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Abstract

We study the strategy-proofness (SP) of the competitive equilibrium se-

lection (CE) mechanism in many-to-one matching with continuous transfers

and quasilinear utility. The gross substitutes condition is known to guaran-

tee the existence of CE and SP mechanisms. We show the converse: If a CE

and SP mechanism exists, then the valuation of each firm must satisfy the

gross substitutes condition. Various conditions for the existence of competi-

tive equilibria have been proposed in the literature. Our results suggest that

only the gross substitutes condition guarantees the existence of CE and SP

mechanisms. We provide additional implications of our results for investment

incentives and policy design. We also examine the two other models—the one

with non-quasilinear utility and the one with discrete transfers. In contrast,

the gross substitutes condition is not necessary in either model.

1 Introduction

The existence of competitive equilibria has been extensively studied in many economic

models. In the literature of matching theory, attention has been paid to many-to-

one matching models. These models consider matching between two types of agents,

such as firms and workers, sellers and buyers, hospitals and doctors, or schools and
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students. In a many-to-one matching model with continuous transfers and quasilin-

ear utility, Kelso and Crawford (1982) showed the gross substitutes condition (GS),

which excludes the complementarity among workers in a firm’s valuation, guarantees

the existence of competitive equilibria. While GS is known to be a necessary condition

in the maximal domain sense (Gul and Stacchetti, 1999), competitive equilibria can

exist even if GS is violated. Recent developments in this field have revealed that var-

ious conditions other than GS can guarantee the existence of competitive equilibria.

For example, Sun and Yang (2006) proposed the gross substitutes and complements

condition (GSC) and showed that, unlike GS, competitive equilibria exist even when

certain types of complement are allowed under GSC. Baldwin and Klemperer (2019)

presented general conditions that include both GS and GSC as special cases.

GS offers an additional advantage: GS guarantees the existence of mechanisms

that select a competitive equilibrium (CE) and are strategy-proof for workers (SP)

(Hatfield et al., 2018). SP is a central notion of incentive compatibility in the literature

on matching theory. SP mechanisms are strategically simple because workers do not

need to consider how other workers will report, since truthful reporting is a weakly

dominant strategy. Moreover, a CE and SP mechanism provides incentives for workers

to invest efficiently (Hatfield et al., 2018). While the literature has focused on the

existence of competitive equilibria, there has been less focus on SP mechanisms.

This naturally leads to the question: Are there conditions, aside from GS, that can

guarantee the existence of CE and SP mechanisms?

We show that GS is necessary for the existence of CE and SP mechanisms (The-

orem 1). Therefore, various conditions guarantee the existence of CE mechanisms,

but GS is the only one if we also require SP. Furthermore, our result differs from a

maximal domain result. Specifically, our necessity states that if at least one firm’s

valuation violates GS, then a CE and SP mechanism does not exist, regardless of

other firms’ valuations. This necessity is useful for checking the existence of desired

mechanisms for a given firm valuation profile. Section 4.1 discusses this point in more

detail.

Our result has additional implications—investment incentives and policy design.

First, our results show that GS is crucial for the existence of mechanisms that induce

efficient investment by workers. Agents typically make certain choices before partic-

ipating in mechanisms. For example, workers invest considerable time and effort in

acquiring skills prior to job matching. This investment can have a significant impact
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on individual and social welfare. Hatfield et al. (2018) showed the strong link between

SP and efficient investment. Together with their result and ours, we show that GS

is necessary and sufficient for the existence of CE mechanisms that induce efficient

investment by workers. Second, it helps in the design of institutions or policies. A

government often imposes a tax or subsidy on a firm (Kojima et al., 2024).1 In this

case, if the policy intervention leads to a violation of GS, our results immediately

imply that SP cannot be satisfied (even if the existence of competitive equilibria can

be guaranteed). Therefore, if the CE and SP mechanism is desirable for policymakers,

a policy must be designed so that a valuation of each firm satisfies GS.

The unique properties of the matching model with continuous transfers and quasi-

linear utility are the key to our result. The proof consists of two steps. First, we

show that the existence of worker-optimal competitive equilibria is necessary for the

existence of CE and SP mechanisms (Proposition 1). The rural hospital theorem,

which holds without any assumptions in our model (Jagadeesan et al., 2020), plays

an important role in proving this. We then use the characterization of GS by local

properties (Reijnierse et al., 2002), which is based on M ♮-concavity, a concept from

discrete convex analysis (Murota and Shioura, 1999).

We examine the other two models—the one with non-quasilinear utility and the

one with discrete transfers. We illustrate that GS is not necessary in either model.

In a model with continuous transfers and non-quasilinear utility, the rural hospital

theorem may not hold. In a model with discrete transfers, the equivalence between

the existence of worker-optimal competitive equilibria and that of the CE and SP

mechanisms may not hold. Thus, we cannot extend our proof to these models. We

illustrate that a CE and SP mechanism exists even if GS is violated. These findings

highlight how continuous transfers and quasilinear utility produce clear results.

1.1 Related literature

Our research is most closely related to the works of Hatfield et al. (2018) and Ja-

gadeesan et al. (2018). Hatfield et al. (2018) showed that in our setting, GS is a suf-

ficient condition for the existence CE and SP mechanisms. This generalizes a result

in the one-to-one matching model provided by Demange (1982) and Leonard (1983).

Jagadeesan et al. (2018) provided an alternative proof using the rural hospital theo-

1Kojima et al. (2024) provide a necessary and sufficient condition for a policy to preserve GS.
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rem, which also plays an important role in our results. These studies demonstrated

the sufficiency of GS. We show the necessity: If a CE and SP mechanism exists, then

each firm’s valuation must satisfy GS.

There has been considerable research on the sufficient conditions for the existence

of competitive equilibria. The classical condition was GS introduced by Kelso and

Crawford (1982), and later generalized to GSC by Sun and Yang (2006). Teytelboym

(2014) further generalized GSC. Hatfield et al. (2013) generalized GSC in the trad-

ing networks model, including our model. Recently, Baldwin and Klemperer (2019)

substantially generalized these conditions by introducing the concept of unimodular

demand types.2 Furthermore, Shinozaki and Serizawa (2024) introduced a condition

that is not a special case of the one Baldwin and Klemperer (2019) proposed. This

series of studies has revealed that various conditions other than GS can ensure the

existence of CE mechanisms. Our contribution is to show that if SP is also required,

GS is the only condition.

CE and SP mechanisms have also been investigated in the model with continuous

transfers and non-quasilinear utility. Demange and Gale (1985) proved the existence

of CE and SP mechanisms in the one-to-one matching model.3 Fleiner et al. (2019)

studied the trading networks model with frictions and showed the existence of com-

petitive equilibria under full substitutability.4 Schlegel (2022) studied a CE and SP

mechanism in this model. His result implies that GS and the additional conditions

together guarantee the existence of CE and SP mechanisms in the many-to-one match-

ing model. However, in contrast to the result in the model with the quasilinear utility,

GS is not necessary in this model. We discuss this point in more detail in Section 5.

The other issues were also studied in our model. The first is workers’ investments.

Hatfield et al. (2018) showed the close connection between SP and socially efficient

investment. In our model, their result implies that for any CE mechanism, it induces

socially efficient investment by workers if and only if it is SP. Thus, we find through

our results that GS is the necessary and sufficient condition for the existence of CE

mechanisms to induce efficient investments by workers (Corollary 3). The second

2Danilov et al. (2001) provided a mathematically similar sufficient condition.
3Worker-optimal competitive equilibrium mechanisms can be characterized by desirable proper-

ties, including SP (see, e.g., (Miyake, 1998; Morimoto and Serizawa, 2015; Zhou and Serizawa, 2018;
Kazumura et al., 2020)).

4Baldwin et al. (2023) and Nguyen and Vohra (2022) provided general conditions in a model of
exchange economies with indivisible goods.
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is policy intervention. Kojima et al. (2024) characterized policy interventions that

preserve GS. While they focused on the existence of competitive equilibria, our results

can add insights into CE and SP mechanisms (see Section 4.1).

The model of matching with contracts proposed by Hatfield and Milgrom (2005)

is closely related to our model. In this model, substitutability and stable matchings

are the counterparts of GS and competitive equilibria, respectively. They showed

that substitutability is not a sufficient condition for the existence of stable and SP

mechanisms. Moreover, they showed that an additional condition called the law of

aggregate demand, together with substitutability, guarantees the existence of stable

and SP mechanisms. Furthermore, it is known that each of the two conditions is not

a necessary condition (see, e.g., (Hatfield and Kojima, 2010; Kominers and Sönmez,

2016)). Hirata and Kasuya (2017) studied stable and SP mechanisms without assum-

ing any conditions on firms’ preferences, such as substitutability. They showed that

if a worker-optimal stable matching always exists, then a stable and SP mechanism

must select it.5 However, they also demonstrated that the existence of worker-optimal

stable matchings is neither a necessary nor a sufficient condition for the existence of

stable and SP mechanisms. In contrast, optimality for workers is both necessary and

sufficient in our model. Compared to this series of studies, the model with continuous

transfers and quasilinear utility gives surprisingly clear results.

