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Abstract

We study the auction model of selling multiple heterogenous objects in

which (i) unit demand agents have utility functions accommodating wealth

effects and (ii) prices can only be discretely adjusted. The minimum price

equilibrium (MPE), a natural generalization of the Vickrey allocation to

settings without assuming quasi-linearity, plays a central role in designing

efficient and incentive-compatible auctions. Nevertheless, discrete prices do

not always support the MPEs. We instead propose an efficient equilib-

rium notion, tight equilibrium, and calculate the upper and lower deviation

bounds between any tight equilibrium price and the (unique) MPE price.

We also develop a descending-price auction that finds a tight equilibrium in

finitely many steps. We further introduce a new notion of incentive compat-

ibility, compensating strategy-proofness, to measure the non-manipulability

of our proposed auction in an approximate sense.
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1 Introduction

Spectrum licence auctions and procurement auctions in OECD countries are the

most successful applications of auction theory (Klemperer, 2004; Milgrom, 2004).

They often generate enormous revenue and play an important role in public finance

and telecommunications industrial development. For instance, in the 2000 British

3G spectrum license auctions, the revenue generated from selling five licenses

amounted to 2.5% of the UK’s GNP (Klemperer, 2004). In those auctions, winning

bids are so large that wealth effects cannot be ignored. Moreover, discrete pricing

is also widely adapted, i.e., prices are adjusted discretely in sizable increments.1

In practical auction design, discrete pricing is desirable since auction speed is an

important design consideration (Milgrom and Segal, 2017; Ausubel et al. 2017),2

and it can be controlled via the size of the increment or decrement.3 We study

the problem of multi-object auction design when agents’ preferences have wealth

effects and are defined over continuous transfers, but bids must be discrete. Zhou

and Serizawa (2023) revealed the potentially severe problems these features cause;

we propose solutions.

Designing an efficient and strategy-proof auction is of great importance in

both theory and practice. Efficiency requires that objects should be given to

those who value them the most. However, information about agents’ preferences

for objects is only privately known in many cases. Thus, it is crucial for the

auction to incentivize agents to reveal their true information to attain efficiency.

Strategy-proofness requires that revealing true information is a dominant strategy.

In the auction model of selling multiple heterogeneous objects where prices

can be continuously adjusted, agents have unit demand, and have classical utility

functions that accommodate wealth effects, there is a minimum price (Walrasian)

equilibrium (MPE) (Demange and Gale, 1985). The associated (direct) mechanism

that selects an MPE for each utility profile is known as the MPE mechanism. In

quasi-linear settings, the MPE mechanism coincides with the Vickrey mechanism

1In the year 2000 UK 3G spectrum auctions, the increment was set at first 5% and then

1.5% of the highest bid in the previous round. In the 2021 auction, it was £10 million (Myers,

2023). We study the latter case of fixed, additive increments in this paper. Fixed multiplicative

increments can be handled easily via a logarithmic transformation, since we study classical

preferences.
2If speed is the primary concern, the sealed-bid auction is also a useful choice, e.g., when

selling financial assets (Klemperer, 2010). However, considering that our goals are primarily

efficiency and incentives, the sealed-bid auction is no longer desirable in the presence of wealth

effects. See Section 2 or Zhou and Serizawa (2023) for detailed discussions.
3Empirical works show that the size of bid increment has significant effects on bidders’ bidding

behaviors and auction performance (Bradlow and Park, 2007; Lacetera et al., 2016).
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(Leonard, 1983) so it can be characterized by efficiency and strategy-proofness,

together with some technical properties (Holmstrom, 1974). The same character-

ization result holds even when agents have classical utility functions (Morimoto

and Serizawa, 2015). For this reason, designing auctions that target the MPE has

been a focus of the literature; see Section 2 for further discussion.

We study the same auction model as above, but restrict prices to be discrete:

They are integer multiples of some given price grid. The grid step can be inter-

preted as the increment in the auction so a sizable increment corresponds to a

large grid. Agents’ utility functions are still defined on the continuous consump-

tion space and so, generically, induce strict rankings over objects priced on the

grid. Moreover, MPE prices (and Walrasian prices more generally) will generically

not fall on such a grid. Thus, proposing an efficient equilibrium notion compati-

ble with discrete prices that also approximates the MPE—so strategy-proofness,

at least in the approximate sense, can be guaranteed—is a natural direction to

proceed.

In settings with discrete prices, a discrete equilibrium at which agents are

assigned objects that approximately maximize their welfare can always be found.4

There are discrete equilibria whose prices well approximate the MPE prices, e.g.,

those supported by the largest discrete prices no greater than the MPE prices.

However, those equilibria may not be efficient, and they are hard to constructively

obtain even in quasi-linear settings (Zhou and Serizawa, 2023). These weak points

largely limit their practical applications.

Demange et al. (1986) (DGS) make the first attempt to identify and approxi-

mate the MPE in quasi-linear settings with discrete prices, doing so via two auction

algorithms. However, they assumed that agents’ quasi-linear valuations conformed

to the price grid, and this causes their first auction to drastically overshoot the

MPE. Their second, slower auction does not suffer this problem so greatly, but

only approximates the MPE, and their approximation is invalid in the presence

of wealth effects. We elaborate on these issues in Section 2 and discuss how vari-

ants of the DGS auctions inherit their deficits, which then necessitates our novel

approach. This new approach allows us to improve upon the DGS auctions by

providing a valid approximation in the presence of wealth effects and a tighter

bound in their absence (i.e., in quasilinear domains).

Main results We propose a new equilibrium notion, tight equilibrium. This

is a discrete equilibrium that satisfies two properties, “local tightness” and “no

improvement cycles.” The former says that each object is strictly preferred by

4Discrete equilibria and similar solution concepts have been studied by Demange et al. (1986),

Roughgarden (2014), Zhou and Serizawa (2023), and Herings (2024).
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some agent to their own assignment at the equilibrium. The latter says that there

is no (Pareto)-improving object reassignment at the given price. Tight equilibrium

satisfies efficiency, which, unlike the models studied by, see, e.g., Ergin (2002), is

achieved without imposing any priority structure on objects.

We find tight bounds on the distance between any tight equilibrium price and

the MPE price. We focus on the subclass of classical utility functions that satisfy

Lipschitz continuity in payments.5 We use the Lipschitz constant to parameterize

the wealth effect and show how it can be estimated in some practical applications.

In quasi-linear settings, the Lipschitz constant is equal to one. In more general

settings, the larger the wealth effect is, the larger the Lipschitz constant is. We

show that both the upper and lower price bounds are functions of the number of

objects, the price grid, and a polynomial of the Lipschitz constant. In particular,

the lower bound is higher than that in Demange et al. (1986).

Tight equilibrium can neither be identified by the approximate ascending auc-

tion of Demange et al. (1986) nor by the cumulative offer process of Hatfield and

Milgrom (2005). We propose a “Sequential Descending (SD)” auction that finds a

tight equilibrium in a finite number of steps. The SD auction sequentially reduces

object prices and objects are tentatively assigned and reallocated among agents

in the auction. The SD auction generates a monotonically decreasing price path

and only requires agents to report partial information about their demands. Since

there is no tight-equilibrium-selecting mechanism that satisfies strategy-proofness,

we instead propose a weaker notion of strategy-proofness, compensating strategy-

proofness. It says that the gain from misreporting, measured by the money surplus

the manipulation outcome yields over getting the manipulation object at the true

outcome utility level, should be bounded. Any tight-equilibrium-selecting mecha-

nism satisfies efficiency and compensating strategy-proofness.

Novelty This paper makes the first contribution to the study of multi-object

auction design with wealth effects subject to discrete price restrictions. The nov-

elty of our results and analytical technique will be discussed in Section 2. We also

provide a simple, graph-theoretic language to help visualize and understand the

connections between tight equilibria and MPEs at the end of Section 7. Practition-

ers in particular can take away the following following core insights. Compared

to the prediction in quasi-linear settings, the trade-off between the exact goals

of auction design (efficiency and strategy-proofness) and practical concerns (the

auction speed controlled via the size of increment) will be greatly exarcerbated in

5In a different setup, Che and Gale (1998) study the optimal mechanism design problem for

selling one object with financially constrained buyers. They also impose a Lipschitz continuity

assumption on buyers’ cost functions.

3



the presence of wealth effects. That said, once the Lipschitz constant in a given

environment can be estimated, if wealth effects are relatively small, a sizeable in-

crement guarantees auction speed with limited loss of incentive compatibility. If

wealth effects are relatively large, on the other hand, a small increment reduces

agents’ incentive to misreport, but at the expense of auction speed.

This paper is organized as follows. After discussing related literature in Section

2, we present the model in Section 3, define Walrasian equilibrium, and review

the results of MPE mechanisms in continuous settings in Section 4. In Section

5, we move to settings with discrete prices and define discrete equilibrium. In

Sections 6, 7, and 8, we define tight equilibrium, derive the bound between tight

equilibrium prices and the MPE price, propose an auction for tight equilibrium,

and discuss its incentive property, respectively. Section 9 is a discussion of the

results.

2 Related literature

Our results are related to efficient and strategy-proof auction designs with quasi-

linearity and those with wealth effects, as well as the study of the structural

properties of equilibrium concepts in matching models with wealth effects.

Efficient and strategy-proof auction design with quasi-linearity De-

mange et al. (1986) propose two auctions with discrete price adjustments when

agents have unit demand. The first one is the exact ascending auction. It finds

an MPE under the coincidence assumption, i.e., valuations are multiples of in-

crements. If this assumption is dropped—as in the present work—their auction

can overshoot the MPE by an arbitrarily large distance, and cannot achieve ef-

ficiency and strategy-proofness in any approximate sense (Zhou and Serizawa,

2023). Any auctions whose operations rely on the coincidence assumption face

the same problems as stated above. These auctions include (i) the variants of

the exact ascending auction with unit demand agents (Mishra and Parkes, 2009;

Andersson and Erlanson, 2013), and (ii) those with multi-unit demand agents, but

essentially coinciding with the exact ascending auction when applied to the set-

tings with unit demand agents (Gul and Stacchetii, 2000; Ausubel, 2006; Sun and

Yang, 2009). Note that once the increment is fixed, even in quasi-linear settings,

the coincidence assumption fails to hold almost surely.

The second one is the approximate ascending (AA) auction. Whereas the exact

ascending auction proceeds by simultaneously incrementing a set of prices based

on the declared demand of all buyers, the AA gives agents tentative assignment

of objects and allows empty-handed agents to bid them away. It thus works
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without the coincidence assumption, but has the fault that items can get bid up

one increment farther than necessary, as shown by our bounds, which are tight.

Clearly then, the outcome of the AA is generally not a tight equilibrium. Finally,

their deviation bounds are valid only in quasi-linear settings (Zhou and Serizawa,

2023).

If each object is owned by a seller who only cares about revenue, and more-

over, sellers implement some tie-breaking rule in selecting agents with the same

payment, our model can be reformulated as two equivalent classes of models

(Echenique, 2012): the labor market of Crawford and Knoer (1981) and Kelso

and Crawford (1982) and the matching with contracts model of Hatfield and Mil-

grom (2005). The adjustment procedures given in those two models obtain the

same approximation result to the MPE as the AA auction in quasi-linear settings,

but suffer from the same problem with wealth effects. Their outcomes may not be

tight equilibria and may fail to satisfy efficiency.6

We remark that the continuous-time versions of the above two auctions in

Demange et al. (1986) are not well-defined when agents have classical utility

functions (Zhou and Serizawa, 2023).

The sealed-bid Vickrey auction with either unit demand agents or multi-unit

demand agents is both efficient and strategy-proof. Nevertheless, when agents have

preferences exhibiting wealth effects, agents’ valuations are naturally replaced with

their willingness to pay as if they get nothing and pay nothing. The associated

generalized sealed-bid Vickrey auction is neither efficient nor strategy-proof in any

approximate sense (Zhou and Serizawa, 2023).

Efficient and strategy-proof auction design with wealth effects Morimoto

and Serizawa (2015) and Mishra et al. (2023) characterize the MPE mechanism by

efficiency, strategy-proofness, and fairness when agents have unit demand. Malik

and Mishra (2021) characterize the efficient and strategy-proof mechanism when

agents have multi-unit demand, but their preferences are dichotomous and ex-

hibit positive income effects.7 In more general preference settings with multi-unit

demand agents, Baisa (2020) shows that there is no efficient and strategy-proof

mechanism. Note that prices are continuous variables in all these models. In the

same model as ours, Sakai et al. (2023) assign a priority structure to objects and

characterize the salary adjustment mechanism proposed by Crawford and Knoer

6See Example 5 and Corollary 2, together with associated discussion for details.
7An agent i has a dichotomous preference if there are a set of non-empty bundles Ai and

a function wi from R → R++ such that for each t ∈ R, ui(A, t + wi(t)) = ui(∅, t) if A ∈ Ai

and ui(A, t) = ui(∅, t), otherwise. It moreover exhibits a positive income effect if wi(t) is non-

increasing in t.

5



(1981) via efficiency and strategy-proofness. Our results focus on equilibrium

implementation instead of mechanism characterization.

