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Abstract. We consider a school-choice matching model that allows for inter-regional

transfer of students (ekkyo admission), with the “balancedness” constraint: each student

and school belongs to a region, and a matching is said to be balanced if, for each region,

the outflow of students from that region to other regions is equal to the inflow of stu-

dents from the latter to the former. Using a directed bipartite graph defined on students

and schools, we characterize the set of Pareto efficient matchings among those that are

individually rational, balanced and fair. We also provide a class of polynomial-time algo-

rithms to compute such matchings. The outcome of an algorithm from this class weakly

improves student welfare upon the one produced when each region independently uses a

deferred acceptance algorithm.
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1. Introduction

Matching theory has been applied in numerous real-life markets with a purpose of cen-

tralizing market transactions, but the centralized clearinghouses are still often organized

at a (often small) local level. As a consequence of such fragmentation, some efficiency

gains are being missed. In Japan, for instance, allocation of slots at accredited daycares

are conducted by individual municipal governments and, with few exceptions, a child can

only attend a daycare in the municipality of their residence. The City of Tokyo, for ex-

ample, is divided into 23 small municipalities with the average size being about a half

of Manhattan’s, and each conducts a matching independently.1 Due to the small sizes of

the regions, many families find that daycare centers outside the regions of their residence

are among the closest. Moreover, it is often convenient to put their children to a daycare

center close to their workplace while many people cross a regional boundary to commute.2

For these reasons, inter-regional admission—which is called the ekkyo admission—is an

appealing option for many families and it is indeed legal. However, ekkyo matching is

rare under the current practice.

We study how to integrate fragmented matching markets. Specifically, we analyze

mechanisms that improve upon mechanisms organized at the local level and achieve de-

sirable fairness and efficiency properties. To do so, we depart from the standard model

of matching between students and schools (Balinski and Sönmez, 1999; Abdulkadiroğlu

and Sönmez, 2003) by assuming that each school belongs to exactly one region while each

student is a resident of exactly one region. We consider a balancedness constraint that

requires that, for each region, the number of residents of other regions who are matched

to a school in it, called the inflow, must be equal to the number of its residents who are

matched to a school in other regions, called the outflow.

Why is balancedness a reasonable requirement? In the context of Japanese daycare al-

location, for instance, although ekkyo matching is legal—in fact, the Japanese government

amended its Children and Childcare Act to encourage ekkyo matching in 2018—, the law

makes it clear that it is each municipality’s responsibility to provide daycare services.3

Therefore, it is impractical to organize a daycare allocation in a fully integrated manner

across multiple municipalities. Moreover, each municipality heavily subsidizes daycares,

1The average area of each of the 23 municipalities is 10.4 square miles, while Manhattan’s area is 22.7

square miles.
2To get a sense of the magnitude, over 3.5 million people get on or get off a train in Tokyo’s Shinjuku

Station each day.
3Revision to Article 14(4) of the Supplementary Provision to Children and Childcare Act of Japan,

https://elaws.e-gov.go.jp/document?lawid=424AC0000000065.
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so enrolling residents from other municipalities can be a severe financial burden. Our

balancedness constraint is meant to alleviate municipalities’ concerns by guaranteeing

that no municipality carries an excessive burden. Given those considerations, we design

mechanisms that achieve desirable properties under the balancedness constraint. In other

words, we aim at partial integration of the regions instead of full integration.

We find that there does not always exist a balanced matching that satisfies stability, a

standard desideratum in school choice literature that is equivalent to individual rationality,

fairness, and non-wastefulness. Given this observation, we weaken our desideratum to only

require individual rationality, balancedness and fairness. Among the matchings satisfying

all the three conditions (there always exists such a matching4), which we call the iBF s,

we focus on the ones that cannot be further improved upon in terms of students’ welfare,

which we call efficient iBFs.

We first characterize efficient iBFs. To this end, we define a novel bipartite graph called

a fair improvement graph (FIG henceforth) on a matching, where the vertices on one side

represent the students and those on the other side represent the schools, and existence of

an arrow between two vertices depends on preferences, priorities, and the given matching.

We show that an iBF is an efficient iBF if and only if there exists no “FIG cycle,” a cycle

on the FIG, for the matching.

Based on our characterization of efficient iBF, we then provide a polynomial-time al-

gorithm that finds an efficient iBF. The algorithm is called the FIG cycles algorithm and

is illustrated in some detail with an example in Section 1.1. Roughly, each step of the

FIG cycles algorithm checks if the current iBF allows for a FIG cycle and, if so, finds

a relocation of students that improves outcomes for students while retaining individual

rationality, balancedness and fairness.

To better understand the markets with the balancedness constraint, we provide further

discussions. First, we characterize when balancedness and stability are compatible with

each other. Second, we examine strategic properties. Third, comparative statics are

provided to evaluate the effect of merging and splitting regions. Fourth, we consider the

case with weak priority, which often arises in school choice applications.

We would like to emphasize that our analysis is applicable beyond daycare allocation.

Also in Japan, choice systems for public elementary and middle schools are organized

at the small municipal level as well. Naturally, there exist much potential demand for

enrolling in schools in other municipalities, but opportunities for interdistrict school choice

4All the conditions are satisfied by the matching where no student is matched to any school.
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are severely limited.5 The issue is not limited to Japan either. In the U.S., for example,

school choice is basically organized at a highly local level, but some form of interdistrict

school choice is practiced in 43 States.6 The analysis of our paper, and particularly the

FIG cycles algorithm, could be applied to improve efficiency of school choice mechanisms.

At a high level, the fragmented nature of resource allocation is widespread beyond day-

care allocation or school choice. In kidney exchange in the U.S., for instance, individual

transplant centers often conduct exchanges on their own before sending remaining partic-

ipants to national exchange, resulting in significant efficiency loss (Agarwal et al., 2019).

In COVID-19 vaccine allocation in Japan in 2021, individual municipalities were charged

with vaccinating their respective residents, which resulted in situations in which vaccine

stocks run out quickly in one municipality while extra stocks remain unused in another.7

We envision that research is called for to understand how to overcome inefficiency from

the fragmented nature of the allocation problems in a practical manner when existing

legal, institutional and other constraints prohibit full integration.

1.1. Illustrative Example. In this paper we introduce an algorithm of inter-regional

transfer that improves students’ welfare while respecting the balancedness condition and

fairness. To gain intuition for why inter-regional transfer may improve welfare, consider

the following simple environment (see Figure 1 for an illustration). There are two regions,

r and r′. One school s1 and two students i1 and i2 reside in r while one school s2 and one

student i3 reside in r′. School s1 has the capacity of two while school s2 has the capacity

5For instance, Nerima (one of the 23 municipalities of Tokyo City) declares that it ad-

mits a non-resident child “only in truly unavoidable circumstances.” See Nerima’s website,

https://www.city.nerima.tokyo.jp/kosodatekyoiku/kyoiku/shochu/8jyo-9jyo-n1.html,

last accessed on September 8, 2023.
6See the website of the Education Commission of the States,

https://ecs.my.salesforce-sites.com/mbdata/mbquest4e?rep=OE1705, last accessed on

September 12, 2023.
7For instance, in an interview at the time with NHK, the national public broadcasting organiza-

tion, an epidemiology expert pointed out that “adjustment of vaccine supply across municipalities is

limited, and it is necessary to introduce a centralized system at a larger scale.” See NHK’s web-

site, https://www3.nhk.or.jp/news/html/20210922/k10013272411000.html, last accessed

on September 21, 2023.
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Figure 1. Illustrative Example. Each white dotted square in a school

represents a seat in the school. The thick and thin arrows represent the

FIG while the thick arrows represent a FIG cycle.

of one. Student preferences and school priorities are given as follows:

�i1 : s2, �s1 : i1, i2, i3,

�i2 : s2, s1, �s2 : i3, i1, i2.

�i3 : s1, s2,

If an assignment of students to schools is determined region by region and there is no

inter-regional transfer, the efficient matching for students is given by

µ =

(
s1 s2 ∅
i2 i3, i1

)
,

which is realized by, for instance, running the student-proposing deferred acceptance algo-

rithm in each region separately. However, with inter-regional transfer, a Pareto improve-

ment for students is possible while respecting the balancedness condition. Specifically, if

the two students i1 and i3 are sent to the schools in each other’s regions, that is, if i1 goes

to s2 and i3 goes to s1, then in the realized matching,

µ′ =

(
s1 s2 ∅
i2, i3 i1 ∅

)
,
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these students are matched with their respective first-best school. In doing so, region r1

takes in one student from outside (student i3) while sending one student outside (student

i1), so the balancedness condition is satisfied.

Two things are noteworthy here. First, the number of students who are matched to

some school is increased from µ to µ′. This is because, by swapping students between

the two regions, the unmatched student i1 was able to be matched with a school. We

introduce an algorithm to make such an improvement possible.8

Second, there is another matching that respects the balancedness condition and Pareto

dominates µ, which is

µ′′ =

(
s1 s2 ∅
i3 i2 i1

)
.

However, this matching is not fair according to our definition, as i1 is ranked higher than

i2 at s2. This suggests that care is needed about who can be moved to new schools

across regions. The algorithm we introduce ensures that fairness is respected when an

improvement is made.

