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1 Introduction

Many markets, such as online platforms, labor markets, and auctions, involve highly

heterogeneous and indivisible transactions. In these markets, sellers are usually con-

strained in what they can sell, and buyers constrained in how much they can pay. For

example, in large spectrum auctions, governments face constraints on the combina-

tions of blocks of spectrum they can sell, and telecom companies have limited budgets

for the purchase of spectrum (Milgrom, 2000; Bulow et al., 2017). Similarly, in labor

markets, workers are limited in how many (or which) jobs they can have, while firms

may have hiring budgets. However, it is well-known that competitive equilibria do

not generally exist in markets with indivisibilities and budget constraints.

In this paper, we show how insights from matching theory can help analyze mar-

kets with indivisibilities and budget constraints, and illuminate the role of flexible

prices in coordinating these markets. We model market interactions as a two-sided,

many-to-many matching market with monetary transfers. The key assumption in our

analysis is that agents view the goods that are traded in the market as net substitutes.

This condition requires, for example, that if the price of a good rises, then buyers’

Hicksian (viz. compensated) demands for all other goods weakly increase (Baldwin

et al., 2020). We represent market outcomes as sets of contracts (in the spirit of

Hatfield and Milgrom (2005)), each of which consists of a trade between agents and

a price for that trade (Hatfield et al., 2013; Fleiner et al., 2019).1 We then show that

(under net substitutability) there always exist outcomes that are stable in the sense

that they are not blocked by any set of contracts.2

Our existence result is particularly striking because stable outcomes in our model

share few of the familiar properties from previous matching and auction analyses. This

difference occurs because much of the previous work instead assumed that agents’

preferences satisfy the gross substitutability condition—i.e., that if the price of a

good rises, then buyers’ Marshallian (viz. uncompensated) demands for other goods

weakly increase (Kelso and Crawford, 1982). In that case, competitive equilibrium

outcomes exist, are stable, and can be constructed using versions of standard auction

and matching procedures, such as Gale and Shapley’s (1962) Deferred Acceptance

1Trades could represent, for example, the sale of the good (Gul and Stacchetti, 1999), or the
non-pecuniary aspects of a job contract (Crawford and Knoer, 1981; Kelso and Crawford, 1982).

2This definition of stability is due to Roth (1984) and Hatfield and Milgrom (2005).
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algorithm.3

However, gross substitutability is difficult to reconcile with the presence of budget

constraints or other income effects—even when a buyer can demand only two goods.

For example, suppose that a firm values workers at $5 each, and has a hiring budget

of $4. In this case, if two workers’ salaries were $1 and $3, respectively, then the firm

would hire both workers. But if the first worker’s salary went up to $2, then the firm

would no longer wish to hire the second worker—a gross complementarity. However,

the firm sees workers as net substitutes.4 More generally, it turns out that net sub-

stitutability is a strictly weaker condition on preferences than gross substitutability.5

In particular, net substitutability allows not only for gross substitutabilities, but also

for forms of gross complementarities.

Due to possibility of gross complementarities in our model, we cannot apply con-

structive arguments to establish the existence of stable outcomes using standard pro-

cedures such as ascending auctions (Gul and Stacchetti, 2000), the Deferred Ac-

ceptance algorithm, the descending salary adjustment process (Kelso and Crawford,

1982), and the Cumulative Offer process (Hatfield and Milgrom, 2005). Indeed, we

show that those procedures sometimes converge to unstable outcomes in our set-

ting, even though stable outcomes exist. Our argument for existence instead com-

bines methods from matching theory with techniques from general equilibrium theory.

We adapt Debreu’s (1962) notion of quasiequilibrium to our model, and show that

quasiequilibria always exist by leveraging topological fixed-point arguments developed

by Baldwin et al. (2020). We complete the argument by showing that quasiequilibria

give rise to stable outcomes.

We then explore the role of price flexibility in our model. First, we show that

price flexibility is critical for existence. Under gross substitutability, it is known that

stable outcomes exist regardless of whether prices are flexible.6 However, we show

that under net substitutability, stable outcomes do not generally exist with rigid

3See Fleiner et al. (2019) for the most general versions of these results.
4For example, for the price change considered above, note that when the firm is fully compensated

for the budgetary impact of the salary increase, it would continue to demand both workers.
5The relationship between gross and net substitutability with income effects, but without hard

budget constraints was shown by Baldwin et al. (2020); this paper shows that the relationship carries
over to settings with hard budget constraints.

6For the flexible price case, see, for example, Kelso and Crawford (1982), Hatfield et al. (2013),
and Fleiner et al. (2019). For the rigid price case, see, for example, Roth (1984), Ostrovsky (2008),
Hatfield and Milgrom (2005), and Hatfield and Kominers (2017).
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prices. Indeed, net substitutable preferences do not even always satisfy a condition

that Hatfield and Kojima (2008) showed to be necessary (in a maximal domain sense)

for the existence of stable outcomes in many-to-one matching markets without flexible

prices.7 Thus, our results show that flexible prices play a key role in coordinating

matching markets under net substitutability—as is familiar from typical equilibrium

models with divisible goods.

