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Abstract

This study examines procurement auctions in which bidders submit price

and quality, and bids are evaluated using a price-per-quality-ratio (PQR) scor-

ing rule. We formulate a model of scoring auctions in which bidder cost is

determined by a unidimensional type and a unidimensional quality and then

characterize the equilibrium bidding behavior for the first-score and second-

score auctions. In contrast to well-known quasilinear scoring rules in which

price and quality are additively separable and the score is linear in price, the

equivalence theorem does not hold between the auction formats in our setup.

We show that the second-score auction yields a lower (better) expected score
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than the first-score auction. We also provide a set of conditions under which

expected quality and price are higher in the first-score auction than in the

second-score auction. Finally, we show how these results can be extended to

other non-quasilinear scoring rules.

Keywords: multidimensional bidding, scoring auctions, procurement, price-

per-quality-ratio scoring rule

JEL codes: D44, H57, L13

1 Introduction

Due to the rapid accumulation of public debt in recent years, many countries face

increased pressure to ensure value for money in their procurement practices. While

low-price auctions have traditionally been used as a competitive and transparent

allocation mechanism, there is a growing trend among procurement buyers to assess

not only prices but also non-monetary attributes such as delivery time, design and

quality. The scoring auction is one of the prevailing mechanisms that aims to achieve

both price competition and value for money at the same time.

In a scoring auction, each bidder submits a multidimensional bid that consists of

price and non-monetary attributes (henceforth, quality), and then a pre-announced

scoring rule assigns a score to each bid to rank the bidders in the auction. The semi-

nal paper by Che (1993) shows that scoring auctions under a symmetric independent

private value setting can be reduced to the canonical model of unidimensional bid

auctions as long as the scoring rule is quasilinear (QL);1 that is, score is linear in

price and additively separable from quality. Hence, the well-known revenue equiv-

alence theorem applies to scoring auctions with QL scoring rules, and equivalence

results with respect to price and quality hold between several auction formats. Since

then, the simplicity of this framework has attracted a growing amount of theoretical

and empirical attention.

1In this paper, we use the abbreviation QL only for quasilinear scoring rules but not for other

situations such as the quasilinearity of the payoff function.
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In real-world procurement auctions, however, a variety of scoring rules are used

that are not quasilinear. A typical example is the “price-per-quality-ratio” (PQR)

scoring rule in which a score is given by the price bid divided by the quality bid.

Many state Departments of Transportation (DOTs) in the United States, including

those in Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota,

have adopted the PQR-equivalent “adjusted bid,” and the Department of Health

and Aging in Australia also employs a PQR awarding rule to achieve better returns

on public investment (The Department of Health and Ageing, Australia, 2011). In

addition, most public procurement contracts in Japan are allocated to the bidder

with the highest price-per-quality bid ratio. However, despite the frequent use of

PQR and other non-QL scoring rules in the real world, little is known about their

properties.2

In this paper, we provide a theoretical analysis of PQR scoring auctions in order

to acquire a deeper understanding of bidding behavior and outcomes of non-QL

scoring auctions. We follow Che (1993) by focusing on settings with a unidimensional

private signal and unidimensional quality level, and we characterize bidding behavior

and compare auction outcomes for the following two auction formats: first-score (FS)

and second-score (SS) auctions. In an FS auction, the winner delivers quality at the

price specified in its bid, and in an SS auction, the winner is free to choose any

price–quality pair as long as its score matches the score of the most-competitive

rival. In our model, the winner of both auctions is the lowest-score bidder.

To date, the existing literature analyzes scoring auctions by transforming multidimensional-

bid auctions into a unidimensional score-bid auction game (e.g., Che, 1993, Asker

and Cantillon, 2008). In this reduced-form auction game, bidders select their profit-

maximizing contract (i.e., a price–quality pair) for each feasible score, taking the

scoring rule as given. The bidder’s profit is reduced to an indirect payoff function

2While bid ranking is preserved in any monotonic transformation of the scoring rule, this trans-

formation does not generally convert a non-QL scoring rule into a QL rule. If, for instance, we take

a logarithm of the price-per-quality-ratio scoring rule, score is not linear in price anymore and so a

necessary condition for quasilinearity is violated.
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in score, and bidders play an auction game with respect to score bids. Che (1993)

demonstrates that under a QL scoring rule, any scoring auction can be reduced to a

score-bid auction in which the bidder’s indirect payoff is quasilinear with respect to

the score bid. This means that the well-understood results of auction theory such as

revenue equivalence apply to QL scoring auctions. However, if the scoring function is

not QL, the bidder’s indirect payoff function is also generally not quasilinear, leading

to a breakdown of equivalence and thus making it more challenging to characterize

the properties of equilibrium price and quality and to draw implications.3

We first demonstrate that under a PQR scoring rule a symmetric Bayesian Nash

equilibrium exists in both FS and SS auctions for a broad class of cost functions and

we then show that FS auctions yield higher (worse) expected scores than SS auctions.

Under the PQR scoring rule, bidders choose higher quality as the score increases,

leading to the profit from winning bids being a convex function in score. This means

that bidders are “risk-loving” in score, taking on greater risk for potentially larger

winning profits in FS auctions. Consequently, the FS auction yields a higher expected

score than the SS auction in equilibrium, which is similar to the findings of Maskin

and Riley (1984) with non-risk-neutral bidders. This suggests that SS auctions are

more favorable than FS auctions to buyers seeking to decrease price per quality.

To present more comprehensive arguments regarding the differences between FS

and SS auctions, we analyze the equilibrium quality and price and then establish

sets of conditions under which FS auctions produce a higher expected quality and

price than in SS auctions. We observe that under these conditions both the quality

and price chosen by the bidder increase with score, which leads to expected quality

and price being higher in the FS auction than in the SS auction. These findings

suggest that when the bidders’ scores are sorted by price-per-quality, the contracted

quality and prices are more likely to be skewed upward in the FS auction than in

the SS auction.

3When analyzing FS auctions, for example, we need to clarify not only a scalar variable which is

the equivalent of type in a standard auction model (pseudotype in Asker and Cantillon (2008) and

productive potential in Che (1993)) but also the curvature of the indirect payoff function.
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It is worth noting that, contrary to the apparent implications of the relative

score ranking discussed above, an FS auction may actually be more beneficial for

the buyer than an SS auction. We find certain specifications of the cost function

in which the FS auction offers higher expected quality than the SS auction while

the expected price is equivalent or even lower. This counterintuitive outcome can

be explained as follows: First, given that the winner’s type is fixed, the equilibrium

score for the FS auction is deterministic while it remains random for the SS auction.

Second, as quality increases with score and price is the product of quality and score,

price is more sensitive than quality to a change in score and is likely to be convex.

Combining these characteristics, the expected price ranking is more ambiguous than

the expected quality ranking, leading to a possibility of higher prices on average in the

SS auction compared to the FS auction. In summary, although the FS auction may

appear disadvantageous initially, it can deliver favorable outcomes for buyers under

certain conditions, which underscores the complexity of the PQR scoring auction

and our motivation for studying it further.

Further, since price-only auctions are also widely used in practice, we compare

PQR scoring to price-only auctions and find that PQR scoring auctions lead to higher

quality and price than price-only auctions with minimum quality levels, which is

consistent with studies of auctions using QL scoring rules. Moreover, by connecting

traditional price theory to auction theory, we show that SS auctions using the PQR

scoring rule yield a lower price-per-quality ratio than second-price price-only auctions

at any quality level.

Lastly, we discuss how the equilibrium properties under the PQR scoring rule

can be generalized to other non-QL scoring rules. We show that given a scoring

rule, the expected score in an FS auction is higher (lower) than in an SS auction

if the bidders’ indirect payoff function is convex (concave) in score. Moreover, we

examine key properties on scoring rules for convex/concave indirect payoffs in score.

Although quality and price rankings are ambiguous under general scoring rules, we

show that the property of the optimal quality function is crucial for our PQR scoring
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rule results. Thus, as for general scoring rules, it is an empirical question whether

FS auctions lead to higher expected quality and price than SS auctions. In addition,

we show that the equivalence theorem with respect to expected score, quality, and

price is a feature unique to the QL scoring rule.

Related Literature This paper contributes to the theoretical literature on scoring

auctions pioneered by Che (1993) which to date has focused on QL scoring auctions

in which price and quality are additively separable and price enters linearly into the

scoring rule. In Che (1993)’s original approach, scoring auctions are modelled in

such a way that the price and quality bids reduce to a model of auctions in which

bidders submit only scores as if it were a price-only auction. This research has been

extended to cases of interdependent cost (Branco, 1997), multidimensional signals

(Asker and Cantillon, 2008) and multidimensional quality (Nishimura, 2015). Fur-

thermore, Asker and Cantillon (2008, 2010), Awaya, Fujiwara and Szabo (2022) and

Sano (2023) compare the performance of QL scoring auctions and alternative mech-

anisms. While these previous studies focus on the properties of QL scoring auctions,

we extend these studies by comparing the performance of FS and SS auctions under

the non-QL PQR scoring rule.

