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Abstract
This paper examines housing markets where constraints are placed on

the number of agents involved in exchanges. We investigate the existence of
exchange-constrained mechanisms that satisfy endowments-swapping-proofness,
a condition ensuring that no pair of agents can benefit from swapping their
endowments before the mechanism is applied. Our primary finding is that
when preferences are strict, no exchange-constrained mechanism can simul-
taneously satisfy both individual rationality and endowments-swapping-proofness.
To avoid this negative result, we next explore three well-known restricted
domains of preferences: common ranking preferences, single-peaked pref-
erences, and single-dipped preferences. Unfortunately, even when prefer-
ences are restricted to either common ranking preferences or single-peaked
preferences, the two properties remain incompatible. However, a possibil-
ity arises if preferences are single-dipped: the well-known top trading cy-
cles mechanism is the only exchange-constrained mechanism that satisfies
strategy-proofness in addition to the two properties mentioned above. No-
tably, this characterization holds even without strategy-proofness when only
pairwise exchanges are allowed.
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1 Introduction

1.1 Motivation and outline

We consider the object reallocation problem introduced by Shapley and Scarf
(1974), known as the housing market. In the standard model of this problem,
each agent initially owns one indivisible object (house) and has strict preferences
over a set of objects. A “mechanism” reallocates the objects provided that each
agent receives one and only one object. There are several real-life applications of
this model: kidney exchange (Roth, Sönmez, and Ünver, 2004), on-campus hous-
ing (Abdulkadiroğlu and Sönmez, 1999), the reallocation of time slots (Moulin,
2003), and the reallocation of airport landing slots (Schummer and Vohra, 2013).

For the object reallocation problem with strict preferences, the top trading cy-
cles mechanism (TTC) selects the unique core allocation via David Gale’s TTC
algorithm (Roth and Postlewaite, 1977). Moreover, TTC is the only mechanism
that is efficient (a chosen assignment cannot be changed in a manner that no agent
is worse off, and some agent is better off), individually rational (no agent is worse
off after the reallocation), and strategy-proof (no agent ever benefits from misrepre-
senting his preferences). Following this characterization provided by Ma (1994),
TTC has been widely characterized by various properties.1

In the context of object reallocation problems, we are interested in mecha-
nisms that are immune to pairwise manipulation by the swapping of endow-
ments. Fujinaka and Wakayama (2018) are the first to formulate this property as
endowments-swapping-proofness, which states that no pair of agents obtain a strictly
better outcome by swapping their endowments before entering the mechanism.2

They then provide an alternative characterization of TTC in terms of this prop-
erty: TTC is the only mechanism that is individually rational, strategy-proof, and
endowments-swapping-proof.

1Examples of such properties include “Maskin monotonicity” (Takamiya, 2001), “anonymity”
(Miyagawa, 2002), “no-envy” (Hashimoto and Saito, 2015), and a weak form of efficiency (Ekici,
2024). See also Morrill and Roth (2024) for the history of TTC, and its generalizations and exten-
sions.

2Endowments-swapping-proofness applies only to two-agent coalitions. Postlewaite (1979) and
Moulin (1995) have already formulated the version of endowments-swapping-proofness that involves
all subsets of agents. However, the mechanism designer need not care about manipulations
by large coalitions because such strategic cooperation is difficult for large coalitions. Therefore,
this coalitional version of endowments-swapping-proofness may be too strong a requirement. Con-
versely, collusion by two agents is relatively easy, and hence, endowments-swapping-proofness is
appealing if any pairs can form.
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Many studies after Ma (1994) have attempted to identify the most desirable
mechanisms in the standard object reallocation model. However, this standard
model disregards some important aspects of reality, which prevent direct appli-
cations of its results to real-life problems. One such aspect is the constraint on
the size of exchanges among agents. For example, in the context of kidney ex-
change, exchanges involving many donor-patient pairs may be infeasible due
to the presence of logistic constraints (Roth, Sönmez, and Ünver, 2005; Nicolò
and Rodrı́guez-Álvarez, 2012, 2017). Another example is the exchange of holi-
day houses, where legal restrictions may prevent exchanges of larger size than
pairwise exchanges (Nicolò and Rodrı́guez-Álvarez, 2013). Based on these ob-
servations, this study aims to find endowments-swapping-proof mechanisms in an
object reallocation model that incorporates exchange constraints.

We first establish a negative result on the domain of strict preferences: the
presence of exchange constraints makes it impossible to construct a mechanism
that satisfies individual rationality and endowments-swapping-proofness (Theorem 2).

The smaller the domain, the weaker is the requirement of endowments-swapping-
proofness. Therefore, we ask whether the above negative result can be avoided on
smaller domains. To analyze this issue, we first consider “common ranking” pref-
erences (Nicolò and Rodrı́guez-Álvarez, 2017).3 Unfortunately, the above nega-
tive result holds even if the domain is restricted to the class of common ranking
preferences. In other words, no exchange-constrained mechanism on the domain
of common ranking preferences satisfies individual rationality and endowments-
swapping-proofness (Theorem 3).

We also consider two other well-known restricted domains, called “single-
peaked” and “single-dipped” preferences.4 The incompatibility of individual ra-
tionality and endowments-swapping-proofness persists even if the domain is restricted
to be single-peaked (Theorem 4). However, a positive result emerges when each
agent has single-dipped preferences: TTC is the only exchange-constrained mech-
anism on the domain of single-dipped preferences that is individually rational,
strategy-proof, and endowments-swapping-proof (Theorem 6). More interestingly,
when we focus on pairwise exchange, this characterization holds without strategy-

3We say that an agent has “common ranking” preferences if he ranks acceptable objects ac-
cording to a common exogenous ranking of the objects.

4We say that an agent has “single-peaked” (resp. “single-dipped”) preferences with respect
to a fixed order of objects if he has a unique best (resp. worst) object, and his welfare is strictly
decreasing (resp. increasing) away from this object on each side of this object according to the
order.
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proofness (Theorem 5). Note that TTC is well-defined on the domain of single-
dipped preferences even when exchange constraints are imposed, for TTC on that
domain involves only self-pointing cycles and pairwise trading cycles (Proposi-
tion 1 and Corollary 1). This nature of TTC leads to the characterization result of
TTC on that domain with exchange constraints.

1.2 Related literature

This study is closely related to two branches of the literature. First, it contributes
to the growing literature on the object reallocation problem with exchange con-
straints and its applications. Roth, Sönmez, and Ünver (2005) and Hatfield (2005)
are the first to consider exchange constraints in the context of kidney exchange
and propose strategy-proof exchange-constrained mechanisms on the domain of
dichotomous preferences. Nicolò and Rodrı́guez-Álvarez (2012, 2017) and Bal-
buzanov (2020) also consider the object reallocation problem with exchange con-
straints, but assume acceptable objects are heterogeneous and preferences are
strict. Nicolò and Rodrı́guez-Álvarez (2012) provide a negative result in that
setting: no exchange-constrained mechanism satisfies individual rationality, effi-
ciency, and strategy-proofness.5 Balbuzanov (2020) derives another negative re-
sult, demonstrating the incompatibility between efficiency and a fairness prop-
erty, called “anonymity.” Our Theorem 2 can be considered as an endowments-
swapping-proofness counterpart of these results.

Second, this paper is connected with the recent literature on the object reallo-
cation problem with restricted domains. Axiomatic characterizing mechanisms
in the object reallocation problems with the following three restricted domains,
which are considered in this paper, has been a growing research agenda.

• Common ranking preferences: Assuming that each agent has common ranking
preferences, Nicolò and Rodrı́guez-Álvarez (2017) propose a pairwise exchange
mechanism that is individually rational, efficient, and strategy-proof, while ending
up with a negative result under more general exchange constraints.6 Our The-
orem 3 shows that a negative result holds even for pairwise exchanges when
efficiency and strategy-proofness are replaced by endowments-swapping-proofness.

5Nicolò and Rodrı́guez-Álvarez (2013) show that one cannot escape this negative result by
weakening strategy-proofness to “ordinal Bayesian incentive compatibility.”

6Rodrı́guez-Álvarez (2023) specifies the extent to which the domain of common ranking pref-
erences can be enlarged to permit the existence of pairwise exchange mechanisms that satisfy the
three properties.
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• Single-peaked preferences: When preferences are single-peaked but exchange
constraints are not allowed, there are many non-TTC mechanisms that satisfy cer-
tain desirable properties as well as TTC does (Bade, 2019; Liu, 2022; Tamura, 2022;
Tamura and Hosseini, 2022; Huang and Tian, 2023). However, our Theorem 4

tells us that once exchange constraints are imposed, there is no nice mechanism
in terms of endowments-swapping-proofness.

• Single-dipped preferences: Tamura (2023) shows that the characterizations of
TTC proposed by Ma (1994) and Fujinaka and Wakayama (2018) persist even if
preferences are restricted to being single-dipped. However, she does not consider
constraints on the size of exchanges. Our Theorem 5 and Theorem 6 show that
Tamura’s characterization of TTC holds even when exchange constraints are im-
posed; furthermore, strategy-proofness can be dropped from the list of axioms in
Tamura’s characterization of TTC when we focus on pairwise exchanges.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes the model and
introduces our properties for mechanisms. Section 3 states our impossibility re-
sult on the domain of strict preferences in the presence of exchange constraints.
Section 4 considers three types of restricted domains of preferences and presents
the results on these domains. Section 5 concludes with some suggestions for fu-
ture research. Appendix A contains the proofs that are omitted from the main
text.

2 Preliminaries

2.1 Model

Let N = {1, 2, . . . , n} be a finite set of agents and H = {h1, h2, . . . , hn} be a finite
set of objects. In this paper, we assume n ≥ 3. An assignment is a bijection
x : N → H. For simplicity of notation, we write xi for x(i). As usual, xi represents
the object agent i receives at x. Let X be the set of assignments. An endowment
is denoted by ω = (ωi)i∈N ∈ X, where ωi represents the object owned by agent i.

Given an assignment and an endowment (x, ω) ∈ X × X, we call a sequence
(i1(= iS+1), i2, . . . , iS) of agents a trading cycle at (x, ω) if one of the following
holds:
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(a) S = 1 and xi1 = ωi1 , or

(b) S ≥ 2, for each {s, s′} ⊆ {1, 2, . . . , S} with s 6= s′, is 6= is′ , and for each
s ∈ {1, 2, . . . , S}, xis = ωis+1

Given an endowment ω ∈ X and an integer ` ∈ N, we say that an assignment
x ∈ X is `-feasible with respect to ω if for each trading cycle (i1, i2, . . . , iS) at
(x, ω), |{i1, i2, . . . , iS}| ≤ `.7 We denote the set of `-feasible assignments with
respect to ω by X`(ω). Note that for each ω ∈ X, X1(ω) = {ω} and Xn(ω) = X.

