ∅.
Case 2′: Suppose x ∈ Y ∗

X∗ . Then, For Y ∗
X∗ ∪X∗, Y ∗

(X′)∗ ∪ (X
′)∗ and x ∈ (Y ∗

X∗ ∪X∗)\ (Y ∗
(X′)∗ ∪

(X ′)∗), the ordinal concavity of u2 implies that there exists x̃′ ∈
(
(Y ∗

(X′)∗ ∪ (X ′)∗) \ (Y ∗
X∗ ∪

X∗)
)
∪ {∅} such that

(i)2 u2(Y
∗
X∗ ∪X∗) < u2

(
(Y ∗

X∗ − x+ x̃′) ∪X∗), or

(ii)2 u2
(
Y ∗
(X′)∗ ∪ (X ′)∗

)
< u2

(
(Y ∗

(X′)∗ − x̃′ + x) ∪ (X ′)∗
)
, or

(iii)2 u2(Y
∗
X∗ ∪X∗) = u2

(
(Y ∗

X∗ − x+ x̃′) ∪X∗) and
u2

(
Y ∗
(X′)∗ ∪ (X ′)∗

)
= u2

(
(Y ∗

(X′)∗ − x̃′ + x) ∪ (X ′)∗
)
.

Case 2′(i): Suppose x̃′ /∈ X . If (i)2 holds, then by X∗ = (X−x+x̃′)∗ and û1(X) = û1(X−x+x̃′)

(which follows from x, x̃′ ∈ E2), (a2)(i) holds for x′ = x̃′. Similarly, if (ii)2 holds, then (a2)(ii)
holds for x′ = x̃′, and if (iii)2 holds, then (a2)(iii) holds for x′ = x̃′.
Case 2′(ii): Suppose x̃′ ∈ X . If (i)2 holds, then we obtain a contradiction to Y ∗

X∗ maximizing the
restriction of uX

∗
2 to X ∩E2. If (iii)2 holds, then the former equality of (iii)2 implies that Y ∗

X∗ and
Y ∗
X∗−x+x̃′ attain the maximum of the restriction of uX

∗
2 to X∩E2. Since Y ∗

X∗−x+x̃′ ⊆ X∩E2,
we obtain a contradiction to the choice of Y ∗

X∗ (recall (∗)). The remaining possibility is that (ii)2
holds. Note that Y ∗

(X′)∗ − x̃′ + x ⊆ (X ′ + x) ∩ E2. Together with (X ′)∗ = (X ′ − x̃′ + x)∗ and
û1(X

′) = û1(X
′ − x̃′ + x) (which follows from x, x̃′ ∈ E2), (ii)2 implies that (a2)(ii) holds for

x′ = ∅.

Finally, we prove that u1 • u2 satisfies (b). Consider X,X ′ ∈ 2E . Suppose that

(u1 • u2)(X ∩ E1) > (u1 • u2)(X ′ ∩ E1).

Since (X ∩ E1) ∩ E2 = (X ′ ∩ E1) ∩ E2 = ∅, we have û2(X ∩ E1) = û2(X
′ ∩ E1). Therefore,

the above displayed inequality holds only if û1(X ∩E1) > û1(X
′ ∩E1), which implies û1(X) >

û1(X
′). Hence, (u1 • u2)(X) > (u1 • u2)(X ′) holds. 2
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4. Application to stable matching problems

Consider a two-sided matching problem between agents and institutions, e.g., workers and firms
or students and schools. Fix an institution in the market and let E denote the set of contracts that
the institution chooses from. For example, in a job-matching market, E is the set of job candidates
for the firm. The institution’s choice rule is a function C : 2E → 2E such that C(X) ⊆ X for all
X ∈ 2E . Given X ∈ 2E , C(X) specifies the set of contracts that the institution chooses from X .

The following is a standard condition of a choice rule.

Definition 4.1 (Irrelevance of Rejected Contracts [1]): A choice rule C : 2E → 2E satisfies
irrelevance of rejected alternatives contracts if for every X ∈ 2E and x ∈ X , it holds that

x /∈ C(X) =⇒ C(X − x) = C(X).