In contrast to the research on scoring auctions using a QL scoring rule, there

are few papers to date that study scoring auctions in which price does not enter

linearly into the scoring rule, one of them being Wang and Liu (2014), who examine

the relation between the number of bidders and equilibrium price and quality in a

scoring auction with a non-QL scoring rule where price and quality are additively

separable. Meanwhile, Dastidar (2014) analyzes scoring auctions with a general

scoring rule and finds that the equilibrium bidding function of the FS auction is

explicitly obtained if the bidder’s cost function is additively separable in quality and

their private information. We build upon these studies by considering a broader class

of cost functions and by characterizing the equilibrium of PQR scoring auctions.

In another study, Hanazono, Hirose, Nakabayashi and Tsuruoka (2020), hence-
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forth HHNT, discuss the equilibrium existence and the structural estimation of FS

auctions incorporating general scoring rules and multidimensional private signals.

This paper complements HHNT in two ways. First, the cost structure does not fall

into that of HHNT despite multidimensionality: to ensure equilibrium existence,

HHNT require that the cost function have a private fixed cost component. This

paper covers the case of single-dimensional private signal on variable costs which is

out of scope in HHNT. Second, the results of comparing expected price, quality, and

score between different auction formats fails to obtain in HHNT because the mono-

tonicity of equilibrium on a single-dimensional signal space is intrinsically different

from that on a multidimensional signal space.

In addition to theoretical studies, empirical research on scoring auctions is grow-

ing as well (e.g., Lewis and Bajari, 2011; Koning and van de Meerendonk, 2014;

Decarolis, Spagnolo and Pacini, 2016; Iimi, 2016; Andreyanov, 2018; Takahashi,

2018; Huang, 2019; Krasnokutskaya, Song and Tang, 2020; Ryan, 2020; Kong, Per-

rigne and Vuong, 2022 and Allen, Clark, Hickman and Richert, 2023). Building on

the literature on scoring auctions, Bajari, Houghton and Tadelis (2014) and Bolot-

nyy and Vasserman (2023) develop structural auction models in which firms post

unit price bids for each item required to complete a construction project. Among

these studies, Takahashi (2018) examine scoring auctions with the PQR scoring rule

and quantify the impact of uncertainty on reviewers’ evaluations of quality. While

theoretical, our paper compares performance between PQR scoring auctions and

price-only auctions and so provides new empirically testable predictions that could

have important policy implications.

The remainder of the paper is organized as follows. Section 2 describes the

canonical model of scoring auctions in which they can be transformed into a unidi-

mensional score-bid auction game. In Section 3, we focus on the PQR scoring rule

and analyze symmetric equilibria in FS and SS auctions, comparing the expected

winning score, quality, and price of the two auction formats as well as the relative

performance of PQR scoring auctions and price-only auctions. Section 4 analyzes
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general scoring rules and characterizes the expected score rankings for FS and SS

auctions, and the final section concludes the paper.

2 Model

Consider that a procurement buyer auctions off a procurement contract to n ≥ 2

risk-neutral bidders who are all ex ante symmetric. Bidder i ’s private type is denoted

by θi and is independently and identically drawn from a cumulative distribution F

over Θ ≡ [θ, θ̄] ⊂ R+ with a continuous density f(θ) > 0 for every θ ∈ Θ. Let q ∈ R+

be a non-monetary attribute (quality) so that each bidder’s production cost is given

by C(q, θi). We assume that the cost function C is:

• thrice differentiable and strictly increasing in both q and θ (Cq, Cθ > 0);

• strictly convex in quality (Cqq > 0);

• exhibits non-decreasing differences (Cqθ ≥ 0); and

• there exists a sufficiently large number B > 0, and for all θ, Cq(q, θ) ≥ B for

some q > q.

Note that Cθ = ∂C/∂θ and that the other subscripts are defined in the same manner.

The production cost is increasing in quality and type so that a bidder of a lower type

is more efficient. The third assumption means that a bidder of a lower type has a

smaller marginal cost,4 and the last assumption guarantees that that an optimal

quality exists under the scoring auctions we consider.

When bidder i wins the auction and signs a contract with a price p and a quality

q, their payoff is given by

p− C(q, θi),

and we suppose that every losing bidder’s payoff is zero.

4The assumption Cqθ ≥ 0 is not necessary for most of the results. In particular, we can verify

that a symmetric Bayesian Nash equilibrium exists for the FS auction under Cqθ ≤ 0.
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In a scoring auction, each bidder submits a proposal (p, q), where p ≤ p̄ is a price

bid and q ≥ q is a quality bid, with reserve price and minimum quality denoted

by p̄ > 0 and q > 0. Each proposal is evaluated by a pre-announced scoring rule

S : [0, p̄] × [q,∞) → R which maps a multidimensional bid into a unidimensional

score s = S(p, q). The lowest-score bidder wins. We assume that the scoring rule is

sufficiently smooth and satisfies Sp > 0 and Sq < 0.

We focus here on first-score (FS) and second-score (SS) auctions. In both types

of auction, each bidder submits (p, q), and the bidder with the lowest score wins.

In an FS auction, the winner’s proposal is finalized as a contract whereas in an SS

auction, the winner is required to match the highest rejected (i.e. the second lowest)

score. To meet the score, the winner is free to choose any quality-price pair, so the

finalized contract of an SS auction generally differs from both the winning bid (p, q)

and the lowest losing bid.

Although our model allows general scoring rules, in Section 3 we focus on the

price-per-quality ratio (PQR) scoring rule:

S(p, q) =
p

q
, (1)

with p ≤ p̄ and q ≥ q.5

Remark 1 Score ranking is preserved in any monotone transformation of the scor-

ing rule so that most properties of scoring auctions, equilibrium price and quality in

particular, do not change in a monotone transformation of the scoring rule. How-

ever, in the following sections, we evaluate the expected scores of different auction

formats which generally do change in monotone transformation. For example, the

quality-per-price-ratio rule S(p, q) = −q/p is a monotone (but not affine) transfor-

mation of the PQR scoring rule, so the equilibrium price and quality under such a

scoring rule are the same as those presented in the next section, though the expected

5Quality q here is measured in terms of “quality score.” One might consider a scoring rule

S(p, q) = p/V (q), where V is an increasing function. This is equivalent to the case in which a

quality is defined as q̃ = V (q).
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score ranking may differ. Note that the expected score ranking is preserved in any

affine transformation.

Remark 2 We do not formulate the buyer’s preferences. One interpretation of PQR

and other non-QL scoring rules is that they are the buyer’s (true) objective function.

However, as Che (1993) shows, the buyer may be better off using a scoring rule that

differs from the true objective function. Hence, scoring rules do not necessarily rep-

resent the buyer’s preferences. Here we aim to characterize and compare equilibrium

score, quality, and price under PQR and other non-QL rules without specifying the

buyer’s preferences.

2.1 Score-bid Auctions

The equilibrium of scoring auctions is derived in a manner similar to Che (1993).

Given an arbitrary score s, every bidder will choose the optimal contract (p, q) that

induces score s so that an auction with a multidimensional bid is reduced to a

unidimensional auction in terms of the score bid.

Suppose that the winner of type θ needs to enforce a contract that fulfills score

s. The winner determines a contract (p, q) that solves

max
(p,q)

p− C(q, θ)

s.t. S(p, q) = s,

p ≤ p̄, q ≥ q.

(2)

Throughout the analysis, we assume that the reserve price and the minimum qual-

ity are not binding at (2). By substituting the score constraint into the objective

function, payoff maximization is written as

max
q

P (s, q)− C(q, θ), (3)

where P is the inverse function of S with respect to p. When the objective function

in (3) is strictly concave in q, the maximization problem has a unique solution, with
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the optimal quality denoted by

q∗(s, θ) ∈ argmax
q

P (s, q)− C(q, θ) (4)

and the indirect payoff function denoted by

u(s, θ) ≡ P (s, q∗(s, θ))− C (q∗(s, θ), θ) . (5)

Note that as Sp > 0, we have Ps > 0. By the envelope theorem, the indirect payoff u

is strictly increasing in s and strictly decreasing in θ. The equilibrium of the scoring

auction is derived by solving standard auctions in terms of score bid s, where each

bidder has the winning profit u(s, θ).