Second, we explore how price flexibility affects the efficiency properties of stable

outcomes. In many-to-many matching markets without flexible prices, stable out-

comes can be outside the core and strictly Pareto-dominated—even under gross sub-

stitutability (Blair, 1988). We show that in our model, stable outcomes are always in

the core. Hence, price flexibility can improve the efficiency of stable outcomes—even

in the presence of gross complementarities and budget constraints.

Third, we show that price flexibility plays an important role in the ability of agents

to focus on simple potential blocks. To achieve stability, agents would a priori have to

consider arbitrarily complicated blocking sets. Under gross substitutability, however,

any bilateral contract that is part of a blocking set is a profitable deviation on its own

(Hatfield and Kominers, 2017). In particular, if an outcome is unstable, then there

exists a block consisting of just a single contract. Surprisingly, this characterization of

stability carries over to our setting despite the possibility of gross complementarities.

However, given a blocking set of contracts, it is possible that no contract in the set

forms a block on its own; instead, we show that there is a blocking contract that

corresponds to the same trade as a contract in the original set, but with a different

price. Hence, without price flexibility, agents would not be able to restrict their

attention to pairwise blocks to in order to block an unstable outcome.

Finally, we show that other classic properties of stable outcomes fail in our setting.

Under gross substitutability, it is known that the set of stable outcomes forms a lattice.

Moreover, when a further condition on preferences known as the “Law of Aggregate

Demand” (Hatfield and Milgrom, 2005) is also satisfied, any agent that is matched

in one stable outcome is matched in every other stable outcome, and there are stable

matching mechanisms that are strategy-proof for unit-demand agents on one side of

7Hatfield and Kojima’s (2008) condition is called “weak substitutability,” and is weaker than
gross substitutability when there are multiple possible contracts between pairs of agents. In many-
to-many matching markets without flexible prices, even gross substitutability is necessary (in a
maximal domain sense) for the existence of stable outcomes (Hatfield and Kominers, 2017).
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the market.8 We show that none of these properties generally hold in our setting.

In particular, the set of stable outcomes may not form a lattice,9 agents may be

unmatched in some stable outcomes but receive more than their autarky payoff in

others, and even unit-demand agents can generally manipulate their reports to stable

matching mechanisms to obtain better outcomes.

Related literature. There is a large literature on many-to-many matching markets

that assumes gross substitutability.10 That literature has analyzed various coopera-

tive solution concepts without flexible prices (Roth, 1984; Blair, 1988; Alkan, 2002;

Fleiner, 2003; Echenique and Oviedo, 2006; Klaus and Walzl, 2009; Hatfield and

Kominers, 2017).11 It has also connected those concepts to competitive equilibrium

when there are continuous transfers (Hatfield et al., 2013; Fleiner et al., 2019). In

our case, despite the presence of continuous prices, competitive equilibria fail to exist,

but stable outcomes do not. Moreover, our analysis relies on a weaker condition on

preferences than gross substitutability that is compatible with budget constraints.

Other papers have examined one-to-one matching markets with budget constraints.

Herings and Zhou (2019) study a one-to-one model with financial constraints. In

their setting, competitive equilibria can fail to exist, but stable outcomes have a

lattice structure. A number of papers have considered dynamic auctions with hard

budget constraints and unit-demand bidders (Talman and Yang, 2015; van der Laan

and Yang, 2016; Zhou, 2017); in particular, Talman and Yang (2015) describe a core-

selecting auction in that context. In our setting, by contrast, the structural properties

of stable outcomes fail, and standard auction and matching procedures do not gen-

erally find stable outcomes.

Two recent papers have considered exchange economies with indivisible goods

and income effects. Baldwin et al. (2020) showed that competitive equilibria ex-

ist under net substitutability in a setting without budget constraints. Nguyen and

Vohra (2021) showed that competitive equilibria exist under generalization of Gul

and Stacchetti’s (1999) “single improvement property,” which is closely related to net

8See Schlegel (2021) for the most general versions of these results.
9In fact, we show that there may not even be buyer- or seller-optimal stable outcomes.

10One exception is Rostek and Yoder (2020), who showed that stable outcomes exist when all
agents view all contracts as (gross) complements—ruling out all forms of substitutability.

11These analyses have also been extended to matching in trading networks (Ostrovsky, 2008;
Westkamp, 2010; Hatfield and Kominers, 2012).
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substitutability.12 While versions of Baldwin et al.’s (2020) arguments and methods

underpin some of our analysis, neither Baldwin et al. (2020) nor Nguyen and Vohra

(2021) incorporated the possibility of binding budget constraints or analyzed stable

outcomes.

