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Abstract

We examine the problem of reallocating indivisible objects among agents
with single-dipped preferences with respect to a fixed order of objects. Our
main axiom, reallocation-proofness, requires that no pair of agents can bene-
fit by misrepresenting their preferences and swapping their assignments. In
this setting, by invoking the recent work of Hu and Zhang (2024), we find
that the top trading cycles rule (TTC) is characterized by individual rational-
ity, strategy-proofness, and reallocation-proofness. Building on this, we extend
the analysis in two directions. First, we explore the case where only pairwise
exchanges are permitted, and show that under this constraint, the character-
ization of TTC holds even without strategy-proofness. Second, we consider a
more general model where objects are arranged in a tree structure instead of
in a line, and demonstrate that the characterization of TTC can be extended
to this general setting as well.
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1 Introduction

We examine the object reallocation problem á la Shapley and Scarf (1974), where
each agent initially owns a heterogeneous, indivisible object and has preferences
over the objects. A “rule” reallocates the objects such that each agent receives ex-
actly one object, without any monetary transfers. For this problem, the top trad-
ing cycles rule (TTC), which selects the unique core allocation via David Gale’s
TTC algorithm (Roth and Postlewaite, 1977), has played a prominent role in the
literature. The first characterization of TTC on the domain of strict preferences
was provided by Ma (1994), based on individual rationality (no agent is worse
off after the reallocation), efficiency (no chosen allocation can be improved such
that no agent is worse off and some agent is better off), and strategy-proofness (no
agent benefits from misrepresentation). Following Ma’s study, various character-
izations of TTC have been proposed.1

We focus on rules that satisfy reallocation-proofness (Moulin, 1995), a property
requiring that no pair of agents can both strictly benefit from misrepresenting
their preferences and swapping their assignments. Our previous study (Fujinaka
and Wakayama, 2018) has already shown that when preferences are strict, TTC is
the only rule that satisfies individual rationality, reallocation-proofness, and strategy-
proofness. Reallocation-proofness can be weakened by excluding preference manip-
ulations. Ekici (2024) introduces such a weaker version of reallocation-proofness,
called pair-efficiency.2 He then demonstrates that Fujinaka and Wakayama’s char-
acterization still holds when reallocation-proofness is weakened to pair-efficiency.

We confine our attention to the case where each agent has “single-dipped”
preferences. Suppose the objects are ordered on a line. Each agent has single-
dipped preferences with respect to the order; that is, he has a unique worst object,
and his welfare strictly increases as his allocated object moves away from this ob-
ject in either direction. For instance, consider the housing market problem, which
is a classic example of the object reallocation problem. Suppose that all the houses
are ordered from west to east by their locations. If each agent considers a house
as being the worst owing to its location (having issues such as safety concerns,

1For additional characterizations of TTC on the domain of strict preferences, for example, see
Takamiya (2001), Miyagawa (2002), Hashimoto and Saito (2015), Fujinaka and Wakayama (2018),
and Chen and Zhao (2021). See also Morrill and Roth (2024) for the history of TTC and its
generalizations and extensions.

2Ekici (2024) proposes pair-efficiency to weaken efficiency rather than reallocation-proofness and
shows that this weakening does not affect Ma’s (1994) characterization in the case of strict prefer-
ences.
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the presence of a waste disposal facility, or city noise), and his welfare strictly
increases as his allocated house moves away from this worst house, then his pref-
erences are single-dipped.3,4 Recently, Tamura (2023) (or Hu and Zhang (2024),
respectively) finds that the characterization of TTC in terms of efficiency by Ma
(1994) (or pair-efficiency by Ekici (2024), respectively) continues to hold even when
agents’ preferences are restricted to be single-dipped.5 Considering that pair-
efficiency is a weaker property than reallocation-proofness, Hu and Zhang’s (2024)
result implies that the characterization of TTC in terms of reallocation-proofness by
Fujinaka and Wakayama (2018) continues to hold if preferences are restricted to
be single-dipped (Corollary 2).6

This paper investigates the implications of reallocation-proofness in a frame-
work that considers practical aspects of object reallocation problems. We first ex-
amine the case where exchange constraints are imposed. In many real-life appli-
cations, the number of agents involved in trading cycles is often limited because
of legal or physical constraints.7 Therefore, it is natural to impose constraints on
the length of an exchange cycle. This paper focuses on the most stringent con-
straint: pairwise exchanges. It is revealed that under pairwise exchanges, TTC
can be characterized by the combination of individual rationality and reallocation-
proofness alone (Theorem 3). However, this characterization no longer holds when
reallocation-proofness is weakened to pair-efficiency (Remark 3).

Next, we explore a more general model where objects are arranged on a “tree”
(i.e., a connected graph with no cycles) instead of a line. For instance, in the hous-

3In the UK, public housing exchange platforms, such as the website House Exchange (https:
//www.houseexchange.org.uk), allow tenants to swap homes. These platforms support ex-
changes involving three or more tenants as well as pairwise exchanges.

4Another example provided by Tamura (2023) is the scheduling of doctors for on-call emer-
gency medical services during holiday seasons. If each doctor has the worst date (e.g., owing to
family reasons), and his welfare strictly increases before and after this date, then his preferences
are also single-dipped.

5Tamura (2023) also demonstrates that the characterization of TTC in terms of endowments-
swapping-proofess (no pair of agents benefits from swapping their endowments before implement-
ing the rule) still holds on the domain of single-dipped preferences. Fujinaka and Wakayama
(2024) reveals that Tamura’s result remains valid even when possible exchanges are limited.

6However, a gap remains in Hu and Zhang’s (2024) proof. We fill this gap by offering a more
rigorous proof of their theorem. For further details, see Remark 1.

7Vacation home exchange platforms, such as the website HomeExchange (https://www.
homeexchange.com), allow only pairwise exchanges. As mentioned above, the UK’s public hous-
ing exchange platforms impose no restrictions on the size of exchanges. However, as Balbuzanov
(2015) points out, coordination difficulties (e.g., finding suitable moving dates) make longer ex-
change cycles infeasible. For the reallocation object problem with exchange constraints, see Nicolò
and Rodrı́guez-Álvarez (2013, 2017), Balbuzanov (2015, 2020), Rodrı́guez-Álvarez (2023), and Fu-
jinaka and Wakayama (2024).

3

https://www.houseexchange.org.uk
https://www.houseexchange.org.uk
https://www.homeexchange.com
https://www.homeexchange.com


ing market problem, suppose that all houses are located within a road network
that has a tree structure. Similar to the case of preferences on a line, if each agent
has the worst location and his welfare strictly increases as his allocated house
moves away from this location toward an endpoint of the road network, then his
preferences are single-dipped on the tree structure. Tamura (2023) reveals that
the characterization of TTC in terms of efficiency for single-dipped preferences on
a line also holds for single-dipped preferences on a tree. As in Tamura (2023), we
can extend the characterization of TTC in terms of pair-efficiency (Ekici, 2024; Hu
and Zhang, 2024) or realocation-proofness (Fujinaka and Wakayama, 2018) to this
general model (Theorem 5 and Corollary 2).

The rest of the paper is organized as follows. Section 2 describes our model
and axioms, and reviews existing results. Section 3 presents our characterization
of TTC in the case of pairwise exchanges. Section 4 extends existing characteriza-
tions of TTC to the case where each agent has single-dipped preferences on a tree
structure. Finally, Section 5 concludes with suggestions for future research. The
proofs of our results are provided in Appendix A and Appendix B.

2 Preliminaries

2.1 Model

Let N = {1, 2, . . . , n} be the set of agents. Each agent i ∈ N initially owns one
indivisible object oi and has a strict preference relation Âi over the set of objects
O = {o1, o2, . . . , on}. Let P be the class of all strict preferences over O. For each
Âi ∈ P , let %i represent the induced weak preference relation from Âi; that is, for
each {o, o′} ⊆ O, o %i o′ if and only if either o Âi o′ or o = o′. Let PN be the set
of all strict preference profiles Â = (Âi)i∈N where Âi ∈ P for each i ∈ N. Given
a subset D of P , we call D N a domain of preferences. We often denote N \ {i}
by “−i,” N \ {i, j} by “−i, j,” and N \ S by “−S,” respectively. With this notation,
(Â′

i,Â−i) represents the preference profile where agent i has Â′
i and each other

agent j has Âj. We similarly define (Â′
i,Â′

j,Â−i,j) and (Â′
S,Â−S). For each i ∈ N,

each Âi ∈ D , and each O′ ⊆ O, let b(Âi, O′) be the best object of agent i in
O′ according to Âi; that is, b(Âi, O′) ∈ O′ and for each o ∈ O′ \ {b(Âi, O′)},
b(Âi, O′) Âi o.

This paper restricts our attention to single-dipped preferences. To define single-
dipped preferences, we consider a linear order C on O. Without loss of generality,
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we fix a linear order C on O as follows:

o1 C o2 C · · · C on. (1)

Given i ∈ N, we say that i’s preference relation Âi ∈ P is single-dipped (with
respect to C) if there is an object, d(Âi) ∈ O, such that

(i) for each o ∈ O \ {d(Âi)}, o Âi d(Âi);

(ii) for each {o, o′} ⊆ O \ {d(Âi)}, if either o′ C o C d(Âi) or d(Âi) C o C o′,
then o′ Âi o.

We denote the class of single-dipped preferences by S∨. We call S N
∨ the single-

dipped domain.
An allocation is a bijection x : N → O. We write xi for x(i). Here, xi represents

the object that agent i receives under x. We denote the set of allocations by X.
A rule on a domain D N is a function f : DN → X that maps a preference

profile Â ∈ DN to an allocation f (Â) ∈ X. We denote the object allocated to
agent i at Â under f by fi(Â).

A rule that has played a central role in the literature is the top trading cycles
rule. The top trading cycles rule, or simply TTC, is the rule TTC : DN → X that
selects for each Â ∈ DN, the allocation TTC(Â) obtained via the following TTC
algorithm:

• Round 1. Each agent points to the agent who owns his best object, with the
possibility of pointing to himself. Given that the number of agents is finite,
at least one “cycle” is guaranteed. A cycle is a sequence of agents, (i1(=
iC+1), i2, . . . , iC), where for each c ∈ {1, 2, . . . , C}, agent ic points to agent
ic+1. Each agent in a cycle is assigned the object along the cycle and then
removed. If an agent remains, the algorithm proceeds to the next round;
otherwise, it terminates.

• Round t ≥ 2. Each remaining agent points to the agent who owns his
best object among the remaining objects, with the possibility of pointing
to himself. Given that the number of agents is finite, at least one cycle is
guaranteed. Each agent in a cycle is assigned the object along the cycle
and then removed. If an agent remains, the algorithm proceeds to the next
round; otherwise, it terminates.
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2.2 Axioms

The following three axioms are standard in the literature. The first is an efficiency
property: no agent can be made better off without deteriorating someone else.

Efficiency: For each Â ∈ DN, there is no x ∈ X such that for each i ∈ N, xi %i

fi(Â) and for some j ∈ N, xj Âj f j(Â).

The next axiom states that no agent should be worse off than he is at his en-
dowment.

Individual rationality: For each Â ∈ D N and each i ∈ N, fi(Â) %i oi.

The third axiom is the central incentive requirement in the literature: no agent
should be able to gain by misrepresenting his preferences.

Strategy-proofness: For each Â ∈ DN, each i ∈ N, and each Â′
i ∈ D , fi(Â) %i

fi(Â′
i,Â−i).

We focus on the rules that are robust to pairwise manipulations through swap-
ping their allocated objects. In our model, Moulin (1995) is the first to introduce
the requirement that no pair of agents should benefit from misrepresenting their
preferences and swapping their allocated objects.