The remainder of the paper is organized as follows. Section 2 introduces the model

and concepts. Section 3 presents our main results and proofs. Section 4 presents

applications of Theorem 1. Section 5 investigates other models.

2 Preliminaries

2.1 Model

Let F and W be the sets of firms and workers, respectively. Each worker is matched

with a firm or remains unmatched, and receives some amount of money. Given w ∈ W ,

a typical consumption bundle is a pair (f, sw) ∈ F ×R. Each firm is matched with a

set of workers or remains unmatched, and pays some amount of money. Given f ∈ F ,

5Hatfield and Kojima (2010) introduced unilateral substitutability, which is weaker than sub-
stitutability, and showed that it is sufficient to guarantee the existence of worker-optimal stable
matchings. Kasuya (2021) showed that unilateral substitutability is necessary in the maximal do-
main sense.
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a typical consumption bundle is a pair (W ′, sf ) ∈ 2W × R.
Each worker w ∈ W has a valuation over firms, vw : F → R, normalized so

that vw(∅) = 0. The set of possible valuations for worker w is Vw ≡ RF . We let

V ≡ Πw∈WVw be the set of possible (worker) valuation profiles. The valuation vw

induces a quasilinear utility function uw(·|vw) : F × R → R,

uw(f, s|vw) = vw(f) + s.

The utility function uw(·|vw) of worker w ∈ W induces a demand correspondence

as follows. For each price vector p ∈ RF×W ,

Dw(p|vw) = {f ∈ F | uw(f, p(f,w)|vw) ≥ uw(f
′, p(f ′,w)|vw) for all f ′ ∈ F}

where p(∅,w) ≡ 0.

Each firm f ∈ F has a valuation over sets of workers, vf : 2W → R, normalized so

that vf (∅) = 0. The valuation vf induces a quasilinear utility function uf : 2W ×R →
R,

uf (W
′, s) = vf (W

′)− s.

We fix the valuation vf throughout this paper and use uf (·) instead of uf (·|vf ). The
utility function uf of firm f ∈ F induces a demand correspondence as follows. For

each price vector p ∈ RF×W ,

Df (p) = {W ′ ∈ 2W | uf (W
′, p(f,W ′)) ≥ uf (W

′′, p(f,W ′′)) for all W
′′ ⊆ W}

where p(f,W ′) ≡
∑

w∈W ′ p(f,w) for all W
′ ̸= ∅ and p(f,W ′) ≡ 0 for W ′ = ∅.

For any µ ⊆ F ×W , we denote µw = {f ′ ∈ F | (f ′, w) ∈ µ} and µf = {w′ ∈ W |
(f, w′) ∈ µ} for each w ∈ W and f ∈ F . We say that µ ⊆ F ×W is a (many-to-one)

matching if |µw| ≤ 1 for all w ∈ W . With abuse of notation, we denote µw = f when

µw = {f} for some f ∈ F given a matching µ. Let M denote the set of all matching.

For each f ∈ F , w ∈ W , and p(f,w) ∈ R, (f, w, p(f,w)) is called a contract. A set

of contracts A is called an outcome when each worker has at most one contract in A.

For each outcome A and w ∈ W , let Aw = {(f, w, p(f,w))|(f, w, p(f,w)) ∈ A} be the set

of contracts in A involving w. The utility function of a worker uw naturally extend

to outcome as uw(A|vw) = vw(f) + p(f,w) if Aw = {(f, w, p(f,w))} and uw(A|vw) = 0

if Aw = ∅. A pair (µ, p) ∈ 2F×W × RF×W is called an arrangement when µ is a

6

Electronic copy available at: https://ssrn.com/abstract=4737565



matching. The utility function of a worker uw also naturally extend to arrangement

as uw((µ, p)|vw) ≡ vw(µw) + p(µw,w).

An arrangement (µ, p) is a competitive equilibrium at v ∈ V if µw ∈ Dw(p|vw)
for all w ∈ W and µf ∈ Df (p) for all f ∈ F . A price vector p ∈ RF×W is a

competitive equilibrium price vector at v ∈ V if (µ, p) is a competitive equilibrium

at v ∈ V for some matching µ. A matching µ is a competitive equilibrium matching

at v ∈ V if (µ, p) is competitive equilibrium at v ∈ V for some p ∈ RF×W . A

competitive equilibrium (µ, p) at v ∈ V is a worker-optimal competitive equilibrium

at v ∈ V if uw((µ, p)|vw) ≥ uw((µ
′, p′)|vw) for all w ∈ W and competitive equilibrium

(µ′, p′) at v ∈ V . For a (worker-optimal) competitive equilibrium (µ, p) at v ∈
V , {(f, w, p(f,w)) | (f, w) ∈ µ} is called a (worker-optimal) competitive equilibrium

outcome at v ∈ V . A matching µ is efficient at v ∈ V if µ maximizes the total

surplus: i.e., µ ∈ argmaxµ′∈M
∑

w∈W vw(µ
′
w) +

∑
f∈F vf (µ

′
f ). It is known that any

competitive equilibrium matching is efficient.

.

2.2 Mechanism

A mechanism is defined as a function φ that specifies an outcome φ(v) for each

valuation profile v ∈ V . A mechanism φ is a competitive equilibrium selection (CE)

if for all v ∈ V , φ(v) is a competitive equilibrium outcome at v. A CE mechanism φ

is worker-optimal if for all v ∈ V , φ(v) is a worker-optimal competitive equilibrium

outcome at v.

Now, we introduce the property of a mechanism that is central to our analysis.

Definition 1. A mechanism φ is strategy-proof for workers (SP) if for all v ∈ V ,

w ∈ W , and v′w ∈ Vw, we have

uw(φ(v)|vw) ≥ uw(φ(v
′
w, v−w)|vw),

where v−w = vW\{w} ∈ VW\{w}.

SP states that reporting the true valuation vw is a weakly dominant strategy for

any worker w under φ.
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2.3 Gross substitutes

Kelso and Crawford (1982) introduced the gross substitutes condition. Intuitively,

this excludes the complementarity among workers in a firm’s valuation.

Definition 2. A firm f ’s valuation vf satisfies the gross substitutes condition (GS) if

for any two price vectors p, p′ with p ≤ p′ and W ′ ∈ Df (p), there exists W ′′ ∈ Df (p
′)

such that {w ∈ W ′ : p(f,w) = p′(f,w)} ⊆ W ′′.

GS states that if a firm f demands a set of workers (contained in a demand set) at

a given price vector, then even if the salaries of other workers increase, f will continue

to demand that set.

3 Results

3.1 Optimality of CE and SP

To prove our main result, we first show that a worker-optimal competitive equilibrium

is a key to the existence of CE and SP mechanisms. Jagadeesan et al. (2018) showed

that if a worker-optimal competitive equilibrium exists for any valuation profile, then

a CE and SP mechanism exists. We show the converse: The existence of the worker-

optimal competitive equilibria is necessary for that of CE and SP mechanisms.

The rural hospital theorem is crucial for our necessity. This theorem states that

if a worker receives strictly positive utility in some competitive equilibrium, then she

is matched in every competitive equilibrium matching. Equivalently, if a worker is

unmatched in some competitive equilibrium matching, then she receives zero utility,

which is the same as being unmatched, in every competitive equilibrium.

Lemma 1 ((Jagadeesan et al., 2020)). For any valuation profile v, competitive equi-

libria (µ, p) and (µ′, p′) at v, and worker w, uw((µ, p)|vw) > 0 implies µ′
w ̸= ∅.

It is worth noting that the rural hospital theorem holds in our model without any

assumption about firms’ valuations. This contrasts with the other models, such as

the one with non-quasilinear utility. In fact, optimality is not necessary in this model.

We will discuss this point more in detail in Section 5.

Proposition 1. If a CE and SP mechanism exists, then a worker-optimal competitive

equilibrium exists for all valuation profile v ∈ V .
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Proof. Suppose not: i.e., a CE and SP mechanism φ exists, and a worker-optimal

competitive equilibrium does not exist for some valuation profile v. Let B = φ(v).