We assume that each agent i ∈ N has a strict preference relation Âi over H. Let
P be the set of all strict preferences over H. For each Â0 ∈ P , %0 represents the
induced weak preference relation from Â0; that is, for each {h, h′} ⊂ H, h %0 h′

if and only if either h Â0 h′ or h = h′. Let PN be the set of all strict preference
profiles Â = (Âi)i∈N such that for each i ∈ N, Âi ∈ P . We often denote N \ {i}
by “−i.” With this notation, (Â′

i,Â−i) denotes the preference profile where agent
i has Â′

i and each other agent j has Âj. For each i ∈ N and each (Âi, ωi) ∈ P × H,
let A(Âi, ωi) = {h ∈ H : h Âi ωi} be the set of acceptable objects for i at (Âi, ωi).

An economy is a pair of a preference profile and an endowment e = (Â, ω) ∈
PN × X. Let E ⊆ PN × X be a set of admissible economies, called a domain.
We denote the strict domain by E st = PN × X.

Given a domain E ⊆ E st, a mechanism on E is a function f : E → X that
maps each economy e = (Â, ω) ∈ E to an assignment f (e) ∈ X. Given an integer
` ∈ N, we say that a mechanism f on E is `-feasible if for each e = (Â, ω) ∈
E , f (e) ∈ X`(ω). In particular, we say that a mechanism f on E is a pairwise
exchange mechanism if it is 2-feasible.

2.2 Properties

In this subsection, we list our properties for mechanisms. Our main property is as
follows: no pair of agents can strictly benefit from swapping their endowments
before they enter the mechanism. To define this property, we require additional
notation. Given an economy e = (Â, ω) ∈ E and a pair {i, j} ⊂ N, let ei,j = (Â
, ωi,j) ∈ PN × X be such that ω

i,j
i = ωj, ω

i,j
j = ωi, and for each k ∈ N \ {i, j},

ω
i,j
k = ωk.

Endowments-swapping-proofness: There are no e = (Â, ω) ∈ E and {i, j} ⊂ N
such that (i) ei,j ∈ E , and (ii) fi(ei,j) Âi fi(e) and f j(ei,j) Âj f j(e).

7Given a set Z, |Z| denotes the cardinality of Z.
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Remark 1. Fujinaka and Wakayama (2018) do not include Condition (i), ei,j ∈ E ,
in their definition of endowments-swapping-proofness because they only consider
the strict domain that includes any “swapping economy” where a pair of agents
swaps their endowments. Unlike Fujinaka and Wakayama (2018), this paper con-
siders both the strict domain and its restricted domains. There is no guarantee
that such restricted domains necessarily include any swapping economy.8 This
makes it necessary for us to require Condition (i) in the definition of endowments-
swapping-proofness. ♦

We also consider the following allocative property, which states that no one is
made worse off by participating in a mechanism.

Individual rationality: For each e = (Â, ω) ∈ E and each i ∈ N, fi(e) %i ωi.

The following property is the standard incentive requirement, which requires
that no agent should ever be made better off than by telling the truth.

Strategy-proofness: For each e = (Â, ω) ∈ E , each i ∈ N, and each e′ = ((Â′
i

,Â−i), ω) ∈ E , fi(e) %i fi(e′).

3 Impossibility result on the strict domain

A prominent mechanism on the strict domain is the so-called top trading cycles
mechanism. The top trading cycles mechanism, or TTC for short, is the mecha-
nism TTC : E st → X that selects for each e ∈ E st, the assignment TTC(e) obtained
via the following algorithm known as the TTC algorithm:

• Round 1. Each agent points to the agent who owns his best object. Here
each agent is allowed to point to himself. Then, there is at least one trading
cycle as the number of agents is finite. Each agent involved in a cycle is
assigned an object along the cycle and then removed. If an agent remains,
the algorithm continues to the next round; otherwise, it terminates.

• Round t ≥ 2. Each remaining agent points to the agent who owns his
best object among those remaining. Here each agent is allowed to point

8We illustrate this point with a simple example. Consider the common ranking domain, E cm

(this domain will be formally defined in Section 4.1). Let n = 3 and e = (Â, ω) ∈ E cm be such
that h2 Â1 h1 Â1 h3 and ω = (h1, h2, h3). We now consider e1,3. Then, Â1 is not common ranking
preferences at e1,3, and hence, e1,3 /∈ E cm.

7



to himself. Then, at least one trading cycle exists. Each agent involved in
a cycle is assigned an object along the cycle and then removed. If an agent
remains, the algorithm continues to the next round; otherwise, it terminates.

An endowments-swapping-proofness characterization of TTC on the strict do-
main in the absence of exchange constraints has been already presented in Fu-
jinaka and Wakayama (2018).

Theorem 1 (Theorem 4 in Fujinaka and Wakayama (2018)). A mechanism on E st

satisfies individual rationality, strategy-proofness, and endowments-swapping-proofness
if and only if it is TTC.

The question that naturally arises from Theorem 1 is whether we can find
an endowments-swapping-proof mechanism that satisfies certain desirable proper-
ties when we impose exchange constraints on the size of trading cycles. Un-
fortunately, the next result indicates that individual rationality and endowments-
swapping-proofness are incompatible once exchange constraints are imposed; that
is, Theorem 1 breaks down as soon as the exchange size is limited.

Theorem 2. Let ` ∈ {1, 2, . . . , n − 1}. Then, no `-feasible mechanism on E st satisfies
individual rationality and endowments-swapping-proofness.

Proof. Suppose on the contrary that there is an `-feasible mechanism f on E st that
satisfies the two properties. Let N` = {1, 2, . . . , `+ 1}.9 We derive a contradiction.
The proof is in three steps.

Step 1: Constructing economies. Let Â ∈ PN be such that:

(i) for each i ∈ N`, each j ∈ {i, i + 1, . . . , ` + 1}, each j′ ∈ {1, 2, . . . , i − 1}, and
each j′′ ∈ N \ N`, hj Âi hj′ Âi hj′′ ;

(ii) for each i ∈ N` and each {j, j′} ⊂ N, if j < j′ and either {j, j′} ⊆ {i, i +
1, . . . , ` + 1} or {j, j′} ⊆ {1, 2, . . . , i − 1}, then hj Âi hj′ ;

(iii) for each i ∈ N \ N` and each {j, j′} ⊂ N, if j < j′, then hj Âi hj′

The preference profile Â can be represented as follows:

9Since ` ≤ n − 1, agent ` + 1 exists.
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Â1 Â2 Â3 · · · Â` Â`+1 Âj≥`+2

h1 h2 h3 · · · h` h`+1 h1

h2 h3 h4 · · · h`+1 h1 h2

h3 h4 h5 · · · h1 h2 h3
...

...
...

...
...

...
h`−1 h` h`+1 · · · h`−3 h`−2 h`−1

h` h`+1 h1 · · · h`−2 h`−1 h`

h`+1 h1 h2 · · · h`−1 h` h`+1
...

...
...

...
... h`+2

...
hn

For each k ∈ N`, let ωk ∈ X be such that for each i ∈ N,

ωk
i =


hi+1 if i ≤ k − 1

h1 if i = k

hi if i ≥ k + 1.

(1)

That is, ω1 = (h1, h2, . . . , hn), ω2 = (h2, h1, h3, . . . , hn), ω3 = (h2, h3, h1, h4, . . . , hn),
ω4 = (h2, h3, h4, h1, h5, . . . , hn), and so forth. Note that for each k ∈ N` \ {1},
ωk−1 = (ωk)k−1,k. For each k ∈ N`, let ek = (Â, ωk).

Step 2: For each k ∈ N` and each i ∈ N`, fi(ek) = hi. We use the induction to
prove this step.

BASE STEP. Let K = 1 and i ∈ N`. By the definition of Âi (Step 1), A(Âi, ω1
i =

hi) = ∅. Thus, individual rationality implies fi(e1) = hi.

INDUCTION HYPOTHESIS. Let K ∈ N` \ {1}. For each k ∈ {1, 2, . . . , K − 1} and
each i ∈ N`, fi(ek) = hi.

INDUCTION STEP. Let K ∈ N` \ {1}.

I Substep 2-1: For each i ∈ {K + 1, K + 2, . . . , `+ 1}, fi(eK) = hi. This substep
can be proved in the same way as the base step.

I Substep 2-2: f1(eK) = h1. Suppose on the contrary that f1(eK) 6= h1. Then, by
the definition of Â1 (Step 1), A(Â1, ωK

1 = h2) = {h1}. Thus, f1(eK) 6= h1 and indi-
vidual rationality together imply f1(eK) = h2. Also, by the definition of Â2 (Step 1),
A(Â2, ωK

2 = h3) = {h2}. Thus, f2(eK) 6= h2 and individual rationality together

9



imply f2(eK) = h3. By repeating this argument, for each i ∈ {1, 2, . . . , K − 1},
fi(eK) = hi+1. In particular, fK−1(eK) = hK. Note that by K ≥ 2 and the defini-
tion of ÂK (Step 1), A(ÂK, ωK

K = h1) = {hK, hK+1, . . . , h`+1}. By fK−1(eK) = hK

and Substep 2-1, for each i ∈ {K, K + 1, . . . , ` + 1}, fK(eK) 6= hi. Thus, individ-
ual rationality implies that fK(eK) = ωK

K = h1. Since ωK−1 = (ωK)K−1,K and
( fK−1(eK−1), fK(eK−1)) = (hK−1, hK) by the induction hypothesis,

fK−1(eK−1) = hK−1 ÂK−1 hK = fK−1(eK)

fK(eK−1) = hK ÂK h1 = fK(eK),

in violation of endowments-swapping-proofness.

I Substep 2-3: For each i ∈ {2, 3, . . . , K}, fi(eK) = hi. By the definition of
ÂK (Step 1), A(ÂK, ωK

K = h1) = {hK, hK+1, . . . , h`+1}. It follows from Substeps 2-
1 and 2-2 that for each i ∈ {1, K + 1, . . . , ` + 1}, fK(eK) 6= hi. Thus, individual
rationality implies fK(eK) = hK. Additionally, by the definition of ÂK−1 (Step 1),
A(ÂK−1, ωK

K−1 = hK) = {hK−1}. Thus, fK−1(eK) 6= hK and individual rationality
together implies fK−1(eK) = hK−1. Continuing in the similar way, we see that for
each k ∈ {2, 3, . . . , K − 2}, fk(eK) = hk.

From Substeps 2-1, 2-2, and 2-3, we have that for each i ∈ N`, fi(eK) = hi.