Let z(θ) be the unique solution of

u(z(θ), θ) = 0;

that is, z is the score bid such that the winner’s indirect payoff is zero, which is the

maximum willingness to accept for a bidder of type θ in the auction. We call z(θ)

the break-even score for type θ. Because u is increasing in s and decreasing in θ, z

is increasing in θ.

Lemma 1 Suppose that P (s, q) − C(q, θ) is strictly concave in q. Then, z(θ) is

well-defined and strictly increasing in θ.

Proof See Appendix.

2.2 QL Scoring Rule

The seminal paper Che (1993) examines the quasilinear (QL) scoring rule S(p, q) =

p− q whereby optimal quality is given by the profit maximization problem

max
q

s+ q − C(q, θ).

When the optimal quality is determined by the first-order condition 1−Cq(q
∗, θ) = 0,

q∗ depends only on θ and is independent of s. The indirect payoff is reduced to a

function

u(s, θ) = s− k(θ)
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that is quasilinear in score, where

k(θ) = −max
q

q − C(q, θ)

is called the productive potential (Che, 1993) or pseudotype (Asker and Cantillon,

2008). Thus, in this framework, the QL scoring auction is reduced to a score-bid

auction with a quasilinear payoff. Because k is increasing in θ, the bidder of the

lowest type wins in both the FS and SS auctions and so the exercised quality is ex

post equivalent between the two formats. The revenue equivalence theorem applies

and thus, the expected scores of the FS and SS auctions are equivalent in equilibrium.

As there is score equivalence and p = s+ q, equivalence holds for the expected price

too.

2.3 PQR Scoring Rule

Next we examine a scoring rule that is not QL. Consider the PQR scoring rule

S(p, q) = p/q. The inverse function of S with respect to p is given by P (s, q) = sq,

and the optimal quality is derived by the profit maximization problem

max
q≥q

sq − C(q, θ). (6)

It is clear that the objective function is strictly concave in q, and we assume that

the optimal quality q∗ always lies in the interior in equilibrium. This is satisfied if

the optimal quality at (z(θ), θ) is not binding.

Assumption 1 In the PQR scoring rule, for all θ, the optimal quality satisfies

q∗ (z(θ), θ) > q.

When the optimal quality q∗ lies in the interior, it is determined by the first-order

condition

s− Cq(q
∗, θ) = 0. (7)

By the implicit function theorem, we have q∗s = 1/Cqq > 0 and q∗θ = −Cqθ/Cqq ≤ 0,

so the optimal quality is increasing in score s and non-increasing in type θ. It is

immediately clear that the indirect payoff function is convex in score s.
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Lemma 2 Under the PQR scoring rule and Assumption 1, the indirect payoff func-

tion u is strictly convex in s.

Proof By the envelope theorem, we have us(s, θ) = q∗(s, θ) > 0 and uss(s, θ) =

q∗s(s, θ) > 0. □

Quality choice and the indirect payoff function under the PQR scoring rule are

both closely related to standard producer theory whereby the maximization problem

(6) is equivalent to the profit maximization problem of a firm in a competitive

market when s is the price per unit of quality. The optimal quality supplied is

thus determined by “price equals marginal cost” (7) and the supply function q∗ is

increasing in price s. Since the suppliers optimally adjust their quality supplied in

response to price, the profit function u is convex in s. The break-even score z(θ)

here corresponds to the break-even price for the firm.

From this interpretation, Assumption 1 requires that there exists a non-sunk fixed

cost. As is well known, average cost is minimized and generally equals marginal cost

at the break-even price. With the presence of fixed costs, average cost is U-shaped

and minimized in the interior. When there are no fixed costs, the average cost is

always smaller than the marginal cost. Hence, by ignoring the quality constraint

q ≥ q, suppliers could always earn a positive profit by providing a small quality, and

the quality supplied at the break-even point is zero. Thus, a non-sunk fixed cost is

necessary to satisfy Assumption 1.

The PQR scoring rule is distinct from the QL scoring rule in two respects. First,

the optimal quality under the PQR rule depends not only on bidder type but also

on the required score s. Second, the indirect payoff function is not quasilinear, so

the revenue equivalence theorem does not apply to the PQR rule.

3 Equilibrium Analysis of PQR Scoring Auctions

In this section, we examine the equilibrium properties of FS and SS auctions under

the PQR scoring rule.
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3.1 Equilibrium

We first characterize the equilibria of the SS and FS auctions, showing that in both

auctions the bidder with the lowest type is selected as the winner.

In the SS auction, it is a weakly dominant strategy to bid z(θ) as in the standard

second-price auction. The following proposition is shown in a standard manner and

is similar to Maskin and Riley (1984), Saitoh and Serizawa (2008), and Sakai (2008),

so the proof is omitted.

Proposition 1 In the SS auction, it is a weakly dominant strategy for each bidder

to submit sSS (θ) = z(θ).

Under the PQR scoring rule, the score-bid auction game can be interpreted as

competition among suppliers in terms of unit price per quality, and the supplier who

submits the lowest price per quality ratio wins. From the perspective of standard

producer theory, the break-even score is equal to the supplier’s minimum average

cost: z(θ) = minq C(q, θ)/q. In the SS auction, the unit price per quality for the

winner is determined by the best rival offer, so suppliers submit their minimum

average cost in equilibrium. The supplier with the lowest minimum average cost

wins and supplies quality at the unit price equal to the second-lowest minimum

average cost.

As for the FS auction, Maskin and Riley (1984) and Athey (2001) show that it

has a symmetric, monotone Bayesian Nash equilibrium if the payoff function u is

log-supermodular:
∂2 log u(s, θ)

∂s∂θ
> 0. (8)

To meet this log-supermodularity condition, we additionally impose the technical

conditions below.

Assumption 2 At least one of the following conditions holds.

1. Cθ/Cq is non-increasing in q, or
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2. the cost function satisfies

1 + q

(
Cqqq

Cqq
−

Cqqθ

Cqθ

)
> 0. (9)

A wide range of cost functions satisfy either of the above. The first case is

equivalent to CqCqθ − CθCqq ≤ 0 and, roughly speaking, this condition is met when

the marginal cost is more sensitive to a change in quality than to a change in type;

that is, when Cqq is large and Cqθ is small. A special case is Cqθ = 0 in which

bidder marginal cost is independent of θ whereby bidder variable costs for quality are

identical but fixed costs are heterogeneous.6 The second case is likely satisfied when

the cost function is polynomial in q and type θ does not depend on the coefficient of

the maximum degree of q. For example, this condition is met if C(q, θ) = q2 + θq +

κ(θ). Note that these two conditions are not disjoint. For example, a cost function

C(q, θ) = c(q + θ) in which c is a convex function satisfies both conditions because

of Cq = Cθ.

Under the log-supermodularity condition, the equilibrium bidding function is

characterized by the first-order condition. Let G(θ) = 1 − (1− F (θ))n−1 be the

distribution of the lowest order statistic of n − 1 independent draws from F . In

addition, let g = G′ be its density.

Proposition 2 If Assumptions 1 and 2 hold, there exists a symmetric Bayesian

Nash equilibrium in the FS auction. Equilibrium score-bidding function sFS is char-

acterized by

(sFS)′(θ) =
u
(
sFS(θ), θ

)
us (sFS(θ), θ)

· g(θ)

1−G(θ)
(10)

with sFS(θ̄) = z(θ̄).

Proof See Appendix.

6Dastidar (2014) focuses on this type of cost function and examines the equilibrium of non-QL

scoring auctions.
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To see how each supplier determines its score bid in an FS auction, let us intro-

duce a function

k(s, θ) ≡ C(q∗(s, θ), θ)

q∗(s, θ)
, (11)

which is the average cost that the supplier incurs when it wins at score s. Using this,

we can also characterize the equilibrium bidding behavior in an FS auction which is

analogous to the equilibrium bid in a first-price auction with risk-neutral bidders:

Corollary 1 In an FS auction, the equilibrium score bid is the conditional expecta-

tion of the second-lowest bidder’s average cost k(sFS(·), ·):

sFS(θ) =

∫ θ̄

θ

g(τ)

1−G(θ)
k
(
sFS(τ), τ

)
dτ. (12)

Proof See Appendix.

Recall that a PQR scoring auction is a competition among suppliers in terms of

unit price per quality. In an SS auction, the unit price of the winner is determined by

the best rival offer, and suppliers submit their minimum average cost in equilibrium.

In an FS auction, by contrast, unit price per quality is determined by the supplier’s

own offer, so bidding one’s minimum average cost is not a best response for suppli-

ers. Instead, suppliers submit a unit price higher than their minimum average cost,

sFS (θ) > z(θ), and the equilibrium score bid is expressed by the expected average

cost of the most-competitive rival bid (12).