Then, there exist a competitive equilibrium outcome A and a worker w ∈ W such

that uw(A|vw) > uw(B|vw). Let (µ, p) and (µ′, p′) be competitive equilibria for A

and B, respectively. We let ϵ be such that uw(A|vw) > ϵ > uw(B|vw). Consider

a valuation ṽw with ṽw(f) = vw(f) − ϵ for all f ∈ F . We show that (µ, p) is a

competitive equilibrium at ṽ = (ṽw, v−w). By the construction of ṽ, we have ṽŵ = vŵ

for any ŵ ∈ W with ŵ ̸= w. This implies µŵ ∈ Dŵ(p|ṽŵ) for any ŵ ∈ W with ŵ ̸= w.

Since vf is fixed for all f ∈ F , we have µf ∈ Df (p). For all f ∈ F , µw ∈ Dw(p|vw)
implies uw(µw, p(µw,w)|vw) ≥ uw(f, p(f,w)|vw), which implies uw(µw, p(µw,w)|vw) − ϵ ≥
uw(f, p(f,w)|vw)− ϵ. Thus, we have uw(µw, p(µw,w)|ṽw) ≥ uw(f, p(f,w)|ṽw) for all f ∈ F .

Note uw(A|vw)−ϵ > 0, which implies uw(µw, p(µw,w)|ṽw) > uw(∅, p(∅,w)|ṽw) = 0. These

facts together imply µw ∈ Dw(p|ṽw).
Note uw(A|ṽw) = uw(A|vw) − ϵ > 0 by the construction of ϵ. Since (µ, p) is a

competitive equilibrium at (ṽw, v−w), w is matched with some firm at any competi-

tive equilibrium matching at (ṽw, v−w) by Lemma 1. Since φ is CE, φ(ṽw, v−w) is a

competitive equilibrium outcome for some competitive equilibrium (µ̂, p̂) at (ṽw, v−w).

Then, we have

uw(φ(ṽw, v−w)|ṽw) = ṽw(µ̂w) + p̂(µ̂w,w)

= vw(µ̂w)− ϵ+ p̂(µ̂w,w)

= uw(φ(ṽw, v−w)|vw)− ϵ

≥ 0,

where the second equality follows from µ̂w ̸= ∅, and the fourth inequality follows from

uw(φ(ṽw, v−w)|ṽw) ≥ 0 by the definition of CE. Thus, we have uw(φ(ṽw, v−w)|vw) ≥ ϵ.

By the construction of ϵ, we have uw(φ(ṽw, v−w)|vw) > uw(B|vw) = uw(φ(v)|vw). This
contradicts that φ is SP.

Together with the sufficiency by Jagadeesan et al. (2018), we can characterize the

CE and SP mechanisms using the optimality of competitive equilibrium.

Corollary 1. A CE and SP mechanism exists if and only if a worker-optimal com-

petitive equilibrium exists for all valuation profile v ∈ V .
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3.2 Necessity for CE and SP: Gross substitutes

Now we provide our main result.

Theorem 1. If a CE and SP mechanism exists, then a valuation vf satisfies GS for

any f ∈ F .

Together with the sufficiency by Hatfield et al. (2018), we find that GS is the

unique condition for the existence of CE and SP mechanisms.

Corollary 2. A CE and SP mechanism exists if and only if a valuation vf satisfies

GS for any f ∈ F .

Several points related to Theorem 1 should be mentioned. First, our result is useful

for checking the existence of CE and SP mechanisms. Specifically, our necessity states

that if at least one firm’s valuation violates GS, then a CE and SP mechanism does

not exist, regardless of other firms’ valuations. Note that our necessity differs from

the usual maximal domain. A condition is a maximal domain for desired mechanisms

if, for any violation of this condition by a firm, there always exist valuations of other

firms that satisfy the condition such that there are no desired mechanisms at the

profile. GS is known to be a maximal domain for the existence of CE mechanisms (Gul

and Stacchetti, 1999). Our necessity is useful for checking the existence of desired

mechanisms for a given firm valuation profile. Consider a firm valuation profile where

a valuation of some firm violates GS. Since GS is the maximal domain for the existence

of competitive equilibria, we cannot determine whether a CE mechanism exists for

this profile. However, we can immediately determine from Theorem 1 that a CE and

SP mechanism does not exist. We will illustrate this point in Section 4.1.

Second, our result also has implications for efficient investment. Agents typically

make certain choices before participating in mechanisms. For example, workers invest

considerable time and effort in acquiring skills prior to job matching. This investment

can have a significant impact on individual and social welfare. Hatfield et al. (2018)

showed the strong link between SP and socially efficient investment. Together with

their result and ours, we show that GS is the necessary and sufficient condition for CE

mechanisms to induce socially efficient investment by workers. This point is discussed

in more detail in Section 4.2.

Third, our result has implications for policy design. A government often imposes

a tax or subsidy on a firm (Kojima et al., 2024). In this case, if the policy intervention
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leads to a violation of GS, Theorem 1 immediately implies that SP cannot be satisfied

(even if the existence of competitive equilibria can be guaranteed). Therefore, if the

CE and SP mechanism is desirable for policymakers, a policy must be designed so

that a valuation of each firm satisfies GS. Furthermore, Kojima et al. (2024) char-

acterized policy interventions that preserve GS. While they focused on the existence

of competitive equilibria, our results can add insights into CE and SP mechanisms.

Example 3 in Section 4.1 illustrates this point.

Finally, we provide a variant of Theorem 1. The proof of Theorem 1 exploits the

fact that a worker can have a positive valuation for firms. Therefore, we allow for the

possibility of negative salaries in a competitive equilibrium. This may seem unnatural

in the context of worker-firm matching. Theorem 1 still holds even if we restrict the

valuation of each worker to be non-positive by assuming that vf is non-decreasing

for each f ∈ F .6 Furthermore, in this case, salaries will be non-negative at every

competitive equilibrium. We provide an example (Example 6) as an application of

this result in Section 4.1.

Proposition 2. Suppose that Vw = RF
≤0 for any w ∈ W and vf is non-decreasing for

any f ∈ F .7 If a CE and SP mechanism exists, then a valuation vf satisfies GS for

any f ∈ F .

3.3 Proof sketch of Theorem 1

In this section, we provide a proof sketch of Theorem 1. First, we illustrate that two

types of violations of GS lead non-existence of CE and SP mechanisms (Examples 1

and 2). Then, we see that any violation of GS can be attributed to these two types of

violations. This follows from the characterization of GS by local properties (Reijnierse

et al., 2002).

The first example is the violation of submodularity, which is implied by GS in our

model.8 The following example illustrates that the violation of submodularity would

lead to the non-existence of CE and SP mechanisms.

Example 1. Let F = {f} and W = {w1, w2}. The valuation profile is given as

6A firm’s valuation vf is non-decreasing if vf (W
′) ≥ vf (W

′′) for anyW ′,W ′′ ⊆ W withW ′′ ⊆ W ′.
7Let R≤0 denote the set of non-positive real numbers.
8A valuation vf is submodular if for allX,Y ⊆ W , we have vf (X)+vf (Y ) ≥ vf (X∪Y )+vf (X∩Y ).

11

Electronic copy available at: https://ssrn.com/abstract=4737565



follows:

vf (∅) = vf ({w1}) = vf ({w2}) = 0, vf ({w1, w2}) = 1,

vw1(f) = vw2(f) = 0.

Note that µ with µf = {w1, w2} is a unique efficient matching, and thus a competitive

equilibrium matching has to be µ. There are two competitive equilibria (µ, p) and

(µ, q) such that p = (p(f,w1), p(f,w2)) = (1, 0) and q = (0, 1). However, any (µ, r)

with r(f,w1), r(f,w1) ≥ 1 is not a competitive equilibrium since r(f,w1)+r(f,w1) > 1. This

means that a worker-optimal competitive equilibrium does not exist for this valuation

profile. Thus, Proposition 1 implies that there is no CE and SP mechanism in this

example.

The second example was provided by Kelso and Crawford (1982). While GS

implies submodularity in our model, the converse does not hold. Kelso and Crawford

(1982) illustrates this fact using the following example. We show that there is no CE

and SP mechanism in this example.

Example 2. Let F = {f} and W = {w1, w2, w3}. The valuation profile is given as

follows:

vf (∅) = 0, vf ({w1}) = vf ({w2}) = 4, vf ({w3}) = 4.25,

vf ({w1, w2}) = 7.5, vf ({w1, w3}) = vf ({w2, w3}) = 7,

vf ({w1, w2, w3}) = 9,

vw1(f) = vw2(f) = 0, vw3(f) = −3.

While vf is submodular, it violates GS: We have Df (p) = {{w1, w2}} for p =

(p(f,w1), p(f,w2), p(f,w3)) = (3, 3, 3) and Df (q) = {{w3}} for q = (3.5, 3, 3). Note that µ

with µf = {w1, w2} is a unique efficient matching, and thus a competitive equilibrium

matching has to be µ. There are two competitive equilibria (µ, p) and (µ, q) such that

p = (3.5, 2.75, 3) and q = (2.75, 3.5, 3). Consider any (µ, r) with r(f,w1), r(f,w2) ≥ 3.5.