Reallocation-proofness: There exist no Â ∈ D N, {i, j} ⊆ N, and (Â′
i,Â′

j) ∈ D ×
D such that f j(Â′

i,Â′
j,Â−i,j) Âi fi(Â) and fi(Â′

i,Â′
j,Â−i,j) Âj f j(Â).

The following is a weaker version of reallocation-proofness introduced by Ekici
(2024), which focuses on excluding pairwise collusions that swap allocated ob-
jects without manipulating preferences.8

Pair-efficiency: There exist no Â ∈ D N and {i, j} ⊆ N such that f j(Â) Âi fi(Â)
and fi(Â) Âj f j(Â).

8By definition, pair-efficiency is also weaker than efficiency. As mentioned in the introduction,
Ekici (2024) introduces pair-efficiency to weaken efficiency rather than reallocation-proofness.
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2.3 Existing characterizations of TTC on the single-dipped do-

main

It is established that when preferences are strict, TTC is characterized by the
combination of individual rationality, efficiency, and strategy-proofness (Ma, 1994)
or by the combination of individual rationality, reallocation-proofness, and strategy-
proofness (Fujinaka and Wakayama, 2018). This characterization of TTC still holds
even if efficiency or reallocation-proofness is weakened to pair-efficiency (Ekici, 2024).

Recently, it has been shown that the characterizations of TTC proposed by Ma
(1994) and Ekici (2024) continue to hold even when the domain of preferences is
restricted to the single-dipped domain (Tamura, 2023; Hu and Zhang, 2024).

Theorem 1 (Theorem 1 in Tamura (2023)). A rule on S N
∨ is individually rational,

efficient, and strategy-proof if and only if it is TTC.

Theorem 2 (Theorem 1 in Hu and Zhang (2024)). A rule on S N
∨ is individually

rational, pair-efficient, and strategy-proof if and only if it is TTC.

Remark 1. The proof provided by Hu and Zhang (2024) employs the fact that
when preferences are single-dipped, each round of the TTC algorithm results in
either self-pointing cycles or two-agent cycles (see Fact 1 below). While their
proof is intuitive, the “only if” part is incomplete. To illustrate this, let Â ∈ S N

∨
and suppose that S = {`, h} forms a cycle (`, h) in Round r (≥ 2) of the TTC
algorithm at Â. Additionally, let Nr−1(Â) denote the set of agents that form
cycles before Round r at Â. Consider Â′ ∈ S N

∨ such that for each i ∈ N \ S,
Â′

i = Âi and for some k ∈ S, Â′
k 6= Âk. Then, Hu and Zhang (2024) implicitly

assume in their proof that for each j ∈ Nr−1(Â), f j(Â′) = TTCj(Â), where f is a
rule that satisfies the three axioms. However, this assumption should be proved.
We fill this gap in their argument and provide a complete proof of Theorem 2.
The detailed proof can be found in Online Appendix C. ♦

As mentioned above, pair-efficiency is weaker than reallocation-proofness. Thus,
a reallocation-proofness characterization of TTC can be obtained as a corollary of
Theorem 2. In other words, Fujinaka and Wakayama’s (2018) characterization of
TTC still holds on the single-dipped domain.

Corollary 1. A rule on S N
∨ is individually rational, reallocation-proof, and strategy-

proof if and only if it is TTC.
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Remark 2. Using the concept of “self-enforcing” introduced by Pápai (2000),
we propose another weaker axiom that we call self-enforcing reallocation-proofness.
This axiom applies the requirement of reallocation-proofness only to self-enforcing
pairwise collusions, where two agents swap their allocated objects, but neither
agent is worse off by misreporting his preferences if the other agent betrays the
partner by reporting her true preferences. Self-enforcing reallocation-proofness is
formally defined as follows: there exist no Â ∈ DN, {i, j} ⊆ N, and (Â′

i,Â′
j) ∈

D ×D such that

(i) f j(Â′
i,Â′

j,Â−i,j) Âi fi(Â) and fi(Â′
i,Â′

j,Â−i,j) Âj f j(Â);

(ii) for each k ∈ {i, j}, fk(Â) = fk(Â′
k,Â−k) 6= fk(Â′

i,Â′
j,Â−i,j).

If we weaken reallocation-proofness to self-enforcing reallocation-proofness, then Corol-
lary 1 no longer holds. The no-trade rule, which always assigns each agent
his endowment, satisfies individual rationality, strategy-proofness, and self-enforcing
reallocation-proofness.9,10 ♦

3 Pairwise exchanges

We now focus on the case of pairwise exchanges, which is the most stringent
exchange constraint. Given an allocation x ∈ X, we say that x is a pairwise
exchange if for each {i, j} ⊆ N, xi = oj implies xj = oi. Let X2 be the set of
all pairwise exchanges. Given D ⊆ P , we say that a rule f on DN is a pairwise
exchange rule if for each Â ∈ D N, f (Â) ∈ X2. All the axioms defined in Section 2
are similarly defined in this setting. Thus, we omit their definitions.

Both Theorem 2 and Corollary 1 persist when only pairwise exchanges are al-
lowed, because TTC is a pairwise exchange rule on the single-dipped domain
(see, for example, Fujinaka and Wakayama (2024)). Significantly, Corollary 1
holds without strategy-proofness.

Theorem 3. A pairwise exchange rule on S N
∨ is individually rational and reallocation-

proof if and only if it is TTC.

9The no-trade rule will be formally defined later.
10While pair-efficiency is weaker than reallocation-proofness, there is no logical relationship be-

tween pair-efficiency and self-enforcing reallocation-proofness. The no-trade rule is self-enforcing
reallocation-proof but not pair-efficient. We present a rule that is pair-efficient but not self-enforcing
reallocation-proof in Online Appendix D.
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Proof. The proof is presented in Appendix A.

We verify that the two axioms in Theorem 3 are independent. If either of the
two axioms in Theorem 3 is dropped, we find a non-TTC pairwise exchange rule
that satisfies the remaining axiom. The no-trade rule defined below is a pairwise
exchange rule that is individually rational but not reallocation-proof.

Example 1. The no-trade rule is the rule NT : S N
∨ → X such that for each Â ∈

S N
∨ and each i ∈ N, NTi(Â) = oi. This rule is a pairwise exchange rule that is

individually rational but not reallocation-proof. ¥

The following pairwise exchange rule, IR12¬, is reallocation-proof but not indi-
vidually rational.

Example 2. Suppose n = 3. Let Â12 ∈ S N
∨ be such that for each i ∈ N, o1 Â12

i
o2 Â12

i o3. Let IR12¬ be a pairwise exchange rule such that for each Â ∈ S N
∨ ,

IR12¬(Â) =

(o1, o3, o2) if Â = Â12

TTC(Â) otherwise.

Note that TTC(Â12) = (o1, o2, o3) 6= IR12¬(Â12). This rule violates individual
rationality, because o2 Â12

2 o3 = IR12¬
2 (Â12). For the proof of reallocation-proofness

of this rule, see Online Appendix D. ¥

Notably, Theorem 3 no longer holds when we consider exchanges involving
more than two agents. We can construct a non-TTC rule that satisfies individual
rationality and reallocation-proofness. The following example shows such a rule.

Example 3. Suppose n = 4 and exchanges involving at most three agents are only
allowed. We denote by X3 the set of allocations that satisfy this constraint. Let
Â? ∈ S N

∨ be such that

Â?
3 Â?

i 6=3

o1 o4

o2 o3

o3 o2

o4 o1

9



Let f
−→
123 : S N

∨ → X3 be a rule such that for each Â ∈ S N
∨ ,

f
−→
123(Â) =

(o2, o3, o1, o4) if Â = Â?

TTC(Â) otherwise.

Note that TTC(Â?) = (o3, o2, o1, o4) 6= f
−→
123(Â?). This rule is individually rational.

For the proof of reallocation-proofness of this rule, see Online Appendix D.11 ¥

Remark 3. Theorem 2 does not hold without strategy-proofness when pairwise ex-
changes are only allowed. We can construct a non-TTC pairwise exchange rule
that is individually rational and pair-efficient.12 This also implies that Theorem 3
does not hold when reallocation-proofness is weakened to pair-efficiency. Further-
more, Theorem 3 does not hold when reallocation-proofness is weakened to self-
enforcing reallocation-proofness. The no-trade rule is a non-TTC pairwise exchange
rule that is individually rational and self-enforcing reallocation-proof. ♦

4 Tree structures

Thus far, we have considered single-dipped preferences defined on a “line.” As
mentioned in the introduction, this preference domain can be extended to a more
general model where objects are arranged on a tree structure. Below, we show
that three existing characterizations of TTC for single-dipped preferences on a
line, mentioned in Section 2, also hold for single-dipped preferences on a tree.

4.1 Definitions and notation

We begin by introducing some graph theoretical concepts. An (undirected) graph
is a pair G = (O, E), where E ⊂ {{o′, o′′} ⊂ O : o′ 6= o′′} is the set of edges. The
degree of object o ∈ O in G = (O, E) is the number of edges that contain o;13 that
is,

deg(o) =
∣∣{{o′, o′′} ∈ E : o ∈ {o′, o′′}

}∣∣ .

11This rule violates strategy-proofness. To show this, let Â′
1 ∈ S∨ be such that o4 Â′

1 o3 Â′
1 o1 Â′

1
o2. Then,

f
−→
123
1 (Â′

1,Â?
−1) = TTC1(Â′

1,Â?
−1) = o3 Â?

1 o2 = f
−→
123
1 (Â?),

and thus, f
−→
123 violates strategy-proofness.

12Example 4 below provides an example of such a rule.
13Given a set A, |A| denotes the cardinality of A.

10



Given an object o ∈ O, we say that o is a leaf in G if deg(o) = 1. We denote
the set of leaves in G by L.14 Given {o′, o′′} ⊂ O with o′ 6= o′′, a path from o′

to o′′ in G = (O, E) is a sequence (o1, o2, . . . , oK) such that o1 = o′, oK = o′′,
|{o1, o2, . . . , oK}| = K, and for each k ∈ {1, 2, . . . , K − 1}, {ok, ok+1} ∈ E. A graph
G = (O, E) is a tree if

(i) it is connected (i.e., for each {o′, o′′} ⊂ O with o′ 6= o′′, there is a path from
o′ to o′′ in G); and

(ii) it has no cycle (i.e., there is no sequence (o1, o2, . . . , oK) such that K ≥ 3, o1 =
oK, for each k ∈ {1, 2, . . . , K − 1}, {ok, ok+1} ∈ E, and for each {k′, k′′} ⊂
{1, 2, . . . , K} such that k′ 6= k′′ and {k′, k′′} 6= {1, K}, ok′ 6= ok′′).

If graph G is a tree, then for each {o′, o′′} ⊂ O with o′ 6= o′′, a unique path exists
from o′ to o′′ in G (see, for example, Theorem 2.1.4 in West (2001)). We denote the
path from o′ to o′′ by [o′, o′′]. For each {o, o′, o′′} ⊂ O, we write o ∈ [o′, o′′] if o lies
on the path from o′ to o′′. That is, when [o′, o′′] = (o1 = o′, o2, . . . , oK = o′′), there
is k ∈ {1, 2, . . . , K} such that ok = o

Given a tree G = (O, E) and an agent i ∈ N, we say that i’s preference relation
Âi ∈ P is single-dipped on the tree G if there is an object, d(Âi) ∈ O, such that

(i) for each o ∈ O \ {d(Âi)}, o Âi d(Âi);

(ii) for each {o, o′} ⊂ O \ {d(Âi)} with o 6= o′, if o ∈ [d(Âi), o′], then o′ Âi o.