Step 3: Concluding. Step 2 implies that for each i ∈ N`, fi(e`+1) = hi; that is,
f1(e`+1) = h1 = ω`+1

`+1 and for each i ∈ N` \ {1}, fi(e`+1) = hi = ω`+1
i−1 . Since

(1, 2, . . . , ` + 1) is a trading cycle at ( f (e`+1), ω`+1), f (e`+1) /∈ X`(ω`+1), which is
a contradiction.

Now, we verify that the two properties in Theorem 2 are independent; that
is, if any of the two properties in Theorem 2 is relaxed, there is a mechanism
that satisfies the remaining property. The no-trade mechanism, which always
assigns each agent his endowment, is an `-feasible (` ≤ n − 1) mechanism that
is individually rational but not endowments-swapping-proof. The following example
illustrates a pairwise exchange mechanism that is endowments-swapping-proof but
not individually rational in the three-agent case.

Example 1. Suppose n = 3. Let P23 ⊂ PN be the set of preference profiles
represented as

10



Âi Âj Âk

h1 h2 h3

h2
...

...
h3

and P32 ⊂ PN the set of preference profiles represented as

Âi Âj Âk

h1 h2 h3

h3
...

...
h2

Note that P13 ∪P23 is the set of preference profiles where the three agents have
the different best objects. Consider the following mechanism f nir defined by, for
each e = (Â, ω) ∈ E st,

f nir(e) =



ω if [Â ∈ P23 and ωk = h1] or [Â ∈ P32 and ωj = h1]

ωi,k if Â ∈ P23 and ωi = h1

ω j,k if [Â ∈ P23 and ωj = h1] or [Â ∈ P32 and ωk = h1]

ωi,j if Â ∈ P32 and ωi = h1

TTC(e) otherwise.

This mechanism is indeed a pairwise exchange mechanism.10 One can easily ver-
ify that f nir violates individual rationality. For the proof of endowments-swapping-
proofness of this mechanism, see Online Appendix B. ¥

4 Restricted domains

We have shown that when the size of trading cycles is limited, individual ratio-
nality and endowments-swapping-proofness are incompatible on the strict domain.
However, these two properties might be compatible if one restricts the domain
of strict preferences to a special class of preferences, considering endowments-
swapping-proofness is weaker on smaller domains. Therefore, we examine whether

10To see this, let e = (Â, ω) ∈ E st. If Â ∈ P23 ∪ P32, by f nir(e) ∈ {ω, ωi,j, ωi,k, ω j,k}, at most
two agents exchange their endowments, that is, f nir(e) ∈ X2(ω). If Â ∈ PN \ (P23 ∪P32), then
at least two agents’ best objects are the same, and hence, the size of a cycle formed in Round 1 of
the TTC algorithm is at most two. This implies that the size of a trading cycle at (TTC(e), ω) is at
most two, that is, f nir(e)(= TTC(e)) ∈ X2(ω).
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the two properties are compatible on a restricted domain. We consider three well-
known restricted domains in the literature on the object reallocation problem:
common ranking preferences (Nicolò and Rodrı́guez-Álvarez, 2017; Rodrı́guez-
Álvarez, 2023), single-peaked preferences (Bade, 2019; Liu, 2022; Tamura, 2022;
Tamura and Hosseini, 2022; Huang and Tian, 2023), and single-dipped prefer-

ences (Tamura, 2023).

4.1 Common ranking preferences

In this subsection, we first define the common ranking preferences. An agent
who has common ranking preferences orders acceptable objects according to an
exogenous ranking of objects that is common to all agents. Here, we consider the
common ranking wherein objects are naturally ordered; that is, for each {j, k} ⊂
N with j < k, object hj is ranked higher than object hk. Given i ∈ N and ωi ∈ H,
we say that agent i’s preference relation Âi ∈ P is a common ranking preference
with respect to ωi if for each {hj, hk} ⊆ A(Âi, ωi),

hj Âi hk ⇐⇒ j < k.

Let Pωi ⊂ P be the set of common ranking preferences with respect to ωi. Given
ω ∈ X, let Pω = ∏n

i=1 Pωi . We denote the common ranking domain by E cm =⋃
ω∈X {Pω × {ω}} .

Nicolò and Rodrı́guez-Álvarez (2017) show that on the common ranking do-
main, no `-feasible (3 ≤ ` ≤ n − 1) mechanism satisfies individual rationality, (con-
strained) efficiency, and strategy-proofness.11 Additionally, a positive result emerges
when only pairwise exchange is admitted: the “natural priority mechanism” is
the only pairwise exchange mechanism that satisfies the three properties.12 The
following result is in sharp contrast with this Nicolò and Rodrı́guez-Álvarez’s

11The notion of efficiency requires that no agent can be made better off without making someone
else worse off. This notion is formally defined as follows: for each e = (Â, ω) ∈ E , there is no
x ∈ X such that for each i ∈ N, xi %i fi(e), and for some j ∈ N, xj Âj f j(e). Similarly, the notion
of constrained efficiency, which incorporates exchange constraints into the definition of efficiency, is
formally defined as follows: for each e = (Â, ω) ∈ E , there is no x ∈ X`(ω) such that for each
i ∈ N, xi %i fi(e), and for some j ∈ N, xj Âj f j(e).

12The natural priority mechanism allocates objects via an algorithm that prioritizes agents that
own objects with lower index numbers. In the algorithm, we start with a set of individually rational
pairwise assignments, and each agent sequentially refines the set of assignments to his best as-
signments according to priority ordering. See Nicolò and Rodrı́guez-Álvarez (2017) for a formal
definition of this mechanism.
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result, as a negative result holds even for pairwise exchanges if efficiency and
strategy-proofness are replaced with endowments-swapping-proofness.

Theorem 3. Let ` ∈ {1, 2, . . . , n − 1}. Then, no `-feasible mechanism on E cm satisfies
individual rationality and endowments-swapping-proofness.

Outline of the proof. We can prove this theorem using the same argument as in
Theorem 2. The only concern is whether the economy ek (k ∈ N`) constructed in
the proof of Theorem 2 (Step 1) is in the common ranking domain, E cm. In fact,
we can show that for each k ∈ N`, ek ∈ E cm. Therefore, the proof of Theorem 2
can be applied to the proof of this theorem. See Appendix A for a formal proof of
Theorem 3.

Lastly, we verify that the two properties in Theorem 3 are independent. The
no-trade mechanism is an `-feasible (` ≤ n − 1) mechanism that is individually
rational but not endowments-swapping-proof. The restriction of f nir to E cm is a pair-
wise exchange mechanism that is endowments-swapping-proof but not individually
rational in the three-agent case.13

4.2 Single-peaked preferences

Here, we consider another restricted domain of preferences, called “single-peaked”
preferences. Recently, object reallocation mechanisms on the single-peaked do-
main have gained wide attention (Bade, 2019; Liu, 2022; Tamura, 2022; Tamura
and Hosseini, 2022; Huang and Tian, 2023). For the object reallocation problem
with single-peaked preferences and no exchange constraints, while TTC satis-
fies efficiency, individual rationality, and strategy-proofness, there are many non-
TTC mechanisms that satisfy these three properties, such as the “crawler” (Bade,
2019), the “neighborhood top trading cycles mechanisms” (Liu, 2022), and the “r-
neighborhood mechanisms” (Huang and Tian, 2023). Moreover, in that setting,
TTC still satisfies endowments-swapping-proofness.14 However, these mechanisms
are not `-feasible (` ≤ n − 1). Therefore, we look for `-feasible (` ≤ n − 1) mech-
anisms that satisfy endowments-swapping-proofness when each agent has single-
peaked preferences.

13Given a mechanism f on E st, a restriction of f to E ⊂ E st is a mechanism on E , f |E : E → X,
such that for each e ∈ E , f |E (e) = f (e).

14The crawler surprisingly violates endowments-swapping-proofness when there are more than
three agents. The detailed proof of this fact is available upon request. It is an interesting open
question to identify which non-TTC mechanisms satisfy endowments-swapping-proofness when ex-
change constraints are not imposed.
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We now describe a formal definition of single-peaked preferences. To do this,
we need to consider a linear order C on H. Without loss of generality, assume
that

h1 C h2 C · · · C hn. (2)

Given i ∈ N, we say that i’s preference relation Âi ∈ P is single-peaked (with
respect to C) if there is an object, p(Âi) ∈ H, such that

(i) for each h ∈ H \ {p(Âi)}, p(Âi) Âi h;

(ii) for each {h, h′} ⊆ H \ {p(Âi)}, if either h′ C h C p(Âi) or p(Âi) C h C h′,
then h Âi h′.

We denote the set of single-peaked preferences by S∧ ⊂ P . Let E ∧ = S N
∧ × X

be the single-peaked domain.
When there are constraints on the length of an exchange cycle, we face a

similar negative result even on the single-peaked domain. This negative result
is somewhat surprising because there are many desirable mechanisms on the
single-peaked domain in the absence of exchange constraints.

Theorem 4. Let ` ∈ {1, 2, . . . , n − 1}. Then, no `-feasible mechanism on E ∧ satisfies
individual rationality and endowments-swapping-proofness.

Outline of the proof. The basic structure of the proof of this theorem is similar to
that of Theorem 2. However, each economy ek constructed in the proof of Theo-
rem 2 (Step 1) is not in the single-peaked domain, and hence, we cannot directly
apply the proof of Theorem 2. To overcome this difficulty, we construct new
economies êk (k ∈ N`) that are in the single-peaked domain, so that our methods
in the proof of Theorem 2 can be used (with some modifications) to prove this
theorem. See Appendix A for a formal proof of Theorem 4.

Lastly, we verify the independence of properties of Theorem 4. The no-trade
mechanism is an `-feasible (` ≤ n − 1) mechanism that is individually rational but
not endowments-swapping-proof. Furthermore, the restriction of f nir to E ∧ is a pair-
wise exchange mechanism that is endowments-swapping-proof but not individually
rational in the three-agent case.

4.3 Single-dipped preferences

In this subsection, we consider “single-dipped” preferences, which are prefer-
ences defined on a fixed order of objects similar to single-peaked preferences
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considered in the previous subsection. Recently, Theorem 1 has been found to
hold true for the single-dipped domain in the absence of exchange constraints
(Tamura, 2023). As such, in contrast to the single-peaked domain, TTC is the
central mechanism on the single-dipped domain. However, given the negative
results achieved above, one might think that a similar negative result holds on
the single-dipped domain once exchange constraints are imposed. Here, we will
examine whether this conjecture is true.

We first describe a formal definition of single-dipped preferences. As in the
previous subsection, we consider the linear order C on H such that (2) holds.
Given i ∈ N, we say that i’s preference relation Âi ∈ P is single-dipped (with
respect to C) if there is an object, d(Âi) ∈ H, such that

(i) for each h ∈ H \ {d(Âi)}, h Âi d(Âi);

(ii) for each {h, h′} ⊆ H \ {d(Âi)}, if either h′ C h C d(Âi) or d(Âi) C h C h′,
then h′ Âi h.