Since Kelso and Crawford [10] (also see [14]) it has long been recognized that substitutability
of a choice rule is essential for the existence of a stable matching.

Definition 4.2 (Substitutability): A choice rule C : 2E → 2E satisfies substitutability if for
every X ∈ 2E and x, y ∈ X with x ̸= y, it holds that

x ∈ C(X) =⇒ x ∈ C(X − y).

If the above condition fails, then there exist X ∈ 2E and distinct x, y ∈ X such that x ∈ C(X) and
x /∈ C(X − y). This means that x is chosen if it is coupled with y but not if y is absent, exhibiting
complementarity between x and y. Substitutability rules out this type of complementarity.

We introduce an additional concept to see the connection between substitutability and discrete
concavity.

Definition 4.3 (Rationalization): A function u : 2E → R rationalizes a choice rule C : 2E → 2E

if for every X ∈ 2E , it holds that

u(C(X)) > u(X ′) (∀X ′ ⊆ X, X ′ ̸= C(X)).

If u rationalizes C, then given X ∈ 2E , C chooses the unique maximizer of u among all subsets
of X . Rationalization is a fundamental step in the economic analysis to convert choice behaviors
into utility-maximization problems.

Theorem 4.4 ([16, Theorem 1′]): A choice rule C : 2E → 2E satisfies irrelevance of rejected
contracts and substitutability if and only if there exists an ordinally concave function u : 2E → R
that rationalizes C. Moreover, in the only-if part, u can be constructed so that, for every X,X ′ ∈
2E and x ∈ X \X ′, there exists x′ ∈ (X ′ \X) ∪ {∅} that satisfies Condition (i) or (ii) of ordinal
concavity (i.e., the possibility of Condition (iii) can be eliminated).

Institutions in the real world often have choice rules that violate substitutability due to com-
plementarity between contracts. Recent studies [2, 4, 8] found weaker variants of substitutability
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that accommodate a specific form of complementarity and also guarantee the existence of a sta-
ble matching. We investigate the implication of weakening substitutability for the rationalizing
function.

Following Bando and Kawasaki [2], we divide the set E of contracts into the set E1 of period-1
contracts and the set E2 of period-2 contracts.

Definition 4.5 (Period-wise Substitutability [2]): A choice rule C : 2E → 2E satisfies period-
wise substitutability if for every X ∈ 2E , i ∈ {1, 2}, and x, y ∈ X ∩ Ei with x ̸= y,

x ∈ C(X) =⇒ x ∈ C(X − y).

This condition requires substitutability between contracts in the same period. Therefore, it al-
lows complementarity between contracts in different periods. For example, suppose that a firm
considers hiring worker x ∈ E2 in period 2 only if it hires worker y ∈ E1 in period 1. Then,
C({x, y}) = {x, y} and C({x}) = ∅. For X = {x, y}, substitutability is violated, while period-
wise substitutability is satisfied because x and y are contracts in different periods.

Remark 6: Existing studies [2, 4, 8] offer detailed accounts of real-life examples of choice rules
that violate substitutability but satisfy the weaker variant of substitutability. The above example
of a firm hiring workers is taken from Huang [8], who introduces a condition called unidirectional
substitutes and complements. Dur et al. [4] introduce a condition called partitionability. As noted
by [2], each of these conditions is equivalent to the conjunction of period-wise substitutability and
future invariance defined below. 2

Definition 4.6 (Future Invariance [2]): A choice rule C : 2E → 2E satisfies future invariance if
for every X ∈ 2E and x ∈ X ∩ E2,

C(X) ∩ E1 = C(X − x) ∩ E1.

This condition states that period-2 contracts do not affect the choice of period-1 contracts.
Our main theorem states that a choice rule satisfies the above conditions if and only if it is

rationalized by a tandem-concave function.

Theorem 4.7: A choice rule C : 2E → 2E satisfies irrelevance of rejected contracts, period-
wise substitutability, and future invariance if and only if there exists a tandem-concave function
u : 2E → R that rationalizes C.

(Proof) The if part : Suppose that there exists a tandem-concave function u : 2E → R that ratio-
nalizes C.

It is clear that if a choice rule is rationalized by some function, then C satisfies irrelevance of
rejected contracts.