Given a tree G, we denote the class of single-dipped preferences on the tree G by
TG ⊂ P .

Remark 4. Suppose that G is a tree. For each i ∈ N and each Âi ∈ TG, the object
b(Âi, O) is a leaf in G. Moreover, the maximum size of any cycle formed under
TTC on T N

G is at most |L|. See Fujinaka and Wakayama (2024) for the proofs of
these results. ♦

4.2 Characterizations of TTC

Tamura (2023) recently demonstrated that Theorem 1 can be extended to the set-
ting considered here.

14Formally, it should be L(G); however, unless otherwise specified, we omit G for simplicity.
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Theorem 4 (Theorem 5 in Tamura (2023)). Suppose that G is a tree. Then, a rule on
T N

G is individually rational, efficient, and strategy-proof if and only if it is TTC.

The following result strengthens Theorem 4 by weakening efficiency to pair-
efficiency. In other words, Hu and Zhang’s result (Theorem 2) can be extended to
the domain of single-dipped preferences on a tree.

Theorem 5. Suppose that G is a tree. Then, a rule on T N
G is individually rational,

pair-efficient, and strategy-proof if and only if it is TTC.

Proof. The proof of this theorem is presented in Appendix B.

Remark 5. By slightly modifying the proof of Theorem 5, we can apply the proof
to the domain of strict preferences. Thus, we obtain an alternative proof of Ekici’s
characterization (Ekici, 2024). For more details, see Remark 7 in Appendix B.15 ♦

Considering that pair-efficiency is weaker than reallocation-proofness or efficiency,
Tamura’s result (Theorem 4) and the reallocation-proofness characterization of TTC
follow as corollaries of Theorem 5. Essentially, Corollary 1 can be extended to the
domain of single-dipped preferences on a tree.

Corollary 2. Suppose that G is a tree. Then, a rule on T N
G is individually rational,

strategy-proof, and reallocation-proof if and only if it is TTC.

4.3 Independence of the axioms

Here, we verify the independence of the axioms in both Theorem 5 and Corol-
lary 2. If any of the three axioms in Theorem 5 (or Corollary 2) is dropped, a
non-TTC rule that satisfies the remaining two axioms exists. In doing so, we use
the following notation in the three-agent case: given a graph G, let Âij

0 ∈ TG be a
preference relation such that

Âij
0

oi

oj

ok

For each j ∈ N, let T
j

G ⊂ TG be the set of preference relations Â0 where oj Â0 o
for each o ∈ O \ {oj}.

15Ekici and Sethuraman (2024) also provide an alternative proof of Ekici’s characterization.
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We first verify the independence of the axioms in Theorem 5. The no-trade
rule defined above is both individually rational and strategy-proof, but not pair-
efficient. The following rule, SP¬, is both individually rational and pair-efficient,
but not strategy-proof.

Example 4. Suppose n = 3. Let G be a tree with L = {o1, o3}. Let SP¬ : T N
G → X

be a rule such that for each Â ∈ T N
G ,

SP¬(Â) =

(o2, o1, o3) if Â = (Â32
1 ,Â12

2 ,Â13
3 )

TTC(Â) otherwise.

Note that TTC(Â32
1 ,Â12

2 ,Â13
3 ) = (o3, o2, o1) 6= SP¬(Â32

1 ,Â12
2 ,Â13

3 ). This rule sat-
isfies individual rationality and pair-efficiency. To show that SP¬ violates strategy-
proofness, let Â = (Â32

1 ,Â12
2 ,Â13

3 ) and Â′
1 = Â31

1 . Then,

SP¬
1 (Â′

1,Â−1) = TTC1(Â′
1,Â−1) = o3 Â1 o2 = SP¬

1 (Â),

which implies that SP¬ violates strategy-proofness. ¥

The following rule, IR¬, is both strategy-proof and pair-efficient, but not individ-
ually rational.

Example 5. Suppose n = 3. Let G be a tree with L = {o1, o3}. Let IR¬ : T N
G → X

be a rule such that for each Â ∈ T N
G ,

IR¬(Â) =

(o3, o2, o1) if Â ∈ T 1
G × {Â12

2 } ×T 1
G

TTC(Â) otherwise.

Note that for each Â ∈ T 1
G × {Â12

2 } × T 1
G , TTC(Â) = (o1, o2, o3) 6= IR¬(Â).

This rule violates individual rationality as there is Â ∈ T 1
G × {Â12

2 } × T 1
G such

that o1 Â1 o3 = IR¬
1 (Â) by Â1 ∈ T 1

G . For the proof of strategy-proofness of this
rule, see Online Appendix D. Below, we show that IR¬(Â) satisfies pair-efficiency.
Let Â ∈ T N

G . If Â /∈ T 1
G × {Â12

2 } × T 1
G , then by IR¬(Â) = TTC(Â) and pair-

efficiency of TTC, no pair has an incentive to collude. If Â ∈ T 1
G × {Â12

2 } × T 1
G ,

then IR¬
3 (Â) = o1 = b(Â3, O). Thus, agent 3 has no incentive to collude with

another agent. Additionally, by IR¬
2 (Â) = o2 Â2 o3 = IR¬

1 (Â), agent 2 has no
incentive to collude with agent 1. Hence, no pair has an incentive to collude. ¥
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Next, we verify the independence of the axioms in Corollary 2. The no-trade
rule is both individually rational and strategy-proof, but not reallocation-proof. The
following rule, SP∗¬, is both individually rational and reallocation-proof, but not
strategy-proof.

Example 6. Suppose n = 3. Let G be a tree with L = {o1, o3}. Let SP∗¬ : T N
G → X

be a rule such that for each Â ∈ T N
G ,

SP∗¬(Â) =

(o2, o3, o1) if Â = (Â32
1 ,Â32

2 ,Â12
3 )

TTC(Â) otherwise.

Note that TTC(Â32
1 ,Â32

2 ,Â12
3 ) = (o3, o2, o1) 6= SP∗¬(Â32

1 ,Â32
2 ,Â12

3 ). This rule sat-
isfies individual rationality. For the proof of reallocation-proofness of this rule, see
Online Appendix D. To show that SP∗¬ violates strategy-proofness, let Â = (Â32

1 ,
Â32

2 ,Â12
3 ) and Â′

1 = Â31
1 . Then,

SP∗¬
1 (Â′

1,Â−1) = TTC1(Â′
1,Â−1) = o3 Â1 o2 = SP∗¬

1 (Â),

which implies that SP∗¬ violates strategy-proofness. ¥

The following rule, IR∗¬, is both strategy-proof and reallocation-proof, but not
individually rational.

Example 7. Suppose n = 3. Let G be a tree with L = {o1, o3}. Let T −12
G =

TG \ {Â12
0 }. Let IR∗¬ : T N

G → X be a rule such that for each Â ∈ T N
G ,

IR∗¬(Â) =

(o2, o3, o1) if Â ∈ TG ×T −12
G ×T 1

G

TTC(Â) otherwise.

Note that for each Â ∈ TG ×T −12
G ×T 1

G ,

IR∗¬(Â) 6= TTC(Â) ∈ {(o1, o2, o3), (o1, o3, o2), (o3, o2, o1)}.

For the proof of strategy-proofness and reallocation-proofness of this rule, see Online
Appendix D. Given that there is Â ∈ T 1

G × T −12
G × T 1

G such that o1 Â1 o2 =
IR∗¬

1 (Â), this rule violates individual rationality. ¥

Remark 6. Both SP¬ (Example 4) and IR¬ (Example 5) violate reallocation-proofness
(see Online Appendix D for the proof). This demonstrates that pair-efficiency is
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Table 1: Satisfaction of axioms of rules. The notation “+” (resp. “−”) in a cell indicates
that the axiom is satisfied (resp. violated) by the corresponding rule.

Rules
TTC NT SP¬ IR¬ SP∗¬ IR∗¬

Axioms (Example 1) (Example 4) (Example 5) (Example 6) (Example 7)
individual rationality + + + − + −
strategy-proofness + + − + − +
efficiency + − + + + +
pair-efficiency + − + + + +
reallocation-proofness + − − − + +

considerably weaker than reallocation-proofness even when combined with either
individual rationality or strategy-proofness. ♦

For each axiom, Table 1 shows which of the rules satisfy the axiom.16

5 Concluding comments

We conclude with two comments on possible directions for future research.

1. Single-peaked preferences. It would be interesting to identify the set of
reallocation-proof rules when preferences are single-peaked. We say that an
agent has single-peaked preferences (with respect to a fixed order of ob-
jects) if he has a unique best object, and his welfare strictly decreases as
one moves away from this object in either direction according to the given
order. In contrast to the case of single-dipped preferences, Ma’s (1994)
characterization of TTC does not hold for the case of single-peaked pref-
erences: There are many non-TTC rules that satisfy individual rationality, ef-
ficiency, and strategy-proofness (Bade, 2019; Tamura, 2022; Tamura and Hos-
seini, 2022; Liu, 2022; Huang and Tian, 2023). We conjecture that several
non-TTC rules satisfy individual rationality, reallocation-proofness, and strategy-
proofness. Thus, future research should identify various rules that satisfy
these three axioms on the single-peaked preferences domain.

2. Social endowments. It would be interesting to examine reallocation-proof
rules for indivisible object allocation problems without private endowments.

16In this subsection, we mainly consider the case where n = 3 and G is a tree with L = {o1, o3}.
Note that this tree structure G is equivalent to a line structure where the objects are ordered ac-
cording to (1), and additionally, TG = S∨. Thus, this figure also demonstrates the independence
of axioms in Theorem 2 and Corollary 1.
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In this context, Pápai (2000) investigates a strong version of reallocation-
proofness, which we call strong reallocation-proofness. In this version, one
agent in a deviating pair may be indifferent after reallocating objects ex-
post. Pápai’s result reveals that no rule satisfies efficiency, strategy-proofness,
strong reallocation-proofness, and an auxiliary axiom. Mandal and Roy (2021)
further confirm that Pápai’s negative result still holds even when the do-
main is restricted to the domain of (minimally rich) single-peaked pref-
erences. It remains an open question whether the negative results can be
avoided by weakening strong reallocation-proofness to reallocation-proofness.

A Appendix: Proof of Theorem 3

Before proving Theorem 3, we introduce some additional notation. Let Â ∈ S N
∨

and t ∈ N, where N denotes the set of natural numbers. We denote the set of
groups of agents that form cycles in Round t of the TTC algorithm at Â by

St(Â) ⊆ 2N \ {∅}.

We denote the set of agents who are assigned objects in Round t of the TTC algo-
rithm at Â by

Nt(Â) =
⋃

S∈St(Â)

{S}.

We denote the set of objects that are assigned to agents in Round t of the TTC
algorithm at Â by

Ot(Â) = {o ∈ O : ∃ i ∈ Nt(Â), o = oi} .

Define Nt(Â) and Ot(Â) as follows:

Nt(Â) =
t⋃

z=1

Nz(Â) and Ot(Â) =
t⋃

z=1

Oz(Â).

For convenience, let N0(Â) = O0(Â) = ∅. With a slight abuse of notation, each
S ∈ St(Â) also represents a cycle; that is, “S = {i1(= iK+1), i2, . . . , iK} ∈ St(Â)”
denotes that for each k ∈ {1, 2, . . . , K}, ik ∈ N \ Nt−1(Â), oik ∈ O \ Ot−1(Â),
and b

(
Âik , O \ Ot−1(Â)

)
= oik+1 . We denote by `(Â, t) (resp. h(Â, t)) the lowest

(resp. highest) index among the set of remaining agents in Round t of the TTC
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algorithm at Â. Note that for each Â ∈ S N
∨ , `(Â, 1) = 1 and h(Â, 1) = n.