When the bidder payoff function is quasilinear, the equilibrium strategy in the

FS auction is expressed by an order statistic of a scalar variable that effectively

summarizes the bidder’s type and is referred to as productive potential by Che (1993)

and pseudotype by Asker and Cantillon (2008). The break-even score is interpreted

as this scalar variable for general scoring rules, and it characterizes the equilibrium

in the SS auction. However, because of the nonlinearity of the payoff function, the

break-even score is not sufficient to characterize the equilibrium strategy in the FS
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auction. Note that by linearizing the indirect payoff in s at (ŝ, θ), we have

ul(s; ŝ, θ) ≡ us(ŝ, θ)(s− ŝ) + u(ŝ, θ)

= us(ŝ, θ)

(
s− ŝ+

ŝq∗(ŝ, θ)− C(q∗(ŝ, θ), θ)

q∗(ŝ, θ)

)
= us(ŝ, θ)(s− k(ŝ, θ))

by us(ŝ, θ) = q∗(ŝ, θ). Thus, k(ŝ, θ) is the break-even score of the bidder that has

the linearized utility at (ŝ, θ). The first order condition for the optimal score bid

under the linearized utility ul coincides with (10) at ŝ = sFS(θ); thus, k(s, θ) is a

key variable to characterize the equilibrium strategy. If u(s, θ) is already linear in

s (as it is with QL scoring rules), k(s, θ) is independent of s and indeed coincides

with the original break-even score; k(s, θ) = z(θ). However, under the PQR scoring

rule, k(s, θ) is the average cost for the optimal quality at score s, so it varies with s

and differs from the break-even score z(θ). Thus, the equilibrium bidding strategy

is not explicitly expressed by an order statistic of a variable, but expression (12) is

an implicit form.

3.2 Comparison of FS and SS Auctions

We now compare the equilibrium performance of FS and SS auctions under the PQR

scoring rule. In contrast to a QL scoring rule, equivalence between the two formats

does not hold, so we evaluate the two formats with respect to expected score, quality

and price.

3.2.1 Score Ranking

Buyers for whom the price per quality ratio is the true objective function prefer an

auction format that yields a lower (expected) score. The expected score rankings of

the FS and SS auctions depends on the curvature of the bidder’s indirect payoff, u.

Maskin and Riley (1984) show that if u is concave in payment, the expected revenue

from the first-price auction is higher than that of the second-price auction. Here, by

Lemma 2, u is convex in score in a PQR scoring auction, so we have a similar but
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reverse expected score ranking, which is shown in an analogous manner to Maskin

and Riley (1984). The following theorem implies that buyers prefer the SS to the

FS auction when they wish to reduce the price per quality ratio.

Theorem 1 Suppose that Assumptions 1 and 2 hold. The expected score of the FS

auction is higher than that of the SS auction. Moreover, for every winner’s type θ,

we have

sFS(θ) ≥ E[sSS(τ) | τ > θ], (13)

where τ is the lowest order statistic of n− 1 independent draws from F .

Proof This is shown in a manner parallel to Theorem 4 of Maskin and Riley

(1984). Although Maskin and Riley (1984) consider a concave payoff function, it is

not necessary to assume concavity to ensure the existence of a symmetric equilibrium.

□

Theorem 1 is also proved by using Corollary 1. Note that k(s, θ) is the average

cost for the optimal quality at score s. Given that the winner’s type is θ, (12) yields

sFS(θ) = E
[
k
(
sFS(τ), τ

)
| τ > θ

]
= E

[
C
(
q∗(sFS(τ), τ), τ

)
q∗(sFS(τ), τ)

∣∣∣∣∣ τ > θ

]

≥ E

[
min
q

C(q, τ)

q

∣∣∣∣ τ > θ

]
= E [z(τ) | τ > θ] ,

where τ is the lowest order statistic of n − 1 independent draws from F . Because

bidders submit a higher score than the break-even score in the FS auction, the

associated average cost is not minimized. Thus, the equilibrium score in the FS

auction is higher than the expected break-even score of the most competitive rival.

A convex payoff function is associated with risk-loving bidders; when bidders

are risk-loving, they take more risk on winning; that is, they want to increase the

winning profit even if they lose more often. Hence, risk-loving bidders submit a

higher score (which provides a larger profit) than risk-neutral bidders.7

7Another model that results in a convex payoff function is Board (2007), which analyzes auctions
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3.2.2 Quality Ranking

Because optimal quality depends on score s, and score equivalence does not hold for

the PQR scoring rule, the equilibrium quality obtained by the two auction formats

also differs. Note that the optimal quality function q∗ is increasing in score. There-

fore, as the FS auction yields a higher expected score, it is thus likely to provide a

higher quality than the SS auction.

The expected quality is ranked under additional conditions. Note that in an

FS auction, the winner’s quality is deterministic at the bidding stage because the

winner’s quality bid is enforced. In contrast, in an SS auction, the winner’s quality is

stochastic because the optimal quality depends on the second-lowest score which is

uncertain for the winner. Hence, to obtain the expected quality ranking, we need a

condition on the curvature of the optimal quality function q∗. The following theorem

states that the FS auction provides a higher expected quality than the SS auction

when the optimal quality q∗ is weakly concave in score.

Theorem 2 Suppose that Assumptions 1 and 2 hold and that Cqqq ≥ 0. Then, the

expected quality in the FS auction is higher than that in the SS auction.

Proof See Appendix.

The condition Cqqq ≥ 0 means that marginal cost is weakly convex, which implies

that the optimal quality function q∗ is weakly concave in s. The optimal quality is

determined by (7) whereby the unit price per quality equals the marginal cost. When

marginal cost is convex, it rapidly increases as q increases. Hence, the optimal quality

does not increase very much when the score or unit price per quality is increased,

meaning that it is weakly concave.

3.2.3 Price Ranking

Given that an FS auction yields a higher expected score and quality when marginal

cost is convex, it is natural to conjecture that expected price would also be higher

of risky assets in which bidders limited liability.
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for an FS auction. However, the expected price ranking is more ambiguous than the

quality ranking. Under the PQR scoring rule, the equilibrium price is given by

π(s, θ) ≡ sq∗(s, θ).

Analogous to the quality ranking, we have an expected price ranking if the optimal

price π is weakly concave in score. However, because q∗ is increasing in s, π is more

sensitive to a change in s and is likely to be convex. Thus, the concavity of π is more

stringent than the concavity of q∗.

We provide two sufficient conditions for ranking the expected prices of FS and

SS auctions. The first one is when the optimal price is weakly concave in score.

Theorem 3 Suppose that Assumptions 1 and 2 hold and

CqCqqq ≥ 2(Cqq)
2. (14)

Then, the expected price in the FS auction is higher than that in the SS auction.

Proof See Appendix.

The price function π is weakly concave under (14) above. An example of such a

cost function is

C(q, θ) = log
a

a− θ − q
,

where a > θ̄ is constant. This cost function satisfies all the basic assumptions and

Assumption 2. The optimal quality and price are given by

q∗(s, θ) = a− θ − 1

s

and

π(s, θ) = (a− θ)s− 1,

respectively.

We provide another condition under which the expected price can be ranked even

when the equilibrium price π is convex, assuming that the bidders’ type represents

their fixed costs, or Cqθ = 0. In this case, the optimal quality q∗ is independent of
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type; that is, q∗(s, θ) = q∗(s), so the optimal price is also independent of type and

π(s) = sq∗(s). Because the quality function q∗ is increasing in s, the optimal price

π(s) = sq∗(s) is also increasing so there is a one-to-one correspondence between score

and optimal price. Thus we transform the indirect payoff function u(s, θ) in terms of

s into one in terms of price p; with û(p, θ) ≡ u(π−1(p), θ). The payoff function û(p, θ)

is the winner’s payoff when they sign a contract under which they optimally choose

the price as p. As the bidder of the lowest score bid also makes the lowest price bid,

the score-bid auction is transformed into a unidimensional price-bid auction. The

equilibrium price of the two auction formats can be ranked when the bidder payoff

û is convex (or concave) for the associated price-bid auction.

Theorem 4 Consider the PQR scoring rule. Suppose that Assumption 1 holds and

Cqθ = 0. The expected price in the FS auction is at least as high as that in the SS

auction if qCqq/Cq is nondecreasing in q, or equivalently,

CqCqq + qCqCqqq − q(Cqq)
2 ≥ 0 (15)

holds for all q ≥ q. The expected price in the SS auction is at least as high as that

in the FS auction if qCqq/Cq is nonincreasing in q, or equivalently,

CqCqq + qCqCqqq − q(Cqq)
2 ≤ 0 (16)

holds for all q ≥ q.

Proof See Appendix.