If {w1, w2} ∈ Df (r), we have r(f,w3) ≥ 3.75, which imply Dw3(r|vw3) = {f}. Thus,

(µ, r) is not a competitive equilibrium. This means that a worker-optimal competitive

equilibrium does not exist for this valuation profile. Thus, Proposition 1 implies that

there is no CE and SP mechanism in this example.
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The violation of GS can be attributed to the two types of violations illustrated

in Examples 1 and 2. This follows from the characterization of GS by two local

properties (Reijnierse et al., 2002).

Proposition 3 ((Reijnierse et al., 2002)). A firm’s valuation vf satisfies GS if and

only if the following two conditions hold.

Condition 1. For any X ⊆ W , w1, w2 ∈ W \X with w1 ̸= w2,

vf (X ∪ {w1, w2}) + vf (X) ≤ vf (X ∪ {w1}) + vf (X ∪ {w2}).

Condition 2. For any X ⊆ W , w1, w2, w3 ∈ W \ X such that w1, w2, and w3 are

distinct,

vf (X ∪ {w1, w2}) + vf (X ∪ {w3})

≤max{vf (X ∪ {w1, w3}) + vf (X ∪ {w2}), vf (X ∪ {w2, w3}) + vf (X ∪ {w1})}.

The conditions above are “local” in the sense that they focus only on two setsX, Y

with max(|X \ Y |, |Y \ X|) ≤ 2.9 This characterization is related to M ♮-concavity,

a concept from discrete convex analysis (Murota and Shioura, 1999). In the model

with continuous transfers and quasilinear utility, Fujishige and Yang (2003) showed

that GS is equivalent to M ♮-concavity of a valuation. Proposition 3 utilizes this

equivalence. See Murota (2016) for more details.

Based on Proposition 3, any violations of GS can be classified into that of Con-

ditions 1 or 2. A firm’s valuation vf in Example 1 violates Condition 1. A firm’s

valuation vf in Example 2 satisfies Condition 1 but violates Condition 2. The proof

of Theorem 1 generalizes the intuition of these examples.

3.4 Proof of Theorem 1

Proof. We begin with a lemma.

9In general, we need additional conditions on domf = {X : f(X) > −∞} for this result. In
our model, we have domf = 2W , and thus these conditions are always satisfied. The condition
domf = 2W also holds in the models studied by Kelso and Crawford (1982); Gul and Stacchetti
(1999); Reijnierse et al. (2002). For general models with domf ̸= 2W , see (Murota, 2016).
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Lemma 2 ((Jagadeesan et al., 2020)). Let (µ, p) be any competitive equilibrium. For

any competitive equilibrium matching µ′, (µ′, p) is a competitive equilibrium.

Suppose toward a contradiction that there exists a firm f such that vf violates

GS. Then either Condition 1 or Condition 2 in Proposition 3 is violated. We have

two cases to consider. To simplify notation, define uf (X, p) ≡ vf (X) −
∑

w∈X p(f,w)

for each X ⊆ W , and p ∈ RF×W .

Case 1: vf violates Condition 1.

There exist X ⊆ W and w1, w2 ∈ W \X with w1 ̸= w2 such that

vf (X ∪ {w1, w2}) + vf (X) > vf (X ∪ {w1}) + vf (X ∪ {w2}).

Consider the following worker valuation profile v;

vw(f) = α for all w ∈ X ∪ {w1, w2},

vw(f) < − max
Z∈2W

2|vf (Z)| for all w ∈ W \ (X ∪ {w1, w2}), and

vw(f
′) < − max

Z∈2W
2|vf ′(Z)| for all w ∈ W and f ′ ∈ F \ {f},

where α ≡ −minZ⊆Y⊆X∪{w1,w2} vf (Y )− vf (Z). Note α ≥ 0.

Consider a matching µ with µf = X ∪ {w1, w2} and µf ′ = ∅ for all f ′ ∈ F \ {f}.
We show that there exists a competitive equilibrium (µ, p) such that

p(f,w1) = vf (X ∪ {w1, w2})− vf (X ∪ {w2}),

p(f,w2) = vf (X ∪ {w2})− vf (X),

p(f,w) = −α for all w ∈ X,

p(f,w) = −vw(f) for all w ̸∈ X ∪ {w1, w2}, and

p(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}.

By the construction of p, we have f ∈ Dw(p|vw) for each w ∈ X ∪ {w1, w2}. Also, we
have ∅ ∈ Dw(p|vw) for each w ̸∈ X ∪ {w1, w2}. For any f ′ ∈ F \ {f}, w ∈ W \ {w},
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and Y ⊆ W , we have

uf ′(Y, p)− uf ′(Y ∪ {w}, p)

=p(f ′,w) − (vf ′(Y ∪ {w})− vf ′(Y ))

= max
Z∈2W

2|vf ′(Z)| − (vf ′(Y ∪ {w})− vf ′(Y ))

≥0.

Thus, we have ∅ ∈ Df ′(p) for each f ′ ∈ F \{f}. We show that X ∪{w1, w2} ∈ Df (p).

Note that for all Y with Y ∩ (W \ (X ∪ {w1, w2})) ̸= ∅, we have uf ((X ∪ {w1, w2})∩
Y, p) ≥ uf (Y, p). Thus, it suffices to show that for all Y ⊆ X ∪ {w1, w2}, we have

uf (X ∪ {w1, w2}, p) ≥ uf (Y, p). For all Y ⊆ X ∪ {w1, w2} and w ∈ X \ Y , we have

uf (Y ∪ {w}, p)− uf (Y, p)

=vf (Y ∪ {w})− vf (Y ) + α

≥0,

where the second inequality follows from p(f,w) = −α. This implies uf (X, p) ≥
uf (∅, p) = 0 and uf (X ∪ Z, p) ≥ uf (Z, p) for all Z ⊆ W . Thus, it suffices to show

uf (X ∪ {w1, w2}, p) ≥ uf (Y, p) for Y ∈ {X,X ∪ {w1}, X ∪ {w2}}.
For X,

uf (X ∪ {w1, w2}, p)

=vf (X ∪ {w1, w2})

− ((vf (X ∪ {w1, w2})− vf (X ∪ {w2})) + (vf (X ∪ {w2})− vf (X)))

−
∑
w∈X

p(f,w)

=vf (X)−
∑
w∈X

p(f,w)

=uf (X, p).
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For X ∪ {w2},

uf (X ∪ {w2}, p)

= vf (X ∪ {w2})− ((vf (X ∪ {w2})− vf (X))−
∑
w∈X

p(f,w))

= vf (X)−
∑
w∈X

p(f,w)

= uf (X, p)

= uf (X ∪ {w1, w2}, p).

For X ∪ {w1},

uf (X ∪ {w1}, p)

= vf (X ∪ {w1})− (vf (X ∪ {w1, w2} − vf (X ∪ {w2}))−
∑
w∈X

p(f,w)

< vf (X)−
∑
w∈X

p(f,w)

= uf (X, p)

= uf (X ∪ {w1, w2}, p),

where the second inequality follows from the assumption of Case 1.

Similarly, we can show that there exists a competitive equilibrium (µ, q) such that

q(f,w1) = vf (X ∪ {w1})− vf (X),

q(f,w2) = vf (X ∪ {w1, w2})− vf (X ∪ {w1}),

q(f,w) = −α for all w ∈ X,

q(f,w) = −vw(f) for all w ̸∈ X ∪ {w1, w2}, and

q(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}.

Suppose that there exists a worker-optimal competitive equilibrium (µ′, r). By Lemma 2,

(µ, r) is also a competitive equilibrium. Note uw((µ
′, r)|vw) = uw((µ, r)|vw) for

any w ∈ W . Since (µ′, r) is a worker-optimal competitive equilibrium, we have
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r(f,w1) ≥ p(f,w1) and r(f,w2) ≥ q(f,w2). However, we have X ∪ {w1, w2} ̸∈ Df (r) since

uf (X ∪ {w1, w2}, r)

=vf (X ∪ {w1, w2})

− ((vf (X ∪ {w1, w2})− vf (X ∪ {w2})) + (vf (X ∪ {w1, w2})− vf (X ∪ {w1}))

−
∑
w∈X

r(f,w)

<vf (X)−
∑
w∈X

r(f,w)

=uf (X, r),

where the second inequality follows from the assumption of Case 1. This contradicts

that (µ, r) is a competitive equilibrium. Thus, a worker-optimal competitive equilib-

rium does not exist for this valuation profile v. By Proposition 1, there is no CE and

SP mechanism in this case.

Case 2: While vf satisfies Condition 1, vf violates Condition 2.