In proving our theorems, we frequently invoke the following fact: in the case
of single-dipped preferences, the TTC algorithm generates either self-pointing
cycles or a two-agent cycle in each round.

Fact 1 (Proposition 1 in Fujinaka and Wakayama (2024)). For each Â ∈ S N
∨ and

each t ∈ N,

St(Â) ∈
{{

{`(Â, t), h(Â, t)}
}

,
{
{`(Â, t)}, {h(Â, t)}

}
,
{
{`(Â, t)}

}
,
{
{h(Â, t)}

}}
.

We also present two key lemmas. The first one states that joint preference
manipulation by a group of agents that forms a cycle in Round r of the TTC
algorithm does not affect the outcome of agents forming cycles before Round r
at the original preference profile.

Lemma 1. Let Â ∈ S N
∨ , r ∈ N, S ∈ Sr(Â), and ẪS ∈ S S

∨ . Then, for each i ∈
Nr−1(Â), TTCi(ẪS,Â−S) = TTCi(Â).

Proof. Let t ∈ {1, 2, . . . , r − 1} and M ∈ St(Â). Suppose that

∀ i ∈ Nt−1(Â), TTCi(ẪS,Â−S) = TTCi(Â). (2)

Note that by M ∈ St(Â) and t ≤ r − 1, M ⊆ N \ S. For simplicity, we write `(t)
(resp. h(t)) for `(Â, t) (resp. h(Â, t)). By Fact 1, M ∈

{
{`(t), h(t)}, {`(t)}, {h(t)}

}
.

There are two cases.

• Case 1: M ∈ {{`(t)}, {h(t)}}. Without loss of generality, we assume M =
{`(t)}. Then, TTC`(t)(Â) = o`(t). Let o ∈ O be such that o Â`(t) o`(t). Then,
o ∈ Ot−1(Â). Thus, there is i ∈ Nt−1(Â) such that TTCi(Â) = o. By (2),
TTCi(ẪS,Â−S) = TTCi(Â) = o and TTC`(t)(ẪS,Â−S) 6= o. Hence, by individual
rationality, TTC`(t)(ẪS,Â−S) = o`(t) = TTC`(t)(Â).

• Case 2: M = {`(t), h(t)}. Then, TTC`(t)(Â) = oh(t) and TTCh(t)(Â) = o`(t).
Let {t, t} ⊂ N be such that

`(t) ∈ Nt(ẪS,Â−S) and h(t) ∈ Nt(ẪS,Â−S).

Let o ∈ O be such that o Â`(t) oh(t). By TTC`(t)(Â) = oh(t) and `(t) ∈ M ∈
St(Â), o ∈ Ot−1(Â). Thus, there is i ∈ Nt−1(Â) with TTCi(Â) = o. By (2),
TTCi(ẪS,Â−S) = TTCi(Â) = o and TTC`(t)(ẪS,Â−S) 6= o. Hence, oh(t) %`(t)
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TTC`(t)(ẪS,Â−S), which implies
t ≤ t. (3)

Similarly, o`(t) %h(t) TTCh(t)(ẪS,Â−S) and

t ≤ t. (4)

By (3) and (4), t = t, which implies M ⊂ N \ Nt−1(ẪS,Â−S). Furthermore, by
oh(t) %`(t) TTC`(t)(ẪS,Â−S), TTC`(t)(ẪS,Â−S) = oh(t) = TTC`(t)(Â).17 Simi-
larly, TTCh(t)(ẪS,Â−S) = o`(t) = TTCh(t)(Â).

The second lemma states that joint preference manipulation by a group of
agents forming a cycle in Round r of the TTC algorithm neither affects the cycles
formed before Round r at the original preference profile nor delays the formation
of these cycles at the new preference profile.

Lemma 2. Let Â ∈ S N
∨ , r ∈ N, S ∈ Sr(Â), and ẪS ∈ S S

∨ . Then, for each t ∈
{1, 2, . . . , r − 1} and each M ∈ St(Â), there is tM ∈ {1, 2, . . . , t} such that M ∈
StM(ẪS,Â−S).

Proof. For convenience, let Ẫ = (ẪS,Â−S). Suppose on the contrary that there
are t′ ∈ {1, 2, . . . , r − 1} and M′ ∈ St′(Â) such that

∀ t′′ ∈ {1, 2, . . . , t′}, M′ /∈ St′′(Ẫ). (5)

Note that for each t ∈ {1, 2, . . . , r − 1} and each M ∈ St(Â), Lemma 1 leads to the
following fact:

∀ i ∈ M, TTCi(Ẫ) = TTCi(Â). (6)

By (6), there is tM′ ∈ N with M′ ∈ StM′ (Ẫ). Then, by (5), this implies tM′ > t′. We
denote the set of rounds having such a property by

T = {t ∈ {1, 2, . . . , r − 1} : ∃ M ∈ St(Â), ∃ tM ∈ {t + 1, t + 2, . . . }, M ∈ StM(Ẫ)} .

Let t∗ = min T. Then, we can choose t∗ ∈ {1, 2, . . . , r − 1} that satisfies the fol-
lowing two conditions:

17If TTC`(t)(ẪS,Â−S) 6= oh(t), oh(t) Â`(t) TTC`(t)(ẪS,Â−S), which implies that agent `(t)

with Â`(t) does not receive b
(
Â`(t), O \ Ot−1(ẪS,Â−S)

)
in Round t = t of the TTC algorithm

at (ẪS,Â−S), a contradiction.
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T1. There is M∗ ∈ St∗(Â) such that for some tM∗ ∈ {t∗ + 1, t∗ + 2, . . . }, M∗ ∈
StM∗ (Ẫ).

T2. For each t ∈ {1, 2, . . . , t∗ − 1} and each M ∈ St(Â), there is tM ∈ {1, 2, . . . , t}
such that M ∈ StM(Ẫ).

Note that by M∗ ∈ St∗(Â) and t∗ ≤ r − 1, for each i ∈ M∗, i’s preference relation
at Â and Ẫ is Âi. In Round tM∗ − 1 of the TTC algorithm at Ẫ, M∗ does not form
a cycle. Thus, there is i∗ ∈ M∗ who points to agent j such that

oj Âi∗ TTCi∗(Ẫ)
(by (6))

= TTCi∗(Â).

By i∗ ∈ M∗ ∈ St∗(Â), there is t̂ ∈ N such that j ∈ M̂ ∈ St̂(Â) and

t̂ < t∗. (7)

Given that j ∈ M̂ ∈ St̂(Â) and t̂ < t∗ ≤ r − 1, it follows that M̂ ⊂ Nr−1(Â). This
together with Lemma 1 implies that there is tM̂ ∈ {1, 2, . . . , t̂} with M̂ ∈ StM̂

(Ẫ).
Additionally, recall that agent j is involved in Round tM∗ − 1 of the TTC algorithm
at Ẫ. Then,

tM∗ − 1 ≤ tM̂. (8)

Hence,

t̂
(by (7))

< t∗
(by T1)
≤ tM∗ − 1

(by (8))
≤ tM̂

(by T2)
≤ t̂,

which is a contradiction.

We now prove Theorem 3.

Proof of Theorem 3. It suffices to prove the “only if” part, as the “if” part follows
from Corollary 1. We now show that for each t ∈ N, each Â ∈ S N

∨ , and each
i ∈ Nt(Â), it holds that fi(Â) = TTCi(Â). We prove this by induction on t.

BASE STEP. t = 1. Let Â ∈ S N
∨ and S ∈ S1(Â). By Fact 1, S ∈ {{1, n}, {1}, {n}}.

There are two cases.

• Case 1: S ∈ {{1}, {n}}. Without loss of generality, we assume S = {1}. Then,
b(Â1, O) = o1. Hence, by individual rationality, f1(Â) = o1 = TTC1(Â).
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• Case 2: S = {1, n}. Then, b(Â1, O) = on and b(Ân, O) = o1. Suppose on the
contrary that

( f1(Â), fn(Â)) 6= (TTC1(Â), TTCn(Â)) = (on, o1).

Without loss of generality, we assume f1(Â) 6= on. Because f is a pairwise ex-
change rule, fn(Â) 6= o1. Let Â↔

S = (Â↔
1 ,Â↔

n ) = (Ân,Â1). Then, b(Â↔
1 , O) = o1

and b(Â↔
n , O) = on. Note that (Â↔

S ,Â−S) ∈ S N
∨ . By individual rationality,

f1(Â↔
S ,Â−S) = o1 and fn(Â↔

S ,Â−S) = on,

which imply that

fn(Â↔
S ,Â−S) = on Â1 f1(Â) and f1(Â↔

S ,Â−S) = o1 Ân fn(Â),

in violation of reallocation-proofness.

INDUCTION HYPOTHESIS. For each t ∈ {1, 2, . . . , r − 1}, each Â ∈ S N
∨ , and each

i ∈ Nt(Â), fi(Â) = TTCi(Â).

INDUCTION STEP. Let t = r. By the induction hypothesis, for each Â′ ∈ S N
∨ ,

Or−1(Â′) =
{

o ∈ O : ∃ i ∈ Nr−1(Â′), o = fi(Â′)
}

. (9)

Let Â ∈ S N
∨ . For each t ∈ N, we simply write `(t) (resp. h(t)) for `(Â, t) (resp.

h(Â, t)). Let S ∈ Sr(Â). By Fact 1, S ∈ {{`(r), h(r)}, {`(r)}, {h(r)}} . There are
two cases.

• Case 1: S ∈ {{`(r)}, {h(r)}}. Without loss of generality, we assume S =
{`(r)}. Then, TTC`(r)(Â) = o`(r) and

b
(
Â`(r), O \ Or−1(Â)

)
= o`(r). (10)

It follows from (9) that
f`(r)(Â) ∈ O \ Or−1(Â). (11)

By (10) and (11), individual rationality implies f`(r)(Â) = o`(r) = TTC`(r)(Â).

• Case 2: S = {`(r), h(r)} . Then, TTC`(r)(Â) = oh(r) and TTCh(r)(Â) = o`(r),
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and

b
(
Â`(r), O \ Or−1(Â)

)
= oh(r) and b

(
Âh(r), O \ Or−1(Â)

)
= o`(r). (12)

It follows from (9) that

{ f`(r)(Â), fh(r)(Â)} ⊆ O \ Or−1(Â). (13)

Suppose on the contrary that

( f`(r)(Â), fh(r)(Â)) 6= (TTC`(r)(Â), TTCh(r)(Â)) = (oh(r), o`(r)).

Without loss of generality, we assume f`(r)(Â) 6= oh(r). Because f is a pairwise
exchange rule, fh(r)(Â) 6= o`(r). Hence, by (13),

f`(r)(Â) ∈ O
∖(

Or−1(Â) ∪ {oh(r)}
)

;

fh(r)(Â) ∈ O
∖(

Or−1(Â) ∪ {o`(r)}
)

.
(14)

Now we proceed in four steps.

Step 1: Defining a preference profile Â↔
S . Let

Â↔
S = (Â↔

`(r),Â
↔
h(r)) = (Âh(r),Â`(r)).

Then, by (12),

b
(
Â↔

`(r), O \ Or−1(Â)
)

= o`(r) and b
(
Â↔

h(r), O \ Or−1(Â)
)

= oh(r). (15)

Let Â↔ = (Â↔
S ,Â−S). Note that Â↔ ∈ S N

∨ .