Given Cqθ = 0, condition (15) is weaker than the concavity of π, (14). Indeed,

when (14) holds, we have

CqCqq + qCqCqqq − q(Cqq)
2 = CqCqq + q

(
CqCqqq − 2(Cqq)

2 + (Cqq)
2
)

≥ (Cq + qCqq)Cqq

> 0.

Note that (15) for the price ranking is relatively stronger than that for the quality

ranking because the price function π is more likely to be convex than the quality
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function. Thus, although the FS auction yields a higher expected score than the SS

auction, the convex price function could lead to a higher expected price in the SS

auction than the FS auction. In sum, while the expected quality is higher for the

FS auction than the SS auction, the expected price of the FS auction may be equal

to or even lower than that of the SS auction.

To see this, consider a specific cost function C(q, θ) = qa+ bq+ θ with a ≥ 2 and

b ∈ R.8 Since Cqqq ≥ 0, expected quality is higher in the FS auction than in the SS

auction. Also, since

CqCqq + qCqCqqq − q(Cqq)
2 = a(a− 1)2bqa−2,

the expected price is higher in the FS auction than in the SS auction if b > 0 and,

conversely, is lower in the FS auction if b < 0. When b = 0, the optimal quality and

price are explicitly given by

q∗(s) = a−
1

a−1 s
1

a−1

and

π(s) = sq∗(s) = a−
1

a−1 s
a

a−1 ,

respectively. The indirect payoff function is

u(s, θ) =
(
1− a−1

)
a−

1
a−1 s

a
a−1 − θ

which can be transformed into

û(p, θ) =
a− 1

a

(
p− aθ

a− 1

)
,

where p = π(s). That is, the score-bid auction is transformed into a price-bid auction

with a quasilinear payoff function and a pseudotype aθ/(a− 1). Thus, we can apply

the revenue equivalence theorem, and so the equilibrium price is the same in the FS

and SS auctions.

Corollary 2 Consider the PQR scoring rule, and suppose that Assumption 1 and

Cqθ = 0 hold. If Cqqq ≥ 0 and qCqq/Cq is nonincreasing in q ≥ q, then the expected

8We focus on the region where the cost is increasing in q when b < 0.
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quality is higher in the FS auction than in the SS auction, and the expected price

in the FS auction is at most as high as in the SS auction. Thus, the FS auction

achieves a higher expected quality with a weakly lower expected price.

At first glance, Corollary 2 seems inconsistent with Theorem 1 which shows that

the SS auction yields a lower expected score than the FS auction. However, even

though the expected price per quality ratio is higher, the FS auction can lead to

a higher expected quality and lower expected price than the SS auction. Thus, if

the buyer’s true objective is to achieve a higher expected quality at a lower expense

rather than to minimize the price per quality ratio, the FS auction can be more

beneficial for the buyer than the SS auction.

3.3 Comparison of PQR Scoring and Price-only Auctions

We next compare the performance of PQR scoring auctions and price-only auctions.

The following proposition comparing the performance of PQR scoring auctions and

price-only auctions with minimum quality levels is that PQR scoring auctions lead

to higher winning prices but higher quality levels.

Proposition 3 Under Assumption 1, SS auctions using the PQR scoring rule lead

to higher winning prices and quality levels than price-only auctions with minimum

quality levels. In addition, under Assumptions 1, 2, and the conditions presented in

Theorems 3 or 4, FS auctions using the PQR scoring rule lead to higher winning

prices and quality levels than price-only auctions with minimum quality levels.

Proof See Appendix.

The properties in Proposition 3 are similar to that of the QL scoring rule reported

in Asker and Cantillon (2008) in that when choosing auction formats, a buyer faces

a trade-off between price and quality. Empirical analysis of highway construction

procurement in California (Lewis and Bajari, 2011) suggests that scoring auctions

using a QL scoring rule leads to shorter delivery times but higher winning prices rel-

ative to price-only auctions (i.e. higher quality but at a higher price). Because PQR
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scoring rule auctions as well as QL scoring auctions are used worldwide, Proposition

3 has practical implications.

When the buyer’s objective is to decrease the price per quality ratio, it would

also be worth comparing price per quality as well. The following result shows that

an SS auction using a PQR scoring rule yields a lower price per quality ratio than

a second-price auction, even if the buyer specifies any quality level in the price-only

auction.

Proposition 4 Under Assumption 1, the equilibrium price per quality ratio is lower

in the SS auction with a PQR scoring rule than in the second-price auction with any

quality requirement q̂.

Proof See Appendix.

The intuition for Proposition 4 is as follows. In the price-only auction, bidders

provide only the quality level required. In the second-price auction, bidders submit

their true cost for providing q̂, with an associated average cost of C(q̂, θ)/q̂. In the SS

PQR auction, however, bidders compete in terms of average cost, submitting their

minimum average cost. Hence, the SS auction with the PQR scoring rule achieves a

lower price per quality ratio than the second-price auction.

Proposition 4 is related to Awaya, Fujiwara and Szabo (2022), who compare

a QL scoring auction with a price-only auction in which the quality is optimally

specified by the buyer. Awaya, Fujiwara and Szabo (2022) show that the QL scoring

auction even yields a higher expected quality and price than the “optimal price-only

auction.” Similarly, Proposition 4 implies that even if the buyer optimally specifies

the quality level in a price-only auction, the PQR scoring auction achieves a lower

price per quality ratio. This result may support the use of the PQR scoring rule

when the buyer aims to reduce the price per quality ratio, and may also suggest why

PQR scoring auctions are prevalent worldwide.
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4 General Scoring Rules

In this section, we consider general scoring rules and examine how the properties of

the PQR scoring rule can be generalized to other non-QL scoring rules. We begin

with scoring rule S which is increasing in p and decreasing in q. The inverse function

in terms of p is denoted by P (s, q), which is the price function given score s and

quality q, with Ps > 0 and Pq > 0. The bidder indirect payoff function is given by

u(s, θ) ≡ max
q

P (s, q)− C(q, θ).

We assume that the payoff function P −C is strictly concave in q and that the payoff

maximization problem always has a (unique) interior solution. That is, the optimal

quality q∗ is determined by the first-order condition

Pq(s, q
∗)− Cq(q

∗, θ) = 0. (17)

We further assume that the indirect payoff function u is well behaved and satisfies

the log-supermodularity condition ∂2 log u/∂s∂θ > 0. The equilibrium of the SS and

FS auctions is characterized in the same manner with the PQR scoring rule.

Proposition 5 Suppose that P (s, q) − C(q, θ) is strictly concave in q and that the

optimal quality q∗ is determined by the first-order condition (17). In the SS auction,

it is a weakly dominant strategy for each bidder to submit sSS (θ) = z(θ). In the

FS auction, the symmetric equilibrium score-bidding function sFS is characterized

by (10) with sFS (θ̄) = z(θ̄) if u is log-supermodular.

Proof The proof is the same as Propositions 1 and 2. See Appendix B for sufficient

conditions for the log-supermodularity of u. □

4.1 Expected Score

The argument of Section 3.2.1 can be directly applied to general scoring rules.

Namely, the expected score is higher (lower) in the FS than in the SS auction if
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u(s, θ) is convex (concave) in s. The following proposition is shown in the same

manner as Theorem 1.

Proposition 6 Suppose that the FS auction has a symmetric Bayesian Nash equi-

librium. Then, the expected score in the FS auction is weakly higher (lower) than in

the SS auction if u(s, θ) is convex (concave) in s for all θ.

Note that bidders with a convex (concave) utility function place score bids less

(more) aggressively in the FS auction than in the SS auction. This is analogous

to the comparison of the bidding behaviors between first- and second-price auctions

with non-risk-neutral bidders.

Two factors affect the curvature of the bidder’s indirect payoff function. Note

that, by differentiation, we have

uss(s, θ) = Pss(s, q
∗(s, θ)) + Psq(s, q

∗(s, θ))q∗s(s, θ). (18)

The first term on the right-hand side of (18) captures the direct effect on uss of a

change in the marginal payments with respect to s given q, while the second term in

(18) captures the indirect effect of the change in the marginal payments with respect

to s through the change in q.

Regarding the direct effect, the curvature of the scoring rule directly affects

the bidder’s induced utility function. Since Pss(s, q) = −Spp/(Sp)
3, as the scoring

function becomes more concave (convex) in p, u(s, θ) becomes more (less) convex in

s, ceteris paribus. Note that this direct effect is independent of the properties of the

cost function.

On the other hand, the indirect effect, Psq(s, q
∗(s, θ))q∗s(s, θ), is always nonneg-

ative. Indeed, by the first-order condition (17) for optimal quality and the implicit

function theorem, we have

q∗s = − Psq

Pqq − Cqq
. (19)

Hence, Psqq
∗
s is always nonnegative because of the strict concavity of the payoff

function in q. Intuitively, with a scoring rule in which the associated Ps falls (rises)
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as q rises, the bidder will optimally choose a smaller (larger) q as s becomes larger.