We denote the set of single-dipped preferences by S∨ ⊂ P . We call E ∨ = S N
∨ ×

X the single-dipped domain.
Interestingly, TTC on the single-dipped domain is a pairwise exchange mech-

anism. Before we provide a proof of this fact, we introduce some notation that
will be useful. Fix any economy e = (Â, ω) ∈ E ∨ and any integer t ≥ 1. We write
St(e) ⊂ 2N for the set of groups of agents that form trading cycles in Round t of
the TTC algorithm at e. We denote the set of agents who are assigned objects in
Round t of the TTC algorithm by

Nt(e) =
⋃

S∈St(e)

{S}.

We denote the set of objects that are assigned to agents in Round t of the TTC
algorithm by

Ht(e) = {h ∈ H : ∃ i ∈ Nt(e), h = ωi} .

Define Nt(e) and Ht(e) as follows:

Nt(e) =
t⋃

z=1

Nz(e) and Ht(e) =
t⋃

z=1

Hz(e).

For the sake of convenience, let N0(e) = H0(e) = ∅. With a slight abuse of
notation, each S ∈ St(e) also represents a trading cycle, that is, “S = {i1(=
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iK+1), i2, . . . , iK} ∈ St(e)” means that (i) for each k ∈ {1, 2, . . . , K}, ik ∈ N \
Nt−1(e) and ωik ∈ H \ Ht−1(e), and (ii) for each h ∈ H \ (Ht−1(e) ∪ {ωik+1}),
ωik+1 Âik h. We denote by i(e, t) (resp. i(e, t)) the agent whose endowment has the
lowest (resp. highest) index among the set of remaining objects in Round t of the
TTC algorithm at e. That is,

• ωi(e,t) = ht ∈ H \ Ht−1(e) and for each hm ∈ H \ (Ht−1(e) ∪ {ht}), t < m.

• ωi(e,t) = ht ∈ H \ Ht−1(e) and for each hm ∈ H \ (Ht−1(e) ∪ {ht}), t > m.

Note that for each e = (Â, ω) ∈ E ∨, ωi(e,1) = h1 and ωi(e,1) = hn

To familiarize ourselves with these definitions, Figure 1 uses them to illustrate
how the TTC algorithm works for an economy with five agents whose preferences
are single-dipped. We see from Figure 1 that the TTC algorithm on the single-
dipped domain involves self-pointing trading cycles and pairwise trading cycles
in each round. This is because in each round of the TTC algorithm, best objects
always appear at both or one of the two ends of the “remaining” line, and hence,
only one or both of the agents at the two ends form a trading cycle. The following
result tells us that these observations hold for any number of agents.

Proposition 1. For each e = (Â, ω) ∈ E ∨ and each integer t ≥ 1,

St(e) ∈
{{

{i(e, t), i(e, t)}
}

,
{
{i(e, t)}, {i(e, t)}

}
,
{
{i(e, t)}

}
,
{
{i(e, t)}

}}
.

Proof. Let e = (Â, ω) ∈ E ∨ and t ≥ 1. We write i(t) (resp. i(t)) for i(e, t)
(resp. i(e, t)). Then, we show that Nt(e) ⊆ {i(t), i(t)}. We consider Round t
of the TTC algorithm. Let i ∈ N \ Nt−1(e). By Âi ∈ S∨ and the definitions of i(t)
and i(t), we have either

(a) for each h ∈ H
∖(

Ht−1(e) ∪ {ωi(t)}
)

, ωi(t) Âi h, or

(b) for each h ∈ H
∖(

Ht−1(e) ∪ {ωi(t)}
)

, ωi(t) Âi h.

Thus,
St(e) ∈

{{
{i(t), i(t)}

}
,
{
{i(t)}, {i(t)}

}
,
{
{i(t)}

}
,
{
{i(t)}

}}
,

the desired conclusion.

Proposition 1 immediately implies that TTC on the single-dipped domain is a
pairwise exchange mechanism.
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Figure 1: An illustration of the TTC algorithm on the single-dipped domain. Let n = 5.
Consider economy e = (Â, ω) ∈ E ∨ where Â is depicted in Panel (a) and for each i ∈ N,
ωi = hi. Panel (a) represents Round 1 of the TTC algorithm. Then, i(e, 1) = 1 and
i(e, 1) = 5. In this round, agents 1, 3, 4, and 5 point to agent i(e, 1) = 5, and agent
2 points to agent i(e, 1) = 1. Then, there is only one cycle: the self-pointing cycle of
agent 5. Therefore, S1(e) = {{i(e, 1)}} = {{5}}. Then, agent 5 is assigned object ω5

and removed from the economy. Panel (b) represents Round 2 of the TTC algorithm.
Then, i(e, 2) = 1 and i(e, 2) = 4. In this round, agents 1 and 3 point to agent i(e, 2) = 4,
and agents 2 and 4 point to agent i(e, 1) = 1. Then, there is only one trading cycle
(i(e, 2), i(e, 2)) = (1, 4) and hence, S2(e) = {{i(e, 2), i(e, 2)}} = {{1, 4}}. Then, agents 1
and 4 are assigned object ω4 and object ω1, respectively, and removed from the economy.
Panel (c) represents Round 3 of the TTC algorithm. Then, i(e, 3) = 2 and i(e, 3) = 3. In
this round, agents 2 and 3 point to agent i(e, 2) = 3. Then, there is only one cycle: the
self-pointing cycle of agent 3. Therefore, S3(e) = {{i(e, 3)}} = {{3}}. Then, agent 3 is
assigned object ω3 and removed from the economy. Panel (d) represents Round 4 of the
TTC algorithm. Then, i(e, 4) = i(e, 4) = 2. In this round, agent 2 points to himself and
thus, S4(e) = {{i(e, 4)(= i(e, 4))}} = {{2}}. Then, agent 2 is assigned object ω2 and
removed from the economy. The algorithm terminates at this round.
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Corollary 1. TTC on E ∨ is a pairwise exchange mechanism.

When we focus on pairwise exchanges, we can characterize TTC by dropping
strategy-proofness from the list of axioms in Tamura’s characterization.

Theorem 5. A pairwise exchange mechanism on E ∨ satisfies individual rationality and
endowments-swapping-proofness if and only if it is TTC.

Outline of the proof. The “if” part immediately follows from Tamura (2023). Thus,
we here provide an outline of the proof of the “only if” part. Suppose a pairwise
exchange mechanism f satisfies the two properties. Let e = (Â, ω) ∈ E ∨. We
show by induction that for each t ≥ 1 and each i ∈ Nt(e), fi(e) = TTCi(e). Let S ∈
St(e). By Corollary 1, we have either |S| = 1 or |S| = 2. The desired conclusion
simply follows from individual rationality in the case |S| = 1. In the case |S| = 2,
that is, S = {{i(e, t), i(e, t)}}, 2-feasibility of f plays a crucial role. Suppose on
the contrary that fi(e,t)(e) 6= ωi(e,t)(= TTCi(e,t)(e)). Then, the 2-feasibility implies
fi(e,t)(e) 6= ωi(e,t)(= TTCi(e,t)(e)), thereby enabling the two agents to benefit from
swapping their endowments. This contradicts endowments-swapping-proofness of
f . See Appendix A for a formal proof of Theorem 5.

We now verify the independence of properties listed in Theorem 5. The no-
trade mechanism is an `-feasible (` ≤ n− 1) mechanism that is individually rational
but not endowments-swapping-proof. The following example illustrates a pairwise
exchange mechanism that is endowments-swapping-proof but not individually ratio-
nal in the three-agent case.

Example 2. Let n = 3 and let ë = (Â̈, ω̈) ∈ E ∨ be such that

Â̈1 Â̈2 Â̈3

h1 h1 h1

h2 h2 h2

h3 h3 h3

and ω̈ = (h1, h3, h2). Consider the following pairwise exchange mechanism f̈
defined by, for each e = (Â, ω) ∈ E ∨,

f̈ (e) =

(h1, h2, h3) if e = ë

TTC(e) otherwise.

18



Note that TTC(ë) = (h1, h3, h2) 6= f̈ (ë). One can easily verify that f̈ is not individ-
ually rational. For the proof of endowments-swapping-proofness of this mechanism,
see Online Appendix B. ¥

It is worth mentioning that Theorem 5 no longer holds if we consider the size
of exchanges larger than pairwise exchanges. That is, we can construct a non-TTC
mechanism that satisfies individual rationality and endowments-swapping-proofness.
The following example illustrates such a mechanism.

Example 3. Let n = 4 and e′ = (Â′, ω′) ∈ E ∨ be such that

Â′
1 Â′

2 Â′
3 Â′

4

h4 h1 h1 h1

h3 h2 h2 h2

h2 h3 h3 h3

h1 h4 h4 h4

and ω′ = (h1, h2, h3, h4). Consider the following 3-feasible mechanism f ∨ defined
by, for each e ∈ E ∨,

f ∨(e) =

(h4, h1, h3, h2) if e = e′

TTC(e) otherwise

Note that TTC(e′) = (h4, h2, h3, h1) 6= f ∨(e′). It is easy to see that f ∨ is individually
rational. For the proof of endowments-swapping-proofness of this mechanism, see
Online Appendix B. ¥

From Example 3, one might think that strategy-proofness is indispensable for
characterizing TTC using individual rationality and endowments-swapping-proofness
for the general exchange constraints, as in Tamura (2023). The following theo-
rem shows that this is indeed the case and it follows from Tamura (2023) and
Corollary 1.

Theorem 6. Let ` ∈ {3, 4, . . . , n − 1}. An `-feasible exchange mechanism on E ∨ sat-
isfies individual rationality, strategy-proofness, and endowments-swapping-proofness if
and only if it is TTC.

Proof. We know from Corollary 1 that TTC is a pairwise exchange mechanism,
and hence, is `-feasible. Then, the “if” part follows from the fact that TTC satisfies
the three properties. Also, we know from Tamura (2023) that TTC is the only
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mechanism on E ∨ that satisfies the three properties without exchange constraints.
Therefore, if an `-feasible mechanism f on E ∨ satisfies the three properties, f =
TTC, which completes the proof of the “only if” part.