We aim to achieve efficiency via inter-regional transfer like the one described in the

above example. Specifically, we propose an algorithm that takes an arbitrary iBF as an

input and achieves a Pareto improvement. The algorithm is based on a directed bipartite

graph between students and schools that we call the fair improvement graph (or the FIG),

and in each of its steps it “implements” a cycle in this graph—called a FIG cycle—, i.e.,

we move a student to a school that she points to. The outcome of repeatedly implementing

FIG cycles turns out to be an efficient iBF. In fact, our main results characterize efficient

iBF using cycles: we show that an iBF is an efficient iBF if and only if there is no FIG

cycle on it.

Let us now discuss these results in the context of the aforementioned example. In our

FIG, each school is pointed to by the top student (according to its priority) among those

who strictly prefer the school to their current match and are acceptable to the school.

This means that, under µ, s1 is pointed to by i3 while s2 is pointed to by i1. Note that i2

cannot point to s2 as he is not the “top student” for s2 (i1 is). Also, each school points

to the students that are matched to the school. So, s1 points to i2 and s2 points to i3.

The above pointing rule is based on a standard idea in the previous literature that use

cycles (e.g., Erdil and Ergin (2008) and Top Trading Cycles). However, in the present

example, the graph constructed in this way does not have a cycle even though matching µ

8As we will explain in more detail later, this type of improvement is in a sharp contrast with most exist-

ing literature where the number of matched students is constant between before and after an improvement.
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is not an efficient iBF. In order to achieve a Pareto improvement, we additionally require

that each school with a vacancy points to any student matched to another school in the

school’s region as well as any unmatched students living in that region. In our example,

this lets s1 point to i1.9 With this, there is a cycle “i1 → s2 → i3 → s1 → i1.” Our

characterization result shows that this implies µ is not an efficient iBF. Indeed, µ is not

an efficient iBF because it is Pareto dominated by µ′, which is an iBF. In fact, the Pareto-

improvement µ′ is obtained by “implementing” this cycle. On µ′, the FIG now lets i2 point

to (only) s2 and lets s2 point to i1, but does not let i1 point to any school (because i1 is

matched to her first choice school). Since i3 does not point to any school either (because

i3 is matched to her first choice school), there is no FIG cycle on µ′. Our characterization

result shows that this implies µ′ is an efficient iBF. Indeed, one can verify that there is

no iBF that Pareto dominates µ′.

The remainder of this paper proceeds as follows. Section 2 provides a model where

we define efficient iBF. Section 3 introduces the fair improvement graph (FIG) and FIG

cycles. Section 4 provides our main theorem, which characterizes efficient iBF by non-

existence of FIG cycles. Section 5 defines the FIG cycles algorithm which outputs an

efficient iBF. Section 6 provides various discussions, and Section 7 concludes. Proofs of

all results are provided in the Appendix unless stated otherwise.

2. Model

2.1. Preliminary Definitions. Let there be a finite set of students I and a finite set

of schools S. Each student i has a strict preference relation �i over the set of schools

and being unmatched (being unmatched is denoted by ∅). For any s, s′ ∈ S ∪ {∅}, we

write s �i s′ if and only if s �i s′ or s = s′. Each school s has a strict priority order �s
over the set of students and leaving a position vacant (which is denoted by ∅).10 For any

i, i′ ∈ I ∪{∅}, we write i �s i′ if and only if i �s i′ or i = i′. Each school s ∈ S is endowed

with a (physical) capacity qs, which is a nonnegative integer.

Student i is said to be acceptable to school s if i �s ∅ (and unacceptable otherwise).

Similarly, s is acceptable to i if s �i ∅.11 It will turn out that only rankings of acceptable

9In this example, the school with a vacancy points to an unmatched student. The benefit from requiring

a school to point to a student matched to another school in the same region does not appear in the current

example. We will explain this point in “Example 2, Continued” in Section 3.2.
10Strictness of priorities is assumed just for the sake of simplicity. In Section 6.4, we consider the case

when indifferences are allowed and show that most results carry over to such a case.
11In some applications, all schools may regard all students as acceptable. None of our results will hinge

on the assumption that some students can be unacceptable to some schools.
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partners matter for our analysis, so we often write only acceptable partners to denote

preferences and priorities. For example,

�i: s, s′

means that school s is the most preferred, s′ is the second most preferred, and s and s′

are the only acceptable schools under preferences �i of student i.

A matching µ is a mapping that satisfies (i) µi ∈ S ∪ {∅} for all i ∈ I, (ii) µs ⊆ I and

|µs| ≤ qs for all s ∈ S, and (iii) for any i ∈ I and s ∈ S, µi = s if and only if i ∈ µs. That

is, a matching simply specifies which student is assigned to which school (if any).

A matching is individually rational if no student or school is matched with an un-

acceptable partner.

Given a matching µ, we say that a student i has justified envy to j ∈ I if there is a

school s ∈ S such that (i) µj = s, (ii) s �i µi, and (iii) i �s j. We say that a matching µ

is fair if there is no pair of students (i, j) ∈ I2 such that i has justified envy to j.

Finally, a matching µ weakly Pareto dominates a matching µ′ if µi �i µ′i for every

i ∈ I. A matching µ Pareto dominates µ′ if µ weakly Pareto dominates µ′ and there

exists i ∈ I such that µi �i µ′i.

2.2. Regions, Balancedness, and Efficient iBF. There is a set of regions, denoted

R, which is a partition of I ∪ S. Formally, R satisfies the following conditions:

(1) Each r ∈ R is a nonempty subset of I ∪ S.

(2) r ∩ r′ = ∅ for any r, r′ ∈ R such that r 6= r′.

(3)
⋃
r∈R r = I ∪ S.

The interpretation is that each s belongs to a single r ∈ R and each i is a resident of a

single r ∈ R. Let r(s) be the region r such that s ∈ r, and similarly for r(i).

We call E = (I, S, (�a)a∈I∪S, (qs)s∈S, R) an environment.

We are now ready to introduce the key concept of this paper, “balancedness.”

Definition 1. A matching µ is balanced if for each r ∈ R,

(2.1)
∑
s∈r

|{i|i ∈ µs, i 6∈ r}|︸ ︷︷ ︸
inflow to r

=
∑
s6∈r

|{i|i ∈ µs, i ∈ r}|︸ ︷︷ ︸
outflow from r

As (2.1) shows, balancedness means that for any given region r, the inflow of students

to r is the same as the outflow of students. Note that balancedness is not a “pairwise”

notion, that is, it does not necessarily require that for every pair of regions r and r′, the

number of students who live in r and are matched to a school in r′ is the same as the
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Figure 2. Three-way transfer (Example 1).

number of students who live in r′ and are matched to a school in r. The next example

illustrates.

Example 1 (Three-way transfer). Let I = {i1, i2, i3}, S = {s1, s2, s3}, R = {r1, r2, r3}
and rk = {ik, sk} for each k = 1, 2, 3. Let

µ =

(
s1 s2 s3 ∅
i3 i1 i2 ∅

)
.

See Figure 2 for a graphical representation. Note that under µ, the number of students

who live in r1 and are matched to a school in r2 is 1 while the number of students who live

in r2 and are matched to a school in r1 is 0. Matching µ is, however, balanced because it

satisfies (2.1): For each region, the inflow and outflow are both 1. �

We say that a matching is an iBF if it is individually rational, balanced, and fair.

Below is the main solution concept of this paper.

Definition 2. A matching µ is said to be an efficient iBF if µ is an iBF and there is no

iBF µ′ that Pareto dominates µ.

In the standard environment without the balancedness constraint, there is a unique

efficient iBF, which corresponds to a “student-optimal stable matching.” In our setting,

there may be multiple efficient iBFs. The following example illustrates.
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Figure 3. Multiple efficient iBFs (Example 2). Both µ and µ′ are an

efficient iBF.

Example 2 (Multiple efficient iBFs). Let I = {i1, i2, i3}, S = {s1, s2, s3}, R = {r, r′}
where r = {i1, s1, s2} and r′ = {i2, i3, s3}. Each school has the capacity of one. Student

preferences and school priorities are given as follows:

�i1 : s3, s1, �s1 : i2, i1,

�i2 : s1, �s2 : i3,

�i3 : s2, �s3 : i1.

Let

µ =

(
s1 s2 s3 ∅
i2 ∅ i1 i3

)
, µ′ =

(
s1 s2 s3 ∅
∅ i3 i1 i2

)
.

See Figure 3 for a graphical representation. We show that both µ and µ′ are an efficient

iBF. To see this, first notice that there are only four individually rational and balanced

matchings. They are µ, µ′,

µ′′ =

(
s1 s2 s3 ∅
i1 ∅ ∅ i2, i3

)
,

and the empty matching (i.e., the matching where no student is matched to any school).

The latter two matchings are Pareto dominated by µ and µ′ while µ and µ′ do not Pareto

dominate each other, and one can verify by inspection that both µ and µ′ are fair, and

hence an efficient iBF. �
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Let us compare our notion of iBF with the standard notion of stability. Specifically, we

say that a matching µ is nonwasteful if there is no pair (i, s) of a student and a school such

that s �i µi, i �s ∅, and |µs| < qs, and that µ is stable if it is individually rational, fair,

and non-wasteful (but not necessarily balanced). A matching is the student-optimal

stable matching if it is stable and is weakly preferred to every stable matching by all

students. In the environment of Example 2, the unique stable matching (and hence the

student-optimal stable matching) would be:

µ′′′ =

(
s1 s2 s3 ∅
i2 i3 i1 ∅

)
.

But µ′′′ is not balanced because the inflow to region r is 2 while the outflow from r is 1.

This example demonstrates that the balancedness condition is not necessarily compat-

ible with stability. In Section 6.1, we characterize when those properties are compatible

with each other.