Moreover, as the indirect effect increases, u(s, θ) becomes more convex in s, ceteris

paribus. Thus, given that the indirect effect is always nonnegative, u(s, θ) is convex

if Spp ≤ 0.

4.2 Expected Quality and Price

An interesting feature of the PQR scoring rule is that the optimal quality q∗ is

increasing in score s. This suggests that under a PQR scoring auction, the lower-

type bidders compete on price at the expense of quality. Note that the lower-type

bidder submits a lower-score bid in equilibrium, so these bidders propose a lower

quality with a much lower price as they become more efficient. This property may

not be desirable for the procurer unless the scoring function represents their true

preferences over a price-quality choice.

Note that by (19), the signs of q∗s and Psq coincide. Also, we have

Psq = −SppPq + Spq

(Sp)2
=

SppSq − SpSpq

(Sp)3
. (20)

The sign of Spq is crucial for the slope of the optimal quality in s. In particular, if

the scoring rule is linear in p (i.e., Spp = 0), then the sign of q∗s is determined by

−Spq. In the PQR scoring rule, Spq < 0 and the optimal quality is increasing in

score s.9

A scoring rule with Spq < 0 implies that Sp, the marginal score with respect

to price, increases as quality decreases. That is, when quality is already relatively

low, a lower price lowers the score even more. In other words, the lower the quality,

the more price competition is encouraged. Thus, even though lower-type bidders

choose higher quality, scoring rules such as PQR are prone to price competition at

the expense of quality.

9Note that the optimal quality is not affected by any monotone transformation of scoring rule

S. Hence, we can focus on scoring rules with Spp = 0 because every reasonable scoring rule can be

transformed into this.
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Additionally, the quality ranking between FS and SS auctions depends on the

curvature of the quality function q∗. When the indirect payoff u is convex, the FS

auction yields a higher expected score than the SS auction. Similar to the discussion

in the previous section, the expected quality is higher in the FS than in the SS

auction if q∗ is increasing and weakly concave in s but is higher in the SS auction

if q∗ is decreasing and weakly convex in s. However, because the condition for the

concavity or convexity of q∗ is complicated, it is difficult to obtain a clear comparison

of quality between FS and SS auctions.

Moreover, the price ranking between FS and SS auctions is more ambiguous

than quality. Let π(s, θ) ≡ P (s, q∗(s, θ)) be the price associated with score s and the

optimal quality q∗. Then,

πs = Ps + q∗sPq

and

πss = Pss + q∗ssPq −
(Psq)

2

Pqq − Cqq

(
2− Pqq

Pqq − Cqq

)
by (19). The last term of πss is positive if Pqq ≥ 0. Hence, the optimal price π is

likely to be convex and so the expected price ranking becomes ambiguous when u

is convex and q∗ is increasing in s. This is analogous to Theorem 3 for the PQR

scoring rule.

Further, for a scoring rule in which the associated optimal quality q∗ is decreasing

in s, the price function π may no longer be monotone, which makes the price ranking

more ambiguous. Thus, with respect to general scoring rules, whether the expected

price (quality) in the FS auction is lower relative to that in the SS auction is an

empirical question.

4.3 Characterization of QL Scoring Rules

As Che (1993) shows, QL scoring auctions can be reduced to score-bid auction games

with quasilinear indirect payoff functions so that the equivalence theorem holds with

respect to price and quality. Our inspections thus far also support the converse: if
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a scoring rule induces the equivalence theorem with respect to price and quality, it

is a QL scoring auction.

Note that if we consider the ex post score rankings over (p, q), we can suppose

that Spp = 0 without any loss in generality because score ordering over price-quality

choices is preserved in any monotone transformation.10 For any reasonable class of

scoring rules S, we are thus able to construct another scoring rule Ŝ which is affine

in p, Ŝpp = 0, by taking an appropriate monotone transformation on S.

Suppose Spp = 0. Then, a scoring rule is QL if and only if Spq = 0. Because

the slope of the optimal quality q∗ is determined by (19) and (20), q∗ is independent

of s if and only if the scoring rule is QL. Also, as the second derivative of u in s is

uss = Psqq
∗
s , the indirect payoff u is quasilinear only for QL scoring rules. Therefore,

we have confirmed that the QL scoring rule is a unique rule that induces a quasilinear

indirect payoff and under which the optimal quality is independent of s.

Proposition 7 Suppose Spp = 0. Then, the following statements are equivalent.

1. The scoring rule is QL; Spq = 0.

2. The optimal quality q∗ is independent of score s.

3. The indirect payoff u is quasilinear in s.

5 Concluding Remarks

This study has examined scoring auctions using PQR and more general non-QL

scoring rules. For the PQR scoring rule, we have characterized the equilibrium

bidding strategies in FS and SS auctions and have found that the expected score is

higher in FS auctions and that under a set of conditions expected quality and price

are also higher. We also provided an example in which the expected quality in an

FS auction is higher than in an SS auction while the expected price is equivalent or

lower. These results suggest that if the price per quality ratio is the procurement

10Note, however, that we do lose generality regarding the expected score.
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buyer’s true objective function, an SS auction is better for that buyer than an FS

auction. However, the results also imply that the FS auction may perform better

than the SS auction with respect to expected quality and price.

We have also showed that a PQR scoring auction provides higher quality at a

higher price than a price-only auction with a minimum quality level. In addition, an

SS auction using a PQR scoring rule generates a lower price per quality ratio than

a second-price auction with any minimum quality level.

We have further examined other non-QL scoring rules. The expected score rank-

ing is characterized by the curvature of the indirect payoff function. When the

scoring function is weakly concave in price, the payoff function is reduced to con-

vex, so an SS auction yields a lower expected score than an FS auction. However,

expected quality and price rankings are ambiguous because the curvature of the op-

timal quality function is complicated. Hence, for auctions with general scoring rules,

it is an empirical question whether SS auctions generate a lower expected quality

(price) than FS auctions.

There are several potential extensions for further research. One important exten-

sion would be a theoretical consideration of a scoring auction with an interdependent

scoring rule. In this study, we have restricted our attention to scoring rules in which

each bidder’s score depends only on its own price and quality. However, in practice,

the buyer sometimes uses an interdependent scoring rule in which the score depends

not only on the bidder’s own price and quality bid but also on some or all com-

petitors’ price and quality bids. Another would be to incorporate the uncertainty

of buyer’s quality bid evaluation. Our model, following Che (1993), assumes that

bidders do not face uncertainty in how their quality bids are evaluated by the buyer

but, in practice, the bids are evaluated by reviewers and hence the scores of quality

bids include noise (Takahashi, 2018). These theoretical analyses are left to future

research.
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A Proofs

A.1 Proof of Lemma 1

Consider the following minimization problem:

min
q≥q

S(C(q, θ), q).

Given an arbitrary q0, set s0 = S(C(q0, θ), q0). We can restrict the constraint set

to
{
q ≥ q|S(C(q, θ), q) ≤ s0

}
without affecting the solution. We show that the re-

stricted set is compact: Suppose not. Since the set is closed, it must be unbounded.

Then we can take an arbitrarily large q1 such that S(C(q1, θ), q1) ≤ s0, which implies

that P (s0, q1) ≥ C(q1, θ). Thus

∫ q1

q0

{Pq(s0, ξ)− Cq(ξ, θ)}dξ = P (s0, q1)− C(q1, θ)− {
0︷ ︸︸ ︷

P (s0, q0)− C(q0, θ)} ≥ 0.

Because P (s, q)− C(q, θ) is strictly concave in q, Pq(s0, q) < Cq(q, θ) for all q > q2,

where Pq(s0, q2) = Cq(q2, θ). Therefore∫ q2

q0

{Pq(s0, ξ)− Cq(ξ, θ)}dξ +
∫ q1

q2

{Pq(s0, ξ)− Cq(ξ, θ)}dξ ≥ 0. (21)

The second term of the left-hand side is negative and has a sufficiently large

absolute value as q1 → ∞, which is a contradiction to inequality (21). By the

Weierstrass Theorem, a solution to the score minimization exists, and the value is

the break-even score.