Remark 2. Single-dipped preferences considered in this section are often called
single-dipped preferences on a “line.” We can define single-dipped preferences to
a more general structure called a “tree.” These generalized single-dipped prefer-
ences are often called single-dipped preferences on a tree. Without constraints on
the size of exchanges, the characterization of TTC holds on the domain of single-
dipped preferences on a tree (Tamura, 2023). However, unlike when dealing with
a line, Theorem 5 no longer holds on the domain of single-dipped preferences
on a tree if exchange constraints are stringent. We discuss it in detail in Online
Appendix C. ♦

Remark 3. TTC violates a strict version of endowments-swapping-proofness, called
strict endowments-swapping-proofness, even on the single-dipped domain. The no-
tion of strict endowments-swapping-proofness is formally defined as follows: there
are no e = (Â, ω) ∈ E and {i, j} ⊂ N such that (i) ei,j ∈ E , and (ii) fi(ei,j) %i fi(e)
and f j(ei,j) Âj f j(e). To see that TTC on the single-dipped domain violates strict
endowments-swapping-proofness, let e = (Â, ω) ∈ E ∨ be such that

Â1 Âi≥2

hn h1

hn−1 h2
...

...
h2 hn−1

h1 hn

and ω = (h1, h2, . . . , hn). Then, TTC(e) = (hn, h2, h3, . . . , hn−1, h1) and TTC(e1,2) =
(hn, h1, h3, . . . , hn−1, h2). Hence, e1,2 ∈ E ∨, and

TTC1(e1,2) = hn = TTC1(e);

TTC2(e1,2) = h1 Â2 h2 = TTC2(e),

in violation of strict endowments-swapping-proofness. ♦
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5 Concluding remarks

This paper explored endowments-swapping-proof mechanisms in object realloca-
tion problems (also known as housing markets) that incorporate constraints on
trading cycles. We found that when preferences are strict, the introduction of ex-
change constraints renders individual rationality and endowments-swapping-proofness
incompatible. Unfortunately, this incompatibility persists even when preferences
are restricted to either common ranking preferences or single-peaked preferences.
However, we established a positive result for single-dipped preferences: when
preferences are single-dipped, TTC emerges as the only pairwise exchange mech-
anism satisfying the two properties. It stands as the only `-feasible (` ≥ 3) ex-
change mechanism that satisfies strategy-proofness in addition to the two proper-
ties.

We conclude our discussion by mentioning two potential extensions of the
model. First, our setting does not accommodate the possibility of agents hav-
ing indifferences. Nicolò and Rodrı́guez-Álvarez (2017) and Rodrı́guez-Álvarez
(2023) extend the common ranking domain to domains where agents’ preferences
may be weak. They term these “age-based domains” and propose a pairwise ex-
change mechanism that satisfies individual rationality, (constrained) efficiency, and
strategy-proofness. It remains an open question whether there is an exchange-
constrained mechanism satisfying individual rationality and endowments-swapping-
proofness on age-based domains.

Second, this paper does not delve into probabilistic mechanisms. Recently,
Balbuzanov (2020) succeeds in identifying an efficient and “anonymous” pairwise
exchange mechanism on the strict domain by introducing randomness, whereas
no deterministic mechanism satisfies both properties. However, he demonstrates
that under certain mild conditions, no exchange-constrained mechanism on the
strict domain satisfies individual rationality, efficiency, and strategy-proofness even
when randomness is allowed. Hence, it remains an open question whether there
exists an exchange-constrained probabilistic mechanism on the strict domain that
meets the criteria of individual rationality and endowments-swapping-proofness.
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A Appendix: Omitted proofs

A.1 Proof of Theorem 3

Suppose on the contrary that there is an `-feasible mechanism f on E cm satisfying
the two properties. Let N` = {1, 2, . . . , ` + 1}. We derive a contradiction. The
proof consists of four steps.

Step 1: Constructing economies. We construct the same economies ek = (Â, ωk)
as those in the proof of Theorem 2.

Step 2: For each k ∈ N`, ek ∈ EEE cm. Let i ∈ N. There are four cases.

• Case 1: i ≤ k − 1. Then, by the definition of Âi (Step 1), A(Âi, ωk
i = hi+1) =

{hi}. Hence, Âi ∈ Pωk
i
.

• Case 2: i = k. Then, by the definition of Âk (Step 1), A(Âk, ωk
k = h1) =

{hk, hk+1, . . . , h`+1}.15 Recall here Condition (ii) of Âk defined in the proof of
Theorem 2; that is, for each {j, j′} ⊂ N, if j < j′ and {j, j′} ⊆ {k, k + 1, . . . , ` + 1},
then hj Âk hj′ . This yields Âk ∈ Pωk

k
.

• Case 3: k + 1 ≤ i ≤ ` + 1. Then, by the definition of Âi (Step 1), A(Âi, ωk
i =

hi) = ∅. Hence, Âi ∈ Pωk
i
.

• Case 4: i ≥ ` + 2. Then, by the definition of Âi (Step 1), A(Âi, ωk
i = hi) =

{h1, h2, . . . , hi−1}. Recall here Condition (iii) of Âi defined in the proof of Theo-
rem 2; that is, for each {j, j′} ⊂ N, if j < j′, then hj Âk hj′ . This yields Âi ∈ Pωk

i
.

From Cases 1–4, Â ∈ Pωk , which implies ek ∈ E cm.

Step 3: For each k ∈ N` and each i ∈ N`, fi(ek) = hi. By Step 2, for each k ∈ N`,
ek ∈ E cm, and thus, f (ek) is well-defined. By the similar argument in the proof of
Theorem 2, we obtain the desired conclusion.

Step 4: Concluding. Step 3 implies that for each i ∈ N`, fi(e`+1) = hi; that is,
f1(e`+1) = h1 = ω`+1

`+1 and for each i ∈ N` \ {1}, fi(e`+1) = hi = ω`+1
i−1 . Since

(1, 2, . . . , ` + 1) is a trading cycle at ( f (e`+1), ω`+1), f (e`+1) /∈ X`(ω`+1), which is
a contradiction. ¤

15Note that when k = i = 1, A(Â1, ω1
1 = h1) = ∅.
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A.2 Proof of Theorem 4

Suppose on the contrary that there is an `-feasible mechanism f on E ∧ satisfying
the two properties. Let N` = {1, 2, . . . , ` + 1}.16 We derive a contradiction. The
proof consists of three steps.

Step 1: Constructing economies. Let Â̂ ∈ S N
∧ be such that:

(i) for each i ∈ N`, each j ∈ {i, i + 1, . . . , ` + 1}, each j′ ∈ {1, 2, . . . , i − 1}, and
each j′′ ∈ N \ N`, hj Â̂i hj′ Â̂i hj′′ ;

(ii) for each i ∈ N` and each {j, j′} ⊂ N, if either [j < j′ and {j, j′} ⊆ {i, i +
1, . . . , n}] or [j > j′ and {j, j′} ⊆ {1, 2, . . . , i − 1}], then hj Â̂i hj′ ;

(iii) for each i ∈ N \ N` and each {j, j′} ⊂ N, if j < j′, then hj Â̂i hj′ ;

The preference profile Â̂ can be represented as follows:

Â̂1 Â̂2 Â̂3 · · · Â̂`−1 Â̂` Â̂`+1 Â̂j≥`+2

h1 h2 h3 · · · h`−1 h` h`+1 h1

h2 h3 h4 · · · h` h`+1 h` h2

h3 h4 h5 · · · h`+1 h`−1 h`−1 h3

h4 h5 h6 · · · h`−2 h`−2 h`−2 h4
...

...
...

...
...

...
...

h`−1 h` h`+1 · · · h3 h3 h3 h`−1

h` h`+1 h2 · · · h2 h2 h2 h`

h`+1 h1 h1 · · · h1 h1 h1 h`+1

h`+2 h`+2 h`+2 · · · h`+2 h`+2 h`+2 h`+2
...

...
...

...
...

...
...

hn hn hn · · · hn hn hn hn

For each k ∈ N`, consider the same endowments ωk as those in the proof of
Theorem 2. That is, ωk is defined by (1). For each k ∈ N`, let êk = (Â̂, ωk). Note
that for each k ∈ N`, êk ∈ E ∧.

Step 2: For each k ∈ N` and each i ∈ N`, fi(êk) = hi. We use the induction to
prove this step.

BASE STEP. Let K = 1 and i ∈ N`. Then, by the definition of Â̂i (Step 1),
A(Â̂i, ω1

i = hi) = ∅. Thus, individual rationality implies fi(ê1) = hi.
16Since ` ≤ n − 1, agent ` + 1 exists.

23



INDUCTION HYPOTHESIS. Let K ∈ N` \ {1}. For each k ∈ {1, 2, . . . , K − 1} and
each i ∈ N`, fi(êk) = hi.

INDUCTION STEP. Let K ∈ N` \ {1}.

I Substep 2-1: For each i ∈ {K + 1, K + 2, . . . , `+ 1}, fi(êK) = hi. This substep
can be proved in the same way as the base step.

I Substep 2-2: For each i ∈ {1, 2, . . . , K}, fi(êK) = hi. Suppose on the contrary
that there is k ∈ {1, 2, . . . , K} such that fk(êK) 6= hk. Without loss of generality, we
assume that

∀ i ∈ {1, 2, . . . , k − 1}, fi(êK) = hi. (3)

There are two cases.

• Case 1: k ≤ K − 1. By k ≤ K − 1 ≤ ` and the definition of Â̂k (Step 1),
A(Â̂k, ωK

k = hk+1) = {hk}. Thus, fk(êK) 6= hk and individual rationality together
imply fk(êK) = hk+1. Also, by the definition of Â̂k+1 (Step 1), A(Â̂k+1, ωK

k+1 =
hk+2) = {hk+1}. Thus, fk+1(êK) 6= hk+1 and individual rationality together implies
fk+1(êK) = hk+2. By repeating this argument, we finally obtain that

∀ i ∈ {k, k + 1, . . . , K − 1}, fi(êK) = hi+1. (4)

In particular, fK−1(êK) = hK. Note that by K ≥ 2 and the definition of ÂK (Step
1),

A(ÂK, ωK
K = h1) = N` \ {h1}. (5)

By Substep 2-1, (3), and (4),

∀ i ∈ N` \ {k}, fK(êK) 6= hi. (6)

By (5) and (6), individual rationality implies fK(êK) = hk. Since ωK−1 = (ωK)K−1,K

and ( fK−1(êK−1), fK(êK−1)) = (hK−1, hK) by the induction hypothesis,

fK−1(êK−1) = hK−1 Â̂K−1 hK = fK−1(êK)

fK(êK−1) = hK Â̂K hk = fK(êK),

in violation of endowments-swapping-proofness.

• Case 2: k = K. Then, by K ≥ 2 and the definition of ÂK (Step 1),

A(ÂK, ωK
K = h1) = N` \ {h1}. (7)
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By Substep 2-1 and (3),

∀ i ∈ N` \ {k = K}, fK(êK) 6= hi. (8)

By (7) and (8), individual rationality implies that fK(êK) = hK, which is a contra-
diction.

From Substep 2-1 and 2-2, we have that for each i ∈ N`, fi(êK) = hi.