Step 2: For each i ∈ Nr−1(Â), fi(Â↔) = TTCi(Â). Let i ∈ Nr−1(Â). Then,
there is t ∈ {1, 2, . . . , r − 1} with i ∈ M ∈ St(Â). By Lemma 2, there is tM ∈
{1, 2, . . . , t} with M ∈ StM(Â↔). Thus, it follows that i ∈ Nr−1(Â↔), which
together with the induction hypothesis implies

fi(Â↔) = TTCi(Â↔). (16)

Hence,

fi(Â↔)
(by (16))

= TTCi(Â↔)
(by Lemma 1)

= TTCi(Â).
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Step 3: { f`(r)(Â↔), fh(r)(Â↔)} ⊆ O \ Or−1(Â). Let o ∈ Or−1(Â). Then, there
is i ∈ Nr−1(Â) such that TTCi(Â) = o. By Step 2, fi(Â↔) = o, which implies that

f`(r)(Â↔) 6= o and fh(r)(Â↔) 6= o.

Therefore, { f`(r)(Â↔), fh(r)(Â↔)} ⊆ O \ Or−1(Â).

Step 4: Concluding. By (15) and Step 3, individual rationality implies

f`(r)(Â↔) = o`(r) and fh(r)(Â↔) = oh(r). (17)

Thus, it follows from (12), (14), and (17) that

fh(r)(Â↔) = oh(r) Â`(r) f`(r)(Â) and f`(r)(Â↔) = o`(r) Âh(r) fh(r)(Â),

in violation of reallocation-proofness.

From Cases 1 and 2, for each i ∈ Nr(Â), fi(Â) = TTCi(Â).

B Appendix: Proof of Theorem 5

We begin by introducing two lemmas that are useful for establishing Theorem 5.
Lemma 3 states that every object removed in the first round of the TTC algorithm
is a leaf.

Lemma 3. For each Â ∈ T N
G , O1(Â) ⊆ L.

Proof. As stated in Remark 4, for each i ∈ N and each Âi ∈ TG, b(Âi, O) must be
a leaf in G. Hence, N1(Â) ⊆ {i ∈ N : oi ∈ L} and O1(Â) ⊆ L.

Lemma 4 states that for every agent that forms a cycle in the first round of
the TTC algorithm, he receives his TTC assignment under any rule satisfying the
three axioms.

Lemma 4. Let f be a rule that is individually rational, pair-efficient, and strategy-proof.
Then, for each Â ∈ T N

G , each S ∈ S1(Â), and each i ∈ S, fi(Â) = TTCi(Â).

Proof. We now show that for each k ∈ {1, 2, . . . , |L|}, each Â ∈ T N
G , each S ∈

S1(Â) with |S| = k, and each i ∈ S, fi(Â) = TTCi(Â). For each Â ∈ T N
G and

S ∈ S1(Â), if S = {i} (i.e., |S| = 1), then individual rationality implies fi(Â) = oi =
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TTCi(Â) because of b(Âi, O) = oi. Below, we focus on the case where |S| ≥ 2.
We prove this case by induction on |S|.

BASE STEP. Let Â ∈ T N
G and S ∈ S1(Â) with |S| = 2. Suppose S = {i, j}. Then,

TTCi(Â) = oj and TTCj(Â) = oi, and b(Âi, O) = oj and b(Âj, O) = oi. Suppose
on the contrary that

( fi(Â), f j(Â)) 6= (TTCi(Â), TTCj(Â)) = (oj, oi).

Without loss of generality, we assume fi(Â) 6= oj. Because {oi, oj} ⊆ L by
Lemma 3, we can pick (Â↑

i ,Â↑
j ) ∈ TG ×TG such that

Â↑
i Â↑

j

oj oi

oi oj
...

...

By strategy-proofness and individual rationality,

fi(Â↑
i ,Â−i) = oi and f j(Â↑

i ,Â−i) 6= oi.

Moreover, by strategy-proofness and individual rationality,

fi(Â↑
S,Â−S) = oi and f j(Â↑

S,Â−S) = oj.

Hence,

f j(Â↑
S,Â−S) = oj Â↑

i oi = fi(Â↑
S,Â−S);

fi(Â↑
S,Â−S) = oi Â↑

j oj = f j(Â↑
S,Â−S),

in violation of pair-efficiency.

INDUCTION HYPOTHESIS. Let K ∈ {3, 4, . . . , |L|}. For each Â ∈ T N
G , each

S ∈ S1(Â) with |S| ≤ K − 1, and each i ∈ S, fi(Â) = TTCi(Â).

INDUCTION STEP OF INDUCTION ON |S|. Let K ∈ {3, 4, . . . , |L|}. Let Â ∈
T N

G and S ∈ S1(Â) with |S| = K. Without loss of generality, we assume S =
{1, 2, . . . , K}. Then, for each k ∈ {1, 2, . . . , K − 1}, TTCk(Â) = b(Âk, O) = ok+1

and TTCK(Â) = b(ÂK, O) = o1. Suppose on the contrary that there is i ∈ S such
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that fi(Â) 6= TTCi(Â). Without loss of generality, we assume i = 1; that is,

f1(Â) 6= TTC1(Â) = o2. (18)

Because
⋃

i∈S{oi} ⊆ L by Lemma 3, we can pick any (Â↑
1 ,Â↑

2 ,Â3
1) ∈ TG × TG ×

TG such that

Â↑
1 Â↑

2 Â3
1

o2 o3 o3

o3 o2
...

o1
...

...

Note that because |S| = K ≥ 3, o1, o2, and o3 are distinct objects. We proceed in
four steps.

Step 1: f1(Â3
1,Â−1) = o3. Note that S \ {2} ∈ S1(Â3

1,Â−1) and |S \ {2}| =
K − 1. By the induction hypothesis,

∀ i ∈ S \ {2}, fi(Â3
1,Â−1) = TTCi(Â3

1,Â−1).

Hence, f1(Â3
1,Â−1) = o3.

Step 2: f1(Â3
1,Â

↑
2 ,Â−1,2) = o3 and f2(Â3

1,Â
↑
2 ,Â−1,2) = o2. Note that S \

{2} ∈ S1(Â3
1,Â↑

2 ,Â−1,2) and |S \ {2}| = K − 1. By the induction hypothesis, for
each i ∈ S \ {2}, fi(Â3

1,Â↑
2 ,Â−1,2) = TTCi(Â3

1,Â↑
2 ,Â−1,2). This together with

individual rationality implies that f1(Â3
1,Â↑

2 ,Â−1,2) = o3 and f2(Â3
1,Â↑

2 ,Â−1,2) =
o2.

Step 3: f1(Â↑
1 ,Â−1) = o3 and f2(Â↑

1 ,Â−1) 6= o3. By (18) and Step 1, strategy-
proofness implies f1(Â↑

1 ,Â−1) = o3, and thus, f2(Â↑
1 ,Â−1) 6= o3.

Step 4: Concluding. By f2(Â↑
1 ,Â−1) 6= o3 (Step 3), strategy-proofness and individ-

ual rationality together imply f2(Â↑
1 ,Â↑

2 ,Â−1,2) = o2. Thus, f1(Â↑
1 ,Â↑

2 ,Â−1,2) 6=
o2. Then, by f1(Â3

1,Â↑
2 ,Â−1,2) = o3 (Step 2) and strategy-proofness,

f1(Â↑
1 ,Â↑

2 ,Â−1,2) = o3.

Hence,

f2(Â↑
1 ,Â↑

2 ,Â−1,2) = o2 Â↑
1 o3 = f1(Â↑

1 ,Â↑
2 ,Â−1,2);
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f1(Â↑
1 ,Â↑

2 ,Â−1,2) = o3 Â↑
2 o2 = f2(Â↑

1 ,Â↑
2 ,Â−1,2),

in violation of pair-efficiency.

Now we prove Theorem 5.

Proof of Theorem 5. Because pair-efficiency is weaker than efficiency, the “if” part fol-
lows from Tamura (2023). Therefore, we show the “only if” part. Let f be a rule
satisfying the three axioms. We prove this by induction on the number of agents
n.

BASE STEP. Let n = 2. Each Â ∈ T N
G falls into one of the following three

categories:

(i)
Âi Âj

oj oi

oi oj

(ii)
Âi Âj

oi oi

oj oj

(iii)
Âi Âj

oi oj

oj oi

By Lemma 4, in case (i), fi(Â) = oj and f j(Â) = oi; and in cases (ii) and (iii),
fi(Â) = oi, which implies f j(Â) = oj. Hence, f (Â) = TTC(Â).

INDUCTION HYPOTHESIS. The theorem holds for each n ∈ {3, 4, . . . , m − 1}.

INDUCTION STEP. Let n = m and f be a rule on T N
G satisfying the three axioms.

Pick any Â∗ ∈ T N
G . Note that by Lemma 3, O1(Â∗) ⊆ L. Let N = N \ N1(Â∗)

and O = O \ O1(Â∗). If N1(Â∗) = N and O1(Â∗) = O, then by Lemma 4,
f (Â∗) = TTC(Â∗). Thus, we only consider the case where N1(Â∗) 6= N and
O1(Â∗) 6= O (that is, N 6= ∅ and O 6= ∅). We denote by XO the set of allocations
when the sets of agents and objects are N and O, respectively; specifically,

XO =
{

y ∈ ON
: y is bijective

}
,

where ON
is the set of all mappings from N to O.

Given S ∈ S1(Â∗), it follows that for each ÂN ∈ T N
G , S ∈ S1(Â∗

N1(Â∗),ÂN).

This together with Lemma 4 implies that for each ÂN ∈ T N
G and each i ∈ N1(Â∗),

fi(Â∗
N1(Â∗),ÂN) = TTCi(Â∗

N1(Â∗),ÂN) = fi(Â∗). (19)

By (19), we focus on the “reduced” economy consisting of the set of agents
N and the set of objects O. Then, we construct a graph G = (O, E), where
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E = {{o, o′} ∈ E : {o, o′} ⊂ O}. Because O = O \ O1(Â∗) and O1(Â∗) ⊆ L,
by Lemma 2.1.3 in West (2001), G is a tree. For each {o′, o′′} ⊂ O with o′ 6= o”, we
denote by [o′, o′′] the unique path from o′ to o′′ in the tree G. Let TG be the class
of single-dipped preference relations on the tree G. For each i ∈ N, let Â∗

i |O be a
preference relation over O such that for each pair {o, o′} ⊆ O,

o Â∗
i |O o′ ⇐⇒ o Â∗

i o′. (20)

However, just because Â∗
i is single-dipped on the tree G does not guarantee that

Â∗
i |O will be single-dipped on the tree G. The following claim states that Â∗

i |O is
in fact single-dipped on the tree G.

Claim 1. For each i ∈ N , Â∗
i |O ∈ TG.

Proof of Claim 1. Let d be i’s worst object in O according to Â∗
i |O. Then, d ∈ O and

for each o ∈ O \ {d}, o Â∗
i |O d. Next, let {o′, o′′} ⊂ O \ {d} be such that o′ 6= o”

and o′ ∈ [d, o′′] = (o1 = d, o2, . . . , oK = o′′). For each k ∈ {1, 2, . . . , K − 1}, by
{ok, ok+1} ∈ E, {ok, ok+1} ∈ E. Hence, [d, o′′] = [d, o′′]. There are two cases.

• Case 1: d(Â∗
i ) ∈ O. It is evident that d = d(Â∗

i ). By Â∗
i ∈ TG and o′ ∈ [d =

d(Âi), o′′], o′′ Â∗
i o′. Thus, by {o′, o”} ⊂ O and (20), o′′ Â∗

i |O o′.