When agents have unit demand, the MPE can be obtained via complex com-

putation procedures, see, e.g., Caplin and Leahy (2004), Alaei et al. (2016), and

Zhou and Serizawa (2021). All these procedures (i) assume that prices can be con-

tinuously adjusted (so the MPE is always well-defined) and (ii) require agents to

report a huge number of “indifference prices” (at least factorial to the number of

objects or agents). In contrast to our results, none of them can tackle the discrete

pricing constraints that may lead to the non-existence of MPEs, and none contain

a monotonic price path. Moreover, our auction requires much less information

revelation and has a simpler and clearer equilibrium price formation process.

Matching models with wealth effects The main themes here are investi-

gations of the equivalence between Walrasian equilibrium and solution concepts

from cooperative game theory such as stability and core, and structural properties

of Walrasian equilibrium such as the lattice property and the rural hospitals the-

orem (see, e.g., Demange and Gale (1985), Fleiner et al. (2019), Schlegel (2022),

and Herings (2024)). None of these works study how to approximate the extreme

points of the equilibrium price lattice via a feasible adjustment process. We make

the first attempt to provide a systematic study of equilibrium implementation

subject to practical constraints when wealth effects are accommodated.

3 The Model

The model below builds on the classical multi-object auction model of Demange

et al. (1986), but drops the quasi-linear assumption on agents’ preferences.8

There is a finite set of agents N that contains n agents and a finite set of

objects M that contains m objects. We assume n > m. Not receiving an object

is called receiving the null, which is denoted by 0. Let L = M ∪ {0}. Each agent

has a unit demand, i.e., she either receives a single object or the null.

Agents have preferences on the consumption set L × R. We abuse language

and identify a preference of agent i with her utility representation ui.

Definition 1: A utility function ui : L× R→ R is classical if:

(i) For each l ∈ L, ui(l, ·) is continuous and strictly decreasing in R.
(ii) For each pair l, l′ ∈ L, each t ∈ R, there is t′ ∈ R such that ui(l, t) = ui(l

′, t′).

(iii) For each l ∈ M , each t ∈ R, ui(l, t) > ui(0, t).

8This model is also known as the object assignment model with non-quasi-linear preferences

studied by, see, e.g., Morimoto and Serizawa (2015).
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In Definition 1, Condition (i) states that for a given object, less payment gives

higher welfare. Condition (ii) implies that no object is infinitely good or bad.

Condition (iii) says that at any payment level, getting an object is better than

getting nothing. Let U be the set of classical utility functions and Un be the

classical domain. Let u = (ui)i∈N ∈ Un be a profile of utility functions.

Definition 2: A utility function ui ∈ U is quasi-linear if there is a valuation

function vi : L → R+ such that (i) vi(0) = 0, (ii) for each l ∈ M , vi(l) > 0 and (iii)

for each (l, t), (l′, t′) ∈ L×R, ui(l, t) ≥ ui(l
′, t′) if and only if vi(l)− t ≥ vi(l

′)− t′.

Let UQL be the set of quasi-linear utility functions and (UQL)n be the quasi-

linear domain. It is obvious that UQL ⊊ U .

4 Minimum Price Equilibrium and Mechanism

In this section, prices can be adjusted continuously. We review the results of Wal-

rasian equilibrium, with particular attention to the “minimum price equilibrium”

and the mechanism that always selects a minimum price equilibrium.

For each agent i ∈ N , let µi ∈ L be her assigned object. An assignment

µ = (µi)i∈N ∈ Ln is a list of assigned objects such that, except for the null, no two

agents obtain the same object, i.e., if µi ̸= 0 and i ̸= j, µi ̸= µj. Let M be the set

of assignments. Each agent will consume a bundle zi = (µi, ti) and an allocation

z = (µi, ti)i∈N ∈ (L× R)n is a list of bundles such that µ ∈ M. Let Z be the set

of allocations.

For each l ∈ L, let pl ∈ R+ be the price of object l and p = (pl)l∈L ∈ Rm+1
+

be a price (vector). Without loss of generality, we assume that the price of the

null is zero, i.e., p0 = 0, and the reserve prices of all the objects are zero. Agent

i′s demand set at price p ∈ Rm+1 is defined as Di(p) = {l ∈ L : ui(l, pl) ≥
ui(l

′, pl′),∀l′ ∈ L}.

Definition 3: A pair (µ, p) ∈ M× Rm+1
+ is a Walrasian equilibrium if:

(i) For each i ∈ N , µi ∈ Di(p).

(ii) For each l ∈ M , if pl > 0, there is i ∈ N such that µi = l.

In Definition 3, Condition (i) states that each agent i receives an object from

her demand set, and pays its price. Condition (ii) states that an object with a

positive price must be assigned. Equivalently, an unassigned object has zero price.

For each u ∈ Un, there is a Walrasian equilibrium for u (Alkan and Gale, 1990).

Walrasian equilibrium always satisfies efficiency, as shown below.

For each z ∈ Z, let Rev(z) =
∑

i∈N ti be the revenue generated by z. An

allocation z ∈ Z is efficient for u ∈ Un if there is no z′ ∈ Z such that (i) for each

7



i ∈ N , ui(z
′
i) ≥ ui(zi) with at least one strict inequality and (ii) Rev(z′) ≥ Rev(z).

Fact 1 (Morimoto and Serizawa, 2015): Each Walrasian equilibrium allocation

satisfies efficiency.

The set of Walrasian equilibrium prices forms a lower semi-lattice9 so there is

an equilibrium price which is component-wise-smallest among all the equilibrium

prices (Demange and Gale, 1985). Let pmin(u) be the minimum equilibrium price

for the utility profile u. An associated Walrasian equilibrium is called a minimum

price equilibrium (MPE). Note that for each given utility profile, the associated

MPE price is unique, but the corresponding assignment may not be unique since

indifference in preferences is allowed; it follows that each agent is indifferent among

all MPEs.

The following result shows the “demand connectedness property” of MPE. It

says that each object with a positive price can be associated with a sequence of

objects starting from the null, and each pair of adjacent objects in the sequence

are connected by agents’ demands.

Fact 2 (Morimoto and Serizawa, 2015): Let u ∈ Un and (µ, pmin) be an MPE for

u. For each l ∈ M such that pmin
l > 0, there is a sequence {ik}Λk=1 of Λ distinct

agents such that:

(i) µi1 = 0 and µiΛ = l.

(ii) For each k ∈ {2, · · · ,Λ− 1}, µik ∈ M and pmin
µik

> 0.

(iii) For each k ∈ {1, · · · ,Λ− 1}, {µik , µik+1
} ⊆ Dik(p

min).

Let D ⊆ U . A (direct) mechanism f is a function from Dn to Z that maps

each utility profile u to an allocation z. For each i ∈ N , let fi(u) = (µi(u), ti(u))

where µi(u) is the object and ti(u) is the associated transfer recommended by f .

Given a utility profile u, (f(·), u) forms a revelation game: agents report their

utility functions, and the outcome of their reports is selected by f(·).
A mechanism is efficient if for each utility profile, it selects an efficient allocation.

Efficiency: A mechanism f is efficient on domain Dn if for each u ∈ Dn, f(u) is

efficient for u.

Strategy-proofness says that no agent ever benefits from misreporting her util-

ity function.

Strategy-proofness: A mechanism f is strategy-proof on domain Dn if for each

u ∈ Dn, each i ∈ N , and each u′
i ∈ D, ui(fi(u)) ≥ ui(fi(u

′
i, u−i)).

9A set X with a partial order ≿ is a lower semi-lattice if for every non-empty subset X ′ ⊆ X,

the greatest lower bound ∧XX ′ exists in X.
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Strategy-proofness implies that in the revelation game (f(·), u), truthfully re-

porting her utility function is a dominant strategy for each agent.

An MPE mechanism is a mechanism that maps to each utility profile an MPE

allocation.

Fact 3 (Demange and Gale, 1985; Morimoto and Serizawa, 2015): The MPE

mechanism on Un is efficient and strategy-proof.

On the quasi-linear domain, the MPE mechanism coincides with the Vickrey

mechanism (Leonard, 1983). The Vickrey mechanism can be characterized by

efficiency, strategy-proofness, and individual rationality (Holmstrom, 1974). The

MPE mechanism is a natural generalization of the Vickrey mechanism on the

classical domain and can be characterized by the same axioms, as well as some

fairness axioms (Morimoto and Serizawa, 2015; Mishra et al. 2023). Thus any

auction that targets the MPE has nice incentive properties.

In the next section, we restrict prices to be discrete, and argue that the MPE,

and Walrasian equilibrium more generally, is incompatible with discrete pricing

constraints.

5 Discrete Equilibrium

Now we restrict attention to settings where prices can be only adjusted discretely.

We model such a situation by assuming that the set of (admissible) prices is

(εZ)m+1 for some ε > 0.10 One interpretation of ε is as the increment in the

auction and a sizable increment corresponds to a large ε.

Let U∗ ⊆ U be the set of utility functions ui satisfying, for each pair (l, t) and

(l′, t′), both in L× εZ, that ui(l, t) ̸= ui(l
′, t′). Note that U∗ is open and dense in

U . Here and henceforth, we fix ε > 0 and focus on (U∗)n.

The following example shows a case where no Walrasian equilibrium is sup-

ported by discrete prices.

Example 1: Let N = {1, 2}, M = {l}, and ε = 1. Two agents have quasi-linear

utility functions as follows:

(v1(0), v1(l)) = (0, 3− δ1).

(v2(0), v2(l)) = (0, 3− δ2).

where 0 < δ1 < δ2 < 1.

10For a positive real d > 0, let d · Z = { · · · − d, 0, d, · · · } and d · N = {0, d, · · · }.
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For any price pl ≥ 3, no agent demands l, but l has a positive price. For any

price pl ≤ 2, both agents demand l, but its supply is only one. Therefore, there is

no Walrasian equilibrium compatible with pl ∈ N. △

Discrete equilibrium is an alternative equilibrium notion for competitive anal-

ysis when prices are discrete. It allows agents to receive an object that approxi-

mately maximizes her welfare at the given price. For quasilinear preferences, it is

reasonable to measure this directly from the utility function, but we need a more

general approach. Thus, we adapt the classical rate-of-substitution concept. We

say that an agent discretely demands an object l at prices p if, were she to get

(l, pl), she would not be willing to bid up p to the next grid step at any object.

Formally, agent i′s discrete demand set at price p ∈ (εZ)m+1 is defined as

Dε
i (p) = {l ∈ L : ui(l, pl) ≥ ui(0, 0) and ui(l, pl) ≥ ui(l

′, pl′ + ε),∀l′ ∈ M}.

Discrete equilibrium is then defined as follows.

Definition 4: A pair (µ, p) ∈ M× (εZ)m+1 is a discrete equilibrium if:

(i) For each i ∈ N , µi ∈ Dε
i (p).

(ii) For each l ∈ M , if pl > 0, there is i ∈ N such that µi = l.

A Walrasian equilibrium is a discrete equilibrium, but the converse may not be

true. In Example 1, agent 1 getting the object at price pl = 2 while agent 2 getting

the null with no payment is a discrete equilibrium, but not a Walarasian equilib-

rium. In contrast to Walrasian equilibrium prices, the set of discrete equilibrium

prices is not a lower semi-lattice, see Appendix A.7 for a numerical illustration.

The existence of discrete equilibrium is implicitly shown by Demange et al.

(1986) via their approximate ascending (AA) auction. This was done in a quasi-

linear setting (Roughgarden, 2014), but is still valid in settings with classical

utility functions (Zhou and Serizawa, 2023).

In discrete price settings, it is natural to study the discrete version of efficiency

where some feasibility constraints over transfers are imposed on possible improve-

ments, i.e., transfers should come from εZ, instead of R (Crawford and Knoer,

1981). Formally, let Zε = Z ∩ (L× (εZ))n. An allocation z ∈ Zε satisfies discrete

efficiency for u ∈ (U∗)n if there is no z′ ∈ Zε that dominates z: (i) for each i ∈ N ,

ui(z
′
i) ≥ ui(zi) with at least one strict inequality, and (ii) Rev(z′) ≥ Rev(z).

A discrete equilibrium allocation may violate discrete efficiency, as illustrated

below by Example 2.

Example 2: Let N = {1, 2, 3}, M = {l, l′}, and ε = 1. Agents have quasi-linear
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utility functions as follows:

(v1(0), v1(l), v1(l
′)) = (0, 3− δ1, 3− δ2)

(v2(0), v2(l), v2(l
′)) = (0, 2− δ2, 2− δ1)

(v3(0), v3(l), v3(l
′)) = (0, 1− δ4, 1− δ3)

where 0 < δ1 < δ3 < δ4 < δ2 < 1. Assigning l′ to agent 1 at price 0, l to agent 2 at

price 0, and the null to agent 3 is a discrete equilibrium allocation, but it violates

discrete efficiency. We simply switch the bundles between agents 1 and 2. The

reassignment makes agents 1 and 2 strictly better off, leaves agent 3’s well being

unchanged, and prices unchanged. △

We remark that discrete equilibria whose prices well approximate the MPE

prices, e.g., those supported by the largest discrete prices no greater than the

MPE prices, are always well-defined. However, those equilibria may not satisfy

discrete efficiency.11 Moreover, as pointed out by Zhou and Serizawa (2023), they

are hard to obtain constructively even in quasi-linear settings.

In the next sections, we focus on a subclass of discrete equilibrium that satisfies

discrete efficiency, can approximate the MPE, and can be constructively obtained.

6 Tight Equilibrium: The Concept

Before giving the formal definition of tight equilibrium, we introduce two concepts.