Step 3: Concluding. Step 2 implies that for each i ∈ N`, fi(ê`+1) = hi; that is,
f1(ê`+1) = h1 = ω`+1

`+1 and for each i ∈ N` \ {1}, fi(ê`+1) = hi = ω`+1
i−1 . Since

(1, 2, . . . , ` + 1) is a trading cycle at ( f (ê`+1), ω`+1), f (ê`+1) /∈ X`(ω`+1), which is
a contradiction. ¤

A.3 Proof of Theorem 5

The “if” part immediately follows from Tamura (2023) because the size of cycles
formed in the TTC algorithm is either one or two even without exchange con-
straints. Thus, it suffices to show the “only if” part.

We now prove that for each e = (Â, ω) ∈ E ∨, each integer t ≥ 1 and each
i ∈ Nt(e), fi(e) = TTCi(e). Let e = (Â, ω) ∈ E ∨. For each integer t ≥ 1, we
simply write i(t) (resp. i(t)) for i(e, t) (resp. i(e, t)). We use induction on t.

BASE STEP. Let t = 1. Let S ∈ S1(e). By Proposition 1, we know that

S ∈
{
{i(1), i(1)}, {i(1)}, {i(1)}

}
.

There are two cases.

• Case 1: S ∈ {{i(1)}, {i(1)}}. Without loss of generality, we assume S =
{i(1)}. Then, A(Âi(1), ωi(1)) = ∅. Hence, individual rationality implies fi(1)(e) =
ωi(1) = TTCi(1)(e).

• Case 2: S = {i(1), i(1)}. Then, (Âi(1),Âi(1)) is represented as

Âi(1) Âi(1)

ωi(1) ωi(1)
...

...

Suppose on the contrary that

( fi(1)(e), fi(1)(e)) 6= (TTCi(1)(e), TTCi(1)(e)) = (ωi(1), ωi(1)).
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Without loss of generality, we assume fi(1)(e) 6= ωi(1). Since f is a pairwise ex-

change mechanism, fi(1)(e) 6= ωi(1). Consider ei(1),i(1). Then, ei(1),i(1) ∈ E ∨, and
by individual rationality,

fi(1)(ei(1),i(1)) = ω
i(1),i(1)
i(1) = ωi(1) Âi(1) fi(1)(e);

fi(1)(ei(1),i(1)) = ω
i(1),i(1)
i(1)

= ωi(1) Âi(1) fi(1)(e),

in violation of endowments-swapping-proofness.

From Cases 1 and 2, we have that for each i ∈ N1(e), fi(e) = TTCi(e).

INDUCTION HYPOTHESIS. For each t ∈ {1, 2, . . . , r − 1} and each i ∈ Nt(e),
fi(e) = TTCi(e).

INDUCTION STEP. Let t = r. By the induction hypothesis,

Hr−1(e) =
{

h ∈ H : ∃ i ∈ Nr−1(e), h = fi(e)
}

. (9)

Let S ∈ Sr(e). By Proposition 1, we know that

S ∈
{
{i(r), i(r)}, {i(r)}, {i(r)}

}
.

To simplify notation, let i = i(r) and i = i(r). There are two cases.

• Case 1: S ∈ {{i}, {i}}. Without loss of generality, suppose S = {i}. Then,
agent {i} forms a self-pointing cycle in Round r of the TTC algorithm at e. Thus,
for each h ∈ H \ (Hr−1(e) ∪ {ωi}), ωi Âi h. By (9), fi(e) ∈ H \ Hr−1(e). Hence,
by individual rationality, fi(e) = ωi = TTCi(e).

• Case 2: S = {i, i}. Then, agents {i, i} form a cycle in Round r of the TTC
algorithm at e. Thus,

∀ h ∈ H
∖(

Hr−1(e) ∪ {ωi}
)

, ωi Âi h; (10)

∀ h ∈ H
∖(

Hr−1(e) ∪ {ωi}
)

, ωi Âi h. (11)

Suppose on the contrary that

( fi(e), fi(e)) 6= (TTCi(e), TTCi(e)) = (ωi, ωi).

Without loss of generality, suppose fi(e) 6= ωi. Since f is a pairwise exchange
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mechanism, fi(e) 6= ωi. By (9), { fi(e), fi(e)} ⊂ H \ Hr−1(e). Thus, by (10) and
(11)

ωi Âi fi(e) and ωi Âi fi(e).

Consider ei,i. Then, ei,i ∈ E ∨, and by individual rationality,

fi(ei,i) %i ωi,i
i = ωi Âi fi(e);

fi(ei,i) %i ωi,i
i

= ωi Âi fi(e),

in violation of endowments-swapping-proofness.

From Cases 1 and 2, for each i ∈ Nr(e), fi(e) = TTCi(e). ¤
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Online Appendix to
“Endowments-swapping-proofness

in housing markets with exchange constraints”
by Fujinaka and Wakayama (June 7, 2024)

B Omitted proofs in the main text

B.1 Example 1

Here, we show that f nir is endowments-swapping-proof. Let e = (Â, ω) ∈ E st. There
are three cases.

• Case 1: Â ∈ PPPN \ (PPP23 ∪ PPP32). It immediately follows from endowments-
swapping-proofness of TTC.

• Case 2: Â ∈ PPP23. Note that for each ω′ ∈ X, f nir
k (Â, ω′) = h1, which implies

that agent k cannot benefit from swapping his endowment with that of another
agent at e. Thus, it suffices to consider the pair of agent i and agent j, {i, j}.
Note that { f nir

i (e), f nir
j (e)} = { f nir

i (ei,j), f nir
j (ei,j)} = {h2, h3}, and h2 Âi h3 and

h2 Âj h3. Then, it never happens that both agents prefer the objects assigned at
ei,j to those assigned at e.

• Case 3: Â ∈ PPP32. Note that for each ω′ ∈ X, f nir
j (Â, ω′) = h1, which implies

that agent j cannot benefit from swapping his endowment with that of another
agent at e. Thus, it suffices to consider the pair of agent i and agent k, {i, k}.
Note that { f nir

i (e), f nir
k (e)} = { f nir

i (ei,k), f nir
k (ei,k)} = {h2, h3}, and h3 Âi h2 and

h3 Âk h2. Then, it never happens that both agents prefer the objects assigned at
ei,k to those assigned at e. ¤

B.2 Example 2

Here, we show that f̈ is endowments-swapping-proof. Let e = (Â, ω) ∈ E ∨ and
{i, j} ⊂ N. There are three cases.

• Case 1: {e, ei,j} ⊂ EEE ∨ \{ë}. It immediately follows from endowments-swapping-
proofness of TTC.

• Case 2: e = ë and ei,j 6= ë. Then, ω = (h1, h3, h2). Since agent 1 receives his
best object h1 according to Â1 = Â̈1 under f (e), he has no incentive to collude

Online Appendix – Page 1



with another agent at e. Thus, it suffices to consider the case {i, j} = {2, 3}. Then,
f̈ (e2,3) = TTC(e2,3) = (h1, h2, h3) = f̈ (e). This implies that both agents cannot
benefit from swapping their endowments at e.

• Case 3: e 6= ë and ei,j = ë. Note that by ei,j = (Â, ωi,j) = ë = (Â̈, (h1, h3, h2)),
Â = Â̈. Let k ∈ N be an agent such that ωk = h1. Then, f̈k(e) = TTCk(e) = h1,
and thus, agent k receives his best object h1 according to Âk = Â̈k. Hence, agent
k has no incentive to collude with another agent at e. We next consider the case
where {ωi, ωj} = {h2, h3}. By ωi,j = (h1, h3, h2), ω = (h1, h2, h3). Since f̈ (e) =
TTC(e) = (h1, h2, h3) = f̈ (ei,j), both agents cannot benefit from swapping their
endowments. ¤

B.3 Example 3

Here, we show that f ∨ is endowments-swapping-proof. Let e = (Â, ω) ∈ E ∨ and
{i, j} ⊂ N. There are three cases.

• Case 1: {e, ei,j} ⊂ EEE ∨ \{e′}. It immediately follows from endowments-swapping-
proofness of TTC.

• Case 2: e = e′ and ei,j 6= e′. Since each agent i ∈ {1, 2} receives his best
object according to Âi = Â′

i, he has no incentive to collude with another agent at
e. Next, consider the case where {i, j} = {3, 4}. Then, f ∨4 (e)(= f ∨4 (e′)) = h2 Â′

4

h3 = f ∨4 (e3,4) = TTC4(e3,4). Hence, agent 4 has no incentive to collude with agent
3 at e.

• Case 3: e 6= e′ and ei,j = e′. Note that by ei,j = (Â, ωi,j) = e′ = (Â′, ω′),
Â = Â′. Since f∨(e) = TTC(e) is efficient at e, f ∨1 (e) = h4; that is, agent 1 receives
his best object h4 according to Â1 = Â′

1. Thus, he has no incentive to collude
with another agent at e. Here we consider the case where {i, j} ⊂ {2, 3, 4}. By
1 /∈ {i, j}, ω1 = ω

i,j
1 = ω′

1 = h1. Let k ∈ {2, 3, 4} be an agent such that ωk =
h4. Then, by (ω1, ωk) = (h1, h4) and the definition of Â′, f ∨k (e) = TTCk(e) =
h1. Since agent k receives his best object h1 according to Âk = Â′

k, he has no
incentive to collude with another agent at e. Hence, we only consider the case
where {ωi, ωj} = {h2, h3}. By ωi,j = ω′ = (h1, h2, h3, h4), ω = (h1, h3, h2, h4) and
{i, j} = {2, 3}. Then, f ∨3 (e) = TTC3(e) = h2 Â′

3 h3 = f ∨3 (e2,3)(= f3(e′)). Hence,
agent 3 has no incentive to collude with agent 2 at e. ¤
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C Single-dipped preferences on a tree

In Section 4 of the main text, we considered single-dipped preferences on a line.
This class of preferences can be extended to a more general structure called a
“tree.” Tamura (2023) has characterized TTC as the only mechanism that satisfies
individual rationality, strategy-proofness, and endowments-swapping-proofness on this
extended single-dipped domain without restrictions on the size of possible ex-
changes. Here, we ask whether Tamura’s characterization holds even when there
is a restriction on the size of possible exchanges.

C.1 Definitions and preliminary results

To formally define single-dipped preferences on a tree, we begin by introducing
some graph theoretical notions. An (indirected) graph is a pair G = (H, E),
where E ⊂ {{h′, h′′} ⊂ H : h′ 6= h′′} is the set of edges. The degree of object
h ∈ H in a graph G = (H, E) is the number of edges that contain h; that is,

degG(h) =
∣∣{{h′, h′′} ∈ E : h ∈ {h′, h′′}

}∣∣ .