• Case 2: d(Â∗
i ) /∈ O. Then, d(Â∗

i ) ∈ O1(Â∗) ⊂ L. Thus, deg(d(Â∗
i )) = 1. Let

o∗ ∈ O be the unique object such that {d(Â∗
i ), o∗} ∈ E. Then, o∗ ∈ O.18 We now

show that o∗ = d; that is, for each o ∈ O \ {o∗}, o Â∗
i |O o∗. Let o ∈ O \ {o∗}.

Note that by d(Â∗
i ) /∈ O, o 6= d(Â∗

i ). By o ∈ O and o 6= d(Â∗), we find [d(Â∗
i ),

o] = (ô1 = d(Â∗
i ), ô2, . . . , ôK̄ = o). Because o∗ is the unique object such that

{d(Â∗
i ), o∗} ∈ E, ô2 = o∗. Thus, o∗ ∈ [d(Â∗

i ), o]. Given that Â∗
i ∈ TG, o Â∗

i o∗.
Therefore, by {o∗, o} ⊂ O and (20), o Â∗

i |O o∗. Moreover, since [d = o∗, o′′] and
{d(Â∗

i ), o∗} ∈ E, we find the path from d(Â∗
i ) to o′′, [d(Â∗

i ), o′′] = (d(Â∗
i ), d =

o∗, . . . , o′′). By o′ ∈ [d, o′′] = [d, o′′], o′ ∈ [d(Â∗
i ), o′′]. Since Â∗

i ∈ TG, o′′ Â∗
i o′.

Hence, by {o′, o′′} ⊂ O and (20), o′′ Â∗
i |O o′.

For each i ∈ N and each ÂG
i ∈ TG, we associate it with the preference relation

over Âi ∈ P that satisfies the following two conditions:

PG1. If ÂG
i = Â∗

i |O, then Âi = Â∗
i .

18If o∗ ∈ O1(Â∗), then o∗ ∈ L and deg(o∗) = 1. This implies that O = {d(Â∗
i ), o∗}, E ={

{d(Â∗
i ), o∗}

}
, and O1(Â∗) = O, a contradiction.
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PG2. If ÂG
i 6= Â∗

i |O, then Âi satisfies the following:

(i) for each o ∈ O1(Â∗) and o′ ∈ O,

o Âi o′;

(ii) for each pair {o, o′} ⊆ O,

o Âi o′ ⇐⇒ o ÂG
i o′;

(iii) for each pair {o, o′} ⊆ O1(Â∗),

o Âi o′ ⇐⇒ o Â∗
i o′.

Note that because of Claim 1, we observe that PG1 makes sense. The following
claim states that under PG1 and PG2, the preference relation Âi ∈ P associated
with each ÂG

i ∈ TG is single-dipped on G.

Claim 2. For each ÂG
i ∈ TG, let Âi ∈ P be a preference relation associated with ÂG

i
under PG1 and PG2. Then, Âi ∈ TG.

Proof of Claim 2. Let ÂG
i ∈ TG and Âi ∈ P be a preference relation associated

with ÂG
i under PG1 and PG2. If ÂG

i = Â∗
i |O, it follows from PG1 that Âi = Â∗

i ∈
TG. Thus, we consider the case ÂG

i 6= Â∗
i |O. Let d ∈ O be such that for each

o ∈ O \ {d}, o ÂG
i d. By PG2, d(Âi) = d. Let {o, o′} ⊂ O \ {d} be such that o 6= o′

and o ∈ [d, o′] = (o1 = d, o2, . . . , oK = o′). Note that for each k ∈ {2, 3, . . . , K − 1},
by

{
{ok−1, ok}, {ok, ok+1}

}
⊂ E, deg(ok) ≥ 2. This together with O1(Â∗) ⊂ L and

Lemma 3 implies that for each k ∈ {2, 3, . . . , K − 1}, ok ∈ O. By o /∈ {d, o′}, there
is k /∈ {1, K} such that ok = o and thus, o ∈ O. There are two cases.

• Case 1: o′ ∈ O1(Â∗). By o ∈ O and PG2(i), o′ Âi o.

• Case 2: o′ ∈ O. By {o1 = d, o2, . . . , oK = o′} ⊂ O, [d, o′] = (o1, o2, . . . , oK) =
[d, o′]. Because o = ok ∈ [d, o′] and ÂG

i ∈ TG, o′ ÂG
i o. Hence, by {o, o′} ⊂ O and

PG2(ii), o′ Âi o.

From Cases 1 and 2, Âi ∈ TG.

We now define a rule g : T N
G

→ XO as follows:

∀ÂG ∈ T N
G , ∀ i ∈ N, gi(ÂG) = fi(Â∗

N1(Â∗),ÂN), (21)
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where for each i ∈ N, Âi is a preference relation associated with ÂG
i under PG1

and PG2. Note that by (19), Claim 2, and the definition of fi, g is well-defined. Be-
cause f satisfies individual rationality, strategy-proofness, and pair-efficiency, g also
satisfies these three axioms. According to the induction hypothesis,

∀ÂG ∈ T N
G , ∀ i ∈ N, gi(ÂG) = TTCi(ÂG). (22)

Let Â∗|O = (Â∗
i |O)i∈N. Note that by Claim 1, Â∗|O ∈ T N

G
, and by (20) and

PG1, for each i ∈ N, Â∗
i is associated with Â∗

i |O. Hence, it follows from (21) and
(22) that

∀ i ∈ N, TTCi(Â∗|O) = gi(Â∗|O) = fi(Â∗
N1(Â∗),Â

∗
N) = fi(Â∗). (23)

It is evident that
∀ i ∈ N, TTCi(Â∗|O) = TTCi(Â∗).

Hence, by (19) and (23), we have f (Â∗) = TTC(Â∗).

Remark 7. The structure of our proof of Theorem 5 is similar to that of Fujinaka
and Wakayama (2018), who provide a characterization of TTC on the domain of
strict preferences. We can apply the proof of Theorem 5 to the domain of strict
preferences by abbreviating some steps in the proof of Theorem 5. As mentioned
in Remark 5, this allows us to provide an alternative proof for the characterization
of TTC proposed by Ekici (2024). Specifically, when handling the unrestricted
domain of strict preferences, we can omit proving both Claim 1 and Claim 2,
which state that Â∗

i |O and a preference relation Âi ∈ P associated with ÂG
i under

PG1 and PG2 is single-dipped on G. ♦
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Online Appendix to
“Reallocation-proofness in object reallocation

problems with single-dipped preferences”
by Fujinaka and Wakayama (September 26, 2024)

C Appendix: Proof of Theorem 2

Because pair-efficiency is weaker than efficiency, the “if” part follows from Tamura
(2023). Thus, we show the “only if” part. We now demonstrate that for each
t ∈ N, each Â ∈ S N

∨ , and each i ∈ Nt(Â), fi(Â) = TTCi(Â). We prove this by
induction on t.

BASE STEP. Let t = 1. Let Â ∈ S N
∨ and S ∈ S1(Â). By Fact 1, S ∈ {{1, n}, {1}, {n}}.

There are two cases.

• Case 1: S ∈ {{1}, {n}}. Without loss of generality, we assume S = {1}. Then,
b (Â1, O) = o1. Hence, by individual rationality, f1(Â) = o1 = TTC1(Â).

• Case 2: S = {1, n}. Then, b (Â1, O) = on and b (Ân, O) = o1. Suppose on the
contrary that

( f1(Â), fn(Â)) 6= (TTC1(Â), TTCn(Â)) = (on, o1).

Without loss of generality, we assume f1(Â) 6= on. Let (Â↑
1 ,Â↑

n) ∈ S∨ × S∨ be
such that

Â↑
1 Â↑

n

on o1

o1 on
...

...

By strategy-proofness and individual rationality,

f1(Â↑
1 ,Â−1) = o1 and fn(Â↑

1 ,Â−1) 6= o1.

Additionally, by strategy-proofness and individual rationality,

f1(Â↑
S,Â−S) = o1 and fn(Â↑

S,Â−S) = on.
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Hence,

fn(Â↑
S,Â−S) = on Â↑

1 o1 = f1(Â↑
S,Â−S);

f1(Â↑
S,Â−S) = o1 Â↑

n on = fn(Â↑
S,Â−S),

in violation of pair-efficiency.

INDUCTION HYPOTHESIS. For each t ∈ {1, 2, . . . , r − 1}, each Â ∈ S N
∨ , and each

i ∈ Nt(Â), fi(Â) = TTCi(Â).

INDUCTION STEP. Let t = r. By the induction hypothesis, for each Â′ ∈ S N
∨ ,

Or−1(Â′) =
{

o ∈ O : ∃ i ∈ Nr−1(Â′), o = fi(Â′)
}

. (24)

Let Â ∈ S N
∨ . For each t ∈ N, we simply write `(t) (resp. h(t)) for `(Â, t)

(resp. h(Â, t)). Let S ∈ Sr(Â). By Fact 1, S ∈
{
{`(r), h(r)}, {`(r)}, {h(r)}

}
. There

are two cases.

• Case 1: S ∈ {{`(r)}, {h(r)}}. Without loss of generality, we assume S =
{`(r)}. Then, TTC`(r)(Â) = o`(r) and

b
(
Â`(r), O \ Or−1(Â)

)
= o`(r). (25)

It follows from (24) that
f`(r)(Â) ∈ O \ Or−1(Â). (26)

By (25) and (26), individual rationality implies f`(r)(Â) = o`(r) = TTC`(r)(Â).

• Case 2: S = {`(r), h(r)}. Then, TTC`(r)(Â) = oh(r) and TTCh(r)(Â) = o`(r),
and

b
(
Â`(r), O \ Or−1(Â)

)
= oh(r) and b

(
Âh(r), O \ Or−1(Â)

)
= o`(r). (27)

It follows from (24) that

{ f`(r)(Â), fh(r)(Â)} ⊆ O \ Or−1(Â). (28)

Suppose on the contrary that

( f`(r)(Â), fh(r)(Â)) 6= (TTC`(r)(Â), TTCh(r)(Â)) = (oh(r), o`(r)).
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Without loss of generality, we assume

f`(r)(Â) 6= oh(r). (29)

By Fact 1, for each t ∈ N, Nt(Â) ⊂ {`(t), h(t)}. This implies

O \ Or−1(Â) = {oi ∈ O : `(r) ≤ i ≤ h(r)}. (30)

Now we proceed in four steps.

Step 1: Defining a preference profile Â↑
S . Let NL = {i ∈ Nr−1(Â) : 1 ≤ i < `(r)}

and NR = {i ∈ Nr−1(Â) : h(r) < i ≤ n}. Note that NL ∪ NR = Nr−1(Â). Let
Â↑

S ∈ S∨ ×S∨ be such that:

(i) for each i ∈ NL, each j ∈ NR, and each k ∈ N \
(

Nr−1(Â) ∪ {`(r), h(r)}
)
,

oi Â↑
`(r) oj Â↑

`(r) oh(r) Â
↑
`(r) o`(r) Â

↑
`(r) ok,

oi Â↑
h(r) oj Â↑

h(r) o`(r) Â
↑
h(r) oh(r) Â

↑
`(r) ok;

(ii) for each {i, i′} ⊆ NL, if i < i′, then oi Â↑
`(r) oi′ and oi Â↑

h(r) oi′ ;

(iii) for each {j, j′} ⊆ NR, if j < j′, then oj′ Â↑
`(r) oj and oj′ Â↑

h(r) oj.

Figure 1 illustrates profile Â↑
S. Furthermore, this profile can be represented as

follows:

Â↑
`(r) Â↑

h(r)

o1 o1
...

...
o`(r)−1 o`(r)−1

on on
...