Definition 5: A pair (µ, p) ∈ M × (εZ)m+1 satisfies local tightness if for each

l ∈ M , there is i ∈ N such that ui(l, pl) > ui(µi, pµi
).

Local tightness says that each object is strictly preferred by some agent to

their own assignment at the current price.

Definition 6: A sequence {iλ}Λλ=1 of Λ distinct agents (Λ ≥ 1) forms an improve-

ment cycle at p ∈ (εZ)m+1 from µ to µ′ if

(i) For each k = 1, · · · ,Λ, uik(µ
′
ik
, pµ′

ik
) ≥ uik(µik , pµik

) with at least one strict

inequality.

(ii) For each k = 1, · · · ,Λ− 1, µ′
ik
= µik+1

.

(iii) Either (1) µ′
iΛ

= µi1 or (2) µ′
iΛ

∈ L\{l : l = µi, for some i ∈ N} holds.

In an improvement cycle, there are two possible ways to improve agents’ wel-

fare. Consider the case of two agents. One possibility is that agent 1 gets agent

11In Example 2, the MPE price is (0, 1− δ4, 1− δ3) where agent 3 gets the null at the MPE.

The conclusion is reached via the discrete equilibrium discussed in that example.
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2’s object while agent 2 gets agent 1’s object (Conditions (ii) and (iii-1)). The

other possibility is that agent 1 gets agent 2’s object while agent 2 gets another

object that is unassigned at the original allocation (Conditions (ii) and (iii-2)).

Now we are ready to define tight equilibrium.

Definition 7: A discrete equilibrium (µ, p) ∈ M× (εN)m+1 is a tight equilibrium

if:

(i) (µ, p) satisfies local tightness.

(ii) There is no improvement cycle at p.

Note that the discrete equilibrium given in Example 2 violates Condition (ii),

and that given in Example 4 below violates Condition (i). Thus, tight equilibrium

is a strict refinement of discrete equilibrium.

We use the following example to illustrate the concept of tight equilibrium.

Example 3: Consider the same setting as in Example 2. Let µ = (µ1, µ2, µ3) =

(l, l′, 0) and p = (0, 0, 0). We argue that (µ, p) is a tight equilibrium. It is easy

to verify that (µ, p) is a discrete equilibrium. Definition 7(i) follows from the fact

that that u3(l
′, 0) > u3(l, 0) > u3(0, 0). At p, both agents 1 and 2 strictly prefer

their own assignment to any other object. Thus Definition 7(ii) holds. △

Tight equilibrium prices fail to form a lower semi-lattice, see Appendix A.7 for

a numerical illustration. The existence of tight equilibrium will be constructively

shown in Section 8.

Tight equilibrium is defined via “local” properties. Intuitively, Definition 7(i)

requires a pair-wise comparison of an agent’s own assignment and some other ob-

ject. Definition 7(ii) yields the efficiency of the object allocation conditional on a

given price.12 It turns out that these two local properties imply that tight equilib-

rium satisfies two global properties, i.e., discrete efficiency and the connectedness

property in Definition 8 below.

Theorem 1: A tight equilibrium allocation always satisfies discrete efficiency.

The proof of Theorem 1 is given in Appendix A.1. The following is a direct

consequence of discrete efficiency.

Corollary 1: Objects are all assigned at a tight equilibrium.13

12This is similar to constrained efficiency of Andersson and Svensson (2014), but absent any

rationing constraints.
13Let (µ, p) be a tight equilibrium. By contradiction, suppose that there is an unassigned

object l ∈ M at (µ, p). Since n > m, there is i ∈ N such that µi = 0. Consider the reallocation

such that agent i gets l at price 0 while all other agents keep their same bundles as those at

(µ, p). Such a relocation contradicts that (µ, p) satisfies discrete efficiency.
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Now we introduce the connectedness property alluded to above.

Definition 8: A pair (µ, p) ∈ M × (εZ)m+1 satisfies discrete connectedness if

each l ∈ M , there is a sequence {iλ}Λλ=1 of Λ distinct agents (Λ ≥ 2) such that:

(i) µi1 = 0 and µiΛ = l.

(ii) For each λ ∈ {2, · · · ,Λ}, µiλ ̸= 0.

(iii) For each λ ∈ {1, · · · ,Λ− 1}, uiλ(µiλ+1
, pµiλ+1

) > uiλ(µiλ , pµiλ
).

Proposition 1: (i) A tight equilibrium satisfies discrete connectedness.

(ii) A discrete equilibrium satisfying discrete connectedness and having no im-

provement cycles at its price is a tight equilibrium.

The proof of Proposition 1 is given in Appendix A.2. In discrete connected-

ness, each pair of objects in the sequence is connected via agents’ discrete demands

(Definition 6(iii)), whereas the demand connectedness property of MPE uses (con-

tinuous) demands (Fact 2(iii)). Note also that discrete connectedness allows agents

in the sequence to get objects with zero prices, whereas the demand connectedness

property of MPE requires that except for i1, all other agents in the sequence get

objects with positive prices (Fact 2(ii)).

Comparison to other equilibria First, the AA auction in Demange et al.

(1986) may fail to find a tight equilibrium. Example 4 illustrates this point.

Example 4: Let N = {1, 2, 3, 4}, M = {l, l′}, and ε = 1. Agents’ utility functions

u ∈ (U∗)4 are given by

Agent 1 : u1(l
′, 0) > u1(l, 0) > u1(l

′, 1) > u1(l, 1) > u1(0, 0).

Agent 2 : u2(l, 0) > u2(l
′, 0) > u2(l, 1) > u2(l

′, 1) > u2(0, 0).

Agent 3 : u3(l
′, 0) > u3(l, 0) > u3(0, 0) > u3(l

′, 1) > u3(l, 1).

Agent 4 : u4(l, 0) > u4(l
′, 0) > u4(0, 0) > u3(l, 1) > u3(l

′, 1).

First, we operate the AA auction. The bidding order is that agent 3 bids first, 4

second, 1 third, and 2 fourth. First, agent 3 bids on l′ and is tentatively assigned

l′ with price 0. Second, agent 4 bids on l and is tentatively assigned l with price

0. Then it is agent 1’s turn to bid. If she bids on l, the price of l that 1 faces is

1, and if she bids on l′, the price of l′ that 1 faces is also 1. Therefore, agent 1

bids on l′ and is tentatively assigned l′ with price 1 meanwhile agent 4 exits the

auction. Finally, it is agent 2’s turn to bid. If she bids on l, the price of l that 2

faces is 1 and if she bids on l′, the price of l′ that 2 faces is 2. Therefore, agent

2 bids on l and is tentatively assigned l with price 1 meanwhile agent 3 exits the

auction. The resulting allocation is not a tight equilibrium allocation because l

and l′ are not locally tight so Definition 7(i) fails to hold. △
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Second, if each object is owned by a seller who only cares about revenue, and

moreover, sellers implement some tie-breaking rule in selecting agents with the

same payment, our model can be reformulated as the labor market of Crawford and

Knoer (1981) and Kelso and Crawford (1982) or the matching with contracts model

of Hatfield and Milgrom (2005). These two types of models, and the associated

salary adjustment process and cumulative offer process in each model, are indeed

equivalent (Echenique, 2012). Taking the cumulative offer process, for instance,

it may fail to identify a tight equilibrium, Example 5 illustrates this point.

Example 5: Consider the same setting as in Example 4. Now suppose that l

and l′ are owned by two pseudo sellers sl and sl′ . For each pair t, t′ ∈ Z such

that t > t′, usl(·, t) > usl(·, t′) and usl′
(·, t) > usl′

(·, t′). To run the cumulative

offer process, consider the following tie-breaking rule: For each t ∈ Z, usl(4, t) >

usl(2, t) > usl(1, t) > usl(3, t) and usl′
(3, t) > usl′

(1, t) > usl′
(2, t) > usl′

(4, t). The

allocation obtained via the cumulative offers process proposed by the agents’ side

is the same allocation obtained via the AA auction so it is not a tight equilibrium.

△

Note that using the same reformulation as mentioned above, Sakai et al. (2023)

show that the outcome of the cumulative offer process may fail to satisfy discrete

efficiency. They argue that efficiency cannot be achieved unless sellers have a com-

mon and payment-independent tie-breaking rule like the Ergin acyclicity condition

(Ergin, 2002). In contrast, the discrete efficiency of tight equilibrium is achieved

without imposing any priority structure.

7 Tight Equilibrium: Deviation Bound Estima-

tion

In this section, we parameterize the wealth effect by a single variable, and show

that the deviation between a tight equilibrium price and the MPE price is bounded

by a constant14 that depends only on the number of objects m, the price increment

ε, and the wealth effect parameter.

Parameterizing wealth effects We impose a stronger continuity assumption

on utility functions. For each i ∈ N , each (l, t) ∈ L × R, and each l′ ∈ L,

let vl
′
i (l, t) ∈ R be such that ui(l, t) = ui(l

′, vl
′
i (l, t)). This vl

′
i (l, t) is known as

the compensated valuation of l′ from the bundle (l, t). By Definition 1, vl
′
i (l, t)

is unique and vl
′
i (l, ·) is increasing. A utility function ui ∈ U satisfies Lipschitz

14Here we mean constant relative to preferences.
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continuity if there is a constant d > 0 such that for each pair l, l′ ∈ L, each t ∈ R,
each t′ ∈ R,

∣∣vl′i (l, t)− vl
′
i (l, t

′)
∣∣ ≤ d · |t− t′|. Thus, we assert that the wealth

effect is well measured by the differences in compensating valuations. A simple

calculation yields that, that for quasilinear ui, v
l′
i (l, t) − vl

′
i (l, t

′) = t − t′. The

following result shows that the Lipschitz constant is always at least 1, and that

the foregoing equation characterizes quasilinearity.

Proposition 2: Let i ∈ N and ui ∈ U .
(i) Suppose that ui ∈ U satisfies Lipschitz continuity. Then d ≥ 1.

(ii) ui ∈ UQL if and only if ui satisfies Lipschitz continuity and d = 1.

The proof of Proposition 2 is relegated to Appendix A.3. In many practical

situations, d can be estimated via information that is accessible to the auctioneer or

even publicly available. Example 6 illustrates this point by using utility functions

that are not quasi-linear, but satisfy Lipschitz continuity.

Example 6: We show how to estimate d in position auctions and auction with

soft financial constraints.

Position auctions (Blumrosen et al. 2008): Objects and agents are read as ad-

vertisement slots and advertisers, respectively. Each advertiser has an underlying,

constant valuation for all slots, but different locations on the webpage may bring

her different levels of revenue. Specifically, the utility of advertiser i derived from

getting slot l with payment pl is ui(l, pl) = cli(a
l
ivi−pl) where c

l
i is the click-through

rate15 of slot l for advertiser i, ali is the conversion rate16 of slot l for advertiser i,

and vi is the value of a slot. For l = 0, ali = 0 and for each l ∈ M , ali > 0.

For each i ∈ N , each l, l′ ∈ L, each pl ∈ R+, v
l′
i (l, pl) = al

′
i vi −

cli
cl

′
i

alivi + pl
cli
cl

′
i

so∣∣vl′i (l, pl)− vl
′
i (l, p

′
l)
∣∣ = cli

cl
′
i

· |pl − p′l|. Therefore, we can set d = maxi∈N,l,l′∈M
cli
cl

′
i

+α

for some α > 0. For example, as the auctioneer, Microsoft or Google has the

historical data of click-through rates.

Auctions for heterogeneous objects with soft financial constraints : Each agent

i ∈ N is endowed with an amount of money mi ∈ R+. If the price of object l

exceeds mi, agent i could borrow from the financial market at a common interest

rate ρ ≥ 0. Therefore, if pl ≤ mi, ui(l, pl) = vi(l) − pl and if pl > mi, ui(l, pl) =

vi(l)− pl − ρ(pl −mi).

In such a model,
∣∣vl′i (l, pl)− vl

′
i (l, p

′
l)
∣∣ ≤ (1 + ρ) · |pl − p′l|. Therefore, we can

set d = 1 + ρ and estimate it from publicly available financial market data. △
15The probability that an advertisement is clicked.
16The probability that a click becomes a transaction.
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Deviation bounds A utility profile u ∈ U∗ is d−bounded if for each i ∈ N , d

is a Lipschitz constant for ui. Now we are ready to present the deviation-bound

results.

Theorem 2: Let u ∈ (U∗)n satisfy d−boundedness. Let pmin ∈ Rm+1 and p ∈
(εN)m+1 be the MPE price and a tight equilibrium price for u.

(i) (Upper deviation bound) For each l ∈ M ,17

pl − pmin
l ≤

m−1∑
k=1

dk · ε

(ii) (Lower deviation bound) For each l ∈ M ,

pmin
l − pl ≤

m∑
k=1

dk−1 · ε

Theorem 2 quantifies how wealth effects amplify the deviation of tight equilib-

rium from MPE even if the price grid is small.

The bounds given by Theorem 2 are binding; there cannot even be an object-

wise improvement. Formally, there are no l ∈ M and δ ∈ R such that for each

u ∈ (U∗)n satisfying d−boundedness, pl−pmin
l ≤ Upper deviation bound− δ. The

statement for the lower deviation bound is symmetric. The formal analysis to

support these statements is given in Appendix A.7.