3. FIG (Fair Improvement Graph) Cycles

3.1. Definition of FIG Cycle. The key steps of our analysis involve defining bipartite

directed graphs over the sets of students and schools, and identifying cycles on them.

A bipartite directed graph on I and S, or simply a graph, G ⊆ (I × S) ∪ (S × I), is

a set of ordered pairs of agents in I ∪ S. An interpretation is that if (i, s) ∈ G, then

there is an arrow pointing from i to s. In this case, we say “i points to s.” The case

of (s, i) ∈ G is analogous. Given a graph G, a cycle in G is any sequence of the form

(i1, s1, i2, s2, . . . , im, sm) such that for each k ∈ {1, . . . ,m},

(1) ik points to sk, i.e., (ik, sk) ∈ G,

(2) sk points to ik+1, i.e., (sk, ik+1) ∈ G, where we set im+1 := i1,

(3) ik 6= ik′ for all k′ 6= k, and

(4) sk 6= sk′ for all k′ 6= k.

We will regard any two cycles as defined here, (i1, s1, . . . , im, sm) and (ik+1, sk+1, . . . , im, sm, i1, s1, . . . , ik, sk),

as identical to each other.

Let Dµ
s := {i ∈ I|s �i µi}, and Tops(I

′) be the student i ∈ I ′ who has the highest

priority among those in I ′ at �s.
Now we define a particular type of a graph and a cycle on it. This cycle will be used

to characterize efficient iBF as well as to define our algorithm.

Definition 3. Given a matching µ, the fair improvement graph (FIG) for µ is a

graph such that, for any i ∈ I and s ∈ S,
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(1) student i ∈ I points to school s ∈ S if i = Tops(D
µ
s ) and i is acceptable to s, and

(2) school s ∈ S points to student i ∈ I if either

(a) µi = s, or

(b) |µs| < qs and, [i ∈ r(s) and µi = ∅] or µi ∈ r(s).

A fair improvement graph cycle (FIG cycle) on µ is a cycle in the FIG for µ.

A student i points to a school s when she finds s to be better than her current outcome

µi, and if she is acceptable to s and the best student for s among those who find s to be

an improvement (so, under our assumption of strict priorities, each school can be pointed

to by at most one student). In this sense, the students point to the schools in the most

fair manner, and this is why we call the graph the “fair improvement graph.”

On the other hand, a school s can point to a student i in two different cases. The first

case is as in other algorithms based on cycles in the literature such as the Top Trading

Cycles (TTC) algorithm (Shapley and Scarf, 1974) and the stable improvement cycles

algorithm (Erdil and Ergin, 2008). This is when i is currently matched to s, and it

is described by part (2a) in Definition 3. The second case, described by part (2b) in

Definition 3, depends on the notion of regions. School s can point to i if s has a vacancy

and either i lives in the region of s and is unmatched, or i is matched to a school in the

region. The need for this second case and the logic behind this particular pointing rule

will become clear in a later example (Example 5 in Section 4).

Given a matching µ and a cycle of the form F = (i1, s1, i2, s2, . . . , im, sm), call µ′ the

matching generated by (µ,F) if

µ′ik = sk for each k ∈ {1, . . . ,m}, and µ′j = µj for all j ∈ I \ {i1, . . . , im}.

Given a matching µ and a cycle F , we say that we implement F on µ when we create

the matching generated by (µ,F).

As we will show in Section 4, whether there exists a FIG cycle is crucial to the char-

acterization of efficient iBF. Also, in the algorithm we define in Section 5, we repeatedly

implement FIG cycles. But before stating the formal results that use the notion of FIG

cycles, let us illustrate the concept of FIG cycle through a series of examples in the next

subsection.

Remark 1. Erdil and Ergin (2017) consider a model with weak student preferences (and

school priorities) and propose to improve students’ welfare by using chains in addition

to cycles. A chain can start from a matched or unmatched student and ends at a school

that has a vacant seat. We could define a chain in our model too, while restricting the

pointing from schools to students to the one described in part (2a) of Definition 3.
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Figure 4. Example 2, Continued. The arrows represent the FIG. There

are two FIG cycles.

Let us be forthcoming about the similarity and difference between their chains and our

FIG cycles. First, in our model, implementing all chains and cycles under such a pointing

rule would violate balancedness (there is no such issue in Erdil and Ergin (2017) as they

have no balancedness constraint). For example, in Example 2, there would be one chain

going out of r (i1 → s3) while there would be two chains going into r (i2 → s1 and

i3 → s2). As we will see in Theorem 1, balancedness is respected if we implement any

FIG cycle. Second, one might argue that “connecting” chains might work. That is, we

would start from a chain, and at the end of the chain (which is a school), we would find

an unmatched student in the same region and see if there was a chain originating from

that student. If there was such an arrow, then we would follow the arrows. Continuing

this way, if an arrow eventually pointed to a school that had already appeared, then we

would call the closed set of arrows a cycle. Cycles constructed in this way turns out to

be the same as our FIG cycles. One can view that our pointing rule from schools to

students, especially the part described in part (2b) of Definition 3, correctly captures how

this “connecting” should be done. Third, the reasons behind why there are chains are

different. In Erdil and Ergin (2017), a chain is implemented on a stable matching. For

the existence of chains it is necessary that the student preferences are weak: if instead

the students’ preferences are strict, then the last student on the chain would have strictly

preferred to be matched to a vacant position in the last school in the chain under the

original matching, so the original matching was not stable. In our model, there can exist

a chain (defined in the absence of the pointing rule described in part (2b) of Definition 3)

because of the balancedness constraint. �

3.2. Examples of FIG Cycle.
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Figure 5. Example 3. The thick and thin arrows represent the FIG

while the thick arrows represent a FIG cycle. School s2 ∈ r points to an

unmatched student i4 ∈ r because s2’s capacity is currently not full.

Example 2, Continued. Consider the same environment as in Example 2. The FIG

for µ′′ is drawn in Figure 4. Note that there are two FIG cycles:

F := (i1, s3, i2, s1) and F ′ := (i1, s3, i3, s2).

Implementing the former cycle results in µ, and implementing the latter cycle results in

µ′. Note that, in this example, it is important that the pointing rule for FIG lets a school

point to a student matched to another school in the same region.12 �

Example 3 (Capacity matters for FIG cycle). Let I = {i1, i2, i3, i4}, S = {s1, s2, s3},
R = {r, r′} where r = {i1, i2, i4, s1, s2} and r′ = {i3, s3}. Schools s1 and s3 have the

capacity of one each while s2 has the capacity of two. Student preferences and school

priorities are given as follows:

�i1 : s1, �s1 : i1, i2, i3, i4,

�i2 : s2, s1, �s2 : i2, i3,

�i3 : s1, s2, �s3 : i4.

�i4 : s1, s3,

Consider the following matching:

µ =

(
s1 s2 s3 ∅
i1 i2 ∅ i3, i4

)
,

which, by inspection, one can show to be fair. This matching as well as the FIG for µ is

drawn in Figure 5. We note two features of this FIG. First, s2 points to an unmatched

12This is the point alluded to in footnote 9.
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student i4 even though it is already matched with student i2. This is because s2’s capacity

is not filled under µ: the capacity is 2 while it is matched to only one student (student

i2). Second, there are multiple arrows from student i3. Although the rule for pointing

in a FIG implies that each school is pointed to by at most one student, one student can

point to multiple schools if she is the “number one” choice from multiple schools. In this

example, i3 ranks at the top among all students who prefer s1 to their current match (i.e.,

among {i3, i4}), and she also ranks at the top among all students who prefer s2 to their

current match (i.e., among {i3}). Note that there is a single FIG cycle:

F := (i3, s2, i4, s3).

Implementing this cycle, we obtain the following matching:

µ′ =

(
s1 s2 s3 ∅
i1 i2, i3 i4 ∅

)
,

which is an improvement over µ and is fair. One can show by inspection that µ′ is also

an efficient iBF. �

4. Characterization of Efficient iBF

This is the main section of this paper, and we are going to formalize the following

claims:

(1) If we implement a FIG cycle on a given iBF µ, then it results in an iBF that

Pareto dominates µ (Theorem 1).

(2) If there is no FIG cycle on a given iBF µ, then µ is an efficient iBF (Theorem 2).

These results in particular imply the following characterization of efficient iBF: Given an

iBF, it is an efficient iBF if and only if there is no FIG cycle on it (Corollary 1). In what

follows, we will examine each claim and explain their intuition in detail.

Theorem 1. Let µ be an iBF. If there exists a FIG cycle F on µ, then a matching

generated by (µ,F) is an iBF and Pareto dominates µ.

An implication of this theorem is that, if we can find a FIG cycle on a given iBF,

then that matching cannot be an efficient iBF. Thus, one can think of this theorem as

providing a necessary condition for an iBF to be an efficient iBF.

We note that the proof shows a stronger result: Implementing a FIG cycle on an

arbitrary matching µ (which is not necessarily an iBF) results in a matching that is (i)

Pareto superior to µ, (ii) individually rational if µ is individually rational, (iii) fair if µ is

fair, and (iv) balanced if µ is balanced.
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Figure 6. Why balancedness is maintained when a FIG cycle is imple-

mented (proof intuition for Theorem 1).

Let us explain the intuition for the proof (of the stronger result above). For this, let

µ be the original matching and µ′ be the matching generated by (µ,F) where F is a

FIG cycle on µ. The proof shows Pareto dominance, individual rationality, fairness and

balancedness one by one. First, it is straightforward that µ′ Pareto dominates µ by our

pointing rule for students. Second, this observation also implies that µ′ is individually

rational if µ is individually rational.