...
oh(r)+1 oh(r)+1

oh(r) o`(r)

o`(r) oh(r)
...

...

By (30) and the conditions (i)–(iii) of Â↑
S, we observe that Â↑

S satisfies the follow-
ing:
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Â↑
h(r)

Â↑
`(r)

o1 · · · o`(r)−1 o`(r) o`(r)+1 · · · oh(r)oh(r)−1 oh(r)+1 · · · on

t t t t t t t t

t
t t

tt tt t

t
t

t

ttt

tt

Figure 1: An illustration of Â↑
S in the proof of Theorem 2.

PL. b
(
Â↑

`(r), O \ Or−1(Â)
)

= oh(r) and b
(
Â↑

`(r), O
∖(

Or−1(Â) ∪ {oh(r)}
))

= o`(r).

PH. b
(
Â↑

h(r), O \ Or−1(Â)
)

= o`(r) and b
(
Â↑

h(r), O
∖(

Or−1(Â) ∪ {o`(r)}
))

=
oh(r).

Let Ẫ ∈ {(Â↑
S,Â−S), (Â↑

`(r),Â−`(r))}. Note that Ẫ ∈ S N
∨ .

Step 2: For each i ∈ Nr−1(Â), fi(Ẫ) = TTCi(Â). Let i ∈ Nr−1(Â). Then, there
is t ∈ {1, 2, . . . , r − 1} with i ∈ M ∈ St(Â). By Lemma 2, there is tM ∈ {1, 2, . . . , t}
with M ∈ StM(Ẫ). Thus, it follows that i ∈ Nr−1(Ẫ), which together with the
induction hypothesis implies

fi(Ẫ) = TTCi(Ẫ). (31)

Hence,

fi(Ẫ)
(by (31))

= TTCi(Ẫ)
(by Lemma 1)

= TTCi(Â).

Step 3: { f`(r)(Ẫ), fh(r)(Ẫ)} ⊆ O \ Or−1(Â). Let o ∈ Or−1(Â). Then, there is
i ∈ Nr−1(Â) such that TTCi(Â) = o. By Step 2, fi(Ẫ) = o, which implies that
f`(r)(Ẫ) 6= o and fh(r)(Ẫ) 6= o. Therefore, { f`(r)(Ẫ), fh(r)(Ẫ)} ⊆ O \ Or−1(Â).

Step 4: Concluding. By (27)–(29), strategy-proofness implies f`(r)(Â
↑
`(r),Â−`(r)) 6=

oh(r); otherwise, f`(r)(Â
↑
`(r),Â−`(r)) = oh(r) Â`(r) f`(r)(Â), in violation of strategy-
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proofness. Then, by PL and Step 3, individual rationality implies that

f`(r)(Â
↑
`(r),Â−`(r)) = o`(r);

fh(r)(Â
↑
`(r),Â−`(r)) ∈ O

∖(
Or−1(Â) ∪ {o`(r)}

)
.

Furthermore, by (27), PL, PH, and Step 3, strategy-proofness and individual rational-
ity together imply that

f`(r)(Â
↑
S,Â−S) = o`(r) and fh(r)(Â

↑
S,Â−S) = oh(r).

Hence, by PL and PH,

fh(r)(Â
↑
S,Â−S) = oh(r) Â

↑
`(r) o`(r) = f`(r)(Â

↑
S,Â−S);

f`(r)(Â
↑
S,Â−S) = o`(r) Â

↑
h(r) oh(r) = fh(r)(Â

↑
S,Â−S),

in violation of pair-efficiency.

From Cases 1 and 2, for each i ∈ Nr(Â), fi(Â) = TTCi(Â). ¤

D Appendix: Omitted proofs in the main text

D.1 Remark 2

Here, we provide a rule that is pair-efficient but not self-enforcing reallocation-proof.
Suppose n = 4. Let Âijk

0 ∈ S∨ be a preference relation such that

Âijk
0

oi

oj

ok

om

and let f ∗ : S N
∨ → X be a rule such that for each Â ∈ S N

∨ ,

f ∗(Â) =


(o3, o1, o2, o4) if Â ∈ S ∗

∨

(o4, o2, o1, o3) if Â = (Â432
1 ,Â123

2 ,Â123
3 ,Â432

4 )

TTC(Â) otherwise,
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where

S ∗
∨ =

{
(Â123

1 ,Â412
2 ,Â123

3 ,Â432
4 ), (Â432

1 ,Â412
2 ,Â123

3 ,Â432
4 ), (Â123

1 ,Â123
2 ,Â123

3 ,Â432
4 )

}
.

It is easy to see that this rule satisfies pair-efficiency. To observe that f ∗ violates self-
enforcing reallocation-proofness, let Â′ = (Â123

1 ,Â412
2 ,Â123

3 ,Â432
4 ) ∈ S ∗

∨ . Note that{
(Â432

1 ,Â′
−1), (Â123

2 ,Â′
−2)

}
⊂ S ∗

∨ and (Â432
1 ,Â123

2 ,Â′
−1,2) /∈ S ∗

∨ . It then follows
that

f ∗1 (Â′) = f ∗1 (Â432
1 ,Â′

−1) = o3 6= o4 = f ∗1 (Â432
1 ,Â123

2 ,Â′
−1,2);

f ∗2 (Â′) = f ∗2 (Â123
2 ,Â′

−2) = o1 6= o2 = f ∗2 (Â432
1 ,Â123

2 ,Â′
−1,2);

f ∗2 (Â432
1 ,Â123

2 ,Â′
−1,2) = o2 Â′

1 o3 = f ∗1 (Â′);

f ∗1 (Â432
1 ,Â123

2 ,Â′
−1,2) = o4 Â′

2 o1 = f ∗2 (Â′).

This implies that f ∗ violates self-enforcing reallocation-proofness. ¤

D.2 Example 2

Here, we show that IR12¬ satisfies reallocation-proofness. Let Â ∈ S N
∨ , {i, j} ⊂ N,

and Â′ = (Â′
i,Â′

j,Âk) ∈ S N
∨ .

• Case 1: Â = Â12. Then, IR12¬(Â) = (o1, o3, o2). Because IR12¬
1 (Â) = b(Â1, O),

agent 1 has no incentive to collude with another agent at Â. Hence, we consider
the case where {i, j} = {2, 3}. Then, Â′

1 = Â1 = Â12
1 . Thus, if Â′ 6= Â12, by

individual rationality, IR12¬
1 (Â′) = TTC1(Â′) = o1; if Â′ = Â12, IR12¬

1 (Â′) = o1.
That is, in both cases, IR12¬

1 (Â′) = o1. Because IR12¬
2 (Â′) ∈ {o2, o3},

IR12¬
3 (Â) = o2 %3(= %12

3 ) IR12¬
2 (Â′).

This implies that agent 3 has no incentive to collude with agent 2 at Â.

• Case 2: Â 6= Â12 and Â′ 6= Â12. Then, IR12¬(Â) = TTC(Â) and IR12¬(Â′)
= TTC(Â′). Hence, by reallocation-proofness of TTC, no pair of agents has an
incentive to collude at Â.

• Case 3: Â 6= Â12 and Â′ = Â12. Then, IR12¬(Â) = TTC(Â) and IR12¬(Â′) =
(o1, o3, o2). We further distinguish three subcases.

◦ Subcase 3-1: {i, j} = {1, 2}. Then, Â3 = Â′
3 = Â12

3 . In Round 1 of the TTC
algorithm at Â, agent 1 points to either himself or agent 3 and agent 3 points to
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agent 1. This implies IR12¬
1 (Â) = TTC1(Â) = b(Â1, O). Hence, agent 1 has no

incentive to collude with agent 2 at Â.

◦ Subcase 3-2: {i, j} = {1, 3}. In Round 1 of the TTC algorithm at Â, agent 1
points to either himself or agent 3 and agent 3 points to either himself or agent 1.
This implies either IR12¬

1 (Â) = TTC1(Â) = b(Â1, O) or IR12¬
3 (Â) = TTC3(Â) =

b(Â3, O). Hence, this pair has no incentive to collude at Â.

◦ Subcase 3-3: {i, j} = {2, 3}. By individual rationality of TTC,

IR12¬
2 (Â) = TTC2(Â) %2 o2 = IR12¬

3 (Â′).

Hence, agent 2 has no incentive to collude with agent 3 at Â. ¤

D.3 Example 3

Here, we show that f
−→
123 satisfies reallocation-proofness. Let Â ∈ S N

∨ , {i, j} ⊂ N,
and Â′ = (Â′

i,Â′
j,Â−i,j) ∈ S N

∨ . There are three cases.

• Case 1: Â = Â?. Then, f
−→
123(Â) = (o2, o3, o1, o4). Because f

−→
123
3 (Â) = b(Â3, O)

and f
−→
123
4 (Â) = b(Â4, O), it suffices to consider the case {i, j} = {1, 2}. If Â′ = Â?,

then f
−→
123
2 (Â) = o3 Â2 o2 = f

−→
123
1 (Â′), which implies that agent 2 has no incentive

to collude with agent 1. If Â′ 6= Â?, then f
−→
123(Â′) = TTC(Â′). Note that f

−→
123
4 (Â′)

= o4. This implies f
−→
123
1 (Â′) 6= o4. Hence, f

−→
123
2 (Â) = o3 %2 f

−→
123
1 (Â′), which

implies that agent 2 has no incentive to collude with agent 1 at Â.

• Case 2: Â 6= Â? and Â′ 6= Â?. Then, f
−→
123(Â) = TTC(Â) and f

−→
123(Â′)

= TTC(Â′). Hence, by reallocation-proofness of TTC, no pair of agents has an
incentive to collude at Â.

• Case 3: Â 6= Â? and Â′ = Â?. Then, f
−→
123(Â) = TTC(Â) and f

−→
123(Â′) =

(o2, o3, o1, o4). We further distinguish two cases.

◦ Subcase 3-1: {i, j} ∩ {4} = ∅. Then, {i, j} ⊂ {1, 2, 3}. Without loss of generality,
assume {i, j} = {1, 2}. Then, by individual rationality of TTC,

f
−→
123
2 (Â) = TTC2(Â) %2 o2 = f

−→
123
1 (Â′).

Thus, agent 2 has no incentive to collude with agent 1 at Â.

◦ Subcase 3-2: {i, j} ∩ {4} 6= ∅. If {i, j} = {1, 4}, then there is k ∈ {1, 4} such
that agent k receives b(Âk, O) in Round 1 of the TTC algorithm at Â. This implies
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that agent k has no incentive to collude with another agent. Next, we consider
the case where {i, j} ∈ {{2, 4}, {3, 4}}. By 1 /∈ {i, j}, Â1 = Â′

1 = Â?
1 . In Round 1

of the TTC algorithm at Â, agent 1 points to agent 4 and agent 4 points to either
himself or agent 1. This implies f

−→
123
4 (Â) = TTC4(Â) = b(Â4, O). Hence, agent 4

has no incentive to collude with any other agent at Â. ¤

D.4 Example 5

Here, we show that IR¬ satisfies strategy-proofness. Let Â ∈ T N
G , i ∈ N, Â′

i ∈ TG,
and Â′ = (Â′

i,Â−i). There are four cases.

• Case 1: {Â, Â′} ∩
(
TTT 1

G × {Â12
2 } ×TTT 1

G
)
= ∅. Then, IR¬(Â) = TTC(Â) and

IR¬(Â′) = TTC(Â′). Hence, strategy-proofness of TTC implies that agent i has no
incentive to misrepresent his preference relation.