The proof of Theorem 2 is relegated to Appendix A.4. The main challenges are

to (i) build a connection between an MPE assignment and a given tight equilib-

rium assignment, and (ii) based on such a connection, study the object-wise price

discrepancy between two equilibria with wealth effects. It turns out that Part

(i) and Part (ii) require different analytical approaches, sketched below. In both

cases, we use one of the distinct connectedness properties of MPE (Fact 2(iii)) and

tight equilibrium to construct a sequence of objects ending at the null. This allows

us to bound, via Lipschitz continuity, the price deviation at one object given the

deviation of the object it is connected to. This then is inductively applied along

the sequence, where we know that there can be no deviation at the the null.

Part (i): Begin by fixing an MPE assignment. Say objects l and l′ are adjacent in

the sequence if and only if there is i ∈ N such that either (i) or (ii) below is true.

(i) If l is both agent i′s MPE assignment and her tight equilibrium assignment,

17In the case of m = 1, let

0∑
k=1

dk = 0.
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then l′ is an object that i strictly prefers to l at tight equilibrium. (ii) If l is

agent i′s MPE assignment, but not her tight equilibrium assignment, then either

l′ is agent i’s tight equilibrium assignment or agent i strictly prefers l′ to her own

assignment at the tight equilibrium. Note that the discrete connectedness of tight

equilibrium ensures we will be able to find enough instances of either (i) or (ii) to

build the sequence we need. Next, we show the discrepancy between pl′ and pmin
l′ is

bounded above by d times the discrepancy between pl and pmin
l plus an additional

term, d ·ε. Third, we argue that there is an object whose tight equilibrium price is

smaller than its MPE price. Putting the above three steps together, starting from

the given object, iterating the price discrepancy of two adjacent objects along the

sequence to the null, gives the upper deviation bound.

Part (ii): In this case, begin by fixing a tight equilibrium. Then, l and l′ are

adjacent in the sequence if and only if there is i ∈ N such that l is i’s object

at the tight equilibrium and l′ is either i’s MPE object or an object that i is

indifferent to given pmin. In other words, l′ is in i’s continuous demand set at

pmin. Here it is the demand connectedness property of MPE that allows us to

build the sequence we need. Then, in contrast to the counterpart step in Part (i),

we show that the discrepancy between pmin
l′ and pl′ is bounded above by d times

the discrepancy between pmin
l and pl, plus an additional term ε. Finally, iterating

the price discrepancy of two adjacent objects along the sequence up to the null

gives the result.

When we apply Theorem 2 to generic quasi-linear settings where UQL∗ =

UQL ∩ U∗ (Recall d = 1 by Proposition 2), the following result holds.

Corollary 2: Let u ∈ (UQL∗)n. Let pmin ∈ Rm+1 and p ∈ (εN)m+1 be the MPE

price and a tight equilibrium price for u. For each l ∈ M , −m · ε ≤ pl − pmin
l ≤

(m− 1) · ε.

In quasi-linear settings, Demange et al. (1986) estimate the deviation between

the MPE price and the outcome price of their AA auction as −m · ε ≤ pl − pmin
l ≤

m · ε.18 As pointed out by Zhou and Serizawa (2023), in settings with wealth

effects, neither the upper deviation bound nor the lower deviation bound of their

estimation result holds.

If we reformulate our model as the labor market of Crawford and Knoer (1981)

and the matching with contracts model of Hatfield and Milgrom (2005) (See Ex-

ample 5) and focus on quasi-linear settings, the adjustment processes studied in

those models approximate the MPE with the same deviation bound as the AA

auction (Roughgarden, 2014). One may easily verify that they suffer from the

18Their bound is actually min{m,n} · ε. In our setting, n > m so it is m · ε.
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same problems as the AA auction when there are wealth effects.

In terms of analytical techniques, Demange et al. (1986) assert their deviation

bounds and proceed by contradiction. They show the upper bound by induction

and use the connectedness property of MPE only for the lower bound. Notably, the

whole analysis crucially depends on the quasilinearity assumption. Our approach

has the twin virtues of being constructive and discarding quasilinearity. In partic-

ular, our proof elucidates how the connectedness properties of tight equilibrium

yield the bounds we derive. Moreover, tight equilibrium has further properties, of

interest independent of any algorithm.

A graph theoretic visualization It is well-known that assignment models

in the presence of wealth effects cannot be formulated as linear programming

problems.19 We give a brief discussion in the terminology of directed graphs on

how to (i) represent MPE (µ∗, pmin) and tight equilibrium (µ, p) and (ii) build the

connections between µ∗ and µ that are so useful in the proof of Theorem 2.20

We begin by making n copies of the null such that each agent only gets access

to one copy and each copy is only available to one agent. Then we use a directed

forest to describe the equilibria. A directed tree is a directed, acyclic graph with

a unique root vertex having no incoming paths. A directed forest is a collection of

directed trees. By the demand connectedness property of MPE, any MPE can be

associated with a directed forest such that (i) the roots are null copies, (ii) each

vertex corresponds to some agent’s MPE assignment, and (iii) each arc, say l → l′,

represents an indifference relation in which the agent i who is assigned (l, pmin
l ) is

indifferent to (l′, pmin
l′ ).21

By the discrete connectedness property, any tight equilibrium can be associated

with a directed forest such that (i) and (ii) are analogous to the above and (iii’)

each arc l → l′ represents a strict relation in which the agent i who is assigned

(l, pl) strictly prefers (l′, p′l).

Given (µ′, p′) ∈ {(µ, p), (µ∗, pmin)}, each graph above is a sub-graph of the

following graph: l → l′ is an arc if there is i for whom µi = l and i finds (l′, p′l) at

least as good as (l, p′l). In the discrete case, u ∈ U∗ ensures that each arc in this

graph is a strict relation. Moreover, the no-improvement-cycle condition of tight

19In quasi-linear settings, the set of assignments compatible with efficient allocations coincide

with those assignments that maximize the sum of agents’ valuations of objects. In settings with

wealth effects, such a result no longer holds.
20Formal analysis available upon request.
21If moreover a weight defined as vl

′

i (l, p
min
l ) is assigned to the arc l → l′, then the MPE

assignment solves the problem of minimizing the sum of compensated valutions among directed

forests induced by all possible assignments (Caplin and Leady, 2012). This is not true for

discretely efficient discrete equilibria, and we do not need weighted arcs in our approach.
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equilibrium ensures that the graph is acyclic to begin with.

Now fix a directed forest compatible with (µ, p). We show how the sequence

given in Part (i) in the proof of Theorem 2 is constructed. Assign each agent her

MPE assignment. For agent i, let µi = l. If l = µ∗
i , do nothing. If l ̸= µ∗

i , we add

arc µ∗
i → l, and replace each arc of the form l → l′, by one of the form µ∗

i → l′.

After this operation, it remains that each node can be reached via a directed path

starting from some root; the sequence in the proof is one of these.

For Part (ii), we simply begin with the empty graph. Then, the agent i who is

assigned l ∈ L at (µ, p) points to all objects in her continuous (MPE) demand set.

Note that if i is assigned exactly (µ∗
i , p

min
µ∗
i
) at tight equilibrium, and if µ∗

i is her

unique demanded object at MPE, then she points to nothing. Nonetheless, when

each “point” corresponds to an arc, this again results in a graph with a sub-forest

spanning all objects and with roots that are copies of the null.

Like the Edgeworth box in the study of exchange economies, we hope readers

find this formulation useful in analyzing matching problems with wealth effects in

a visualizable way (See also Caplin and Leady, 2012). The directed graph repre-

sentation, with appropriate modification, could be used to understand equilibrium

structures in other settings where wealth effects matter.

8 Tight Equilibrium: The Auction and Incen-

tives

In this section, we propose an auction to find a tight equilibrium and then analyze

the incentives of the associated (direct) mechanism. Note that we defer analysis

of the dynamic incentives of the auction to future work and, presently, view it as

a computational device only.

The auction proceeds in two stages. The goal of the first stage is simply to find

some discrete equilibrium. From there, Stage 2 proceeds by incrementally raising

agent welfare, either by lowering a price when possible or by executing preference

cycles when they appear.

The Sequential Descending (SD) Auction

Set the increment to ε > 0. The price of the null is fixed at zero. The auction

starts from Stage 1.

Stage 1: Each object l ∈ M sets a high starting price p0li ∈ εN for each agent i

such that no agent demands l.

Step k(≥ 0): Each object l ∈ M is in one of the following cases:
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If pkli < 0 for each agent i, then object l exits Stage 1.

Else if object l points to some agent in the following way:

If l is unassigned, then it arbitrarily points to an agent, say, agent i, who has

the highest price pkli across all the agents.

Else if l is assigned to some agent, object l only points to that agent.

The null points to all the agents. Among all the objects pointing to her and the

null, agent i arbitrarily chooses one that maximizes her welfare. If object l′ is

chosen by some agent i′, then l′ is tentatively assigned to agent i′ at price pkl′i′ .

Set pk+1
l′ = pkl′ . If object l′ is rejected by agent i′, then set pk+1

l′i′ = pkl′i′ − ε and

pk+1
l′j′ = pkl′j′ for i

′ ̸= j.

Except for the exiting objects, if there is some unassigned object, then go

to Step k + 1. Otherwise, Stop at Step k. Now set a single stopping price p

for each object in a way that the exiting object has zero stopping price and the

assigned object has its current trading price as the stopping price. Let (µ, p) be

the resulting outcome where µ is the assignment at Step k. Then go to Stage 2.

Stage 2: All the objects are available in Stage 2. Let (µ0, p0) = (µ, p).

Step k(≥ 0): Let Oi(p
k) = {l ∈ L : ui(l, p

k
l ) > ui(µ

k
i , p

k
µk
i
)} be the set of objects

that agent i prefers to her assignment at (µk, pk). Each agent i reports Oi(p
k).

If (µk, pk) satisfies local tightness and there is no improvement cycle at pk, then

Stop at (µk, pk).

Else if, operate the following adjustments at (µk, pk).

If there are an agent i and an object l such that µk
i = l, pkl > 0, and l /∈

∪j∈N\{i}Oi(p
k), then arbitrarily select l, and set pk+1

l = pkl − ε and pk+1
l′ = pkl′ for

l′ ̸= l, and µk+1 = µk. Then go to Step k + 1.

Else if there is an improvement cycle, execute it by transferring each object

to the agent pointing at it. This leads to a new assignment µk+1 at pk and let

pk+1 = pk. Then go to Step k + 1.

In Stage 1, each object starts from a personalized price but ends at a single

price. Stage 1 is in the spirit of an object-proposing auction, which can be treated

as the dual procedure to the AA auction. In Stage 2, say at Step k, each agent

i needs to reveal Oi(p
k). Such information is essential to verify the object whose

price should be reduced and help eliminate improvement cycles. We highlight that

the SD auction has a monotonically decreasing price path.

Theorem 3: For each u ∈ (U∗)n, the SD auction finds a tight equilibrium for u

in a finite number of steps.

The proof of Theorem 3 is relegated to Appendix A.5.
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In the following, we investigate the efficiency and incentives of the mechanism

associated with the SD auction.

The first property is discrete efficiency, which requires that for each utility

profile, the mechanism always selects a discretely efficient allocation.

Discrete Efficiency: A mechanism f is discretely efficient on domain Dn if for

each u ∈ Dn, f(u) satisfies discrete efficiency for u.

Moving to incentives, we first observe that no mechanism that selects tight

equilibrium is strategy-proof.

Example 7: Consider the same setting as in Example 1. There are two tight

equilibria. The first one assigns l to agent 1 at price 2 while the second one

assigns l to agent 2 at price 2.

If the mechanism selects the first tight equilibrium, then agent 2 reports

(v′2(0), v
′
2(l)) = (0, 8 − δ2), which results in a unique tight equilibrium for (v1, v

′
2)

that assigns l to agent 2 at price 2. Thus agent 2 benefits from misreport-

ing. If the mechanism selects the second tight equilibrium, then agent 1 reports

(v′1(0), v
′
1(l)) = (0, 8 − δ1), which results in a unique tight equilibrium for (v′1, v2)

that assigns l to agent 1 at price 2. Thus agent 2 benefits from misreporting. Thus

no mechanism that selects tight equilibrium is strategy-proof. △

We instead consider a weaker notion of strategy-proofness. The idea is to al-

low agents to gain from misreporting, but restricted to a certain level measured

by money. Suppose that under truthful report ui agent i gets (l, t), and under the

manipulation u′
i, she gets (l′, t′). Recall that agent i is indifferent between (l, t)

and (l′, vl
′
i (l, t)). By misreporting, the actual payment for l′ is t′, so agent’s money

surplus from misreporting is vl
′
i (l, t)−t′. Thus the benefit from misreporting, mea-

sured via money is λi((l, t), (l
′, t′)) = max{0, vl′i (l, t)− t′}. For strategy-proofness,

we have that vl
′
i (l, t) ≤ t′. Thus λi((l, t), (l

′, t′)) = 0 and agent i cannot gain any

money surplus by misreporting.

Now we are ready to propose the following notion of strategy-proofness.

k−bounded Compensating Strategy-proofness: A mechanism f is k−bounded

compensating strategy-proof on domain Dn if there is k ∈ R+ such that for each

u ∈ Dn, each i ∈ N , and each u′
i ∈ D, λi(fi(u), fi(u

′
i, u−i)) ≤ k.