Third, fairness of µ′ is due to the pointing rule used in the FIG. A crucial step is to

show that no student has justified envy to student ik who is newly matched to sk under

µ′, where ik and sk appear in the FIG cycle (i.e., ik points to sk under the FIG).13 If

some student i finds sk to be better than her match under µ′, then she should have also

found sk to be better than her match under µ (because µ′ Pareto dominates µ). But the

pointing rule for FIG implies that ik is the best student (according to sk’s priority) among

those who found sk to be better than the match under µ. So, in particular, i is not higher

than ik under sk’s priority. This implies that i cannot have justified envy to ik under µ′.

Finally, balancedness of µ′ holds because the FIG cycle is “closed,” that is, for any

given region r, if an arrow from a student goes outside of r along the cycle, then another

arrow from a student must come back to r and vice versa, which implies that the number

of times the arrows go outside must be equal to the number of times the arrows come back

to r. Whether balancedness is maintained by implementing a cycle may not be obvious

13Justified envy to other students matched to sk or those that involve other schools can be shown not

to exist by using fairness of µ and the fact that µ′ Pareto dominates µ.
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Figure 7. Example 4. The thick and thin arrows represent the FIG. µ is a

unique efficient iBF, and there is no FIG cycle such that implementing it on

µ0 results in µ. Meanwhile, implementing a FIG cycle on µ0 (indicated by

thick arrows in the left panel of the figure) results in µ′, and implementing

a FIG cycle on µ′ (indicated by thick arrows in the middle panel of the

figure) results in µ.

due to the fact that an outgoing arrow may carry a student who lives in r or one who

does not live in r, and similarly an incoming arrow may carry either type of a student.

Figure 6 shows that in every possible case, balancedness is maintained when a cycle is

implemented.14 Feasibility would also be violated if an arrow that goes across regions

can originate from a school, a possibility that the definition of FIG prohibits. Example 5

illustrates this point.

Two remarks are in order. First, we note that Theorem 1 does not assert that imple-

menting a FIG cycle on a balanced and fair matching necessarily results in an efficient

iBF. Indeed, the following example presents a case in which one needs to implement FIG

cycles more than once to reach an efficient iBF.

Example 4 (Multiple rounds of FIG cycles). Let I = {i1, i2}, S = {s1, s2}, R = {r} .

Each school has the capacity of one. Student preferences and school priorities are given

14Hafalir, Kojima and Yenmez (2022) study TTC under a variety of constraints, one of which is the

balancedness constraints of the present paper. They verify that the balancedness constraints satisfy a

condition called M-concavity, which Suzuki et al. (2023) showed is sufficient for the outcome of a certain

version of TTC to satisfy balancedness. Although their TTC algorithm is substantially different from

ours, one might also be able to use a similar indirect approach to establish balancedness of the outcome

of our algorithm.
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as follows:

�i1 : s2, s1, �s1 : i1, i2,

�i2 : s1, s2, �s2 : i2, i1.

Let µ0 be the empty matching. Starting from µ0, there are three FIG cycles:

F := (i1, s1), F ′ := (i2, s2), and F ′′ := (i1, s1, i2, s2).

It is straightforward to see that there is a unique efficient iBF, which is

µ =

(
s1 s2 ∅
i2 i1 ∅

)
.

However, µ is not a matching generated by (µ0, F̃) where F̃ is either F , F ′ or F ′′. The

reason is that, for example, student i1 does not point to s2 in the FIG for µ0 because she

is not the top choice of s2 among those who point to s2 (s2’s top choice is i2).

The efficient iBF can be obtained by “two rounds of FIG cycles” starting from µ0:

First, implementing the FIG cycle F ′′ on µ0, we obtain:

µ′ =

(
s1 s2 ∅
i1 i2 ∅

)
.

Second, implementing

F ′′′ := (i1, s2, i2, s1)

on µ′ results in µ. �

The second remark is about the pointing rule for FIG. Note that Theorem 1 asserts

that, among other things, implementing a FIG cycle on an iBF results in a balanced

matching. This property depends on a somewhat subtle manner in which we define the

FIG, as the following example illustrates.

Example 5 (Pointing rule for FIG). Let I = {i1, i2}, S = {s1, s2, s3}, R = {r, r′} where

r = {i1, s1, s2} and r′ = {i2, s3}. Each school has the capacity of one. Student preferences

and school priorities are given as follows:

�i1 : s2, s3, s1, �s1 : i1, i2,

�i2 : s1, s2, �s2 : i2, i1,

�s3 : i1.
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Figure 8. Example 5. The solid arrows represent the FIG. Student i1 lives

in r and student i2 lives in r′. If we allowed s1 to point to i1 (the dashed

arrow) in the FIG and implemented the resulting cycle (i2, s1, i1, s2), the

balancedness constraint would be violated.

Consider the following matching:

µ =

(
s1 s2 s3 ∅
∅ i2 i1 ∅

)
.

Note that this matching is a matching generated by (µ0,F) where µ0 denotes the empty

matching and we let F := (i1, s3, i2, s2). The cycle F is a FIG cycle and µ is fair.

Now, consider the FIG on µ, which is depicted in Figure 8 by solid arrows. Suppose that

we modify case (2b) of the definition of FIG (Definition 3) and hypothetically allow each

school with a vacancy to point to any student that lives in the same region, irrespective

of where that student is currently matched. This means that s1 points to i1, although it is

not allowed in the FIG according to its pointing rule. This additional pointing is depicted

by a dotted arrow in Figure 8. With this arrow, there is a cycle F ′ := (i1, s2, i2, s1).

However, the matching generated by (µ,F ′) violates the balancedness constraint. The

reason is that implementing this cycle on µ would result in one less outflow for region r

while the inflow does not change. This happens because the arrow going out of region

r starts from a school, not a student. In the definition of the FIG, all arrows going out

of regions are from students. As we explained when providing the intuition for the proof

of balancedness in Theorem 1 (see Figure 6), this feature ensures that implementing any

FIG cycle on any balanced matching results in a balanced matching. �

Theorem 2. Let µ be an iBF. µ is an efficient iBF if there exists no FIG cycle on µ.
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Recall that Theorem 1 identifies a necessary condition for a given iBF to be an efficient

iBF. Theorem 2 establishes that the same condition is in fact sufficient as well. There-

fore, as we will formally state later in Corollary 1, combining those results provides a

characterization of an efficient iBF.

The proof is by contraposition. That is, we take µ that is an iBF and assume that

there is another iBF µ′ that Pareto dominates µ. Then we show that there exists a FIG

cycle on µ.

To find a FIG cycle, we construct a graph. In this graph, the students who are associated

with arrows are those whose outcomes are different between µ and µ′. We denote by I ′ the

set of those students. Meanwhile, the schools with arrows are the ones that are matched

to students in I ′ under µ′ (which means that these are the schools that are matched to

some new students under µ′ relative to µ). We denote by S(µ′) the set of those schools.

Also, let S(µ) be the set of schools that students in I ′ are matched with under µ.

To understand the complication in the proof, consider first a simple case: there is a

single region r (i.e., a standard environment without a balancedness constraint), and µ is

a stable matching (in the standard sense). Then, since stability implies non-wastefulness

and µ′ Pareto dominates µ, it follows that S(µ′) = S(µ). We can have each school s point

to students in µs ∩ I ′, and allow a student in I ′ point to s if she is the top student among

I ′ who regard s to be an improvement relative to µ. This way, each school is pointed to

by one student, and each student is pointed to by one school. Thus, there is a cycle, and

with some work, one can prove that such a cycle must be a FIG cycle. This is essentially

the same method as what is used in Erdil and Ergin (2008).15

In our problem, complication arises for two reasons. First, fairness alone does not

imply non-wastefulness, so µ may have some waste (for example, consider the empty

matching µ0 in Example 4). This means that S(µ′) may not be equal to S(µ), so a graph

constructed in the above manner might not have a cycle (schools in S(µ′) \ S(µ) would

have no outgoing arrow, and those in S(µ) \ S(µ′) would have no incoming arrow). This

suggests we need an alternative way of forming a graph. Second, arrows might go in and

out of any region, hence in defining the alternative graph, we must make sure that the

balancedness constraint would be respected when implementing a cycle in the graph.

We overcome these difficulties by constructing a graph, denoted G(µ, µ′), in the following

manner. First, each school in S(µ′) is pointed to by the top student among those in I ′ who

15We note that Erdil and Ergin (2008) allow school priorities to be weak, while we assume strict

preferences here. However, as explained in Section 6.4, our analysis extends to the case with weak

priorities without any significant change.
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Figure 9. Example 6. Given an iBF µ and a Pareto dominating iBF µ′,

the proof of Theorem 2 constructs a cycle (represented by the thick arrows)

and shows that the constructed cycle is in fact a FIG cycle.

regard the school to be an improvement relative to µ, just as in the “simple case” above.

Second, each student i in I ′ is pointed to by a school in the following three different ways

depending on i’s outcome under µ:

(1) If µi ∈ S(µ′), then we let µi point to i. This is the case that is analogous to the

“simple case” explained above.

(2) If µi ∈ S \S(µ′), then we can show, using individual rationality and balancedness,

that we can find a school that resides in µi’s region and belongs to S(µ′) whose

capacity is not filled under µ.16 We let such a school point to i.

(3) If µi = ∅, then we can show, again using individual rationality and balancedness,

that we can find a school that resides in i’s region and belongs to S(µ′) whose

capacity is not filled under µ. We let such a school point to i.