We prove that C satisfies Future Invariance. Consider X ∈ 2E and x ∈ X ∩ E2. Our goal is
to prove that

C(X) ∩ E1 = C(X − x) ∩ E1.
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Since C(X − x) ⊆ X − x ⊆ X and u rationalizes C, we have

u(C(X)) ≥ u(C(X − x)),

with equality holding only if C(X) = C(X − x). Combining this inequality with the contraposi-
tion of Condition (b) of tandem concavity for X ← C(X − x) and X ′ ← C(X), we obtain

u(C(X) ∩ E1) ≥ u(C(X − x) ∩ E1). (4.1)

If (4.1) holds with strict inequality, then by Condition (b) of tandem concavity for X ← C(X)∩E1

and X ′ ← C(X − x), we have u(C(X) ∩ E1) > u(C(X − x)). Since C(X) ∩ E1 ⊆ X − x

(which follows from x ∈ E2), we obtain a contradiction to the fact that C(X − x) maximizes u
among all subsets of X − x. Therefore, (4.1) holds with equality. Combining this equation with
the fact that C(X ∩ E1) maximizes u among all subsets of X ∩ E1, we have

u(C(X ∩ E1)) ≥ u(C(X) ∩ E1) = u(C(X − x) ∩ E1). (4.2)

If (4.2) holds with strict inequality, we have

u(C(X ∩ E1)) > u(C(X) ∩ E1).

Since C(X ∩ E1) = C(X ∩ E1) ∩ E1, we have

u(C(X ∩ E1) ∩ E1) > u(C(X) ∩ E1).

By Condition (b) of tandem concavity for X ← C(X ∩E1) and X ′ ← C(X), we have u(C(X ∩
E1)) > u(C(X)), a contradiction to the definition of C(X). Therefore, (4.2) holds with equality.
This means that all the three subsets C(X ∩ E1), C(X) ∩ E1, and C(X − x) ∩ E1 attain the
maximum of u among all subsets of X ∩ E1. By the definition of rationalization, there is a
unique maximizer. Hence, all the three subsets are the same subset. In particular, C(X) ∩ E1 =

C(X − x) ∩ E1, as desired.

We prove that C satisfies period-wise substitutability. Suppose, to the contrary, that the condi-
tion fails, i.e., there exist X ∈ 2E , i ∈ {1, 2}, and x, y ∈ X ∩Ei with x ̸= y such that x ∈ C(X)

and x /∈ C(X − y). We divide the remaining part into two parts and derive a contradiction in each
case.
Case 1: Suppose i = 1. Consider C(X), C(X − y) ∈ 2E and x ∈ C(X) \ C(X − y). Since

x ∈ E1, by Condition (a1) of tandem concavity, there exists x′ ∈ (C(X − y) \C(X))∪ {∅} such
that

(i)1 u(C(X)) < u(C(X)− x+ x′), or

(ii)1 u(C(X − y)) < u(C(X − y)− x′ + x), or

(iii)1 u(C(X)) = u(C(X)− x+ x′) and u(C(X − y)) = u(C(X − y)− x′ + x).
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If (i)1 or the former equality of (iii)1 holds, then we obtain a contradiction to the fact that C(X)

uniquely maximizes u among all subsets of X . Similarly, if (ii)1 or the latter equality of (iii)1
holds, then we obtain a contradiction to the fact that C(X − y) uniquely maximizes u among all
subsets of X − y.
Case 2: Suppose i = 2. Since we have already proved that C satisfies Future Invariance, y ∈ E2

implies C(X)∩E1 = C(X−y)∩E1. Consider C(X), C(X−y) ∈ 2E and x ∈ C(X)\C(X−y).
By Condition (a2) of tandem concavity, there exists x′ ∈ (C(X − y) \ C(X)) ∪ {∅} such that

(i)2 u(C(X)) < u(C(X)− x+ x′), or

(ii)2 u(C(X − y)) < u(C(X − y)− x′ + x), or

(iii)2 u(C(X)) = u(C(X)− x+ x′) and u(C(X − y)) = u(C(X − y)− x′ + x).