Clearly the case k = 0 coincides with strategy-proofness. In quasi-linear set-

tings where money and utility are perfectly transferable, λi((l, t), (l
′, t′)) ≤ k is

equivalent to a bounded welfare gain from misreporting, i.e., |ui(fi(u))− ui(fi(u
′
i, u−i))| ≤

k. In spirit, it is in line with the approximate strategy-proofness notions often de-

fined via bounded welfare gain in such settings, see, e.g., Roughgarden (2014).
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However, when agents have classical utility functions, money and utility are no

longer perfectly transferable, and it is intractable to consider the gain from mis-

reporting via welfare changes.

A tight equilibrium mechanism fTE(·) is defined as a function from (U∗)n to Z

that maps to each utility profile u a tight equilibrium allocation z.

Let (U∗d)n ⊆ (U∗)n be the class of utility profiles that satisfy d−boundedness.

Theorem 4: Let d > 0 be given and let d∗ =
m∑
k=1

dk−1 +
m−1∑
k=1

dk + 1. Each

tight equilibrium mechanism fTE on (U∗d)n satisfies discrete efficiency and d∗ ·
ε−bounded compensating strategy-proofness.22

The proof of Theorem 4 is relegated to Appendix A.6. Discrete efficiency

follows from Theorem 1. For the incentives, assume that under truthful reporting

ui, agent i gets l at price pl and under the misreporting u′
i, she gets l′ at price p′l.

We show that vl
′
i (l, pl) is upper-bounded by

pmin
l′ (u) + Upper deviation bound (Theorem 2(i)) + ε.

Moreover, p′l is lower bounded by

pmin
l′ (u)− Lower deviation bound (Theorem 2(ii)).

Thus, the discrepancy between vl
′
i (l, pl)− p′l is bounded by d∗ · ε, as desired.

Showing the lower bound of p′l is essential in the proof. Since agent i gets l′

at fTE(u′
i, u−i), we first construct ûi such that l′ is agent i′s favorite object so

fTE(u′
i, u−i) is also a discrete equilibrium allocation for (ûi, u−i). We then con-

struct a tight equilibrium for (ûi, u−i) at which the price of l′, say, p̃l′ , satisfies

p̃l′ ≤ p′l′ . Furthermore, we show pmin
l′ (ûi, u−i) ≥ pmin

l′ (u). Thus, the discrepancy be-

tween pmin
l′ (u) and p′l′ is less than or equal to the discrepancy between pmin

l′ (ûi, u−i)

and p̃l′ . The latter one is bounded above by the deviation bound given by Theorem

2(ii) so the conclusion follows.

In generic quasi-linear settings, we have the following result.

Corollary 3: Each tight equilibrium mechanism fTE on (UQL∗)n satisfies discrete

efficiency and 2m · ε−bounded compensating strategy-proofness.

In quasi-linear settings, since money and utility are perfectly transferable,

Corollary 3 implies that tight equilibrium mechanisms are strategy-proof up to

22An alternative way is to measure the money surplus regarding the price of the initially

assigned object, i.e., λi(fi(u
′
i, u−i), fi(u)) = max{0, vli(l′, t) − t} where fi(u

′
i, u−i) = (l′, t′) and

fi(u) = (l, t). Note that by Lipschitz continuity, λi(fi(u
′
i, u−i), fi(u)) ≤ d·λi(fi(u), fi(u

′
i, u−i)) ≤

d · d∗ · ε so Theorem 4 holds with a very minor modification of the bound.
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error 2m · ε in welfare. Thus, the SD auction has the same incentive property as

the AA auction in Demange et al. (1986) (as well as the processes studied in the

labor market and matching with contracts mentioned earlier when applied to our

settings) shown by Roughgarden (2014). Note that their proof crucially depends

on the assumption that utility is perfectly transferable via money and so it cannot

be extended to establish Theorem 4.

9 Discussion

We conclude by giving some further discussion.

First, our results and insights carry over when we drop the assumption of

n > m or consider an even more general class of utility functions by dropping

Condition (iii) in Definition 1. Nevertheless, imposing these two assumptions

makes the current exposition nested and proofs short.

Second, the concept of a “core allocation” plays a central role in multi-object

auction design. In continuous settings, the Walrasian equilibrium allocation is a

core allocation (equivalently, a weak core allocation). In discrete settings, we have

discrete versions of the foregoing (Crawford and Knoer, 1981).23 Nevertheless,

the set of discrete core allocations could be empty.24 It is easy to verify that a

discrete equilibrium allocation, and so a tight equilibrium allocation, is a discrete

weak core allocation. Therefore, the SD auction is a weak-core-selecting auction

endowed with an approximate incentive compatibility property.

There are different ways to study discrete pricing. For example, the price

grids could be different for different objects, e.g., ε, 2ε, 3ε, · · · for object l and

ε′, 2ε′, 3ε′, · · · for object l′. Price grid could also be proportional to the previous

price, e.g., 1, (1 + ε), (1 + ε)2 . . .. Moreover, objects can be sold via discrimina-

tory pricing based on agents’ identities. We are optimistic that the equilibrium

notion and analytical techniques used in the current context, with appropriate

modifications, can carry over. We leave such extensions open for future research.

Appendix

A.1 Proof of Theorem 1

23An allocation z ∈ Z is a discrete weak core allocation for u ∈ Un if there is no set of agents

N ′ ⊆ N and no allocation z′ ∈ Zε such that (i) for each i ∈ N ′, ui(z
′
i) > ui(zi), (ii) for each

j ∈ N\N ′, z′j = (0, 0), and (iii) Rev(z) < Rev(z′). An allocation z ∈ Z is a discrete core

allocation for u ∈ Un if there is no set of agents N ′ ⊆ N and no allocation z′ ∈ Zε such that (i)

and (iii) together require at least one strict inequality and (ii) remains the same.
24One may verify this statement using the same settings as Example 1.
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By contradiction, suppose that (µ, p) is a tight equilibrium, but violates dis-

crete efficiency. Then there is an allocation z′ = (µ′
i, t

′
i)i∈N ∈ Zε such that

(i) for each i ∈ N , ui(µ
′
i, t

′
i) ≥ ui(µi, pµi

) with at least one strict inequality and

(ii)
∑
i∈N

t′i ≥
∑
i∈N

pµi
.

Since (µ, p) is a tight equilibrium and ui ∈ U∗, it holds that for each i ∈ N ,

ui(µi, pµi
) > ui(µ

′
i, pµ′

i
+ ε). By (i), ui(µ

′
i, t

′
i) ≥ ui(µi, pµi

) > ui(µ
′
i, pµ′

i
+ ε) so

t′i < pµ′
i
+ ε. Since p, t′ ∈ (εZ)m+1, then t′i ≤ pµ′

i
. If there is i ∈ N such that

t′i < pµ′
i
, then

∑
i∈N

t′i <
∑
i∈N

pµ′
i
≤

∑
l∈L

pl =
∑
i∈N

pµi
, contradicting (ii). Thus for

each i ∈ N , we have that t′i = pµ′
i
. By (i), there is an improvement cycle at p,

contradicting that (µ, p) be a tight equilibrium.

A.2 Proof of Proposition 1

Part (ii) is straightforward. We only show Part (i) below.

Let (µ, p) be a tight equilibrium. By Corollary 1, objects are fully assigned.

Consider i ∈ N and l ∈ M such that µi = l. Suppose that pl = 0. By n > m,

there is j ∈ N such that µj = 0. By ui ∈ U∗, ui(0, 0) < ui(l, 0). Thus discrete

connectedness holds for l. Now suppose that pl > 0. Then by local tightness,

there is i1 ∈ N\{i} with µi1 = l1 such that ui1(l, pl) > ui1(l1, pl1). If pl1 = 0, we

are done. If pl1 > 0, by local tightness, there is i2 ∈ N\{i1} with µi2 = l2 such

that ui2(l1, pl1) > ui2(l2, pl2). By no improvement cycle at p, i2 ̸= i. Otherwise,

i.e., i2 = i, i1 and i2 form an improvement cycle by switching their bundles. Thus

i2 ∈ N\{i, i1}. If pl2 = 0, we are done. If pl2 > 0, by the analogous argument,

there is i3 ∈ N\{i, i1, i2} with µi3 = l3 such that ui3(l2, pl2) > ui3(l3, pl3). Repeat

the above argument and since the number of agents is finite, we conclude that l

satisfies discrete connectedness.

A.3 Proof of Proposition 2

Part (i): Let i ∈ N , l, l′ ∈ L, and t′, t ∈ R such that t > t′. By contradiction,

suppose that d < 1. Let ∆t = t − t′ and ∆v = vl
′
i (l, t) − vl

′
i (l, t

′). Since t > t′

and vl
′
i (l, ·) is increasing in ·, then ∆t > 0 and ∆v > 0. By Lipschitz continuity,

∆v ≤ d ·∆t < ∆t. Therefore,

ui(l, t) = ui(l
′, vl

′

i (l, t
′) + ∆v) > ui(l

′, vl
′

i (l, t
′) + ∆t). ∗

Recall that t′ = vli(l
′, vl

′
i (l, t

′)). Let ∆′ be such that vli(l
′, vl

′
i (l, t

′) + ∆t) = t′ +∆′.

Since ∆t > 0, then ∆′ > 0. Therefore,

0 < t′ +∆′ − t′ = vli(l
′, vl

′

i (l, t
′) + ∆t)− vli(l

′, vl
′

i (l, t
′)) ≤

Lipschitz continuity
d ·∆t < ∆t
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so 0 < ∆′ < ∆t. Therefore,

ui(l
′, vl

′

i (l, t
′) + ∆t) = ui(l, t

′ +∆′) > ui(l, t
′ +∆t) = ui(l, t),

contradicting (∗). Thus d ≥ 1.

Part (ii): It is straightforward that ui ∈ UQL =⇒ ui satisfies Lipschitz continuity

and d = 1. In the following, we show the opposite direction “⇐=.”

Let i ∈ N , l, l′ ∈ L, and t′, t ∈ R with t ≥ t′. Let ∆t = t − t′ and ∆v =

vl
′
i (l, t) − vl

′
i (l, t

′). It is easy to see that ∆t ≥ 0 and ∆v ≥ 0. By d = 1 and

Lipschitz continuity, we have that 0 ≤ ∆v ≤ d · ∆t = ∆t. By t = vli(l
′, vl

′
i (l, t)),

t′ = vli(l
′, vl

′
i (l, t

′)), and ∆t = t− t′, we have that

0 ≤ ∆t = vli(l
′, vl

′

i (l, t))−vli(l
′, vl

′

i (l, t
′)) ≤

Lipschitz continuity
d·(vl′i (l, t)−vl

′

i (l, t
′)) =

d=1
∆v.

Together with ∆v ≤ ∆t, we have ∆t = ∆v. Thus, for each i ∈ N , each l, l′ ∈ L,

and each t′, t ∈ R with t ≥ t′, it holds that

vl
′

i (l, t)− t = vl
′

i (l, t
′)− t′. ∗∗

To conclude ui ∈ UQL, we construct vi : L → R+ below that satisfies three

conditions in Definition 2.

Let vi(0) = 0 so Condition (i) holds. For each l ∈ M , let vi(l) = vli(0, 0).

For each (l, t), (l′, t′) ∈ L × R, by (∗∗), we have that vli(0, v
0
i (l, t)) − v0i (l, t) =

vli(0, 0) = vi(l). Since vli(0, v
0
i (l, t)) = t, then t − vi(l) = v0i (l, t). Analogously,

we can show that t′ − vi(l
′) = v0i (l

′, t′). Thus v0i (l, t) ≤ v0i (l
′, t′) if and only if

vi(l) − t ≥ vi(l
′) − t′. Since v0i (l, t) ≤ v0i (l

′, t′) if and only if ui(l, t) ≥ ui(l
′, t′), it

follows that Condition (iii) holds.

Since ui ∈ U , Condition (iii) in Definition 1 implies that for each l ∈ M ,

vi(l)− t > vi(0)− t. Thus Condition (ii) holds.

A.4 Proof of Theorem 2

Let (µ, p) be a tight equilibrium and (µ∗, pmin) be an MPE for u. For t ∈ R,
let (t)+ = max{0, t}.

We begin with the following observations.

Observation (a): Each l ∈ M has pmin
l > 0 and is assigned at (µ∗, pmin). Suppose

that there is l ∈ M such that pmin
l = 0. Since n > m, there is i ∈ N such that

µ∗
i = 0. By ui ∈ U , ui(l, 0) > ui(0, 0) so 0 /∈ Di(p

min), contradicting that (µ∗, pmin)

is an MPE. Together with Definition 3(ii), we get the desired result.

Observation (b): Let t, t′ ∈ R. If t ≤ t′, then t+ ≤ t′+. In case t ≥ 0,

t+ = t ≤ t′ = t′+. In case t < 0, t+ = 0 ≤ t′+.
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Part (i): Let N0 = {i ∈ N : µ∗
i = 0} and for each k ≥ 1, let Nk = {i ∈

N\(∪k−1
s=0Ns) : there is i′ ∈ Nk−1 such that µ∗

i = µi′ or ui′(µ
∗
i , p) > ui′(µi′ , p)}. For

each k ≥ 0, let Lk = {l ∈ L : l = µ∗
i for some i ∈ Nk}.