Since each school is pointed to by one student, and each student is pointed to by one

school, G(µ, µ′) has a cycle. The proof shows that any cycle in this graph is a FIG cycle.

The next example illustrates how our construction works in a specific environment.

16Showing the existence of such a school is nontrivial. The proof constructs an additional graph for

each region and uses that graph to establish the existence. See the Appendix for detail.
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Example 6 (Construction of a FIG cycle). Let I = {i1, i2, i3, i4}, S = {s1, s2, s3, s4},
R = {r, r′} where r = {i1, i2, i3, s1, s2, s3} and r′ = {i4, s4}. School s2 has the capacity

of two while all other schools have the capacity of one. Student preferences and school

priorities are given as follows:

�i1 : s2, s1, �s1 : i1,

�i2 : s4, s2, �s2 : i2, i3, i1, i4,

�i3 : s2, �s3 : i4,

�i4 : s2, s3, �s4 : i2.

Consider the following matchings:

µ =

(
s1 s2 s3 s4 ∅
i1 i2, i3 ∅ ∅ i4

)
, µ′ =

(
s1 s2 s3 s4 ∅
∅ i1, i3 i4 i2 ∅

)
.

They are both an iBF, and µ′ Pareto dominates µ.

Let us explain how to obtain the graph G(µ, µ′) and a FIG cycle in this environment

(see Figure 9 for a graphical illustration). First, note that I ′ = {i1, i2, i4}, S(µ) = {s1, s2},
and S(µ′) = {s2, s3, s4}. Recall that a student in I ′ points to a school in S(µ′) if and only

if she is the top student according to the school’s priority among those who prefer the

school to their current match. Hence, the edges originating at a student in G(µ, µ′) are

(i1, s2), (i2, s4), and (i4, s3). Next, we illustrate how a student is pointed to by a school.

(1) µi1 = s1 ∈ S \ S(µ′). This is case 2 of the aforementioned pointing rule from a

school to a student. School s3 is the only school that resides in µi1 ’s region r and

belongs to S(µ′) whose capacity is not filled under µ. Thus, (only) s3 points to i1.

(2) µi2 = s2 ∈ S(µ′). This is case 1 of the pointing rule, and thus s2 points to i2.

(3) µi4 = ∅. This is case 3 of the pointing rule. School s4 is the only school that

resides in i4’s region r′ and belongs to S(µ′) whose capacity is not filled under µ.

Thus, (only) s4 points to i4.

Overall, the graph G(µ, µ′) can be drawn as in Figure 9. There is a unique cycle on

G(µ, µ′), which is (i1, s2, i2, s4, i4, s3). One can check that this is a FIG cycle as well.

We note a special feature of this example: Given an iBF µ and a Pareto dominating

iBF µ′, implementing a FIG cycle on µ constructed in the proof results in µ′. This feature

turns out not to hold generally. This fact can be seen in Example 4, where two steps of

FIG cycle implementations may be necessary to move between two iBFs. �

Theorem 1 and Theorem 2 together imply the following characterization of efficient iBF
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Corollary 1. Let µ be an iBF. µ is an efficient iBF if and only if there exists no FIG

cycle on µ.

5. FIG Cycles Algorithm

Let µ̃ be an arbitrary iBF, e.g., the empty matching. Building on Corollary 1, we define

a FIG cycles algorithm on µ̃ as follows.

FIG Cycles Algorithm on µ̃:

Step 0: Let µ0 = µ̃ and move to Step 1.

Step l (l ≥ 1): If there is no FIG cycle on µl−1, terminate the algorithm and output

µl−1. Otherwise, choose a FIG cycle F on µl−1 arbitrarily and let µl be the matching

generated by (µl−1,F), and go to Step l + 1.

Corollary 2. Let µ̃ be an arbitrary iBF. The FIG cycles algorithm on µ̃ runs in polyno-

mial time, and its output is an efficient iBF.

Proof. Take an arbitrary iBF and denote it by µ̃. Theorems 1 and 2 together show that

the output of the FIG cycles algorithm on µ̃ is an efficient iBF. To show that the algorithm

runs in polynomial time, first note that each student can only become better off while

running the algorithm, and at least one student must be made strictly better off at each

step as long as the algorithm does not terminate in that step. Therefore, at most |I|× |S|
steps are necessary for terminating the algorithm. Second, within each step, finding a FIG

cycle can be done in polynomial time.17 These two observations show that the algorithm

runs in polynomial time, as desired. �

In some applications, a school may give a higher priority to residents of that school’s

region than non-residents. Let us now consider such a case. Formally, assume that i �s j
for each r ∈ R, s ∈ r, i ∈ r, and j 6∈ r.

We consider a special fair matching, namely the matching that is produced by running

the standard deferred acceptance algorithm of Gale and Shapley (1962), separately in

each region. Formally, it is defined as follows.

Definition 4. A region-wise student-optimal stable matching µRW is a matching

that satisfies the following:

(1) For each r ∈ R and each i ∈ r, we have µRWi ∈ r ∪ {∅}.
(2) µRW is individually rational.

17There are well-known polynomial-time algorithms that identify a cycle if one exists and otherwise

show that there is no cycle. The “depth-first search” algorithm, for example, has the running time of

O(|I| × |S|) (Cormen et al., 2001).



24

(3) For each r ∈ R, there is no pair of a student and a school i, s ∈ r such that

s �i µRWi , i �s ∅, and |µRWs | < qs.

(4) For each r ∈ R, there is no pair of students i, i′ ∈ r such that i has justified envy

to i′ under µRW .

(5) µRW weakly Pareto dominates all matchings that satisfy conditions (1), (2), (3)

and (4).

Intuitively, a region-wise student-optimal stable matching requires that a matching

restricted to each region (i.e., consider the students and schools that reside in that region)

is a student-optimal stable matching in the standard sense (Conditions (2), (3), and (4)

correspond to individual rationality, non-wastefulness, and fairness within each region).

By Gale and Shapley (1962), a region-wise student-optimal stable matching always exists,

and it can be obtained by their deferred acceptance algorithm in polynomial time.

We note that µRW is an iBF. To see this, first note that µRW is individually rational

(Condition (2)). Second, it is balanced because no student is matched to a school outside

of her region (Condition (1)), and thus both the inflow and outflow for any given region

is equal to zero. Third, µRW is fair by Condition (4) and the assumption in this section

that schools rank students from the same region higher than those from other regions (so

a student living in r cannot have justified envy to another student living in r′ if the latter

student is matched to a school in r′).18

The next corollary considers the case when we run a FIG cycles algorithm starting from

this matching.

Corollary 3. The output of a FIG cycles algorithm starting from the region-wise student-

optimal stable matching µRW is an efficient iBF and weakly Pareto dominates µRW .

Proof. Let µRW be the region-wise student-optimal stable matching. Note that it is an

iBF as we have explained after providing the statement of Definition 4. Hence, Corollary 2

implies that the output of a FIG cycles algorithm starting from µRW is an efficient iBF.

Finally, Theorem 1 and the definition of FIG cycles algorithm imply that the output

Pareto dominates µRW . �

18We wrote Definition 4 following the most standard way, but some conditions and qualifiers are

redundant because condition (5) holds and, as we explained, µRW is fair. A simplified (equivalent)

definition requires the following three conditions:

(1) For each r ∈ R and each i ∈ r, we have µRWi ∈ r ∪ {∅}.
(4’) µRW is fair.

(5’) µRW weakly Pareto dominates all matchings that satisfy conditions (1) and (4’).
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6. Discussions

This section provides a number of discussions. In Section 6.1, we characterize when

balancedness and stability are compatible with each other. Section 6.2 examines the

strategic properties. In Section 6.3, we provide comparative statics to evaluate the effect

of merging and splitting regions. Section 6.4 considers the case with weak priority, which

often arises in school choice applications. In Section 6.5, we review the related literature.

6.1. Balancedness and Stability. As discussed in Section 2.2, Example 2 demonstrates

that the balancedness condition is not necessarily compatible with stability. This obser-

vation leads to the question of when those properties are compatible with each other.

The following result provides a characterization and establishes, in particular, that those

cases exactly coincides with cases in which the unique efficient iBF is the student-optimal

stable matching.

Theorem 3. The following statements are equivalent.

(1) There exists a unique efficient iBF, and it coincides with the student-optimal stable

matching.

(2) There exists a stable and balanced matching.

(3) Every stable matching is balanced.

Proof. (1) → (2): Obvious.

(2) → (3): Let µ and µ′ be two stable matchings. Define a graph as follows. The set of

nodes are I and S. We let each s ∈ S point to i ∈ I if µi = s and let each i ∈ I point

s ∈ S if µ′i = s. By the rural hospital theorem (Roth, 1986), for each school s, the number

of arrows that point to s is equal to the number of arrows that point from s and, for each

student i, the number of arrows that point to i is equal to the number of arrows that

point from i. Therefore, the graph is partitioned into sets of edges that correspond to a

finite number of disjoint cycles such that µ′ is generated by implementing all those cycles

on µ.19 Thus, by an argument analogous to the proof of Theorem 1, if µ is balanced, then

µ′ is balanced as well.

(3) → (1): Suppose that every stable matching is balanced. We first observe that the

student-optimal stable matching µ∗ is stable and hence balanced. By Wu and Roth

19Formally, let F1, . . .Fk be the set of cycles. Let µ0 := µ and µ` be generated by (µ`−1,F`) for each

` = 1, . . . , k. Then it follows that µ′ = µk.
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(2018), for any matching µ that is individually rational and fair, µ∗i �i µi for all i ∈ I.