Given an object h ∈ H, we say that h is a leaf in G if degG(h) = 1. We denote
the set of leaves in G by L.17 Given {h′, h′′} ⊂ H with h′ 6= h′′, a path from h′

to h′′ in G = (H, E) is a sequence (h1, h2, . . . , hK) such that h1 = h′, hK = h′′,
|{h1, h2, . . . , hK}| = K, and for each k ∈ {1, 2, . . . , K − 1}, {hk, hk+1} ∈ E. A graph
G = (H, E) is a tree if

(i) it is connected (i.e., for each {h′, h′′} ⊂ H with h′ 6= h′′, there is a path from
h′ to h′′ in G), and

(ii) it has no cycle (i.e., there is no sequence (h1, h2, . . . , hK) such that K ≥ 3, h1 =
hK, for each k ∈ {1, 2, . . . , K − 1}, {hk, hk+1} ∈ E, and for each {k′, k′′} ⊂
{1, 2, . . . , K} such that k′ 6= k′′ and {k′, k′′} 6= {1, K}, hk′ 6= hk′′).

It is well-known that if a graph G is a tree, then, for each {h′, h′′} ⊂ H with
h′ 6= h′′, there is a unique path from h′ to h′′ in G (see, for example, Theorem 2.1.4
in West (2001)). We often denote the path from h′ to h′′ by [h′, h′′]. For each
{h, h′, h′′} ⊂ H, we write h ∈ [h′, h′′] if h is on the path from h′ to h′′; that is, when
[h′, h′′] = (h1 = h′, h2, . . . , hK = h′′), there is k ∈ {1, 2, . . . , K} such that hk = h.

17Formally, it should be L(G), but unless otherwise specified, we omit G for simplicity.
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Given a tree G = (H, E) and an agent i ∈ N, we say that i’s preference relation
Âi ∈ P is single-dipped on the tree G if there is an object, d(Âi) ∈ H, such that

(i) for each h ∈ H \ {d(Âi)}, h Âi d(Âi);

(ii) for each {h, h′} ⊂ H \ {d(Âi)} with h 6= h′, if h ∈ [d(Âi), h′], then h′ Âi h.

Given a tree G, we denote the set of single-dipped preferences on the tree G by
PG ⊂ P . Given a tree G, let E G = PN

G × X.

Remark 4. Note that for each i ∈ N and each Âi ∈ PG, i’s best object according
to Âi is a leaf in G. To observe this, let h ∈ H \ L. We only consider the case
where h 6= d(Âi); if h = d(Âi), it is obvious that h is not his best object according
to Âi. By h 6= d(Âi), there is the unique path from d(Âi) to h in the tree G,
[d(Âi), h] = (h1 = d(Âi), h2, . . . , hK = h). By h /∈ L, degG(h) > 1. Thus, there
is h′ ∈ H such that h′ 6= hK−1 and {h, h′} ∈ E. Since G has no cycle, for each
k ∈ {1, 2, . . . , K}, h′ 6= hk. Hence, [d(Âi), h′] = (h1 = d(Âi), h2, . . . , hK = h, h′).
Since h ∈ [d(Âi), h′] and Âi is single-dipped on G, h′ Âi h, which implies that h is
not i’s best object according to Âi. Thus, i’s best object according to Âi must be in
L. ♦

It is noteworthy that TTC on the domain of single-dipped preferences on a
tree is an |L|-feasible mechanism. In addition, we observe that the maximal size
of possible exchanges under TTC is |L|.

Proposition 2. Suppose that G is a tree. Then, TTC on E G is |L|-feasible.

Proof. Let e = (Â, ω) ∈ E G. Recall that for each integer t ≥ 1, Nt(e) is the
set of agents that form trading cycles in Round t of the TTC algorithm at e and
Ht(e) is the set of objects that are assigned to agents in Nt(e). We now introduce
additional notation:

• N1 = N and for each integer t ≥ 2, Nt = Nt−1 \ Nt−1(e);

• G1 = (H1, E1) = (H, E) and for each integer t ≥ 2, Gt = (Ht, Et), where
Ht = Ht−1 \ Ht−1(e) and Et = {{h′, h′′} ∈ Et−1 : {h′, h′′} ⊂ Ht};

• for each i ∈ N1, d1(Âi) = d(Âi) and for each integer t ≥ 2 and each i ∈ Nt,
dt(Âi) denotes i’s worst object among Ht according to Âi (i.e., dt(Âi) ∈ Ht

and for each h ∈ Ht \ {dt(Âi)}, h Âi dt(Âi)).
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We will observe below that for each integer t ≥ 2, Gt = (Ht, Et) is a tree. We
denote the set of leaves in Gt by Lt. Note that L1 = L. Moreover, for each integer
t ≥ 1 and each {h′, h′′} ⊂ Ht with h′ 6= h′′, we denote the unique path from h′ to
h′′ in Gt by [h′, h′′]t. We now consider each round of the TTC algorithm.

ROUND 1. As stated in Remark 4, for each i ∈ N1 = N, i’s best object among
H1 = H according to Âi is in L1 = L. Hence, N1(e) ⊂ {i ∈ N1 : ωi ∈ L1} and
H1(e) ⊂ L1. This implies that the size of each trading cycle formed in Round 1 is
less than or equal to |L1| = |L|.

ROUND 2. Note that the set of remaining agents (resp. objects) is N2 = N1 \ N1(e)
(resp. H2 = H1 \ H1(e)). We present a series of claims before completing the
proof.

Claim 1. G2 is a tree.

Proof of Claim 1. Since H2 = H1 \ H1(e) and H1(e) ⊂ L1, by Lemma 2.1.3 in West
(2001), G2 is a tree.

Claim 2. |L2| ≤ |L1|.

Proof of Claim 2. Note that by H1(e) ⊂ L1,

|L1| = |L1 ∩ H1(e)| + |L1 \ H1(e)| = |H1(e)| + |L1 \ H1(e)|;
|L2| = |L2 ∩ L1| + |L2 \ L1|.

In what follows, we show that (i) |L2 ∩ L1| ≤ |L1 \ H1(e)| and (ii) |L2 \ L1| ≤
|H1(e)|, which together imply |L2| ≤ |L1|.

(i) Let h ∈ L2 ∩ L1. By h ∈ L2 ⊂ H2, h /∈ H1(e), which implies h ∈ L1 \ H1(e).
Hence, L2 ∩ L1 ⊆ L1 \ H1(e) and |L2 ∩ L1| ≤ |L1 \ H1(e)|.18

(ii) Let h ∈ L2 \ L1. Note that degG2
(h) = 1 and degG1

(h) > 1. Then, there is ĥ ∈
H1(e)(⊂ L1) such that {h, ĥ} ∈ E1.19 Thus, we can construct a mapping α : L2 \
L1 → H1(e) such that for each h ∈ L2 \ L1, α(h) ∈ H1(e) with {h, α(h)} ∈ E1.
We now show that α is injective, which immediately implies |L2 \ L1| ≤ |H1(e)|.

18In fact, L2 ∩ L1 = L1 \ H1(e) also holds. It suffices to prove L1 \ H1(e) ⊆ L2 ∩ L1. Let
h ∈ L1 \ H1(e). Suppose on the contrary that h /∈ L2 ∩ L1. Since h ∈ L1, h /∈ L2, which implies
degG2

(h) > 1. Then, for some {h′, h′′} ∈ H2 with h′ 6= h′′, {{h, h′}, {h, h′′}} ⊂ E2 ⊂ E1, which
implies degG1

(h) > 1, a contradiction to h ∈ L1. Hence, h ∈ L2 ∩ L1.
19Otherwise, for each ĥ ∈ H1 with {h, ĥ} ∈ E1, ĥ /∈ H1(e). Then, degG2

(h) > 1, a contradiction.
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Suppose on the contrary that there is {h′, h′′} ⊂ L2 \ L1 such that h′ 6= h′′ but
α(h′) = α(h′′). Then, by {{h′, α(h′)}, {h′′, α(h′′) = α(h′)}} ⊂ E1, degG1

(α(h′)) =
degG1

(α(h′′)) > 1, which is a contradiction to α(h′) = α(h′′) ∈ L1.

Claim 3. For each i ∈ N2, Âi is single-dipped on G2.20

Proof of Claim 3. By the definition of d2(Âi), d2(Âi) ∈ H2 and for each h ∈ H2 \
{d2(Âi)}, h Âi d2(Âi). Next, let {h′, h′′} ⊂ H2 \ {d2(Âi)} be such that h′ 6= h′′,
h′ ∈ [d2(Âi), h′′]2 = (h1 = d2(Âi), h2, . . . , hK = h′′). Note that for each k ∈
{1, 2, . . . , K − 1}, by {hk, hk+1} ∈ E2, {hk, hk+1} ∈ E1. Hence, [d2(Âi), h′′]1 =
(h1 = d2(Âi), h2, . . . , hK = h′′) = [d2(Âi), h′′]2. There are two cases.

• Case 1: d1(Âi) ∈ H2. It is obvious that d2(Âi) = d1(Âi). Since Âi is single-
dipped on G1 and h′ ∈ [d2(Âi) = d1(Âi), h′′]1, h′′ Âi h′.

• Case 2: d1(Âi) /∈ H2. Then, d1(Âi) ∈ H1(e) ⊂ L1. It thus follows that
degG1

(d1(Âi)) = 1. Let h∗ ∈ H1 be the unique object such that {d1(Âi), h∗} ∈ E1.
Then, h∗ ∈ H2.21 We now show that h∗ = d2(Âi); that is, for each h ∈ H2 \ {h∗},
h Âi h∗. Let h ∈ H2 \ {h∗}. By h ∈ H1, we can find [d1(Âi), h]1 = (h̄1 = d1(Âi

), h̄2, . . . , h̄K̄ = h). Since h∗ is the unique object such that {d1(Âi), h∗} ∈ E1, h̄2 =
h∗, and thus, h∗ ∈ [d1(Âi), h]1. Since Âi is single-dipped on G1, h Âi h∗. It remains
to show h′′ Âi h′. Since [d2(Âi) = h∗, h′′]1 = (h1 = d2(Âi) = h∗, h2, . . . , hK = h′′)
and {d1(Âi), h∗} ∈ E1, [d1(Âi), h′′]1 = (d1(Âi), h1 = d2(Âi) = h∗, h2, . . . , hK =
h′′). By h′ ∈ [d2(Âi), h′′]2 = [d2(Âi), h′′]1, h′ ∈ [d1(Âi), h′′]1. Since Âi is single-
dipped on G1, h′′ Âi h′.

Since G2 is a tree (Claim 1) and for each i ∈ N2, Âi is single-dipped on G2

(Claim 3), by the similar argument as in Remark 4, we have that for each i ∈ N2,
i’s best object among H2 according to Âi is in L2. Hence, N2(e) ⊂ {i ∈ N2 : ωi ∈
L2} and H2(e) ⊂ L2. This together with Claim 2 implies that the size of each
trading cycle formed in Round 2 is less than or equal to |L1| = |L|.