If (i)2 or the former equality of (iii)2 holds, then we obtain a contradiction to the fact that C(X)

uniquely maximizes u among all subsets of X . Similarly, if (ii)2 or the latter equality of (iii)2
holds, then we obtain a contradiction to the fact that C(X − y) uniquely maximizes u among all
subsets of X − y.

This completes the proof of the if part.

The only-if part : Consider a choice rule C : 2E → 2E that satisfies irrelevance of rejected
contracts, period-wise substitutability, and future invariance.

First, define C1 : 2
E → 2E by

C1(X) = C(X) ∩ E1 (∀X ∈ 2E).

We show that C1 satisfies irrelevance of rejected contracts and substitutability.

• Proof of C1 satisfying irrelevance of rejected contracts: Consider X ∈ 2E and x ∈ X such
that x /∈ C1(X). By x /∈ C1(X) = C(X) ∩ E1, we have x /∈ C(X) or x /∈ E1. If
x /∈ C(X), then by the irrelevance of rejected contracts of C, we have C(X) = C(X − x).
This leads to

C(X) ∩ E1 = C(X − x) ∩ E1.

If x /∈ E1, then x ∈ E2. By the future invariance of C, the above equation holds. Therefore,
in either case, the above equation holds. Since the left-hand side is equal to C1(X) and the
right-hand side is equal to C1(X − x), the desired condition follows.

• Proof of C1 satisfying substitutability: Consider X ∈ 2E and x, y ∈ X with x ̸= y. Suppose
x ∈ C1(X) = C(X) ∩ E1. If y ∈ E1, then the period-wise substitutability of C implies
x ∈ C(X − y). Hence, x ∈ C(X − y) ∩ E1 = C1(X − y), as desired. If y ∈ E2, then

C1(X) = C(X) ∩ E1 = C(X − y) ∩ E1 = C1(X − y),

where the second equality follows from the future invariance of C. By x ∈ C1(X), we have
x ∈ C1(X − y), as desired.
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Therefore, C1 satisfies irrelevance of rejected contracts and substitutability. By Theorem 4.4, there
exists a function u1 : 2E → R that rationalizes C1. The proof of the theorem by [16] shows that
u1 can be constructed so that u1(∅) = 0.

Next, for any X1 ⊆ E1, we define C
(X1)
2 : 2E2 → 2E2 by

C
(X1)
2 (X2) = C(X2 ∪X1) ∩ E2 (∀X2 ∈ 2E2).

We show that C(X1)
2 satisfies irrelevance of rejected contracts and substitutability.

• Proof of C(X1)
2 satisfying irrelevance of rejected contracts: Consider X2 ∈ 2E2 and x ∈

X2 \ C(X1)
2 (X2). Since x /∈ C

(X1)
2 (X2) = C(X2 ∪X1) ∩ E2 and x ∈ X2 ⊆ E2, we have

x /∈ C(X2 ∪ X1). By the irrelevance of rejected contracts of C, we have C(X2 ∪ X1) =

C((X2 ∪X1)− x) = C((X2 − x) ∪X1). This leads to

C(X2 ∪X1) ∩ E2 = C((X2 − x) ∪X1) ∩ E2.

Since the left-hand side is equal to C
(X1)
2 (X2) and the right-hand side is equal to C

(X1)
2 (X2−

x), the desired condition follows.

• Proof of C(X1)
2 satisfying substitutability: Consider X2 ∈ 2E2 and x, y ∈ X2 with x ̸= y

such that x ∈ C
(X1)
2 (X2) = C(X2 ∪ X1) ∩ E2. Since x, y ∈ X2 ⊆ E2, the period-

wise substitutability of C implies x ∈ C((X2 ∪ X1) − y) = C((X2 − y) ∪ X1). Hence,
x ∈ C((X2 − y) ∪X1) ∩ E2 = C

(X1)
2 (X2 − y), as desired.

Therefore, for any X1 ⊆ E1, C(X1)
2 satisfies irrelevance of rejected contracts and substitutability.