Step 1: There is some T ∈ N such that (1) for each s ≤ T , Ns ̸= ∅, and NT+1 = ∅
and (2) N = ∪T

s=0Ns and L = ∪T
s=0Ls.

Since n > m, N0 ̸= ∅. Since the numbers of agents and objects are finite, there

is some T ∈ N satisfying (1).

To show (2), by contradiction, suppose that N ⊋ ∪T
s=0Ns. Let N = N\∪T

s=0Ns

and L = L\∪T
s=0Ls. We claim that for each i ∈ ∪T

s=0Ns, µi /∈ L. By contradiction,

suppose that there is i ∈ ∪T
s=0Ns such that µi ∈ L. By construction of ∪T

s=0Ls,

we have µ∗
i ∈ ∪T

s=0Ls so µ∗
i ̸= µi. By observation (a), µi is assigned to some

agent k at (µ∗, pmin), i.e., µ∗
k = µi. By the construction of ∪T

s=0Ns, we have that

k ∈ ∪T
s=0Ns so µ∗

k ∈ ∪T
s=0Ls, contradicting µ∗

k = µi ∈ L. Thus we have that

for each i ∈ ∪T
s=0Ns, µi ∈ ∪T

s=0Ls. By Corollary 1, objects in L ⊆ M are fully

assigned at (µ, p). Thus for each i ∈ N , µi ∈ L and
∣∣N ∣∣ = ∣∣L∣∣. Recall that for

each i ∈ ∪T
s=0Ns, we have µ∗

i ∈ ∪T
s=0Ls. Thus, there are no i′ ∈ ∪T

s=0Ns and l ∈ L

such that ui′(l, p) > ui′(µi′ , p). Since 0 ∈ ∪T
s=0Ls, no object in L satisfies discrete

connectedness, by Proposition 1, contradicting that (µ, p) is a tight equilibrium.

Thus N = ∪T
s=0Ns, and by observation (a), L = ∪T

s=0Ls.

In the following three steps, i.e., Step 2, Step 3, and Step 4, let i ∈ N , µi = l.

and µ∗
i = l∗. Suppose that there is l′ ∈ M such that ui(l, pl) < ui(l

′, pl′).

Step 2: Suppose that l = l∗. Then (pl′ − pmin
l′ )+ ≤ d · (pl∗ − pmin

l∗ )+.

In the following, we use l∗ instead of l and obviously, ui(l
∗, pl∗) < ui(l

′, pl′).

Step 2-1: (pl′ − pmin
l′ )+ ≤ (vl

′
i (l

∗, pl∗)− vl
′
i (l

∗, pmin
l∗ ))+.

Since ui(l
∗, pl∗) < ui(l

′, pl′), we have that vl
′
i (l

∗, pl∗) > pl′ . Since (µ∗, pmin) is

an MPE, then vl
′
i (l

∗, pmin
l∗ ) ≤ pmin

l′ . Combining these two inequalities, we have that

pl′ − pmin
l′ ≤ vl

′
i (l

∗, pl∗)− vl
′
i (l

∗, pmin
l∗ ). By observation (b), Step 2-1 holds.

Step 2-2: (vl
′
i (l

∗, pl∗)− vl
′
i (l

∗, pmin
l∗ ))+ ≤ d · (pl∗ − pmin

l∗ )+.

If pmin
l∗ ≥ pl∗ , then vl

′
i (l

∗, pl∗) − vl
′
i (l

∗, pmin
l∗ ) ≤ 0 = (vl

′
i (l

∗, p) − vl
′
i (l

∗, pmin
l∗ ))+ ≤

d · (pl∗ − pmin
l∗ )+.

If pmin
l∗ < pl∗ , then vl

′
i (l

∗, pl∗)− vl
′
i (l

∗, pmin
l∗ ) > 0 so

0 < (vl
′

i (l
∗, pl∗)− vl

′

i (l
∗, pmin

l∗ ))+ =
∣∣∣vl′i (l∗, pl∗)− vl

′

i (l
∗, pmin

l∗ )
∣∣∣

≤
Lipschitz continuity

d ·
∣∣pl∗ − pmin

l∗

∣∣ =
pmin
l∗ <pl∗

d · (pl∗ − pmin
l∗ )+.

Combining Step 2-1 and Step 2-2, Step 2 holds.

Step 3: Suppose that l ̸= l∗. Then (pl′ − pmin
l′ )+ ≤ d · (pl∗ − pmin

l∗ )+ + d · ε.

26



Let ∆ = (vl
′
i (l

∗, vl
∗
i (l, pl))−vl

′
i (l

∗, pmin
l∗ ))+ and ∆′ = (vl

′
i (l

∗, pl∗+ε)−vl
′
i (l

∗, pmin
l∗ ))+.

Since (µ, p) is a discrete equilibrium, then ui(l, pl) ≥ ui(l
∗, pl∗+ε). Thus, vl

∗
i (l, pl) ≤

pl∗ + ε, which implies that ∆′ ≥ ∆.

Step 3-1: ∆′ ≤ d · (pl∗ − pmin
l∗ )+ + d · ε

If pl∗ + ε ≥ pmin
l∗

, then ∆′ = vl
′
i (l

∗, pl∗ + ε)− vl
′
i (l

∗, pmin
l∗ ) ≥ 0 and moreover

∆′ ≤
Lipschitz continuity

d ·
∣∣pl∗ + ε− pmin

l∗

∣∣
= d · (pl∗ + ε− pmin

l∗ ) ≤
observation (b)

d · (pl∗ − pmin
l∗ )+ + d · ε.

If pl∗ + ε < pmin
l∗

, then vl
′
i (l

∗, pl∗ + ε) − vl
′
i (l

∗, pmin
l∗ ) < 0. Thus ∆′ = 0 ≤ d · (pl∗ −

pmin
l∗ )+ + d · ε.
Step 3-2: (pl′ − pmin

l′ )+ ≤ ∆.

By ui(l, pl) < ui(l
′, pl′), we have that vl

′
i (l, pl) > pl′ . Since ui(l

∗, vl
∗
i (l, pl)) =

ui(l, pl), it holds that vl
′
i (l

∗, vl
∗
i (l, pl)) = vl

′
i (l, pl) so vl

′
i (l

∗, vl
∗
i (l, pl)) > pl′ . Since

(µ∗, pmin) is an MPE, vl
′
i (l

∗, pmin
l∗ ) ≤ pmin

l′ . Thus

pl′ − pmin
l′ ≤ vl

′

i (l
∗, vl

∗

i (l, pl))− vl
′

i (l
∗, pmin

l∗ ) ≤ ∆.

By observation (b) and ∆ = ∆+, we have Step 3-2.

Combining Step 3-1, Step 3-2, and ∆ ≤ ∆′, Step 3 holds.

Step 4: (pl − pmin
l )+ ≤ d · (pl∗ − pmin

l∗ )+ + d · ε.
In either case of l = l∗ or the case of pl < pmin

l (so (pl − pmin
l )+ = 0), it is

straightforward that Step 4 holds. Now assume l ̸= l∗ and pl ≥ pmin
l .

Case 1: ui(l, pl) ≥ ui(l
∗, pl∗). In such a case, we have vli(l

∗, pl∗) ≥ pl. Since

(µ∗, pmin) is an MPE, then vli(l
∗, pmin

l∗ ) ≤ pmin
l . Thus, pl − pmin

l ≤ vli(l
∗, pl∗) −

vli(l
∗, pmin

l∗ ). Since pl ≥ pmin
l , then vli(l

∗, pl∗)− vli(l
∗, pmin

l∗ ) ≥ 0. Thus pl∗ ≥ pmin
l∗ . By

Lipschitz continuity, we have that vli(l
∗, pl∗) − vli(l

∗, pmin
l∗ ) ≤ d · (pl∗ − pmin

l∗ ). Thus

pl − pmin
l ≤ d · (pl∗ − pmin

l∗ ). By observation (b), (pl − pmin
l )+ ≤ d · (pl∗ − pmin

l∗ )+ so

the desired result holds.

Case 2: ui(l, pl) < ui(l
∗, pl∗). Since (µ, p) is a tight equilibrium, ui(l, pl) ≥

ui(l
∗, pl∗ + ε) so vli(l

∗, pl∗ + ε) ≥ pl. Since (µ
∗, pmin) is an MPE, vli(l

∗, pmin
l∗ ) ≤ pmin

l .

Thus, pl − pmin
l ≤ vli(l

∗, pl∗ + ε)− vli(l
∗, pmin

l∗ ). Since pl ≥ pmin
l , then vli(l

∗, pl∗ + ε)−
vli(l

∗, pmin
l∗ ) ≥ 0. Thus pl∗ + ε ≥ pmin

l∗ . Thus

pl − pmin
l = (pl − pmin

l )+ ≤ vli(l
∗, pl∗ + ε)− vli(l

∗, pmin
l∗ )

≤
Lipschitz continuity

d · (pl∗ + ε− pmin
l∗ ) ≤ d · (pl∗ − pmin

l∗ )+ + d · ε.

Step 5: There is l ∈ M such that pl − pmin
l ≤ 0.
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By contradiction, suppose that for each l ∈ M , pl > pmin
l . Since n > m, there

is i ∈ N such that µ∗
i = 0. Thus, for each i ∈ N with µ∗

i = 0, we have that for

each l ∈ M , vli(0, 0) ≤ pmin
l < pl and so µi = 0. Together with observations (a)

and (b), {i ∈ N : µ∗
i ∈ M} = {i ∈ N : µi ∈ M}. Thus, objects in M violate

discrete connectedness at (µ, p), contradicting that (µ, p) is a tight equilibrium.

Completion of proof : Let l ∈ M . By Step 1, there is a sequence {iλ}Λλ=1 of Λ

distinct agents (Λ ≥ 2) such that:

(i) µ∗
i1
= 0, µ∗

iΛ
= l, and for each λ ∈ {2, · · · ,Λ− 1}, µ∗

iλ
∈ M .

(ii) for each λ ∈ {1, · · · ,Λ− 1}, either uiλ(µiλ , p) < uiλ(µ
∗
iλ+1

, p) or µiλ = µ∗
iλ+1

.

First consider agent iΛ−1. Recall that µ∗
iΛ

= l. If uiΛ−1
(µiΛ−1

, p) < uiΛ−1
(l, p),

then by Steps 2 and 3, we have

(pl − pmin
l )+ ≤ d · (pµ∗

iΛ−1
− pmin

µ∗
iΛ−1

)+ + d · ε. ∗

If µiλ = l, ∗ holds by Step 4.

Next consider agent iΛ−2. If uiΛ−2
(µiΛ−2

, p) < uiΛ−1
(µ∗

iΛ−1
, p), then by Steps 2

and 3,

(pµ∗
iΛ−1

− pmin
µ∗
iΛ−1

)+ ≤ d · (pµ∗
iΛ−2

− pmin
µ∗
iΛ−2

)+ + d · ε ∗∗

If µiΛ−2
= µ∗

iΛ−1
, by Step 4, ∗∗ also holds. Replacing (pµ∗

iΛ−1
− pmin

µ∗
iΛ−1

)+ in ∗ with

∗∗, we have

(pl − pmin
l )+ ≤ d · [d · (pµ∗

iΛ−2
− pmin

µ∗
iΛ−2

)+ + d · ε] + d · ε

= d2 · (pµ∗
iΛ−2

− pmin
µ∗
iΛ−2

)+ + d2 · ε+ d · ε

Repeatedly applying the above argument, we can get pl − pmin
l ≤ (pl − pmin

l )+ ≤
Λ−1∑
k=1

dk · (pµ∗
i1
− pmin

µ∗
i1

)+ +
Λ−1∑
k=1

dk · ε. Since µ∗
i1

= 0, then pµ∗
i1

= pmin
µ∗
i1

= 0. Thus

pl − pmin
l ≤

Λ−1∑
k=1

dk · ε.

In the following, we show that for each l ∈ M , we can even have pl − pmin
l ≤

m−1∑
k=1

dk · ε. In the case of Λ ≤ m, the conclusion holds vacuously. Now assume that

Λ = m+ 1. By Step 5, there is an agent, say, agent iq, such that pµ∗
iq
− pmin

µ∗
iq

≤ 0,

in the sequence {iλ}Λλ=1. By repeatedly using ∗∗ until agent iq+1, we have

(pl − pmin
l )+ ≤

Λ−(k+1)∑
k=1

dΛ−(k+1) · (pµ∗
ik+1

− pmin
µ∗
ik+1

)+ +
Λ−1∑
k=1

dΛ−(k+1) · ε.
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By Steps 2, 3, and 4, we have

(pµ∗
iq+1

− pmin
µ∗
iq+1

)+ ≤ d · (pµ∗
iq
− pmin

µ∗
iq
)+ + d · ε.

Since pµ∗
iq
− pmin

µ∗
iq

≤ 0, it holds that pµ∗
iq
− pmin

µ∗
iq

≤ (pµ∗
iq−1

− pmin
µ∗
iq−1

)+ so

(pµ∗
iq+1

− pmin
µ∗
iq+1

)+ ≤ d · (pµ∗
iq−1

− pmin
µ∗
iq−1

)+ + d · ε.

By repeatedly applying the recursive process the same as ∗∗ with respect to agents

iq−1, · · · , i1, we have

pl − pmin
l ≤ (pl − pmin

l )+ ≤
Λ−2∑
k=1

dk · (pµ∗
i1
− pmin

µ∗
i1
)+ +

Λ−2∑
k=1

dk · ε.