There exist X ⊆ W and w1, w2, w3 ∈ W \X such that w1, w2, and w3 are distinct,

and

vf (X ∪ {w1, w2}) + vf (X ∪ {w3})

> max{vf (X ∪ {w1, w3}) + vf (X ∪ {w2}), vf (X ∪ {w2, w3}) + vf (X ∪ {w1})}.

Consider the following worker valuation profile v;

vw(f) = β for all w ∈ X ∪ {w1, w2},

vw3(f)

=−max{vf (X ∪ {w1, w3})− vf (X ∪ {w1}), vf (X ∪ {w2, w3})− vf (X ∪ {w2})},

vw(f) < − max
Z∈2W

2|vf (Z)| for all w ∈ W \ (X ∪ {w1, w2, w3}), and

vw(f
′) < − max

Z∈2W
2|vf ′(Z)| for all w ∈ W and f ′ ∈ F \ {f},

where β ≡ −minZ⊆Y⊆X∪{w1,w2,w3} vf (Y )− vf (Z). Note β ≥ 0.

Consider a matching µ with µf = X ∪ {w1, w2} and µf ′ = ∅ for all f ′ ∈ F \ {f}
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We show that there exists a competitive equilibrium (µ, p) such that

p(f,w1) = vf (X ∪ {w1, w2})− vf (X ∪ {w2}),

p(f,w2) = vf (X ∪ {w2, w3})− vf (X ∪ {w3}),

p(f,w3) = vf (X ∪ {w2, w3})− vf (X ∪ {w2}),

p(f,w) = −β for all w ∈ X,

p(f,w) = −vw(f) for all w ̸∈ X ∪ {w1, w2, w3}, and

p(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}.

Note f ∈ Dw(p|vw) for each w ∈ X ∪ {w1, w2}, ∅ ∈ Dw(p|vw) for each w ̸∈ X ∪
{w1, w2}, and ∅ ∈ Df ′(p) for each f ′ ∈ F \ {f}. We show that X ∪{w1, w2} ∈ Df (p).

By p(f,w) = −β for all w ∈ X, a similar argument in Case 1 implies that it suffices to

show that uf (X ∪ {w1, w2}, p) ≥ uf (Y, p) for

Y ∈ {X,X ∪ {w1}, X ∪ {w2}, X ∪ {w3}, X ∪ {w2, w3}, X ∪ {w1, w3}, X ∪ {w1, w2, w3}}.

For X ∪ {w1, w2, w3},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w1, w2, w3}, p)

= (vf (X ∪ {w2, w3})− vf (X ∪ {w2}))− (vf (X ∪ {w1, w2, w3})− vf (X ∪ {w1, w2}))

≥ 0,

where the second inequality follows from that vf satisfies Condition 1.

For X ∪ {w2},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w2}, p) = 0

by the definition of p(w1,f).

For X ∪ {w1},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w1}, p)

= (vf (X ∪ {w1, w2})− vf (X ∪ {w1}))− (vf (X ∪ {w2, w3})− vf (X ∪ {w3}))

> 0,
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where the second inequality follows from the assumption of Case 2.

For X ∪ {w3},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w3}, p) = 0

since uf (X ∪ {w3}, p) = uf (X ∪ {w2}, p).
For X ∪ {w2, w3},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w2, w3}, p) = 0

since uf (X ∪ {w2, w3}, p) = uf (X ∪ {w2}, p).
For X ∪ {w1, w3},

uf (X ∪ {w1, w2}, p)− uf (X ∪ {w1, w3}, p)

= vf (X ∪ {w1, w2})− (vf (X ∪ {w2, w3})− vf (X ∪ {w3}))

− (vf (X ∪ {w1, w3})− (vf (X ∪ {w2, w3})− vf (X ∪ {w2})))

= vf (X ∪ {w1, w2}) + vf (X ∪ {w3})− (vf (X ∪ {w1, w3}) + vf (X ∪ {w2}))

> 0,

where the last inequality follows from the assumption of Case 2.

For X,

uf (X ∪ {w1, w2}, p)− uf (X, p)

= (vf (X ∪ {w1, w2})− vf (X))

− (vf (X ∪ {w1, w2})− vf (X ∪ {w2}))− (vf (X ∪ {w2, w3})− vf (X ∪ {w3}))

= (vf (X ∪ {w2})− vf (X))− (vf (X ∪ {w2, w3})− vf (X ∪ {w3}))

≥ 0,

where the second inequality follows from that vf satisfies Condition 1.
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Similarly, we can show that there exists a competitive equilibrium (µ, q) such that

q(f,w1) = vf (X ∪ {w1, w3})− vf (X ∪ {w3}),

q(f,w2) = vf (X ∪ {w1, w2})− vf (X ∪ {w1}),

q(f,w3) = vf (X ∪ {w1, w3})− vf (X ∪ {w1}),

q(f,w) = −β for all w ∈ X,

q(f,w) = −vw(f) for all w ̸∈ X ∪ {w1, w2, w3}, and

q(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}.

Note that p(f,w1) ≥ q(f,w1) and q(f,w2) ≥ p(f,w2) by the assumption of Case 2. Sup-

pose that there exists a worker-optimal competitive equilibrium (µ′, r). By Lemma 2,

(µ, r) is also a competitive equilibrium. Note uw((µ
′, r)|vw) = uw((µ, r)|vw) for

any w ∈ W . Since (µ′, r) is a worker-optimal competitive equilibrium, we have

r(f,w1) ≥ p(f,w1) and r(f,w2) ≥ q(f,w2). Note that µf = X ∪ {w1, w2} ∈ Df (r) must hold

since this is necessary so that (µ, r) is a competitive equilibrium. Then, we have

uf (X ∪ {w1, w2}, r) ≥ uf (X ∪ {w3}, r).

This implies

vf (X ∪ {w1, w2})− ((vf (X ∪ {w1, w2})− vf (X ∪ {w2}))

− (vf (X ∪ {w1, w2})− vf (X ∪ {w1}))−
∑
w∈X

r(f,w)

≥ vf (X ∪ {w1, w2})−
∑

w∈X∪{w1,w2}

r(f,w)

≥ vf (X ∪ {w3})− r(f,w3) −
∑
w∈X

r(f,w),

where the first inequality follows from r(f,w1) ≥ p(f,w1) and r(f,w2) ≥ q(f,w2). Thus, we
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have

r(f,w3)

≥ (vf (X ∪ {w1, w2}) + vf (X ∪ {w3}))− (vf (X ∪ {w1}) + vf (X ∪ {w2}))

> max{vf (X ∪ {w1, w3}) + vf (X ∪ {w2}), vf (X ∪ {w2, w3}) + vf (X ∪ {w1})}

− (vf (X ∪ {w1}) + vf (X ∪ {w2}))

= max{vf (X ∪ {w1, w3})− vf (X ∪ {w1}), vf (X ∪ {w2, w3})− vf (X ∪ {w2})},

where the second inequality follows from the assumption of Case 2. Thus, we have

Dw3(r|vw3) = {f}, which contradicts that (µ, r) is a competitive equilibrium. This

means that a worker-optimal competitive equilibrium does not exist for this valuation

profile v. By Proposition 1, there is no CE and SP mechanism in this case.

Proof of Proposition 2

The proof of Theorem 1 can be applied to Proposition 2 with small modifications.

First, we assume vf is non-decreasing in Proposition 2, which implies α, β = 0 and

−max{vf (X ∪ {w1, w3})− vf (X ∪ {w1}), vf (X ∪ {w2, w3})− vf (X ∪ {w2})} ≤ 0.

Thus, all valuations of workers in the proof become non-positive. Second, it is easy

to see that Proposition 1 holds when Vw = RF
≤0 for any w ∈ W .

4 Applications

4.1 Checking CE and SP

In this section, we illustrate that our results can determine the existence of the desired

mechanisms. In each example, CE mechanisms exist. However, some valuations

violate GS. Therefore, our results show that there is no CE and SP mechanism.

Case of single firm

First, we consider the case where there is a single firm in a market. While this

case is very simple, it is theoretically valuable because it guarantees the existence

21

Electronic copy available at: https://ssrn.com/abstract=4737565



of competitive equilibria regardless of the firm’s valuation. Moreover, it also has

practical relevance. Policies such as subsidies to a particular group in auctions can

be discussed.

Proposition 4. Suppose F = {f}. Then, a competitive equilibrium exists for any

v ∈ V and vf ∈ Vf .

Proof. For each worker valuation profile v ∈ V , consider

W ′ ∈ argmax
W ′⊆W

(vf (W
′) +

∑
w∈W ′

vw(f)).

Then, (µ, p) is a competitive equilibrium at ν where µf = W ′ and p(f,w) = −vw(f)

for each w ∈ W .