By Theorem 4.4, there exists a function u
(X1)
2 : 2E2 → R that rationalizes C

(X1)
2 . The proof of

the theorem by [16] shows that u(X1)
2 can be constructed so that u(X1)

2 (∅) = 0.
Now, for a sufficiently large K > 0 define u : 2E → R≥0 by

u(X) = Ku1(X ∩ E1) + u
(X∩E1)
2 (X ∩ E2) (∀X ∈ 2E).

An appropriate value of K will be given below. We show that u satisfies tandem concavity.

• Proof of u satisfying Condition (b): Consider X,X ′ ∈ 2E with u(X ∩ E1) > u(X ′ ∩ E1),
equivalently, u1(X ∩ E1) > u1(X

′ ∩ E1). Then we have

u(X)− u(X ′)

=
{
Ku1(X ∩ E1) + u

(X∩E1)
2 (X ∩ E2)

}
−
{
Ku1(X

′ ∩ E1) + u
(X′∩E1)
2 (X ′ ∩ E2)

}
= K

{
u1(X ∩ E1)− u1(X

′ ∩ E1)
}
+
{
u
(X∩E1)
2 (X ∩ E2)− u

(X′∩E1)
2 (X ′ ∩ E2)

}
> 0,

where we choose K > 0 in such a way that the above inequality holds for all X,X ′ ∈ 2E

with u1(X ∩ E1) > u1(X
′ ∩ E1). Therefore, u(X) > u(X ′) holds.
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• Proof of u satisfying Condition (a1): Consider X,X ′ ∈ 2E and x ∈ (X \X ′) ∩E1. By the
ordinal concavity of u1, for x ∈ (X ∩E1) \ (X ′ ∩E1), there exists x′ ∈

(
(X ′ ∩E1) \ (X ∩

E1)
)
∪ {∅} such that

(i)1 u1(X ∩ E1) < u1
(
(X ∩ E1)− x+ x′

)
, or

(ii)1 u1(X
′ ∩ E1) < u1

(
(X ′ ∩ E1)− x′ + x

)
, or

(iii)1 u1(X ∩E1) = u1
(
(X ∩E1)−x+x′

)
and u1(X

′ ∩E1) = u1
(
(X ′ ∩E1)−x′ +x

)
.

As stated in the latter part of Theorem 4.4, x′ is chosen so that (i)1 or (ii)1 holds (i.e., the
possibility of (iii)1 can be eliminated). If (i)1 holds,

u(X ∩ E1) = Ku1(X ∩ E1)

< Ku1
(
(X ∩ E1)− x+ x′

)
= Ku1

(
(X − x+ x′) ∩ E1

)
= u

(
(X − x+ x′) ∩ E1

)
.

As we have already proved that u satisfies Condition (b), the above inequality implies
u(X) < u(X − x + x′). Therefore, Condition (a1)(i) holds. Similarly, if (ii)1 holds,
then Condition (a1)(ii) holds.

• Proof of u satisfying Condition (a2): Consider X,X ′ ∈ 2E with X ∩ E1 = X ′ ∩ E1 and
x ∈ X \ X ′. By the ordinal concavity of u(X∩E1)

2 , for x ∈ (X ∩ E2) \ (X ′ ∩ E2), there
exists x′ ∈

(
(X ′ ∩ E2) \ (X ∩ E2)

)
∪ {∅} such that

(i)2 u
(X∩E1)
2 (X ∩ E2) < u

(X∩E1)
2

(
(X ∩ E2)− x+ x′

)
, or

(ii)2 u
(X∩E1)
2 (X ′ ∩ E2) < u

(X∩E1)
2

(
(X ′ ∩ E2)− x′ + x

)
, or

(iii)2 u
(X∩E1)
2 (X ∩ E2) = u

(X∩E1)
2

(
(X ∩ E2)− x+ x′

)
and

u
(X∩E1)
2 (X ′ ∩ E2) = u

(X∩E1)
2

(
(X ′ ∩ E2)− x′ + x

)
.

As stated in the latter part of Theorem 4.4, x′ is chosen so that (i)2 or (ii)2 holds (i.e., the
possibility of (iii)2 can be eliminated). If (i)2 holds,

u
(X∩E1)
2 (X ∩ E2) < u

(X∩E1)
2

(
(X ∩ E2)− x+ x′

)
= u

X(X∩E1)
2

(
(X − x+ x′) ∩ E2

)
.