Therefore, µ∗ is a unique efficient iBF. �

6.2. Strategic Property. In this section, we investigate strategic properties. It turns

out that our mechanism based on the FIG cycles algorithm is not strategy-proof. In fact,

we show that there is no strategy-proof mechanism that always outputs an efficient iBF.

Formally, a mechanism ϕ is a function from the set of student preference profiles to the

set of matchings. Mechanism ϕ is strategy-proof if

ϕi(�) �i ϕi(�′i,�−i),

for every student preference profile �, i ∈ I, and student preference �′i.

Theorem 4. There exists no strategy-proof mechanism that outputs an efficient iBF for

all preference profiles.

Proof. We prove the result by presenting an example. Let I = {i1, i2, i3} and S =

{s1, s2, s3}. Let there be two regions, r = {i1, i2, s1} and r′ = {i3, s2, s3}. Each school has

the capacity of one. Student preferences and school priorities are given as follows:

�i1 : s2, �s1 : i1, i2, i3,

�i2 : s3, �s2 : i3, i2, i1,

�i3 : s1, �s3 : i3, i1, i2.

In this environment, there are two efficient iBFs:

µ =

(
s1 s2 s3 ∅
i3 i1 ∅ i2

)
, µ′ =

(
s1 s2 s3 ∅
i3 ∅ i2 i1

)
.

Fix a mechanism ϕ that outputs an efficient iBF for all preference profiles. It must be

either ϕ(�) = µ or ϕ(�) = µ′.

Suppose ϕ(�) = µ. Then, consider �′i2 : s3, s2. The unique efficient iBF at �′:= (�′i2
,�−i2) is µ′, so ϕ(�′) = µ′. Noting that µ′i2 = s3 �i2 ∅ = µi2 , we have obtained that

ϕi2(�) 6�i2 ϕi2(�′i2 ,�−i2), violating strategy-proofness.

Next, suppose ϕ(�) = µ′. Then, by considering �′i1 : s2, s3 and following a symmetric

argument, we conclude that ϕ is not strategy-proof. This completes the proof. �

Theorem 4 shows a sense in which the lack of strategy-proofness is not a drawback of

the FIG cycles algorithm. Rather, it is inevitable in that any mechanism that outputs an

efficient iBF necessarily fails to be strategy-proof.
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6.3. Comparative Statics. Intuition suggests that merging regions will lead to a more

efficient matching while splitting regions will have the opposite effect. To explore this

intuition, first consider the case where all regions were merged, that is, the union of all

regions in the original model is regarded as a single region after the mergers. In this

case, there would be a unique efficient iBF, which coincides with the student-optimal

stable matching. This matching weakly Pareto dominates any individually rational and

fair matching, and hence any efficient iBF under any structure of regions. However, as

we have argued in the Introduction, merging all regions may be impractical. A question

of interest is whether mergers generally result in a more efficient matching even if there

remain multiple regions after the mergers.

We say that an environment E = (I, S, (�a)a∈I∪S, (qs)s∈S, R) is a result of mergers

from another environment E ′ = (I ′, S ′, (�′a)a∈I′∪S′ , (q′s)s∈S′ , R′) if I = I ′, S = S ′, �a=�′a
for every a ∈ I ∪ S, qs = q′s for every s ∈ S and, for each r ∈ R, r is a union of (possibly

one) regions of R′. That is, some regions in E ′ merge to form a region in E , but otherwise

all the primitives are unchanged between the two environments.

In the following simple example, merging regions Pareto-improves the outcomes for

students.

Example 7 (An instance in which merging regions makes every student better off). Let

I = {i} and S = {s}. Let there be two regions, r = {i}, and r′ = {s}.20 School s has the

capacity of one. Student i finds school s to be acceptable and school s finds student i to

be acceptable. In this environment, there is a unique efficient iBF:

µ =

(
s ∅
∅ i

)
.

If regions r1 and r2 are merged, then there is a unique efficient iBF:

µ′ =

(
s ∅
i ∅

)
.

Since µ′i �i µi and i is the only student in the market, this means that merging the regions

made every student strictly better off in this example. The intuition is simple: The merge

reduced the constraint of balanced exchange between regions r and r′, so after the merger,

the student i can go to school s.

It turns out that the finding of this example is not a coincidence. Indeed, the next

proposition establishes a comparative statics regarding any mergers.

20In this example, region r does not have a school and region r′ does not have a student. These

features are not necessary to make our point.
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Proposition 1. Suppose that E is a result of mergers from E ′. Then, for any matching

µ′ that is an efficient iBF at E ′, there exists a matching µ that is an efficient iBF at E
such that µ weakly Pareto dominates µ′.

Proof. We first show that µ′ is an iBF at E . Individual rationality and fairness are obvious.

The following claim is proved in Appendix A.3:

Claim 1. µ′ is balanced at E.

The preceding arguments have established that µ′ is an iBF at E . Therefore, by defini-

tion of an efficient iBF, there exists a matching µ that is an efficient iBF at E such that

µ weakly Pareto dominates µ′. �

We note that a kind of converse of Proposition 1 does not hold. Specifically, Example 8

in Appendix A.4 presents an instance in which, starting at a certain efficient iBF, some

student is made strictly better off in any efficient iBF after splitting a region.

To summarize, the analysis in this section confirmed the intuition that merging regions

improves student welfare. We also found that, however, a precise sense in which this

intuition goes through is somewhat subtle.

6.4. Weak Priorities. In applications such as daycare allocations and school choice,

schools are sometimes endowed with weak priorities. Erdil and Ergin (2008) consider

weak priorities and propose an algorithm based on cycles to improve upon the deferred

acceptance algorithm with tie-breaking, albeit in a setting without our balancedness con-

straints. Accordingly, a natural question would be whether our analysis extends to cases

where priorities are allowed to be weak in the presence of balancedness constraints. As

it turns out, all of our results go through. In particular, the conclusions of Theorems 1

and 2 hold without any change.21

Here we illustrate how the proofs of Theorems 1 and 2 change with weak priorities. The

only difference from the case of strict priorities is the following. In the FIG or G(µ, µ′)

(a graph which appears in the proof of Theorem 2), each school can be pointed to by at

most one student. This was because a student can point to a school only if she is the top

student among those who regard the school as an improvement. Under strict priorities,

there is a unique “top” student, which was why each school can be pointed to by at most

one student. Under weak priorities, however, there can be multiple “top” students, so

21Under weak priority, we say that a student is acceptable to a school if she is ranked weakly higher than

the outside option, and modify the definitions of individual rationality, efficient iBF and FIG by adopting

this definition of acceptability in the relevant parts of those concepts. The proofs change accordingly in

a straightforward manner.
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a school can be pointed to by multiple students. But this change does not affect the

remainder of the proof.

6.5. Related Literature. The aim of our study is to improve efficiency in situations

in which matching is organized at a small local level. Sharing this interest with the

present paper, Hafalir, Kojima and Yenmez (2022) study a variety of constraints in the

context of interdistrict school choice, and one of the constraints studied there is the

balancedness constraint. Differently from our analysis, they study conditions under which

the outcome of the standard deferred acceptance algorithm satisfies the constraint, which

turns out to be very restrictive. The present paper offers a way to improve upon matching

mechanisms organized separately in each district even if the deferred acceptance algorithm

does not produce a balanced matching. To our knowledge, the balancedness condition

was introduced and studied first by Dur and Ünver (2019), although the setting of tuition

exchange they study is different from ours or Hafalir, Kojima and Yenmez (2022) in several

important respects, making their analysis and ours logically unrelated.

Our algorithm is based on a number of Pareto-improving cycles among students and

schools. At a high level, this is a common idea and is shared by many other algorithms,

including Gale’s celebrated TTC algorithm in Shapley and Scarf (1974). The difference of

our algorithm from TTC is that we construct cycles in a more subtle and nuanced manner,

taking school priorities into account in particular, so that implementing the cycles will

keep fairness of the original matching. Closer to our algorithm are those due to Erdil

and Ergin (2008, 2017) who, like us, provide iterative algorithms that improve efficiency

while retaining fairness.22 Similarities and differences between those studies and ours are

illustrated in detail in Section 1.1, Remark 1 in Section 3.1, and Section 4.

This paper can be regarded as part of the literature in matching with constraints.

Research in this literature include Abdulkadiroğlu (2005), Ergin and Sönmez (2006), and

Hafalir, Yenmez and Yildirim (2013) for school choice, Abraham, Irving and Manlove

(2007) for project allocation, Westkamp (2013) and Aygün and Turhan (2020) for college

admission, Pathak et al. (2021) on pandemic resource allocation, and Kamada and Kojima

(2015, 2017, 2018, 2023), Goto et al. (2014), and Biro et al. (2010) on labor markets.23 The

main departure of the present paper is that we consider integration of multiple markets,

while those earlier contributions treat the relevant market as given.

22Algorithms based on analogous ideas have been adapted to other settings by, for example, Combe,

Tercieux and Terrier (2022), Combe et al. (2022), and Erdil and Kumano (2019).
23See also Kojima, Tamura and Yokoo (2018) who explore connection between matching with con-

straints and convexity and concavity notions in discrete mathematics.



30

The main applications of the present paper is allocation of daycare seats. Research

in daycare allocation in the matching literature include Kennes, Monte and Tumennasan

(2014), Veski et al. (2017), Herzog and Klein (2018), Okumura (2019), Delacrétaz (2019),

and Kamada and Kojima (2023). While those papers and ours share interest in daycare,

the overlap is rather limited, as none of those papers analyzes models with multiple regions

as we do.