It is worth noting that Proposition 4 does not follow from the existence theorem

by Baldwin and Klemperer (2019). While a firm’s valuation violates GS in Examples

1 and 2, CE mechanisms exist in the case of a single firm by Proposition 4. However,

there is no CE and SP mechanism in these examples by Theorem 1.

The case of a single firm includes some important applications. Consider the

setting of an auction where a single seller (firm) has multiple and homogeneous items

and sells them to unit-demand buyers (workers). Suppose that the seller only cares

about revenue, and her reservation values are zero. Thus, vf (W
′) = 0 for all W ′ ⊆ W .

It is easy to see that vf satisfies GS, and the CE and SP mechanism exists.

In practice, to address equity issues, governments often provide support for small

businesses and certain targeted groups in government procurement and allocation

programs (Athey et al., 2013). Here, we consider a policy in which a government

offers financial incentives to the seller based on the number of minority buyers who

can obtain the items. A policy intervention is represented by a function tf : 2W → R.

Example 3. Let Wm ⊆ W be the set of minority buyers. A policy intervention tf is

defined as:

tf (W
′) =

α if |W ′ ∩Wm| ≥ a,

0 otherwise,

where α > 0 and 1 ≤ a ≤ |Wm|.
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∅ {wd} {wn1} {wn2} {wd, wn1} {wd, wn2} {wn1 , wn2} W
vf1 0 18 3 3 22 22 4 24
vf2 0 1 11 11 13 13 20 23
vf2 0 12 6 6 20 20 10 25

Table 1: Firms’ valuations in Example 4

It is easy to see that vf+tf violates GS. Therefore, tf leads to the non-existence of

CE and SP mechanisms by Theorem 1, even though a competitive equilibrium exists

in the case of the single seller. This observation leads to a natural question: What

kind of policy intervention tf can preserve GS? Kojima et al. (2024) showed that if tf

is represented by sums of additively separable and cardinally concave functions, then

GS can be preserved (for all valuations satisfying it).

Case of multiple firms

Second, we consider the case where there are multiple firms in a market. In this

case, various conditions other than GS can guarantee the existence of competitive

equilibria.

Example 4. Suppose that there are three firms F = {f1, f2, f3}, one doctor and two

nurses W = {wd, wn1 , wn2}. Firms’ valuations are given in Table 1. Sun and Yang

(2006) provided this example. Intuitively, from the viewpoint of each firm, nurses

are substitutes, but a doctor and nurses are complements. They showed that GSC

guarantees the existence of competitive equilibria, and every firm’s valuation violate

GS but satisfies GSC in Example 4.10 Thus, a CE mechanism exists, but a CE and

SP mechanism does not exist by Theorem 1 in this example.

Example 5. Suppose that there are two firms F = {f1, f2} and three workers W =

{w1, w2, w3}. Each firm has a valuation defined by

vf1(W
′) =

α if {w1, w2} ⊆ W ′,

0 otherwise,
vf2(W

′) =

β if {w2, w3} ⊆ W ′,

0 otherwise,

10The model by Sun and Yang (2006) is a little different from ours. In our model, workers are
agents, while in their model they are treated as items. Precisely, the existence of a competitive
equilibria under GSC in our model follows from the result by Hatfield et al. (2013).
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for each W ′ ⊆ W where α, β > 0. Note that each firm’s valuation satisfies neither

GS nor GSC. Nevertheless, it can be confirmed that the demand type induced from

valuations of firms and workers is unimodular defined by Baldwin and Klemperer

(2019). Thus, their existence theorem implies that a competitive equilibrium exists

for any valuation profile of workers. However, Theorem 1 implies that a CE and SP

mechanism does not exist in this example.

Example 6. Consider a situation where the set of workers is partitioned, and for each

firm, a set of workers is valuable only when the set is in the partition.11 Formally, let

W = {W1, . . . ,Wn} be a partition of W and suppose that each f ∈ F has a valuation

vf such that for each W ′ ∈ 2W ,

vf (W
′)

> 0 if W ′ ∈ W ,

= maxW ′′∈W∪{∅},W ′′⊆W ′ vf (W
′′) otherwise.

Note that for each f , vf is non-decreasing. Assume that each worker has a non-

positive valuation, that is, Vw = RF
≤0 for each w ∈ W . Then, there is a competitive

equilibrium for each v ∈ V .

The existence of a competitive equilibrium can be shown by constructing a one-

to-one matching economy.12 Let v ∈ V . Let W ∗ be the set of n workers such that

each worker i ∈ W ∗ corresponds to a set Wi of workers in W . For each i ∈ W ∗, let

v∗i =
∑

w∈Wi
vw. Each firm f ∈ F has a valuation v∗f over W ∗ such that for each

i ∈ W ∗, v∗f (i) = vf (Wi).

For this one-to-one economy, it is known that there is a competitive equilibrium

(µ∗, p∗) at v∗. Note that p∗ ≥ 0 since firms’ valuations are non-negative and non-

decreasing and workers’ valuations are non-positive. Given this equilibrium, let µ be

a matching in the original economy such that for each f ∈ F , µf = Wµ∗
f
. Let p be a

11This example is inspired by Shinozaki and Serizawa (2024). They study an auction model with
multi-demand agents, and show that if a mechanism satisfies SP, envy-freeness and other conditions,
the set of objects is partitioned into multiple bundles and the mechanism selects a competitive
equilibrium allocation with respect to the bundles. The main difference between their result and our
example is that a partition is endogenously determined in their result while the partition is given
exogenously in our example.

12The demand type induced from valuations of firms and workers in this example is not unimod-
ular. Thus, the sufficient condition of Baldwin and Klemperer (2019) cannot be applied to this
example.
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price vector such that for each i ∈ W ∗, each w ∈ Wi and each f ∈ F ,

p(f,w) =

−vw(f) +
p∗
(µ∗

i
,i)

+v∗i (f)

|Wi| if f = µw,

−vw(f) +
p∗
(µ∗

i
,i)

+v∗i (µi)

|Wi| − t(f, w) otherwise,

where

t(f, w) =

min{|vw(f)|, λ} if p∗(f,i) − (p∗(µ∗
i ,i)

+ v∗i (µ
∗
i )) ≥ 0,

−vw(f)−
p∗
(f,i)

−(p∗
(µ∗

i
,i)

+v∗i (µ
∗
i ))

|Wi| if p∗(f,i) − (p∗(µ∗
i ,i)

+ v∗i (µ
∗
i )) < 0,

where λ solves the equation
∑

w′∈Wi
min{|vw′(f)|, λ} = v∗i (f) − (p∗(f,i) − (p∗(µ∗

i ,i)
+

v∗i (µ
∗
i ))). By the construction of p, for each w ∈ W and f ∈ F , uw(µw, p(µw,w) | vw) ≥ 0

and uw(µw, p(µw,w) | vw) ≥ uw(f, p(f,w) | vw). Thus, µf ∈ Dw(p | vw). Further, by

the definition of firms’ valuations, for each f ∈ F , µf ∈ Df (p). Hence, (µ, p) is a

competitive equilibrium (in the original economy) at v.

It is also true that p ≥ 0. To see this, let i ∈ W ∗, w ∈ Wi, and f ∈ F . If f = µw

or p∗(f,i) − (p∗(µ∗
i ,i)

+ v∗i (µ
∗
i )) ≥ 0, then by p∗(µ∗

i ,i)
+ v∗i (µ

∗
i ) ≥ 0, p(f,w) ≥ 0. Suppose

f ̸= µw and p∗(f,i) − (p∗(µ∗
i ,i)

+ v∗i (µ
∗
i )) < 0. Then,

p(f,w) = −vw(f) +
p∗(µ∗

i ,i)
+ v∗i (µi)

|Wi|
− t(f, w)

= −vw(f) +
p∗(µ∗

i ,i)
+ v∗i (µi)

|Wi|
+ vw(f) +

p∗(f,i) − (p∗(µ∗
i ,i)

+ v∗i (µ
∗
i ))

|Wi|

=
p∗(f,i)
|Wi|

.

Since p∗(f,i) ≥ 0, p(f,w) ≥ 0. Thus, p ≥ 0.

If there is W ′ ∈ W such that |W ′| ≥ 2, firms’ valuations violate GS. Thus, in such

a case, there is no CE and SP mechanism by Proposition 2.

4.2 Investment

Agents typically make certain investments before participating in mechanisms. The

design of a mechanism can affect the incentives for workers to invest because it partly

determines the return on their investment. Hatfield et al. (2018) characterized the

mechanisms that provide incentives for socially efficient ex ante investment in the
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general model, including ours. Since their characterization is based on SP, we obtain

a close relationship between GS and investment efficiency through our results.