Recall that µ∗
i1
= 0 (so pµ∗

i1
= pmin

µ∗
i1

= 0) and Λ = m+ 1. We conclude as desired.

Part (ii): Let N0 = {i ∈ N : µi = 0} and for each k ≥ 1, let Nk = {i ∈
N\(∪k−1

s=0Ns) : µi ̸= 0 and ui′(µi, p
min) = ui′(µ

∗
i′ , p

min) for some i′ ∈ Nk−1}. For

each k ≥ 0, let Lk = {l ∈ L : l = µi for some i ∈ Nk}.

Step 1: There is some T ∈ N such that (1) for each s ≤ T , Ns ̸= ∅, and NT+1 = ∅
and (2) N = ∪T

s=0Ns and L = ∪T
s=0Ls.

Since n > m, N0 ̸= ∅. Since the numbers of agents and objects are finite, there

is some T ∈ N satisfying (1).

To show (2), by contradiction, suppose that N ⊋ ∪T
s=0Ns. Let N = N\∪T

s=0Ns

and L = L\ ∪T
s=0 Ls. By observation (a), we have: (a∗) for each l ∈ L, l ∈ M and

pmin
l > 0. By Corollary 1, objects in L are fully assigned at (µ, p). Moreover, by

the construction of ∪T
s=0Ns, L can be only assigned to agents in N . Thus we have:

(b∗) for each i ∈ N , µi ∈ L and
∣∣N ∣∣ = ∣∣L∣∣.

We show that: (c∗) for each i ∈ N , µ∗
i ∈ L. By contradiction, suppose that

there is i ∈ N such that µ∗
i /∈ L, i.e., µ∗

i ∈ ∪T
s=0Ls. By (a∗), there is j ∈ ∪T

s=0Ns

such that µ∗
j ∈ L. By construction of ∪T

s=0Ls, µj ∈ ∪T
s=0Ls. By (b∗), u∗

j is assigned

to some agent k ∈ N at (µ, p) so µk = µ∗
j . By the construction of ∪T

s=0Ns and

uj(µk, p
min) = uj(µ

∗
j , p

min), we have that k ∈ ∪T
s=0Ns, contradicting k ∈ N .

By (a∗), (c∗), and Fact 2, there are i ∈ ∪T
s=0Ns and j ∈ N such that ui(µ

∗
j , p

min) =

ui(µ
∗
i , p

min). By (b∗), µ∗
j ∈ L is assigned to some agent k′ ∈ N at (µ, p), i.e.,

µk = µ∗
j . Thus ui(µk, p

min) = ui(µ
∗
i , p

min). By the construction of ∪T
s=0Ns, we

conclude that k ∈ ∪T
s=0Ns, contradicting k ∈ N .

In conclusion, N = ∪T
s=0Ns, and together with Corollary 1, L = ∪T

s=0Ls.
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Step 2: Let i ∈ N be such that µi = l. Let l∗ ∈ M be such that ui(l
∗, pmin) =

ui(µ
∗
i , p

min). Let Li = vl
∗
i (l, p

min) − pmin
l∗ . Then (1) Li ≥ 0 and (2) pmin

l∗ − pl∗ ≤
(pmin

l∗ − pl∗)
+ ≤ (ε−Li)

+ + d · (pmin
l − pl)

+.

Since (µ∗, pmin) is an MPE, it holds that ui(l
∗, pmin) = ui(µ

∗
i , p

min) ≥ ui(l, p
min).

Thus vl
∗
i (l, p

min) ≥ pmin
l∗ , i.e., Li ≥ 0. Thus (1) holds.

Since (µ, p) be a tight equilibrium, we have that vl
∗
i (l, pl) ≤ pl∗ + ε.

First, consider the case of pl ≥ pmin
l . Recall that vl

∗
i (l, ·) is increasing in ·.

Thus vl
∗
i (l, p

min) ≤ vl
∗
i (l, pl) ≤ pl∗ + ε. Since vl

∗
i (l, p

min) = Li + pmin
l∗ , we have that

Li + pmin
l∗ ≤ vl

∗
i (l, pl) ≤ pl∗ + ε. Thus pmin

l∗ − pl∗ ≤ ε− Li. If p
min
l∗ − pl∗ ≥ 0, then

pmin
l∗ − pl∗ = (pmin

l∗ − pl∗)
+ ≤ ε−Li = (ε−Li)

+.

By d · (pmin
l − pl)

+ ≥ 0, (2) holds. If pmin
l∗ − pl∗ < 0, (2) follows from pmin

l∗ − pl∗ <

0 = (pmin
l∗ − pl∗)

+ ≤ (ε−Li)
+ + d · (pmin

l − pl)
+.

Then consider the case of pl < pmin
l . Since vl

∗
i (l, p

min) = Li+pmin
l∗ and vl

∗
i (l, pl) ≤

pl∗ + ε, we have

Li+pmin
l∗ −pl∗−ε ≤ vl

∗

i (l, p
min)−vl

∗

i (l, p) ≤
Lipschitz continuity

d·(pmin
l −pl) ≤ d·(pmin

l −pl)
+,

and the rearrangement of the first term and last term implies that

pmin
l∗ − pl∗ ≤ ε−Li + d · (pmin

l − pl)
+ ≤ (ε−Li)

+ + d · (pmin
l − pl)

+.

If pmin
l∗ − pl∗ ≥ 0, then pmin

l∗ − pl∗ = (pmin
l∗ − pl∗)

+ so we have (2). If pmin
l∗ − pl∗ < 0,

then pmin
l∗ − pl∗ < (pmin

l∗ − pl∗)
+ = 0 ≤ (ε−Li)

+ + d · (pmin
l − pl)

+, as desired.

Completion of proof : Let l ∈ Ls for some s ≥ 1. By Step 1, there is a sequence

of distinct agents {iλ}sλ=0 with s ≥ 1 such that:

(i) µis = l ∈ Ls and µi0 = 0 ∈ L0.

(ii) for each 1 ≤ k ≤ s− 1, µik ∈ Lk ⊆ M .

(iii) for each 1 ≤ k ≤ s, uik−1
(µik , p

min) = uik−1
(µ∗

ik−1
, pmin).

To simplify the notation, we write pmin
iλ

and piλ to represent pmin
µiλ

and pµiλ
.

First, consider i0. Since µi0 = 0, then pmin
i0

= pi0 = 0. By Step 2, we have

pmin
i1

− pi1 ≤ (pmin
i1

− pi1)
+ ≤ (ε−Li0)

+. (∗)

Then consider i1. By Step 2, we have

pmin
i2

− pi2 ≤ (pmin
i2

− pi2)
+ ≤ (ε−Li1)

+ + d · (pmin
i1

− pi1)
+ (∗∗)

≤
(∗)

(ε−Li1)
+ + d · (ε−Li0)

+.
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Next consider i2. By Step 2, we have

pmin
i3

− pi3 ≤ (pmin
i3

− pi3)
+ ≤ (ε−Li2)

+ + d · (pmin
i2

− pi2)
+.

≤
(∗∗)

(ε−Li2)
+ + d · (ε−Li1)

+ + d2 · (ε−Li0)
+.

Repeating the above argument, we have

pmin
is − pis ≤

s−1∑
k=0

ds−1−k · (ε−Lik)
+ ≤

Step 2(Lik
≥0)

s−1∑
k=0

dk · ε =
s∑

k=1

dk−1 · ε. (∗ ∗ ∗)

The maximum number of agents in the sequence generated by Step 1 with respect

to an arbitrary l ∈ M is m+ 1. Let s = m in (∗ ∗ ∗). Then we have Part (ii).

A.5 Proof of Theorem 3

Let T be the termination step of the SD auction and (µT , pT ) be the outcome

of Stage 2. Since ε > 0, the price of each object for each agent is bounded below

by −ε in Stage 1, and since the numbers of agents and objects are finite, it is

easily seen that both stages will terminate in a finite number of steps. In sum, the

SD auction terminates in a finite number of steps, i.e., T < +∞. In the following,

we show that (µT , pT ) is a tight equilibrium.

Step 1: (µ, p), the allocation output from Stage 1 of the SD auction, is a discrete

equilibrium with no unassigned objects.

It is straightforward that µ is an assignment. We first show that all the objects

are assigned. By contradiction, suppose that there is l ∈ M that is unassigned

at µ. Since n > m, there is i ∈ N such that µi = 0. By the definition of Stage

1, l points to i at some step with prize 0, but is rejected by i. By ui ∈ U∗,

when i rejects l at price 0, she must be assigned to an object which generates a

strictly higher welfare than ui(0, 0) at that step. Since the agents’ welfare in Stage

1 is non-decreasing, then agent i’s welfare at (µ, p) must be strictly higher than

ui(0, 0), contradicting that she gets (0, 0). Thus Definition 4(ii) holds vacuously.

To show Definition 4(i), we proceed by contradiction. Suppose that there is

i ∈ N such that µi /∈ Dε
i (p). Since the null is always available for i to choose,

we have that ui(µi, pµi
) ≥ ui(0, 0). Thus µi /∈ Dε

i (p) implies that there is l ∈ M

such that ui(l, pl + ε) > ui(µi, pµi
). By the definition of Stage 1, at some step k,

object l with pkli = pl + ε points to i and i rejects object l (recall that objects

point to agents with the highest personalized price for them). This means that

agent i chooses another object l′ and by ui ∈ U∗
i , ui(l

′, pkl′i) > ui(l, p
k
li). Since the

agents’ welfare in Stage 1 is non-decreasing, we have that ui(µi, pµi
) ≥ ui(l

′, pkl′i) >

ui(l, p
k
li) = ui(l, pl + ε), contradicting that ui(l, pl + ε) > ui(µi, pµi

). Thus for each

i ∈ N , µi ∈ Dε
i (p) and we have the desired conclusion.
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Step 2: For each k ≤ T , (µk, pk) is a discrete equilibrium with no unassigned

objects.

Let 0 ≤ s < T . We inductively show Step 2. Recall that (µ0, p0) = (µ, p).

By Step 1, the induction base, s = 0, holds. Now suppose that (µs, ps) is a

discrete equilibrium. We show that (µs+1, ps+1) is a discrete equilibrium. Assume

that (µs+1, ps+1) ̸= (µs, ps). It is straightforward that µs+1 is an assignment. In

Stage 2, each agent will have non-decreasing welfare change so no agent will be

reassigned to the null if she does not get the null at (µ0, p0). So agents who get the

null at (µ0, p0) are exactly those who get the null at (µs+1, ps+1). Thus, together

with Step 1, all the objects are assigned at at (µs+1, ps+1). Thus Definition 4(ii)

holds vacuously.

We show that (µs+1, ps+1) satisfies Definition 4(i) via the following two cases.

Case 1: There are an agent i and an object l such that µs
i = l, psl > 0, and

l /∈ ∪j∈N\{i}Oj(p
s). Then we simply set ps+1

l = psl − ε, ps+1
l′ = psl′ , for l′ ̸= l,

and µs+1 = µs. Since µs+1
i = µs

i = l, ps+1
l < psl , and ps+1

l′ = psl′ , for l′ ̸= l, then

l ∈ Dε
i (p

s) implies that l ∈ Dε
i (p

s+1). Since l /∈ ∪j∈N\{i}Oi(p
s), it holds that

uj(µ
s
j , p

s
µs
j
) > uj(l, p

s
l ) for j ̸= i , where the strictness of the relation is because

u ∈ (U∗)n. By ps+1
l = psl −ε, uj(µ

s
j , p

s
µs
j
) > uj(l, p

s+1
l +ε). Together with ps+1

l′ = psl′ ,

for l′ ̸= l, and µs+1 = µs, it holds that µs+1
j = µs

j ∈ Dε
j(p

s+1). Thus Definition 4(i)

holds.

Case 2: There is an improvement cycle at (µs, ps). Let N ′ = {j ∈ N : µs
j ̸=

µs+1
j } be the set of agents who update their assigned objects. For each i ∈ N\N ′,

since ps+1 = ps and (µs+1
i , ps+1

µs+1
i

) = (µs
i , p

s
µs
i
), it holds that µs+1

i ∈ Dε
i (p

s+1). For

each j ∈ N ′, by u ∈ (U∗)n, it holds that uj(µ
s+1
j , ps+1

µs+1
j

) > uj(µ
s
j , p

s
µs
j
). Together

with ps+1 = ps and µs
j ∈ Dε

j(p
s), we have µs+1

j ∈ Dε
j(p

s+1). Thus, Definition 4(i)

holds.

Step 3: (µT , pT ) is a tight equilibrium.

No improvement cycle at pT is a necessary condition for the SD auction to

terminate so Definition 7(ii) holds. In the following, we show that (µT , pT ) satisfies

local tightness. Then the conclusion follows.

Consider i ∈ N and l ∈ M such that µT
i = l. Suppose that pTl = 0. By n > m,

there is i ∈ N such that µ0
i = 0. By ui ∈ U∗, ui(0, 0) < ui(l, 0). Thus the local

tightness holds for l. Now suppose that pTl > 0. Then there is i1 ∈ N\{i} such

that l ∈ Oi1(p
T ). If not, the price of l will be further reduced, contradicting that

T is the termination step. Thus the local tightness holds in such a case as well.