(4.3)

This leads to

u(X) = Ku1(X ∩ E1) + u
(X∩E1)
2 (X ∩ E2)

< Ku1(X ∩ E1) + u
(X∩E1)
2

(
(X − x+ x′) ∩ E2

)
= Ku1

(
(X − x+ x′) ∩ E1

)
+ u

((X−x+x′)∩E1)
2

(
(X − x+ x′) ∩ E2

)
= u(X − x+ x′),

where the first inequality follows from (4.3) and the second equality follows from x ∈ E2

and x′ ∈ E2 ∪ {∅}. Therefore, Condition (a2)(i) holds. If (ii)2 holds, then by X ∩ E1 =

X ′ ∩ E1, the same argument as above establishes that Condition (a2)(ii) holds.
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Finally, we show that u rationalizes C. Consider X ∈ 2E and X ′ ⊆ X with X ′ ̸= C(X). Our
goal is to prove

u(C(X)) > u(X ′). (4.4)

Suppose C(X) ∩ E1 ̸= X ′ ∩ E1. Then, we have C1(X) = C(X) ∩ E1 ̸= X ′ ∩ E1. Since
X ′ ∩ E1 ⊆ X and u1 rationalizes C1, we have

u1(C1(X)) = u1(C(X) ∩ E1) > u1(X
′ ∩ E1).

This inequality together with the definition of u implies

u(C(X) ∩ E1) = Ku1(C(X) ∩ E1) > Ku1(X
′ ∩ E1) = u(X ′ ∩ E1).

Since we have already proved that u satisfies Condition (b) of tandem concavity, we have (4.4), as
desired.

Suppose C(X) ∩ E1 = X ′ ∩ E1. Then,

C
(C(X)∩E1)
2 (X ∩ E2) = C

(
(X ∩ E2) ∪ (C(X) ∩ E1)

)
∩ E2

= C
((

(X ∩ E2) ∪ (C(X) ∩ E1) ∪
(
(X ∩ E1) \ C(X)

))
∩ E2

= C
(
(X ∩ E2) ∪ (X ∩ E1)

)
∩ E2

= C(X) ∩ E2, (4.5)

where the second equality follows from the irrelevance of rejected contracts of C (i.e., adding
rejected contracts (X ∩ E1) \ C(X) does not change the outcome of the choice rule). Note that
C(X) ∩ E2 ̸= X ′ ∩ E2 since C(X) ∩ E1 = X ′ ∩ E1, X ′ ⊆ X , and X ′ ̸= C(X). Therefore, it
follows from (4.5) together with the fact that u(C(X)∩E1)

2 rationalizes C(C(X)∩E1)
2 that we obtain

u
(C(X)∩E1)
2

(
C

(C(X)∩E1)
2 (X ∩ E2)

)
= u

(C(X)∩E1)
2 (C(X) ∩ E2) > u

(C(X)∩E1)
2 (X ′ ∩ E2).

(4.6)

This leads to

u(C(X)) = Ku1(C(X) ∩ E1) + u
(C(X)∩E1)
2 (C(X) ∩ E2)

> Ku1(X
′ ∩ E1) + u

(X′∩E1)
2 (X ′ ∩ E2)

= u(X ′),

where the inequality follows from C(X) ∩ E1 = X ′ ∩ E1 and (4.6). Therefore, (4.4) holds. 2

Theorem 4.7 states that, if every agent chooses contracts in such a way to maximize a tandem-
concave (utility) function, then their choice rules satisfy the stated conditions. As proven by [2]
(also see [4, 8]), if the agents’ choice rules satisfy the stated conditions, then a stable matching
exists. Therefore, tandem concavity is a meaningful assumption in stable matching problems.
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5. Concluding Remarks

We have investigated a new concavity, called tandem concavity, for a function defined over the
subsets of a partitioned set. The key idea of tandem concavity is to require ordinal concavity within
each part of an ordered partition sequentially. Although mathematically simple, this generalization
is meaningful in economic applications. It should be emphasized that we have shown that tandem
concavity rationalizes a wider class of choice rules in matching markets than ordinal concavity.
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