By repeating this argument, we observe that the size of each trading cycle
formed in each round of TTC is less than or equal to |L1| = |L|. Then, we can
conclude that TTC on E G is |L|-feasible.

20With a slight abuse of notation, we use Âi to denote the restricted preference relation over
H2.

21If h∗ /∈ H2, then h∗ ∈ H1(e). Then, h∗ ∈ L1 and degG1
(h∗) = 1. This implies that H1 = {d1(Âi

), h∗}, E1 = {{d1(Âi), h∗}}, and H2 = H1 \ H1(e) = ∅; that is, the TTC algorithm terminates in
Round 1, a contradiction.

Online Appendix – Page 6



Proposition 3. Suppose that G is a tree. Then, the maximal size of possible trading
cycles under TTC on E G is |L|.

Proof. Without loss of generality, assume L = {h1, h2, . . . , hm}. Let e = (Â, ω) ∈
E G be such that

Â1 Â2 · · · Âk · · · Âm−1 Âm

h2 h3 · · · hk+1 · · · hm h1
...

...
...

...
...

and for each i ∈ N, ωi = hi. Then, for each i ∈ {1, 2, . . . , m − 1}, TTCi(e) = hi+1

and TTCm(e) = h1 that is, the size of this trading cycle is m. By Proposition 2,
since for each e ∈ E G, each integer t ≥ 1, and each S ∈ St(e), |S| ≤ m, the
maximal size of possible trading cycles under TTC is m = |L|.

C.2 Stringent exchange constraints

Theorem 5 characterized TTC as the only individually rational and endowments-
swapping-proof pairwise exchange mechanism on the domain of single-dipped
preferences on a line. However, we cannot directly extend this characterization
of TTC to the domain of single-dipped preferences on a tree when there are three
or more leaves and possible exchanges restrict attention to pairwise ones. This
is because TTC defined on the domain of single-dipped preferences on a tree is
no longer a pairwise mechanism when there are three or more leaves (Propo-
sition 3). Furthermore, we can show that when there are three or more leaves,
no pairwise exchange mechanism satisfies individual rationality and endowmens-
swapping-proofness. More generally, as shown below, this negative result holds
as long as the possible exchanges are less than the number of leaves. Our nega-
tive result implies that Tamura’s characterization no longer holds under such a
“stringent” constraint on the size of possible exchanges.

Theorem 7. Suppose that G is a tree. Let ` ∈ {1, 2, . . . , |L| − 1}. Then, no `-feasible
mechanism on E G satisfies individual rationality and endowments-swapping-proofness.

Proof. Without loss of generality, we assume L = {h1, h2, . . . , hm}. Let M =
{1, 2, . . . , m} ⊂ N. Note that ` < m. Suppose on the contrary that there is an
`-feasible mechanism f on E G satisfying the two properties. We derive a contra-
diction. The proof consists of three steps.

Step 1: Constructing an economy. Let Â∗ ∈ PN
G be such that:
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(i) for each i ∈ M, each j ∈ {i, i + 1, . . . , m}, each j′ ∈ {1, 2, . . . , i − 1}, and each
j′′ ∈ N \ M, hj Â∗

i hj′ Â∗
i hj′′ ;

(ii) for each i ∈ M and each {j, j′} ⊂ N, if j < j′ and either {j, j′} ⊆ {i, i +
1, . . . , m} or {j, j′} ⊆ {1, 2, . . . , i − 1}, then hj Â∗

i hj′ ;

(iii) for each i ∈ N \ M and each {j, j′} ⊆ M, if j < j′, then hj Â∗
i hj′

The preference profile Â∗ can be represented as follows:

Â∗
1 Â∗

2 Â∗
3 · · · Â∗

m−1 Â∗
m Â∗

j≥m+1

h1 h2 h3 · · · hm−1 hm h1

h2 h3 h4 · · · hm h1 h2

h3 h4 h5 · · · h1 h2 h3
...

...
...

...
...

...
hm−2 hm−1 hm · · · hm−4 hm−3 hm−2

hm−1 hm h1 · · · hm−3 hm−2 hm−1

hm h1 h2 · · · hm−2 hm−1 hm
...

...
...

...
...

...

For each k ∈ M, consider the endowments ωk similar to as those in the proof of
Theorem 2. That is, ωk is defined by (1). For each k ∈ M, let e∗k = (Â∗, ωk). Note
that for each k ∈ M, e∗k ∈ E G.

Step 2: For each k ∈ M and each i ∈ M, fi(e∗k) = hi. The profile (Â∗
i )

m
i=1

constructed in Step 1 is similar to the profile (Âi)`+1
i=1 constructed in the proof of

Theorem 2. Then, by the similar argument in the proof of Theorem 2, we obtain
the desired conclusion.22

Step 3: Concluding. Step 2 implies that for each i ∈ M, fi(e∗m) = hi; that is,
f1(e∗m) = h1 = ωm

m and for each i ∈ M \ {1}, fi(e∗m) = hi = ωm
i−1. Since

(1, 2, . . . , m) is a trading cycle at ( f (e∗m), ωm) and ` < m, f (e∗m) /∈ X`(ωm), which
is a contradiction.

As a corollary to Theorem 7, we obtain a negative result for pairwise exchange:
individual rationality and endowments-swapping-proofness are incompatible when
there are three or more leaves.

22Note that the profile (Â∗
i )

n
i=m+1 constructed in Step 1 may differ from the profile (Âi)n

i=`+2
constructed in the proof of Theorem 2. However, these profiles are only relevant to whether the
economies, such as ek or e∗k, belong to the domains that are being considered. Thus, we can apply
the proof of Theorem 2 to Step 2 of this proof.
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Figure 2: Tree in Example 4.

Corollary 2. Suppose that G is a tree and |L| ≥ 3. Then, no pairwise exchange mecha-
nism on E G satisfies individual rationality and endowments-swapping-proofness.

C.3 Lenient exchange constraints

Based on Proposition 2, one might think that TTC on the domain of single-dipped
preferences on a tree can be characterized by means of individual rationality and
endowments-swapping-proofness if |L|-feasible exchanges are allowed. However,
this conjecture is not true whenever |L| ≥ 3. In fact, if |L| ≥ 3, we can construct
a non-TTC |L|-feasible mechanism that is individually rational, and endowments-
swapping-proof. The following is an example of such a mechanism.

Example 4. Let n = 5. Suppose that a tree G is represented as in Figure 2. Then,
L = {h1, h2, h3}. Let ě = (Â̌, ω̌) ∈ E G be such that

Â̌1 Â̌2 Â̌3 Â̌4 Â̌5

h2 h1 h3 h2 h1

h4 h3 h1 h4 h2

h1 h2 h2 h1 h3

h3 h4 h4 h3 h4

h5 h5 h5 h5 h5

and ω̌ = (h1, h2, h3, h4, h5). Let f O : E G → X be a 3-feasible mechanism such that
for each e ∈ E G,

f O(e) =

(h4, h1, h3, h2, h5) if e = ě

TTC(e) otherwise.
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Note that TTC(ě) = (h2, h1, h3, h4, h5) 6= f O(ě) and by Proposition 2, TTC is a
3-feasible mechanism. It is obvious that this mechanism is individually rational.
To see why f O is endowments-swapping-proof, let e = (Â, ω) ∈ E G and {i, j} ⊂ N
with i 6= j. If {e, ei,j} ⊂ E G \ {ě}, then endowments-swapping-proofness of f O imme-
diately follows from endowments-swapping-proofness of TTC. Thus, we consider
the following two cases.

• Case 1: e = ě and ei,j 6= ě. Since each agent i ∈ {2, 3, 4} receives his best object
according to Âi = Â̌i, he has no incentive to collude with another agent at e. Thus,
we only consider the case where {i, j} = {1, 5}. Then, f O

1 (e1,5) = TTC1(e1,5) = h5.
That is, agent 1 continues to receive his worst object h5 according to Â1 = Â̌1 even
if he swaps his endowment with that of agent 5. Hence, agent 1 has no incentive
to collude with agent 5 at e.

• Case 2: e 6= ě and ei,j = ě. Note that by ei,j = (Â, ωi,j) = ě = (Â̌, ω̌),
Â = Â̌. If 5 ∈ {i, j}, by f O

5 (ei,j)(= f O
5 (ě)) = h5, then agent 5 receives his worst

object h5 according to Â5 = Â̌5 even if he swaps his endowment with that of
any agent. Hence, agent 5 has no incentive to collude with another agent at e.
Here we consider the case where {i, j} ⊂ {1, 2, 3, 4}. Note that by 5 /∈ {i, j},
ω5 = ω

i,j
5 (= ω̌5) = h5. Then, f O

5 (e) = TTC5(e) = h5. In addition, since f O(e) =
TTC(e) is efficient at e, f O(e) ∈ {(h2, h1, h3, h4, h5), (h4, h1, h3, h2, h5)}. Then, in
either case, three agents out of {1, 2, 3, 4} receive their best objects according to
their preferences. Hence, any pair {i, j} ⊂ {1, 2, 3, 4} of agents have no incentive
to swap their endowments at e. ¥

Note that mechanism f O defined in Example 4 violates strategy-proofness. To
see this, let Â̌′

1 ∈ PG be such that A(Â̌′
1, ω̌1 = h1) = {h2}. Then,

f O
1 ((Â̌′

1, Â̌−1), ω̌) = TTC1((Â̌′
1, Â̌−1), ω̌) = h2 Â̌1 h4 = f O

1 (ě).

Thus, agent 1 with preferences Â̌1 can benefit from announcing the false prefer-
ence relation Â̌′

1. This suggests that, by adding strategy-proofness, one could obtain
a characterization of TTC. Recall here that when the size of possible exchanges is
more than or equal to three, Tamura (2023) and Theorem 6 propose a characteriza-
tion of TTC by means of individual rationality, strategy-proofness, and endowments-
swapping-proofness. In fact, this characterization holds true even when the size of
possible exchanges is greater than or equal to the number of leaves. This is sim-
ply because the |L|-feasibility of TTC (Proposition 2) makes it possible for TTC to
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satisfy such a “lenient” exchange constraint. Since, as mentioned above, TTC sat-
isfies the lenient exchange constraint on the size of possible exchange, we obtain
the following result:

Theorem 8. Suppose that G is a tree. Let ` ≥ |L|. Then, an `-feasible mechanism on E G

satisfies individual rationality, strategy-proofness, and endowments-swapping-proofness
if and only if it is TTC.

References

Tamura, Y. (2023) “Object reallocation problems with single-dipped preferences,”
Games and Economic Behavior, 140, 181–196.

West, D. B. (2001) Introduction to Graph Theory, 2nd edition, Prentice Hall.

Online Appendix – Page 11