A.6 Proof of Theorem 4
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Discrete efficiency follows from Theorem 1. Let i ∈ N , ui ∈ U∗d be agent i’s

true utility function, and fTE
i (u) = (l, pl). If agent i misreports via u′

i ∈ U∗d,

suppose that she can get fTE
i (u′) = (l′, p′l′) where u′ = (u′

i, u−i) ∈ (U∗d)n.

First suppose that l′ = 0. Then pl′ = p′l′ = 0. Since fTE is a discrete equilib-

rium allocation, it holds that ui(l, pl) ≥ ui(l
′, pl′) = ui(0, 0) so vl

′
i (l, pl) ≤ 0. Thus,

λi((l, pl), (l
′, p′l′)) = max{0, vl′i (l, pl)− p′l′} = 0 ≤ d∗ · ε.

In the following, let l′ ∈ M . Let ûi ∈ U∗d ∩ UQL be such that

(i) v̂l
′
i (0, 0) > maxj∈N vl

′
j (0, 0) + v′l

′
i (0, 0) + ε, and

(ii) for each l′′ ∈ M\{l′}, v̂l′′i (0, 0) < min{minj∈N vl
′′
j (0, 0), v

′l′′
i (0, 0), ε}.25

In words, agent i strictly prefers object l′ to any other object l′′ at ûi. Recall

that pmin(·) ∈ Rm+1 is the MPE price (function), and the MPE prices are not

restricted to discrete prices.

Step 1: vl
′
i (l, pl) ≤ pmin

l′ (u) +
m−1∑
k=1

dk · ε+ ε.

Since fTE(u) is a discrete equilibrium allocation, we have that

ui(l
′, pl′ + ε) ≤ ui(l, pl) = ui(l

′, vl
′

i (l, pl)).

Thus vl
′
i (l, pl) ≤ pl′+ε. By Theorem 2(i), pl′ ≤ pmin

l′ (u)+
m−1∑
k=1

dk ·ε. Thus vl′i (l, pl) ≤

pmin
l′ (u) +

m−1∑
k=1

dk · ε+ ε, as desired.

Step 2: fTE(u′) is a discrete equilibrium allocation for û.

For each agent j ̸= i, their utility function remains the same at u′ and û. Now

consider agent i. Since fTE(u′) is a tight equilibrium, u′
i(l

′, p′l′) ≥ u′
i(0, 0), i.e.,

p′l′ ≤ v′l
′

i (0, 0). By (i) in the construction of ûi, p
′
l′ < v̂l

′
i (0, 0) so ûi(l

′, p′l′) ≥ ûi(0, 0).

By the construction of ûi, in particular, (ii) and ûi ∈ UQL, we have that for

each l′′ ∈ M\{l′}, ûi(l
′, p′l′) ≥ ûi(l

′′, 0) ≥ ûi(l
′′, p′l′′). Thus Definition 4(i) holds.

Unassigned objects remain unassigned at price zero so Definition 4(ii) holds.

Step 3: There is a tight equilibrium (µ̃, p̃) at û such that p̃l′ ≤ p′l′ .

Let (µ′, p′) be the discrete equilibrium associated with fTE(u′). By Step 2,

(µ′, p′) is a discrete equilibrium for û. Now let (µ0, p0) = (µ′, p′) and run Stage 2

of the SD auction with respect to (µ′, p′) and let (µ̃, p̃) be the associated outcome.

Following the same arguments as in Steps 2 and 3 in the proof of Theorem 3,

we can show that (µ̃, p̃) is a tight equilibrium for û. The price for each object is

non-increasing in Stage 2 so p̃l′ ≤ p′l′ .

25Since ûi ∈ U , Condition (iii) of Definition 1 implies v̂l
′′

i (0, 0) > 0.
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Step 4: pmin
l′ (û) ≥ pmin

l′ (u).

Let (µ, pmin(u)) and (µ̂, pmin(û)) be the MPEs for u and û, respectively. By

contradiction, suppose that pmin
l′ (û) < pmin

l′ (u).

Step 4-1: Agent i gets l′ at (µ̂, pmin(û)).

By contradiction, suppose that µ̂i ̸= l′. Since µ̂i ∈ Di(p
min(û)), pmin

l′ (û) ≥
v̂l

′
i (µ̂i, p

min
µ̂i

(û)) ≥ v̂l
′
i (µ̂i, 0) and by the construction of ûi, in particular, (ii) and

ûi ∈ UQL, it holds that pmin
l′ (û) ≥ v̂l

′
i (µ̂i, 0) > maxj∈N vl

′
j (0, 0) > 0. Thus l′ must

be assigned to some agent j′ at pmin(û). Nevertheless, vl
′

j′(0, 0) ≤ maxj∈N vl
′
j (0, 0) <

pmin
l′ (û), contradicting l′ ∈ Dj′(p

min(û)).

Step 4-2: Let ũi ∈ U be such that for each l ∈ M , ṽli(0, 0) = pmin
l (u). Then

(µ, pmin(u)) is an MPE for (ũi, u−i).

First we introduce Lemma MS. A non-empty set of objects M ′ ⊆ M is overde-

manded at p if |{i ∈ N : Di(p) ⊆ M ′}| > |M ′|. A set M ′ ⊆ M of objects is weakly

underdemanded at p if [∀l ∈ M ′, pl > 0] ⇒ |{i ∈ N : Di(p) ∩M ′ ̸= ∅}| ≤ |M ′|.
Lemma MS (Morimoto and Serizawa, 2015): Let u ∈ Un. Then p is an MPE

price for u if and only if no set of objects is overdemanded and no set of objects

is weakly underdemanded at p for u.

For agent i, by construction, µi ∈ D̃i(p
min(u)) and for each agent j ̸= i, her

utility function and assignment does not change so Definition 3(i) holds. Definition

3(ii) holds vacuously. Thus (µ, pmin(u)) is a Walrasian equilibrium for (ũi, u−i).

Since (µ, pmin(u)) is an MPE for u, by Lemma MS, we have that (1) for each

non-empty set of objects M ′ ⊆ M , |{i ∈ N : Di(p) ⊆ M ′}| ≤ |M ′| and (2) for each

M ′′ ⊆ M such that for each l ∈ M ′′, pl > 0, |{i ∈ N : Di(p) ∩M ′′ ̸= ∅}| > |M ′′|.
By the construction of ũi,Di(p

min(u)) ⊆ D̃i(p
min(u)). Thus |{i ∈ N : Di(p) ⊆ M ′}|

is non-increasing while |{i ∈ N : Di(p) ∩M ′′ ̸= ∅}| is non-decreasing at (ũi, u−i).

Thus, (1) and (2) hold at pmin(u) for at (ũi, u−i). By Lemma MS, pmin(u) is an

MPE price for (ũi, u−i) so (µ, pmin(u)) is an MPE for (ũi, u−i).

By Step 4-2 and the construction of ũi, agent i
′s utility at the MPE for (ũi, u−i)

is equal to ũi(l
′, pmin

l′ (u)). By pmin
l′ (û) < pmin

l′ (u) and Step 4-1, agent i benefit from

misreporting ûi when her true utility function is ũi, contradicting that the MPE

mechanism is not strategy-proof on Un (Fact 3). Thus Step 4 holds.

Step 5: p′l′ ≥ pmin
l′ (u)−

m∑
k=1

dk−1 · ε.

The following inequality establishes Step 5:

p′l′ ≥
Step 3

p̃l′ ≥
Theorem2(ii) for û

pmin
l′ (û)−

m∑
k=1

dk−1 · ε ≥
Step 4

pmin
l′ (u)−

m∑
k=1

dk−1 · ε
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The completion of the proof follows from that

λi((l, pl), (l
′, p′l′)) ≤

∣∣∣vl′i (l, pl)− p′l′
∣∣∣ ≤
Steps 1 and 5

m∑
k=1

dk−1 · ε+
m−1∑
k=1

dk · ε+ ε = d∗ · ε.

A.7 Supplementary Examples

Prices of discrete equilibria and tight equilibria: Let N = {1, 2, 3, 4}, M =

{l, l′, l′′}, and ε = 1. Agents’ utility functions u ∈ (U∗)4 are given by

Agent 1 : u1(l, 1.5) = u1(l
′, 0.8) = u1(l

′′, 1.2) = u1(0, 0);

u1(l
′′, 1) > u1(l

′,−10) > u1(l,−10).

Agent 2 : u2(0, 0) = u2(l, 0.5) = u2(l
′, 1.5) = u2(l

′′, 1.8),

u2(l
′′, 1) = u2(l

′, 0.5) = u2(l, 0) > u2(0,−50).

Agent 3 : u3(l
′, 2) > u3(l,−100) > u3(l

′′,−100) > u3(0, 0).

Agent 4 : u4(l, 2) > u4(l
′,−120) > u4(l

′′,−120) > u4(0, 0).

Let µ = (µ1, µ2, µ3, µ4) = (0, l′′, l′, l) and p = (p0, pl, pl′ , pl′′) = (0, 1, 0, 1). Let µ′ =

(µ′
1, µ

′
2, µ

′
3, µ

′
4) = (l′′, 0, l′, l) and p′ = (p′0, p

′
l, p

′
l′ , p

′
l′′) = (0, 0, 1, 1). Then both (µ, p)

and (µ′, p′) are tight equilibria. Now we let p ∧ p′ = (min{pl, p′l})l∈L = (0, 0, 0, 1).

Observe that there is no discrete equilibrium compatible with price p ∧ p′. Thus,

we can conclude that neither the set of discrete equilibrium prices nor the set of

tight equilibrium prices forms a lower semi-lattice.

Binding deviation bounds: First we show that the upper deviation bound

given by Theorem 2(i) is binding. By contradiction, suppose that there are l̂ ∈ M

and δ ∈ R such that for each u ∈ (U∗)n satisfying d−boundedness, pl̂ − pmin
l̂

≤
m−1∑
k=1

dk · ε− δ.

Let N = {1, 2, 3}, M = {l, l′} and ε = 1. First consider the case of l̂ = l′. Let

three agents have the following quasi-linear utility functions:

(v1(0), v1(l), v1(l
′)) = (0, 3 + k, 5 + 2k)

(v2(0), v2(l), v2(l
′)) = (0, 1.8, 6.1)

(v3(0), v3(l), v3(l
′)) = (0, 6.1, 8.1 + 0.5)

where 0 < 2k < min{1, δ}.

In such a case, d = 1 and m = 2 so
m−1∑
k=1

dk−1 · ε = 1. The MPE is as follows:

pmin = (0, pmin
l , pmin

l′ ) = (0, 3+k, 5+2k) and agent 1 gets the null, agent 2 gets l′ and
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agent 3 gets l. Now consider the tight equilibrium where p = (0, pl, pl′) = (0, 3, 6),

and agent 1 gets l, agent 2 gets the null, and agent 3 gets l′. Note that

pl′ − pmin
l′ = 6− (5 + 2k) >

m−1∑
k=1

dk · ε− δ = 1− δ

contradicting that pl′ − pmin
l′ ≤

m−1∑
k=1

dk · ε− δ.

Now consider the case of l̂ = l. For each i ∈ N , let v′i(0) = vi(0), v
′
i(l) = vi(l

′),

and v′i(l
′) = vi(l). The same reasoning for l′ as above works for l. In sum, the

upper deviation bound is binding.

Next we show that the lower deviation bound given by Theorem 2(ii) is binding.

By contradiction, suppose that are l̂ ∈ M and δ ∈ R such that pmin
l̂

− pl̂ ≤ Lower

deviation bound −δ.

Consider the same settings as Example 1 with additionally assuming 0 < δ1 <

δ2 < min{1, δ}. In such a case, l̂ = l, d = 1 and m = 1 so
m∑
k=1

dk−1 · ε = 1.

The MPE price of l is pmin
l = 3 − δ2 and agent 1 gets l. There is a unique tight

equilibrium price, i.e., pl = 2, compatible with two equilibrium assignments, i.e.,

either agent 1 gets l or agent 2 gets l. Note that

pmin
l − pl = 3− δ2 − 2 >

m∑
k=1

dk−1 · ε− δ = 1− δ

contradicting that pmin
l − pl ≤

m∑
k=1

dk−1 · ε− δ.

No object-wise deviation bounds: We argue that no two objects can have

different binding deviation bounds. We show the statement holds for the upper

deviation bound. Analogous reasoning works for the lower deviation bound. By

contradiction, suppose that there are l, l′ ∈ M such that pl − pmin
l ≤ ∆l and

pl′ − pmin
l′ ≤ ∆l′ with ∆l ̸= ∆l′ . Without loss of generality, assume ∆l > ∆l′ . Then

there is δ > 0 such that ∆l ≥ ∆l′ + δ. Since ∆l is binding, there is u ∈ (U∗)n

satisfying d−boundedness such that ∆l − δ < pl − pmin
l . Now consider u′ ∈ (U∗)n

such that for each i ∈ N , ui(l, ·) = u′
i(l

′, ·), ui(l
′, ·) = u′

i(l, ·), and ui(l̂, ·) = u′
i(l̂, ·)

for l̂ ̸= l, l′. Then pmin
l′ (u′) = pmin

l (u) and moreover, p′l′ = pl is a tight equilibrium

price of l′ for u′. Then ∆l′ ≤ ∆l− δ < pl−pmin
l = p′l′ −pmin

l′ (u′), contradicting that

∆l′ is an upper deviation bound of l′.
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