To show that z(·) is strictly increasing, let qz(θ) denote a solution to the above

score-minimization problem. Then z(θ) = S(C(qz(θ), θ), qz(θ)). Note that P (z(θ), q) ≤

C(q, θ) for all q (with equality at q = qz(θ)). Consider θ̃ > θ. Since C(q, θ) < C(q, θ̃),

we must have P (z(θ), q) < C(q, θ̃) for all q, implying that there is no intersection

between P (z(θ), ·) and C(·, θ̃). Since Ps(s, q) > 0 and P (z(θ̃), qz(θ̃)) = C(qz(θ̃), θ̃),

z(θ̃) > z(θ). □
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A.2 Proof of Proposition 2

Note that q∗s = 1/Cqq and q∗θ = −Cqθ/Cqq. By differentiation, we have

∂ log u(s, θ)

∂s
=

q∗(s, θ)

u(s, θ)

and

∂2 log u(s, θ)

∂s∂θ
=

1

u(s, θ)2
(q∗θ(s, θ)u(s, θ) + q∗(s, θ)Cθ(q

∗(s, θ), θ))

=
1

u(s, θ)2
(−q∗s(s, θ)Cqθ(q

∗, θ)u(s, θ) + q∗(s, θ)Cθ(q
∗, θ)) .

It is immediately clear that log-supermodularity holds if Cqθ ≤ 0. In what fol-

lows, we assume Cqθ > 0 and provide two sufficient conditions under which the

log-supermodularity condition holds.

Condition 1. Suppose that Cθ/Cq is non-increasing in q. That is, we have

CqθCq − CθCqq ≤ 0 ⇔ −
Cqθ

Cqq
≥ −Cθ

Cq

for all q and θ. By evaluating this at q = q∗(s, θ), we have

q∗θ(s, θ) > −Cθ(q
∗, θ)

Cq(q∗, θ)
. (22)

Because u(s, θ) ≥ 0 for s ≥ z(θ), we have

∂2 log u(s, θ)

∂s∂θ
=

1

u(s)2
(q∗θ(s)u(s) + q∗(s)Cθ(q

∗(s)))

≥ 1

u(s)2

(
−Cθ(q

∗(s))

Cq(q∗(s))
u(s) + q∗(s)Cθ(q

∗(s))

)
=

Cθ(q
∗(s))

Cq(q∗(s))u(s)2
(q∗(s)Cq(q

∗(s))− (sq∗(s)− C(q∗(s))))

>
q∗(s)Cθ(q

∗(s))

Cq(q∗(s))u(s)2
(Cq(q

∗(s))− s)

= 0.

(23)

Note that we omit the parameter θ from the presentation. The second line is derived

from (22). The third line comes from the definition of the indirect payoff u(s, θ).

The strict inequality is due to C(q∗, θ) > 0 under Assumption 1. Finally, the last
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line comes from the first-order condition for the optimal quality s − Cq(q
∗, θ) = 0.

Thus, log-supermodularity condition holds.

Condition 2. Fix an arbitrary θ and define a function V of score s by11

V (s) ≡ −q∗s(s)Cqθ (q
∗(s))u(s) + q∗(s)Cθ (q

∗(s)) .

What we want to show is that V (s) > 0 for all s ≥ z(θ). Note that V (z(θ)) =

q∗Cθ > 0 by u(z(θ)) = 0. Hence, it suffices to show that V (s) = 0 ⇒ V ′(s) > 0 for

every s > z(θ).

By differentiation, we have

V ′(s) = −q∗ssCqθu− (q∗s)
2Cqqθu− q∗sCqθq

∗ + q∗sCθ + q∗q∗sCqθ

= q∗sCθ − q∗ssCqθu− (q∗s)
2Cqqθu.

(24)

Suppose V (s) = 0 ⇔ u = q∗Cθ/q
∗
sCqθ. By substituting this into (24), we have

V ′(s)
∣∣
V (s)=0

= q∗sCθ −
q∗ssq

∗Cθ

q∗s
−

q∗sCqqθq
∗Cθ

Cqθ
. (25)

Note that q∗s = 1/Cqq and q∗ss = −Cqqq/(Cqq)
3. By substituting them into (25), we

have

V ′(s)
∣∣
V (s)=0

=
Cθ

Cqq
+

Cqqqq
∗Cθ

(Cqq)2
−

q∗CqqθCθ

CqqCqθ

=
Cθ

Cqq

(
1 + q∗

(
Cqqq

Cqq
−

Cqqθ

Cqθ

))
.

(26)

Because Cθ, Cqq > 0, we conclude that log-supermodularity holds if

1 + q

(
Cqqq

Cqq
−

Cqqθ

Cqθ

)
> 0

for all q.

If the log-supermodularity condition (8) holds, there exists a monotone pure-

strategy Bayesian Nash equilibrium in FPA (Athey, 2001). The equilibrium strategy

is symmetric and characterized by the first-order condition as shown by Maskin and

11We omit the fixed parameter θ from the presentation.
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Riley (1984, Theorem 2).12 Suppose that the equilibrium is symmetric and let sFS be

the symmetric equilibrium strategy. Suppose that every bidder other than i follows

sFS . The interim expected payoff when bidder i makes an equilibrium bid of type τ

is

(1−G(τ))u
(
sFS(τ), θ

)
.

The first-order condition for the payoff maximization is

−g(τ)u
(
sFS(τ), θ

)
+ (sFS)′(τ) (1−G(τ))us

(
sFS(τ), θ

)
= 0.

Because the first-order condition should hold with τ = θ, we have

−g(θ)u
(
sFS(θ), θ

)
+ (sFS)′(θ)((1−G(θ))us

(
sFS(θ), θ

)
= 0, (27)

which is (10). The terminal condition for the differential equation is u(sFS(θ̄), θ̄) = 0.

Thus, sFS(θ̄) = z(θ̄). Under the log-supermodularity condition (8), the monotonicity

of a strategy and the first-order condition are sufficient for the best response. Hence,

the strategy sFS characterized by (10) is the symmetric equilibrium. □

A.3 Proof of Corollary 1

Note that
u(s, θ)

us(s, θ)
=

sq∗(s, θ)− C(q∗(s, θ), θ)

q∗(s, θ)
= s− k(s, θ).

The first-order condition (27) of the bidder’s problem in an FS auction yields

−
(
sFS(θ)− k(sFS(θ), θ)

)
g(θ) + (sFS)′(θ)(1−G(θ)) = 0.

Solving the differential equation gives (12). □

12Although Maskin and Riley (1984) assume that U is concave, this is not used nor is it necessary

to obtain the FSA equilibrium. For instance, Board (2007, Lemma 3) is an example of a convex

payoff function.
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A.4 Proof of Theorem 2

By the first-order condition for the optimal quality s = Cq(q
∗, θ), we have

q∗ss = − Cqqq

(Cqq)3
.

Hence, the optimal quality function q∗ is weakly concave if Cqqq ≥ 0. Let θ(1) and

θ(2) be the lowest and second lowest order statistics of bidder types. When q∗ is

weakly concave in s, we have

E
[
q∗

(
sSS(θ(2)), θ(1)

)]
= Eθ(1)

[
Eθ(2)

[
q∗

(
sSS(θ(2)), θ(1)

)
| θ(2) > θ(1)

]]
≤ Eθ(1)

[
q∗

(
Eθ(2)

[
sSS(θ(2)) | θ(2) > θ(1)

]
, θ(1)

)]
≤ E

[
q∗

(
sFS(θ(1)), θ(1)

)]
.

Note that EX means that we take an expectation regarding X. The first inequality

is Jensen’s inequality. The second inequality comes from Theorem 1. □

A.5 Proof of Theorem 3

Let π(s, θ) = sq∗(s, θ) be the optimal price given score s and type θ. Then, by

differentiation, we have

πss(s, θ) = sq∗ss + 2q∗s .

Bu substituting q∗s = 1/Cqq, q
∗
ss = −Cqqq/(Cqq)

3, and the first-order condition s =

Cq, we have

πss =
2(Cqq)

2 − CqCqqq

(Cqq)3
.

Thus, the optimal price is weakly concave if (14) holds. When π is weakly concave in

s, we have the expected price ranking in the same manner with the quality ranking

Theorem 2. □

A.6 Proof of Theorem 4

Suppose that Cqθ = 0. Then, it is clear that the optimal quality q∗ is independent of

θ and is denoted by q∗(s). Let π be the optimal price function π(s) = sq∗(s). Because
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q∗ is increasing in s, π is also increasing in s. Thus, each price bid corresponds to

a score bid in the one-to-one sense. That is, for every score s, we have a unique

associated price p = π(s). We define a payoff function in terms of the price bid û as

û(p, θ) ≡ u(π−1(p), θ).

Abusing notation, the cost function is denoted by C = C(q) + θ, where C(q) is

variable cost and θ is the fixed cost.13 Then, we have

û(p, θ) = p− C

(
p

π−1(p)

)
− θ.

By differentiation, we have

ûp = 1−
(

p

π−1(p)

)′
C ′

(
p

π−1(p)

)
and

ûpp = −
(

p

π−1(p)

)′′
C ′

(
p

π−1(p)

)
−
{(

p

π−1(p)

)′}2

C ′′
(

p

π−1(p)

)
.