• Case 2: {Â, Â′} ⊂ TTT 1
G ×{Â12

2 }×TTT 1
G. Then, IR¬(Â) = IR¬(Â′) = (o3, o2, o1).

Hence, agent i has no incentive to misrepresent his preference relation.

• Case 3: {Â, Â′}∩
(
TTT 1

G × {Â12
2 } ×TTT 1

G
)
= {Â′}. Then, IR¬(Â′) = (o3, o2, o1)

and IR¬(Â) = TTC(Â). We further distinguish three subcases.

◦ Subcase 3-1: i = 1. Then, Â1 ∈ T 3
G , Â′

1 ∈ T 1
G , and (Â2,Â3) ∈ {Â12

2 } × T 1
G .

Hence, IR¬
1 (Â) = TTC1(Â) = o3 = IR¬

1 (Â′), which implies that agent 1 has no
incentive to misrepresent his preference relation.

◦ Subcase 3-2: i = 2. By individual rationality of TTC, IR¬
2 (Â) = TTC2(Â) %2

o2 = IR¬
2 (Â′), which implies that agent 2 has no incentive to misrepresent his

preference relation.

◦ Subcase 3-3: i = 3. Then, Â3 ∈ T 3
G , Â′

3 ∈ T 1
G , and (Â1,Â2) ∈ T 1

G × {Â12
2 }.

Hence, IR¬
3 (Â) = TTC3(Â) = o3 Â3 o1 = IR¬

3 (Â′), which implies that agent 3
has no incentive to misrepresent his preferences relation.

• Case 4: {Â, Â′} ∩
(
TTT 1

G × {Â12
2 } ×TTT 1

G
)
= {Â}. Then, IR¬(Â) = (o3, o2, o1)

and IR¬(Â′) = TTC(Â′). We further distinguish three subcases.

◦ Subcase 4-1: i = 1. Then, Â1 ∈ T 1
G , Â′

1 ∈ T 3
G , and (Â2,Â3) ∈ {Â12

2 } × T 1
G .

Hence, IR¬
1 (Â) = o3 = TTC1(Â′) = IR¬

1 (Â′), which implies that agent 1 has no
incentive to misrepresent his preference relation.

◦ Subcase 4-2: i = 2. Then, Â2 = Â12
2 . Because Â1 ∈ T 1

G and IR¬(Â′) = TTC(Â′),
IR¬

2 (Â′) 6= o1. Hence, IR¬
2 (Â) = o2 %2 IR¬

2 (Â′), which implies that agent 2 has
no incentive to misrepresent his preference relation.
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◦ Subcase 4-3: i = 3. Then, Â3 ∈ T 1
G , Â′

3 ∈ T 3
G , and (Â1,Â2) ∈ T 1

G × {Â12
2 }.

Hence, IR¬
3 (Â) = o1 Â3 o3 = TTC3(Â′) = IR¬

3 (Â′), which implies that agent 3
has no incentive to misrepresent his preference relation. ¤

D.5 Example 6

Here, we show that SP∗¬ satisfies reallocation-proofness. Let Â ∈ T N
G , {i, j} ⊂ N,

and Â′ = (Â′
i,Â′

j,Âk) ∈ T N
G . There are three cases.

• Case 1: Â = (Â32
1 , Â32

2 , Â12
3 ). Then, SP∗¬(Â) = (o2, o3, o1). Note that SP∗¬

2 (Â)
= o3 = b(Â2 = Â32

2 , O) and SP∗¬
3 (Â) = o1 = b(Â3 = Â12

3 , O). Hence, no pair of
agents has an incentive to collude at Â.

• Case 2: Â 6= (Â32
1 , Â32

2 , Â12
3 ) and Â′ 6= (Â32

1 , Â32
2 , Â12

3 ). Then, SP∗¬(Â) =
TTC(Â) and SP∗¬(Â′) = TTC(Â′). Hence, by reallocation-proofness of TTC, no
pair of agents has an incentive to collude at Â.

• Case 3: Â 6= (Â32
1 , Â32

2 , Â12
3 ) and Â′ = (Â32

1 , Â32
2 , Â12

3 ). Then, SP∗¬(Â)
= TTC(Â) and SP∗¬(Â′) = (o2, o3, o1). Without loss of generality, we assume
{i, j} = {1, 2}. By individual rationality of TTC, SP∗¬

2 (Â) = TTC2(Â) %2 o2 =
SP∗¬

1 (Â′). Hence, agent 2 has no incentive to collude with agent 1 at Â. ¤

D.6 Example 7

Here, we show that IR∗¬ satisfies both strategy-proofness and reallocation-proofness.

D.6.1 Strategy-proofness

Let Â ∈ T N
G , i ∈ N, Â′

i ∈ TG, and Â′ = (Â′
i,Â−i). There are four cases.

• Case 1: {Â, Â′} ∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= ∅. Then, IR∗¬(Â) = TTC(Â) and

IR∗¬(Â′) = TTC(Â′). Hence, strategy-proofness of TTC implies that agent i has
no incentive to misrepresent his preference relation.

• Case 2: {Â, Â′} ⊂
(
TTT G ×TTT −12

G ×TTT 1
G

)
. Then, IR∗¬(Â) = IR∗¬(Â′). Hence,

agent i has no incentive to misrepresent his preference relation.

• Case 3: {Â, Â′} ∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= {Â′}. Then, i ∈ {2, 3}. We

observe that IR∗¬(Â′) = (o2, o3, o1) and IR∗¬(Â) = TTC(Â). We further distin-
guish two subcases.
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◦ Subcase 3-1: i = 2. Then, Â2 = Â12
2 and Â′

2 ∈ T −12
G . Because object o3 is agent

2’s worst one according to Â2 = Â12
2 , IR∗¬

2 (Â) %2 o3 = IR∗¬
2 (Â′), which implies

that agent 2 has no incentive to misrepresent his preference.

◦ Subcase 3-2: i = 3. Then, Â3 ∈ T 3
G and Â′

3 ∈ T 1
G . Hence, IR∗¬

3 (Â) = o3 Â3

o1 = IR∗¬
3 (Â′), which implies that agent 3 has no incentive to misrepresent his

preference.

• Case 4: {Â, Â′} ∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= {Â}. Then, i ∈ {2, 3}. Moreover,

we observe that IR∗¬(Â) = (o2, o3, o1) and IR∗¬(Â′) = TTC(Â′). We further
distinguish two subcases.

◦ Subcase 4-1: i = 2. Then, Â2 ∈ T −12
G and Â′

2 = Â12
2 . We first consider the

case Â2 ∈ T 3
G . Then, IR∗¬

2 (Â) = o3 = b(Â2, O). Thus, he has no incentive
to misrepresent his preference. We next consider the case Â2 = Â13

2 . In Round
1 of the TTC algorithm at Â′, agent 1 points to either himself or agent 3 and
both agent 2 and 3 point to agent 1. In either case, IR∗¬

2 (Â′) 6= o1. Because
IR∗¬

2 (Â′) ∈ {o2, o3}, IR∗¬
2 (Â) = o3 %2 (= %13

2 ) IR∗¬
2 (Â′), which implies that

agent 2 has no incentive to misrepresent his preference.

◦ Subcase 4-2: i = 3. Then, Â3 ∈ T 1
G and Â′

3 ∈ T 3
G . This implies IR∗¬

3 (Â) = o1 =
b(Â3, O). Hence, he has no incentive to misrepresent his preference. ¤

D.6.2 Reallocation-proofness

Let Â ∈ T N
G , {i, j} ⊂ N, and Â′ = (Â′

i,Â′
j,Âk) ∈ T N

G . There are four cases.

• Case 1: {Â, Â′} ∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= ∅. Then, IR∗¬(Â) = TTC(Â) and

IR∗¬(Â′) = TTC(Â′). Hence, by reallocation-proofness of TTC, no pair of agents
has an incentive to collude.

• Case 2: {Â, Â′}∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= {Â}. Then, IR∗¬(Â) = (o2, o3, o1)

and IR∗¬(Â′) = TTC(Â′). By Â3 ∈ T 1
G , IR∗¬

3 (Â) = o1 = b(Â3, O), which
implies that he has no incentive to collude with another agent. Moreover, if Â2 ∈
T 3

G , then IR∗¬
2 (Â) = o3 = b(Â2, O), which implies that he has no incentive to

collude with another agent. Thus, we consider the case {i, j} = {1, 2} and Â2 =
Â13

2 . By Â ∈ TG × T −12
G × T 1

G and (Â′
1,Â′

2,Â3) /∈ TG × T −12
G × T 1

G , Â′
2 = Â12

2 .
In Round 1 of the TTC algorithm at Â′, agent 1 points to either himself or agent
3 and both agents 2 and 3 point to agent 1. Hence, TTC2(Â′) 6= o1. By inidividual
rationality of TTC and Â′

2 = Â12
2 , IR∗¬

2 (Â′) = TTC2(Â′) = o2. Hence, IR∗¬
1 (Â) =
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o2 = IR∗¬
2 (Â′), which implies that agent 1 has no incentive to collude with agent

2.

• Case 3: {Â, Â′} ∩
(
TTT G ×TTT −12

G ×TTT 1
G

)
= {Â′}. Then, IR∗¬(Â) = TTC(Â)

and IR∗¬(Â′) = (o2, o3, o1). Without loss of generality, we assume {i, j} = {1, 2}.
By individual rationality of TTC, IR∗¬

2 (Â) = TTC2(Â) %2 o2 = IR∗¬
1 (Â′). Hence,

agent 2 has no incentive to collude with agent 1 at Â.

• Case 4: {Â, Â′} ⊂ TTT G × TTT −12
G × TTT 1

G. Then, IR∗¬(Â) = IR∗¬(Â′) =
(o2, o3, o1). By Â3 ∈ T 1

G , IR∗¬
3 (Â) = o1 = b(Â3, O), which implies that he has

no incentive to collude with another agent. Additionally, if Â2 ∈ T 3
G , because

IR∗¬
2 (Â) = o3 = b(Â2, O), which implies that he has no incentive to collude with

another agent. We now consider the case {i, j} = {1, 2} and Â2 = Â13
2 . Then,

IR∗¬
2 (Â) = o3 Â2 (= Â13

2 ) o2 = IR∗¬
1 (Â′). Hence, agent 2 has no incentive to

collude with agent 1. ¤

D.7 Remark 6

We first show that SP¬ violates reallocation-proofness. Let Â = (Â32
1 ,Â12

2 ,Â13
3 ) and

Â′ = (Â12
1 ,Â2 = Â12

2 ,Â32
3 ). Note that SP¬(Â) = (o2, o1, o3) and SP¬(Â′) =

TTC(Â′) = (o1, o2, o3). Hence,

SP¬
3 (Â′) = TTC3(Â′) = o3 Â1 (= Â32

1 ) o2 = SP¬
1 (Â);

SP¬
1 (Â′) = TTC1(Â′) = o1 Â3 (= Â13

3 ) o3 = SP¬
3 (Â),

which implies that SP¬ violates reallocation-proofness.
Next, we show IR¬ violates reallocation-proofness. Let Â = (Â12

1 ,Â12
2 ,Â13

3 ) ∈
T 1

G × {Â12
2 } ×T 1

G and Â′ = (Â12
1 ,Â13

2 ,Â13
3 ). Note that IR¬(Â) = (o3, o2, o1) and

IR¬(Â′) = TTC(Â′) = (o1, o2, o3). Hence,

IR¬
2 (Â′) = o2 Â1(= Â12

1 ) o3 = IR¬
1 (Â);

IR¬
1 (Â′) = o1 Â2(= Â12

2 ) o2 = IR¬
2 (Â),

which implies that IR¬ violates reallocation-proofness. ¤
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