7. Conclusion

This paper studied a school-choice matching model that allows for ekkyo admission

(inter-regional transfer of students). To accommodate practical concerns, we provided

solutions for partial integration, namely a mechanism that satisfies the balancedness con-

straint. Given any matching, we defined a directed bipartite graph (the “FIG”) in which

the nodes represent students and schools while the edges are constructed using student

preferences, school priorities, and the information about the current matching. Using this

graph, we characterized the set of efficient iBFs (individually rational, balanced, and fair

matchings) by non-existence of a cycle that would improve the welfare of the students

involved in the cycle. This led us to define the FIG cycles algorithm that computes an

efficient iBF in polynomial time. In terms of application, our analysis provided a way to

improve upon mechanisms organized in a fragmented manner.

Market fragmentation is prevalent in real markets: for example, in the City of Tokyo,

each of the 23 municipalities independently organizes a daycare matching market. We

started discussions with some of those municipalities about possible implementation of

our FIG cycles algorithm. One of the appealing features of our method is that it does not

require the 23 municipalities to fully integrate with one another: It would be impractical

to require that transfer of students be allowed between different municipalities without

restrictions. We, by contrast, only require partial integration where transfer can be made

to the extent that the balancedness condition is respected. Given our experience with

practitioners in daycare policies, we view such partial integration to be a practical solution.
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Appendix A. Proofs

A.1. Proof of Theorem 1.

Proof. Fix µ and a FIG cycle F = (i1, s1, i2, s2, . . . , im, sm) on µ. Let µ′ be the matching

that is generated by (µ,F). Clearly, µ′ Pareto dominates µ.

To show that µ′ is fair, notice that µ′i �i µi for all i ∈ I by the definition of FIG

cycle. This implies that, for every i 6∈ {i1, . . . , im}, no one has justified envy to i under

µ′ because µ is fair. Thus, it remains to show that for each k ∈ {1, . . . ,m}, no one has

justified envy to ik under µ′. To see this, note that, again by µ′i �i µi for all i ∈ I, s �i µ′i
implies s �i µi. Hence, Dµ′

s ⊆ Dµ
s for any s ∈ S (and thus in particular for s = sk).

24

Since ik = Topsk(Dµ
sk

) for each k by definition, this implies i 6�sk ik for every i ∈ Dµ′
sk

.

Hence, no one has justified envy to ik under µ′.

To show that µ′ is balanced, consider a sequence (r1, . . . , rm) such that sk ∈ rk for each

k. Fix r ∈ R and let K(r) = {k ∈ {1, . . . ,m}|rk = r}. If K(r) = ∅, then (2.1) is satisfied

for r under µ′ because it is satisfied for r under µ. So suppose K(r) 6= ∅. Let

Inr = {k ∈ K(r)|rk−1 6= r} and Outr = {k ∈ K(r)|rk+1 6= r}.

Clearly we must have |Inr| = |Outr|. Define In′r ⊆ Inr and Out′r ⊆ Outr by

In′r = {k ∈ K(r)|rk−1 6= r and ik ∈ r} and Out′r = {k ∈ K(r)|rk+1 6= r and ik+1 ∈ r}.

On the one hand, the inflow to r has changed from µ to µ′ by

(|Inr| − |In′r|)︸ ︷︷ ︸
the number of non-r students

coming to r

− (|Outr| − |Out′r|)︸ ︷︷ ︸
the number of non-r students

going out of r

.

On the other hand, the outflow from r has changed from µ to µ′ by

|Out′r|︸ ︷︷ ︸
the number of r students

going out of r

− |In′r|︸︷︷︸
the number of r students

coming to r

.

Note that these two values are equal because |Inr| = |Outr|. Finally, since (2.1) holds for

r under µ, this implies that (2.1) holds for r under µ′.

To show that individual rationality of µ implies individual rationality of µ′, note first

that µ′i � ∅ for each i ∈ I because µ is individually rational and µ′ Pareto dominates µ.

Moreover, i �s ∅ for every s ∈ S and i ∈ µ′s because (i) i �s ∅ for every i ∈ µ′s ∩ µs by

the assumption that µ is individually rational, while (ii) i �s ∅ for every i ∈ µ′s \ µs by

the definition of FIG (more specifically, part (1) of Definition 3). �

24Recall that, for any matching µ̃ and school s, Dµ̃
s = {j ∈ I|s �j µ̃j}.
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A.2. Proof of Theorem 2.

Proof. We prove the contraposition, so fix an iBF µ and assume that there exists an iBF

µ′ that Pareto dominates µ.

Lemma 1. For any r ∈ R, |{i ∈ I|µi ∈ r, µ′i 6∈ r}∪{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|
is equal to |{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

Proof. Since µ and µ′ are both balanced, the change (from µ to µ′) of the inflow of students

to r and the change of the outflow are the same as each other. The change of the inflow

is:

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from an outside school to r

+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from being unmatched to r

− |{i ∈ I \ r|µi ∈ r, µ′i 6∈ r}|︸ ︷︷ ︸
the number of non-r students

going out of r

.

The change of the outflow is:

|{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

going out of r

+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was unmatched but is now matched to a non-r school

− |{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for all r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was matched to a non-r school but now is not

.

Thus, we have:

(A.1)

|{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

going out of r

+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was unmatched but is now matched to a non-r school

+ |{i ∈ I \ r|µi ∈ r, µ′i 6∈ r}|︸ ︷︷ ︸
the number of non-r students

going out of r

=

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from an outside school to r

+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from being unmatched to r

+ |{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for all r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was matched to a non-r school but now is not

.

Now, recall that µ is individually rational. Hence, µ′i �i µi �i ∅ for every i, and thus we

have that µi ∈ r implies µ′i 6= ∅. Therefore,

{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r} = {i ∈ r|µi ∈ r, µ′i 6∈ r}

Also, for the same reason, we have

{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for all r′ 6= r} = {i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}.
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Hence, (A.1) is equivalent to

|{i ∈ r|µi ∈ r, µ′i 6∈ r}|+|{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|+|{i ∈ I\r|µi ∈ r, µ′i 6∈ r}| =

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|

+|{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|,

or

|{i ∈ I|µi ∈ r, µ′i 6∈ r}|+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}| =

|{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

Since the two terms in each side of the above equation are disjoint from each other, we

have

|{i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}| =

|{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

This completes the proof. �

Consider the following graph, in which the only agents associated with arrows are the

schools in r and students who are matched to a school in r under µ and students living in

r who are unmatched under µ. First, each s ∈ r points to each student i ∈ µs \µ′s. Then,

for each student who was pointed to by some school in r and each student living in r who

are unmatched under µ, let her point to the school µ′i if µ′i ∈ r. Moreover, by Lemma 1,

there is a one-to-one and onto mapping from {i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈
r′ for some r′ 6= r} to {i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}.
Take one such mapping φ. Then, for each i ∈ {i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈
r′ for some r′ 6= r}, let i point to µ′φ(i). This defines a directed graph, denoted G(µ, µ′, r).

By construction, only schools in r, students matched to a school in r under µ, and the

students of r who are unmatched under µ may be associated with arrows in this graph.

Let I ′ := {i ∈ I|µ′i �i µi}. By the assumption that µ′ Pareto dominates µ, we have

I ′ 6= ∅. For any matching µ̃, let S(µ̃) := {s ∈ S|s = µ̃i for some i ∈ I ′}.

Lemma 2. Suppose s ∈ S(µ) \ S(µ′). Then there exists a school s′ ∈ r(s) ∩ S(µ′) such

that |µs′| < qs′.

Proof. Take an arbitrary s such that s ∈ S(µ) \ S(µ′) (If there is no such school, we are

done). Starting from this school, follow the arrows in G(µ, µ′, r(s)) in an arbitrary manner

without passing the same student twice (note that there is an outgoing arrow from s).

Since there are a finite number of students, there is s′ such that there is no more outgoing

arrow from s′ to a student who has not appeared in the path (note that, by definition,
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this path cannot end at any student). Because s 6∈ S(µ′) and hence s′ 6= s, the number

of incoming arrows to s′ is greater than that of outgoing arrows from s′ along this path.

This implies that the number of students who are in µ′s′ \ µs′ is larger than the number

of students who are in µs′ \ µ′s′ by at least one. Hence, we have qs′ ≥ |µ′s′| > |µs′ |. Since

s′ ∈ r(s) and s′ ∈ S(µ′) by the definition of the graph, this completes the proof. �

Lemma 3. Suppose µi = ∅ and i ∈ I ′. Then there exists a school s′ ∈ r(i) ∩ S(µ′) such

that |µs′ | < qs′.

Proof. Suppose there is i such that µi = ∅ and i ∈ I ′. Starting from this student i, follow

the arrows in G(µ, µ′, r) in an arbitrary manner without passing the same student twice

(note that there is an outgoing arrow from i). Since there are a finite number of students,

there is s′ such that there is no more outgoing arrow from s′ to a student who has not

appeared in the path (note that, by definition, this path cannot end at any student).