By differentiation, we have(
p

π−1(p)

)′
=

π−1(p)− p(π−1)′(p)

(π−1(p))2
=

π′(π−1(p))π−1(p)− p

π′(π−1(p))(π−1(p))2

and (
p

π−1(p)

)′′
=

1

(π−1)3
[
−p(π−1)′′π−1 − 2(π−1)′π−1 + 2p((π−1)′)2

]
=

1

(π−1)3

[
pπ−1π′′

(π′)3
− 2π−1

π′ +
2p

(π′)2

]
=

1

(π′)3(π−1)3
[
pπ−1π′′ + 2pπ′ − 2π−1(π′)2

]
.

Note that by definition, we have p = π(s) = sq∗(s), π−1(p) = s, π′(s) = q∗+ sq∗s ,

and π′′(s) = sq∗ss + 2q∗s . By substituting them into the above, we have(
p

π−1(p)

)′
=

(q∗ + sq∗s)s− sq∗

(q∗ + sq∗s)s
2

=
q∗s

q∗ + sq∗s

13Because the cost function is increasing in θ (by assumption), θ can be defined by fixed cost

without any loss of generality.
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and(
p

π−1(p)

)′′
=

1

(q∗ + sq∗s)
3s3

[
sq∗ · s(sq∗ss + 2q∗s) + 2sq∗(q∗ + sq∗s)− 2s(q∗ + sq∗s)

2
]

=
q∗q∗ss − 2(q∗s)

2

(q∗ + sq∗s)
3

.

By the first-order condition for the optimal quality s = Cq, we have

ûp = 1− q∗sCq

q∗ + sq∗s
=

q∗Cqq

q∗Cqq + Cq
> 0.

Also, we have

ûpp =
2(q∗s)

2 − q∗q∗ss
(q∗ + sq∗s)

3
Cq(q

∗)− (q∗s)
2

(q∗ + sq∗s)
2
Cqq(q

∗)

=
1

(q∗ + sq∗s)
3

[
2(q∗s)

2Cq − q∗q∗ssCq − (q∗s)
2Cqq(q

∗ + sq∗s)
]

=
1

(q∗ + sq∗s)
3

[
2Cq

(Cqq)2
+

qCqCqqq

(Cqq)3
− qCqq + Cq

(Cqq)2

]
=

CqCqq + qCqCqqq − q(Cqq)
2

(q∗ + sq∗s)
3(Cqq)3

.

The third line comes from q∗s = 1/Cqq and q∗ss = −Cqqq/(Cqq)
3. Hence, û is convex

in p if CqCqq + qCqCqqq − q(Cqq)
2 ≥ 0. Then, the expected price in the FS auction

is higher than in the SS auction, which is analogous to Theorem 1 and Maskin and

Riley (1984). □

A.7 Proof of Proposition 3

In price-only auctions, it is clear that bidders choose the minimum quality q in

equilibrium. Thus, it is immediate by Assumption 1 that the equilibrium quality in

FS and SS auctions is q∗(s, θ) > q, where s ≥ z(θ) is the winning score. The price

associated with the break-even score z(θ) is π(z(θ), θ) = C(q∗(z(θ), θ), θ). Note

that the equilibrium bid in the second-price auction is given by pPO(θ) ≡ C(q, θ).

Let bidders i and j be the lowest and the second lowest bidders, respectively. By
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Proposition 1, the winner i ’s price in the SS auction is

π(z(θj), θi) = z(θj)q
∗(z(θj), θi) ≥ z(θj)q

∗(z(θj), θj)

= π(z(θj), θj)

> pPO(θj).

The first inequality comes from q∗θ ≤ 0 and θj ≥ θi. The last line comes from

Assumption 1: q∗(z(θ), θ) > q and C(q∗(z(θ), θ), θ) > C(q, θ). Thus, the equilibrium

price in the SS auction is higher than in the second-price auction for every type

profile. Because the revenue equivalence theorem holds for price-only auctions, the

expected price in the FS auction is higher than in the first-price auction if the

conditions presented in Theorems 3 or 4 hold. □

A.8 Proof of Proposition 4

Consider a price-only auction in which bidders must enforce a quality at least as

high as q̂. Because bidders have no incentive to provide a higher quality than q̂,

they submit pi = C(q̂, θi) in a second-price auction. Let j be the second lowest type

bidder. The equilibrium price per quality in the second-price auction is
C(q̂,θj)

q̂ .

In the SS auction with a PQR scoring rule, bidders submit their break-even score

z(θi). By the definition of the PQR rule, the equilibrium price per quality is

π(z(θj), θi)

q∗(z(θj), θi)
= z(θj) = min

q

C(q, θj)

q
≤ C(q̂, θj)

q̂
.

The second equality comes from the fact that the average cost is minimized at the

break-even price by interpreting score s as a unit price per quality. □

B Sufficient Conditions for the Equilibrium Existence

of the FS Auction

In this appendix, we explore a set of conditions on primitives that guarantees the

log-supermodularity condition for general scoring rules. We can restrict the domain

41



to {(s, θ)|u(s, θ) > 0}, since otherwise, the score bid is clearly suboptimal for a type θ

bidder. Suppose that usθ exists. We suppose that the payoff function P (s, q)−C(q, θ)

is strictly concave in q and that the optimal quality q∗ always lies in the interior

q∗(s, θ) > q.

Proposition 8 The log-supermodularity condition holds if the optimal quality (and

price) are not binding for all (s, θ) and

1. PsqCqθ ≤ 0, or

2. Psq > 0, Cqθ ≥ 0, P/Ps weakly increasing in q,and Cqθ/(Cqq − Pqq) < Cθ/Cq.

Proof The log-supermodular condition holds if and only if

u(s, θ)

us(s, θ)
usθ(s, θ)− uθ(s, θ) > 0. (28)

Note that by the envelope theorem, we have us(s, θ) = Ps(s, q
∗), uθ(s, θ) = −Cθ(q

∗, θ),

and usθ(s, θ) = Psq(s, q
∗)q∗θ(s, θ). Thus, (28) holds if

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ))q∗θ(s, θ) + Cθ(q
∗(s, θ), θ) > 0. (29)

Because q∗θ(s, θ) = −Cqθ/[Cqq(q
∗(s, θ), θ) − Pqq(s, q

∗(s, θ))], we have condition 1 by

the concavity of P (s, q)− C(q, θ) in q.

In what follows, we provide the proof for condition 2. We assume that Cqθ(q, θ) ≥

0 and that P (s, q)/Ps(s, q) is weakly increasing in q. Let us further assume that

Cq(·)
[
−

Cqθ(·)
Cqq(·)− Pqq(·)

]
+ Cθ(·) > 0

holds for all q and θ. Then we evaluate this inequality at q = q∗(s, θ). Recall that

the square-bracket term equals q∗θ(s, θ) if q = q∗(s, θ). Hence, we obtain

Cq(q
∗(s, θ), θ)q∗θ(s, θ) + Cθ(q

∗(s, θ), θ) > 0. (30)

Next, we show that if P (s, q)/Ps(s, q) is weakly increasing in q for all s and q

and Psq(·) ≥ 0, then [u(s, θ)/us(s, θ)]Psq(·) ≤ Cq. First, the condition that P/Ps is

weakly increasing in q implies that

d

dq

P (s, q)

Ps(s, q)
=

1

(Ps(s, q))2
[Pq(s, q)Ps(s, q)− P (s, q)Psq(s, q)] ≥ 0
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for all s and q. Given the fact that Ps > 0, this inequality is equivalent to

P (s, q)

Ps(s, q)
Psq(s, q) ≤ Pq(s, q) for all s and q.

Then we consider this (weak) inequality, replacing P (s, q) with P (s, q)− C(q, θ) on

the left-hand side. Given that Psq ≥ 0 and that C(q, θ) is nonnegative, the inequality

implies that

[P (s, q)− C(q, θ)]Psq(s, q)

Ps(s, q)
≤ Pq(s, q) (31)

for all s and q.

By substituting q = q∗(s, θ) into (31), we have

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ)) =
P (s, q∗)− C(q∗, θ)

Ps(s, q∗)
Psq(s, q

∗)

≤ Pq(s, q
∗)

= Cq(q
∗, θ). (32)

The last equality comes from the first-order condition for the optimal quality q∗.

Expressions (30) and (32) imply

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ))q∗θ(s, q
∗(s, θ)) + Cθ(q

∗(s, θ), θ)

≥ Cq(q
∗(s, θ), θ)q∗θ(s, q

∗(s, θ)) + Cθ(q
∗(s, θ), θ)

> 0

by Psq > 0 and q∗θ ≤ 0. Thus, log-supermodularity holds. □
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