We follow the model of Hatfield et al. (2018). Before participating in the mech-

anism, each worker makes an investment decision that shapes her valuation across

firms. This investment decision is modeled as a choice of the valuation vw. The

cost associated with this investment is defined by a cost function cw : Vw → R.
We slightly abuse notation and write µ(A) to mean that µ(A) is a matching as-

sociated with an outcome A. A mechanism φ is efficient if µ(φ(v)) is an efficient

matching at v for any v ∈ V . The ex ante utility of worker w given an out-

come–investment pair (A, v) is uw(A|vw) − cw(vw) where v ∈ V . The social wel-

fare (or total surplus) of an outcome A at a valuation profile v ∈ V is denoted by

V(A|v) ≡
∑

w∈W vw(µ(A)w) +
∑

f∈F vf (µ(A)f ). We define the ex ante social welfare

of an outcome–investment pair (A, v) as V(A|v)−
∑

w cw(vw).

Definition 3. Amechanism φ induces efficient investment by workers if for all w ∈ W

and v−w ∈ VW\{w},

argmax
v′w∈Vw

{uw(φ(v
′
w, v−w)− cw(v

′
w)|v′w)} = argmax

v′w∈Vw

{V(φ(v′w, v−w)|(v′w, v−w))− cw(v
′
w)}.

A mechanism induces efficient investment for workers if, assuming that workers

report truthfully, for every valuation profile v−w of other workers, and for every cost

function cw, the valuations that maximize the utility of w are exactly those that

maximize social welfare.

Hatfield et al. (2018) clarified the relationship between SP and inducing efficient

investment.

Proposition 5 ((Hatfield et al., 2018)). Consider an efficient mechanism φ. The

following statements are equivalent:

1. The mechanism φ induces efficient investment by workers.

2. The mechanism φ is SP.

By noting that CE mechanisms are efficient, together with our results, we can

characterize the valuations of a firm to guarantee the existence of mechanisms that

are CE and induce efficient investment by workers.

Corollary 3. A mechanism that is CE and induces efficient investment by workers

exists if and only if a valuation vf satisfies GS for any f ∈ F .
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5 Other models

5.1 Model with non-quasilinear utility

The following example shows that Theorem 1 does not hold in the model with con-

tinuous transfers and non-quasilinear utility.

Example 7. Let F = {f} and W = {w1, w2}. Firm f has a utility function uf over

2W × R defined by

uf ({w1, w2}, p) =


2− p if p < 1− ϵ

− (1+ϵ)
ϵ

(p− 1) if 1− ϵ ≤ p ≤ 1

−p+ 1 if p > 1,

and for i = 1, 2,

uf ({wi}, p) = 1− p

where ϵ > 0 is sufficiently small so that 1
2+ϵ

< 1 − ϵ, equivalently, ϵ2 + ϵ < 1. The

utility function induces a demand correspondence Df as in Section 2.1. Then, the

gross substitutes condition can be defined for Df in the same way as Definition 2.

Figure 1 illustrates the demand of f . Note that Df violates the gross substitutes

condition since Df (1− ϵ, 0) = {{w1, w2}} and Df (1− ϵ, 1
2+ϵ

) = {{w2}}.
We assume that each worker has a quasilinear utility. Since there is a single firm,

we use vw to represent vw(f).

We define a mechanism as follows.

φ(vw1 , vw2) =



∅ if − vw1 ,−vw2 > 1,

{(f, w1, 1)} if − vw1 ≤ 1,−vw2 > 1,

{(f, w1,−vw2)} if − vw2 > −vw1 ,
1

2+ϵ
< −vw2 ≤ 1,

{(f, w1,
1

2+ϵ
), (f, w2,

1
2+ϵ

)} if − vw1 ,−vw2 ≤ 1
2+ϵ

,

{(f, w2,−vw1)} if − vw1 ≥ −vw2 ,
1

2+ϵ
< −vw1 ≤ 1,

{(f, w2, 1)} if − vw2 ≥ 1,−vw1 > 1.

Note that −vwi
is the minimum salary at which wi (i = 1, 2) is willing to match f , i.e.,

{f} ∈ Dwi
(p) if and only if pwi

≥ −vwi
. For (vw1 , vw2) ∈ R2, if −vw1 ≤ 1 and −vw2 >

1, then ({(f, w1)}, (1,−vf2)) is a competitive equilibrium since {w1} ∈ Df (1,−vf2)
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1−ϵ

1

−ϵ

1
2 + ϵ

1
2 + ϵ

{w1, w2}

{w1}

{w2}

∅
pw2

pw1
1 − ϵ

1 − ϵ

Figure 1: A representation of Df in price space. Each labeled region represents
the set of price vectors in which f demands the set of workers corresponding to
the label. Black lines represent the set of price vectors in which f is indifferent
among more than one set of workers. For example, Df (p) = {{w1}, {w2}} for all
p ∈ {(pw1 , pw2) | 1

2+ϵ
< pw1 = pw2 < 1}.

by Figure 1, and if −vw2 > −vw1 and 1
2+ϵ

< −vw2 ≤ 1, then ({(f, w1)}, (−vw2 ,−vw2))

is a competitive equilibrium since {w1} ∈ Df (−vw2 ,−vw2) by Figure 1. We can check

that φ selects a competitive equilibrium outcome for the other cases. Thus, φ is a

CE mechanism.

We show that φ is SP. For each (vw1 , vw2) ∈ R2, let φwi
(vw1 , vw2) = {(f, w, pw) ∈

φ(vw1 , vw2) | w = wi} be the allocation to wi under φ (i = 1, 2). Fix any vw2 ∈ R.
Consider the following three cases.

(1) Suppose that −vw2 ≤ 1
2+ϵ

. Then,

φw1(v
′
w1
, vw2) =

{(f, w1,
1

2+ϵ
)} if − v′w1

≤ 1
2+ϵ

∅ if − v′w1
> 1

2+ϵ
.

This implies that uw1(φ(vw1 , vw2)|vw1) ≥ uw1(φ(v
′
w1
, vw2)|vw1) for all vw1 , v

′
w1

∈
R.
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(2) Suppose that 1
2+ϵ

< −vw2 ≤ 1. Then,

φw1(v
′
w1
, vw2) =

{(f, w1,−vw2)} if − v′w1
< −vw2

∅ if − v′w1
≥ −vw2 .

This implies that uw1(φ(vw1 , vw2)|vw1) ≥ uw1(φ(v
′
w1
, vw2)|vw1) for all vw1 , v

′
w1

∈
R.

(3) Suppose that −vw2 > 1. Then,

φw1(v
′
w1
, vw2) =

{(f, w1, 1} if − v′w1
≤ 1

∅ if − v′w1
> 1.

This implies that uw1(φ(vw1 , vw2)|vw1) ≥ uw1(φ(v
′
w1
, vw2)|vw1) for all vw1 , v

′
w1

∈
R.

The above argument shows that reporting truthfully is (weakly) dominant for w1.

Similarly, reporting truthfully is (weakly) dominant for w2. Therefore, φ is a CE and

SP mechanism while Df violates GS.

This example also illustrates that the rural hospital theorem (Lemma 1) does

not hold in the model with non-quasilinear utility: ({(f, w1), (f, w2)}, (1− ϵ, 0)) and

({(f, w2)}, (1−ϵ−η, 1
2+ϵ

)) are competitive equilibria at (vw1 , vw2) = (1−ϵ−η, 0) with

small η > 0.

5.2 Model with discrete transfers

Crawford and Knoer (1981) and Kelso and Crawford (1982) studied a discrete market,

which differs from our model in that the transfers or the workers’ salaries are discrete

variables. The following example shows that Theorem 1 does not hold in a model

with discrete transfers and quasilinear utility.

Example 8. Let F = {f} and W = {w1, w2}. We assume that each agent has a

quasilinear utility where possible valuations and salaries are given by integers. The

valuation of f is give by vf ({w1, w2}) = 1, vf ({wi}) = 0 for i = 1, 2. Clearly, vf

violates GS.

In this example, a mechanism is defined as a function φ that specifies an outcome

φ(vw1 , vw2) for each valuation profile (vw1 , vw2) ∈ Z2 where vwi
denotes wi’s valuation
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to f . Note that a mechanism is defined on Z2 rather than R2 since we assume that

each worker has an integer valuation.

We define a mechanism as follows:

φ(vw1 , vw2) =



{(f, w1, 1), (f, w2, 0)} if − vw1 ≤ 1,−vw2 ≤ 0,

{(f, w2, 0)} if − vw1 > 1,−vw2 ≤ 0,

{(f, w1, 0)} if − vw1 ≤ 0,−vw2 ≥ 1,

∅ if − vw1 ,−vw2 ≥ 1.