This implies that the number of students who are in µ′s′ \ µs′ is larger than the number

of students who are in µs′ \ µ′s′ by at least one. Hence, we have qs′ ≥ |µ′s′| > |µs′ |. Since

s′ ∈ r(i) and s′ ∈ S(µ′) by the definition of the graph G(µ, µ′, r(i)), this completes the

proof. �

Next, we define a graph, denoted G(µ, µ′), as follows. In this graph, only students in I ′

and schools in S(µ′) may be associated with arrows. Formally, for any s ∈ S(µ′), consider

the set of students in I ′ who strictly prefer s to their match at µ, i.e., Dµ
s (I ′) := Dµ

s ∩ I ′

(or, equivalently, Dµ
s (I ′) := {i ∈ I ′|s �i µi}), and let Tops(D

µ
s (I ′)) point to s. Note that

Dµ
s (I ′) is nonempty by the definitions of I ′, µ and µ′, and thus for any s ∈ S(µ′), there

exists some i ∈ I ′ who points to s. Next, consider any i ∈ I ′.

(1) If µi ∈ S(µ′), then let µi point to i.

(2) If µi ∈ S \ S(µ′), then µi ∈ S(µ) \ S(µ′) by the definition of S(µ) and hence by

Lemma 2, there exists a school s′ ∈ r(µi) ∩ S(µ′) such that |µs′ | < qs′ . Let any

such school s′ point to i.

(3) If µi = ∅, then by Lemma 3, there exists s ∈ r(i) ∩ S(µ′) such that |µs| < qs. Let

any such school s point to i.

The graph must have a cycle because each school is pointed to by a single student, and

each student is pointed to by at least one school.25 Pick an arbitrary cycle and call it F∗.
25To find a cycle, take an arbitrary school and find the student pointing to that school. Then find the

school pointing to that student. Then find the student pointing to that school, etc., until we find a school

or a student that has already been visited. Since there are only finitely many students, this procedure

ends in finite steps.



38

Lemma 4. F∗ is a FIG cycle.

Proof. Let F∗ = (i1, s1, . . . , im, sm).

It is straightforward to check that the last two conditions of a cycle are satisfied: By

construction, each student appears only once in F∗. Given this, since the pointing rule

for G(µ, µ′) implies that each school is pointed to only by a single student, each school

appears at most once in F∗.
To complete the proof, it suffices to show that G(µ, µ′) is a subset of the FIG on µ. To

show this, first we establish that, for any k ∈ {1, . . . ,m}, ik points to sk according to the

definition of pointing used for FIG. To do so, it suffices to show that ik = Topsk(Dµ
sk

)

and ik �sk ∅ (part (1) of Definition 3). The latter holds for the following reason: we have

i ∈ Dµ
sk

(I ′) for some i ∈ µ′sk because of the definitions of S(µ′) and I ′ and the fact that

sk ∈ S(µ′). Hence, by individual rationality of µ′, it follows that ik = Topsk(Dµ
sk

(I ′)) �sk
i �sk ∅. To show the former, note first that, by construction, ik = Topsk(Dµ

sk
(I ′)) and

hence ik �sk i for any i ∈ (Dµ
sk
∩ I ′) \ {ik}. Next, consider any i ∈ Dµ

sk
\ I ′. Because

µ′i′ = µi′ for any i′ ∈ I \ I ′ by the definition of I ′, it follows that i ∈ Dµ′
sk

. This and the

assumption that µ′ is fair imply j �sk i for every j ∈ µ′sk . By the construction of the

cycle, ik �sk j for every j ∈ µ′sk \ µsk 6= ∅ (the nonemptiness holds because sk ∈ S(µ′)).

Thus, we have ik �sk i. Therefore, we have ik �sk i for any i ∈ Dµ
sk
\ {ik}, which implies

ik = Topsk(Dµ
sk

).

Second, we consider three cases of the definition of G(µ, µ′) to show that, for any

k ∈ {1, . . . ,m}, sk points to ik+1 according to the definition of pointing used for FIG,

where im+1 = i1. Suppose first that ik+1 and sk satisfy the condition described in Case

1 of the definition of G(µ, µ′). This implies that ik+1 and sk satisfy the assumption in

part (2a) of Definition 3. Next, consider Case 2 of the definition of G(µ, µ′). In this case,

|µsk | < qsk and µik+1
∈ r(sk) hold, which satisfies the condition in part (2b) of Definition 3.

Finally, consider Case 3 of the definition of G(µ, µ′). In this case, |µsk | < qsk , ik+1 ∈ r(sk),
and µik+1

= ∅ hold, which again satisfies the condition in part (2b) of Definition 3. This

completes the proof. �

Lemma 4 completes the proof. �

A.3. Proof of Claim 1.
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Proof. We first observe that the balancedness of µ′ at E ′ is equivalent to the property

that, for each r ∈ R′,∑
s∈r

|{i|i ∈ µ′s, i 6∈ r}|︸ ︷︷ ︸
inflow to r

−
∑
s 6∈r

|{i|i ∈ µ′s, i ∈ r}|︸ ︷︷ ︸
outflow from r

= 0.

Consider any r∗ ∈ R. Then,

∑
r∈R′,r⊆r∗


∑
s∈r

|{i|i ∈ µ′s, i 6∈ r}|︸ ︷︷ ︸
inflow to r

−
∑
s 6∈r

|{i|i ∈ µ′s, i ∈ r}|︸ ︷︷ ︸
outflow from r

 = 0.(A.2)

The left-hand side of (A.2) is equal to

∑
r∈R′,r⊆r∗


∑
s∈r

(
|{i|i ∈ µ′s, i 6∈ r∗}|+ |{i|i ∈ µ′s, i ∈ r∗ \ r}|

)
︸ ︷︷ ︸

inflow to r

−

∑
s 6∈r∗

|{i|i ∈ µ′s, i ∈ r}|+
∑

s∈r∗\r
|{i|i ∈ µ′s, i ∈ r}|


︸ ︷︷ ︸

outflow from r



=
∑

r∈R′,r⊆r∗

∑
s∈r
|{i|i ∈ µ′s, i 6∈ r∗}| −

∑
s6∈r∗

|{i|i ∈ µ′s, i ∈ r}|

+
∑

r∈R′,r⊆r∗

∑
s∈r
|{i|i ∈ µ′s, i ∈ r∗ \ r}| −

∑
s∈r∗\r

|{i|i ∈ µ′s, i ∈ r}|


=

∑
s∈r∗

|{i|i ∈ µ′s, i 6∈ r∗}| −
∑
s 6∈r∗

|{i|i ∈ µ′s, i ∈ r∗}|

+
∑

r,r′∈R′,r,r′⊆r∗,r 6=r′

∑
s∈r
|{i|i ∈ µ′s, i ∈ r′}| −

∑
s∈r′
|{i|i ∈ µ′s, i ∈ r}|


=

∑
s∈r∗

|{i|i ∈ µ′s, i 6∈ r∗}| −
∑
s 6∈r∗

|{i|i ∈ µ′s, i ∈ r∗}|



+
∑
k<`




∑
s∈rk

|{i|i ∈ µ′s, i ∈ r`}|︸ ︷︷ ︸
flow from r` to rk

−
∑
s∈r`

|{i|i ∈ µ′s, i ∈ rk}|︸ ︷︷ ︸
flow from rk to r`

+


∑
s∈r`

|{i|i ∈ µ′s, i ∈ rk}|︸ ︷︷ ︸
flow from rk to r`

−
∑
s∈rk

|{i|i ∈ µ′s, i ∈ r`}|︸ ︷︷ ︸
flow from r` to rk




=
∑
s∈r∗

|{i|i ∈ µ′s, i 6∈ r∗}|︸ ︷︷ ︸
inflow to r∗

−
∑
s6∈r∗

|{i|i ∈ µ′s, i ∈ r∗}|︸ ︷︷ ︸
outflow from r∗

,

where we let {r1, r2, . . . } be a partition of r∗ by regions in R′.

By (A.2), this implies that∑
s∈r∗
|{i|i ∈ µ′s, i 6∈ r∗}|︸ ︷︷ ︸

inflow to r∗

−
∑
s 6∈r∗
|{i|i ∈ µ′s, i ∈ r∗}|︸ ︷︷ ︸

outflow from r∗

= 0.

Hence the inflow and outflow for region r∗ are equal to each other. Since this relation

holds for every r∗ ∈ R, µ′ is balanced at E . �



40

A.4. Comparative Statics: An Example. The following example shows that the con-

verse of Proposition 1 does not hold. That is, starting at a certain efficient iBF, some

student can be made strictly better off in any efficient iBF after splitting a region.

Example 8 (An instance in which splitting a region inevitably makes some student

better off). Let I = {i1, i2} and S = {s1, s2, s3}. Let there be two regions, r = {i1, s1, s2}
and r′ = {i2, s3}. Each school has the capacity of one. Student preferences and school

priorities are given as follows:

�i1 : s2, s3, �s1 : i2,

�i2 : s1, �s2 : i1,

�s3 : i1.

In this environment, there is an efficient iBF:

µ =

(
s1 s2 s3 ∅
∅ i1 ∅ i2

)
.

If region r is split into two regions, r1 = {i1, s1} and r2 = {s2}, then there is a unique

efficient iBF:

µ′ =

(
s1 s2 s3 ∅
i2 ∅ i1 ∅

)
.

Note that i2 is better off as a result of the split. The intuition is the following: Before the

split, i2 in r′ was unable to match with s1 in r as there was no student who wanted to

come from r to his region r′. However, the split made it impossible for i1 in r1 (which was

part of r) to go to s2, and she is now interested in coming to r′. This made it possible to

implement a swap between r1 and r′.

Notice that, in the above example, both µ and µ′ are an efficient iBF before region r was

split. In fact, multiplicity of efficient iBFs is necessary for the failure of the converse of

Proposition 1: Indeed, Proposition 1 implies its converse if there exists a unique efficient

iBF before the split of a region.