For (vw1 , vw2) ∈ Z2, if −vw1 ≤ 1 and −vw2 ≤ 0, then ({(f, w1), (f, w2)}, (1, 0)) is a
competitive equilibrium by {w1, w2} ∈ Df (1, 0), and if −vw1 > 1 and −vw2 ≤ 0, then

({(f, w2)}, (−vw1 , 0)) is a competitive equilibrium by {w2} ∈ Df (−vw1 , 0). We can

check that φ selects a competitive equilibrium outcome for the other cases. Thus, φ

is a CE mechanism.

We show that φ is a SP mechanism. Fix any vw2 ∈ Z. Consider the following two

cases.

(1) Suppose that −vw2 ≤ 0. Then,

φw1(v
′
w1
, vw2) =

{(f, w1, 1)} if − v′w1
≤ 1,

∅ if − v′w1
> 1.

This implies that uw1(φ(vw1 , vw2)|vw1) ≥ uw1(φ(v
′
w1
, vw2)|vw1) for all vw1 , v

′
w1

∈
Z.

(2) Suppose that −vw2 > 0. Then,

φw1(v
′
w1
, vw2) =

{(f, w1, 0)} if − v′w1
≤ 0,

∅ if − v′w1
> 0.

This implies that uw1(φ(vw1 , vw2)|vw1) ≥ uw1(φ(v
′
w1
, vw2)|vw1) for all vw1 , v

′
w1

∈
Z.

The above argument shows that reporting truthfully is (weakly) dominant for w1.
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Moreover, for any vw1 ∈ Z,

φw2(vw1 , v
′
w2
) =

{(f, w2, 0)} if − v′w2
≤ 0,

∅ if − v′w2
> 0,

which implies that uw2(φ(vw1 , vw2)|vw2) ≥ uw2(φ(vw1 , v
′
w2
)|vw2) for all vw2 , v

′
w2

∈ Z.
Therefore, φ is a CE and SP mechanism while vf violates GS.

This example also illustrates that Proposition 1 does not hold in the model with

discrete transfers: While ({(f, w1), (f, w2)}, (1, 0)) and ({(f, w1), (f, w2)}, (0, 1)) are

competitive equilibria at (v1, v2) = (0, 0), any arrangement ({(f, w1), (f, w2)}, (p(f,w1), p(f,w2)))

with p(f,w1), p(f,w2) ≥ 1 cannot be a competitive equilibrium at (v1, v2).
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A Necessity of Matroid

We assume that vf (∅) = 0 and thus ∅ ∈ dom vf for all f ∈ F .

Lemma 3. Suppose that there exists a CE and SP mechanism. Then, dom vf satisfies

the following property for all f ∈ F ;

(a) if W ′ ∈ dom vf and W ′′ ⊆ W ′, then W ′′ ∈ dom vf .

Suppose that there exists f ∈ F such that dom vf does not satisfy (a). Then,

there exist W ′,W ′′ ⊆ W such that W ′′ ⊆ W ′, W ′ ∈ dom vf , and W ′′ /∈ dom vf . Let

X be a minimum set satisfying W ′′ ⊆ X and X ∈ dom vf , that is, there exists no

X ′ ⊊ X such that W ′′ ⊆ X ′ and X ′ ∈ dom vf . Note that X \W ′′ ̸= ∅ by W ′′ ̸= X

and W ′′ ⊆ X. Fix any ŵ ∈ X \W ′′. Then, X \ {ŵ} /∈ dom vf by the minimality of

X.

Let α ∈ R be a sufficiently small number so that

min{vf (Y )− vf (Z) | Z ⊆ Y ⊆ X, Y, Z ∈ dom vf} > α.

Note that α < 0 holds. Let ϵ > 0 be a sufficiently large number so that

ϵ > vf (X)− |X|α.

Consider workers’ valuation profile as follows,

vw(f) > −α + ϵ for all w ∈ X,

−vw(f) > max{vf (Z) | Z ∈ dom vf} − |X|(α− ϵ) for all w ∈ W \X, and

−vw(f
′) > max{vf ′(Z) | Z ∈ dom vf ′} for all w ∈ W and f ′ ∈ F \ {f}.

34

Electronic copy available at: https://ssrn.com/abstract=4737565



Note that vw(f) > 0 for all w ∈ X, vw(f) < 0 for all w ∈ W \ X. In addition,

vw(f
′) < 0 for all w ∈ W and all f ′ ∈ F \ {f}.

We show that (µ, p) is a CE where µ is a matching with µf = X and µf ′ = ∅ for

all f ′ ∈ F \ {f} and p is a price vector defined by

p(f,w) =

α if w ∈ X,

−vw(f) if w ∈ W \X,

and p(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}. Clearly, {f} ∈ Dw(p|vw) for

all w ∈ X and ∅ ∈ Dw(p|vw) for all w ∈ X \W . Moreover, uf ′(∅, p) ≥ uf ′(Y, p) for

all Y ⊆ W with Y ∈ dom vf ′ and f ′ ∈ F \ {f} by the definition of (vf ′(w))w∈W .

Thus, µf ′ = ∅ ∈ Df ′(p) for all f ′ ∈ F \ {f}. It remains to show X ∈ Df (p). Pick any

Y ⊆ W with Y ∈ dom vf . When Y \ X ̸= ∅, we have uf (∅, p) > uf (Y, p) since for

each w′ ∈ Y \X,

uf (Y, p) = vf (Y )−
∑

w∈Y ∩X

p(f, w) +
∑

w∈Y \X

vw(f),

≤ vf (Y )−
∑

w∈Y ∩X

(α− ϵ) +
∑

w∈Y \X

vw(f),

≤ vf (Y )− |X|(α− ϵ) + vw′(f),

< 0,

where the second line follows from p(f,w) ≥ α− ϵ for all w ∈ X, the third line follows

from |X| ≥ |X ∩ Y |, α − ϵ < 0, and vw(f) < 0 for all w ∈ W \X, and the last line

follows from the definition of vw′(f). When Y ⊆ X, we have uf (X, p) ≥ uf (Y ) by

the definition of α. Thus, X ∈ Df (p). Therefore, (µ, p) is a CE.

We next show that (µ, q) is also a CE where q is a price vector defined by

q(f,w) =


α + ϵ if w = ŵ,

α− ϵ if w ∈ X \ {ŵ},

−vw(f) if w ∈ W \X,

and q(f ′,w) = −vw(f
′) for all w ∈ W and f ′ ∈ F \ {f}. Clearly, {f} ∈ Dw(q|vw) for

all w ∈ X and ∅ ∈ Dw(q|vw) for all w ∈ X \W . Moreover, uf ′(∅, q) ≥ uf ′(Y, q) for
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all Y ⊆ W with Y ∈ dom vf ′ and f ′ ∈ F \ {f} by the definition of (vf ′(w))w∈W . It

remains to show X ∈ Df (p). Pick any Y ⊆ W with Y ∈ dom vf . When Y \X ̸= ∅,
we can show that uf (∅, q) > uf (Y, q) by the same argument above. Thus, we assume

that Y ⊆ X. Suppose that ŵ /∈ X \ Y . Then,

uf (X, p)− uf (Y, p) = vf (X)− vf (Y )−
∑

w∈X\Y

(α− ϵ)

≥ vf (X)− vf (Y )−
∑

w∈X\Y

α

≥ uf (X, p)− uf (Y, p)

≥ 0,

where the last line follows from X ∈ Df (p). Suppose that ŵ ∈ X \ Y . Note that

X \Y ̸= {ŵ} since otherwise we have Y = X \{ŵ}, contradicting Y ∈ dom vf . Thus,

X \ (Y ∪ {ŵ}) ̸= ∅. Then,

uf (X, p)− uf (Y, p) = vf (X)− vf (Y )− (α + ϵ)−
∑

w∈X\(Y ∪{ŵ})

(α− ϵ),

= vf (X)− vf (Y )− |X \ Y |α + (|X \ (Y ∪ {ŵ})| − 1)ϵ,

≥ vf (X)− vf (Y )− α,

> 0,

where the third line follows from |X \ Y | ≥ 1, α < 0, and |X \ (Y ∪ {ŵ})| − 1 ≥ 0

and the last line follows from the definition of α. Thus, X ∈ Df (q).

We next show that a worker-optimal competitive equilibrium does not exist. Sup-

pose not. By Lemma 2, there exists a CE (µ, r) such that uw(µ, r) ≥ uw(µ, p) and

uw(µ, r) ≥ uw(µ, q) for all w ∈ X. Thus, r(f,ŵ) ≥ α + ϵ and r(f,w) ≥ α for all

w ∈ X \ {ŵ}. Then,

uf (X, r) ≤ vf (X)− (α + ϵ)− (|X| − 1)α,

= vf (X)− |X|α− ϵ,

< 0,

where the last line follows from the definition of ϵ. Thus, X /∈ Df (r), contradicting
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that (µ, r) is a CE. By Proposition 1, a CE and SP mechanism does not exist.
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