Outline of the paper. This paper is organized as follows. Section 2 sets up the

model. Section 3 explains why competitive equilibria do not in general exist in our

model. Section 4 states the main result on the existence of stable outcomes, and

outlines the proof. Section 5 discusses the relationships between stability, the core,

and pairwise stability. Section 6 gives examples of the failure of the lattice structure of

stable outcomes, the conclusion of the Lone Wolf Theorem, and the existence of stable

and strategy-proof mechanisms. Appendix A describes a special case of our model

with income effects but without hard budget constraints. Appendix B develops a new

relationship between Marshallian and Hicksian demands in a setting with indivisible

goods and hard budget constraints which we use throughout the proofs. Appendix C

presents the proofs. Appendix D provides additional details for some examples.

2 Model

Our model specializes the model of Hatfield et al. (2021) to two-sided matching mar-

kets, but relaxes their key assumption on preferences and explicitly incorporates en-

dowments of money and budget constraints.

2.1 Agents and trades

There is a finite set B of buyers and a finite set S of sellers; we let I = B ∪ S denote

the set of agents.

Agents interact via trades and payments of money. Formally, there is a finite set Ω

of trades. Each trade ω ∈ Ω is associated with a buyer b(ω) ∈ B and a seller s(ω) ∈ S.

For example, trade ω could represent the sale of a good from s(ω) to b(ω) (Gul and

Stacchetti, 1999), or specify all the non-pecuniary aspects of a job contract between a

worker s(ω) and a firm b(ω) (Crawford and Knoer, 1981; Kelso and Crawford, 1982).

12Nguyen and Vohra (2021) also extended this result to demonstrate the existence of approximate
equilibrium under a weaker condition called “∆-substitutability.”
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Given a set Ξ ⊆ Ω of trades and an agent i ∈ I, let Ξi denote the set of trades in

Ξ in which i is involved (as either a buyer or a seller).

2.2 Preferences

Each agent’s utility depends on the trades that involve the agent and on their con-

sumption of money m ∈ R.13 Formally, agent i has a utility function

U i : P(Ωi)× R→ R ∪ {−∞},

where P denotes the power set operator. We place conditions on utility functions

so the possibility that utility can take value −∞ represents situations that violate

technological constraints for sellers or budget constraints for buyers.14

Assumption 1 (Feasibility constraints for sellers). For each seller s, there is a family

F s 3 ∅ of sets of trades that are feasible for s such that U s (Ξ,m) ∈ R for Ξ ∈ F s

and U s (Ξ,m) = −∞ for Ξ /∈ F s.

Intuitively, Assumption 1 states that utility is finite for feasible sets of trades and

any level of money, but no amount of money can make a seller willing to execute

an infeasible set of trades. This structure captures the possibility of technological

constraints for sellers; for example, a worker might not be able to work full-time

at two jobs no matter what the salaries are; it also rules out budget constraints for

sellers. Note that autarky is always required to be a feasible option for each seller—no

seller is forced to participate in the market.

Assumption 2 (Feasibility constraints for buyers). For each buyer b, there is a lower

bound mb ∈ R ∪ {−∞} on the consumption of money such that U b (Ξ,m) ∈ R for

m > mb and U b (Ξ,m) = −∞ for m < mb.15

Intuitively, Assumption 2 states that utility is finite as long as buyer b ends up

with more than mb amount of money, but that buyer b would never be willing to end

up with less than mb amount of money regardless of which trades are executed. As

13We therefore rule out the possibility of externalities and of distortionary frictions.
14The technological constraints that can arise here are similar to Hatfield et al. (2013) and Fleiner

et al. (2019).
15For notation, we let ms = −∞ for all sellers s since Assumption 1 rules out budget constraints

for sellers.
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the utility level U b
(
Ξ,mb

)
can be finite or −∞, we allow for preferences for which

the lower bound mb can be achieved, and for preferences for which it cannot. Note

that Assumption 2 rules out technological constraints for buyers—all sets of trades

are feasible for buyers.

We also impose two more standard regularity conditions on utility functions.

Assumption 3 (Continuity). All agents’ utility functions are continuous in money

away from level −∞. Furthermore, for all buyers b, and sets Ξ ⊆ Ωb of trades, we

have that

lim
m→(mb)+

U b (Ξ,m) = U b
(
Ξ,mb

)
, (1)

where we write U b (Ξ,−∞) = −∞.

The second part of Assumption 3 requires that buyers b’s utility be right-continuous

at mb. Intuitively, it states that utility levels at money amounts just above mb must

be close to the utility level at mb. In particular, this assumption rules out that utility

“jump down” at money amount mb.

Assumption 4 (Monotonicity). Away from utility level −∞, all agents’ utility func-

tions are strictly increasing in money, and buyers’ (resp. sellers’) utility functions are

weakly increasing (resp. weakly decreasing) in trades.

The second part of Assumption 4 is just a version of the free disposal condition.

Our final assumption is economically innocuous within the context of the model

and only serves to simplify the proofs.16

Assumption 5 (Unboundedness). For all sellers s, we have that

lim
m→−∞

U s (∅,m) = −∞,

and for all buyers b, we have that

lim
m→∞

U b (∅,m) =∞.

Assumption 5 says that utility gain from more money is unbounded for buyers

and utility loss from too little money is unbounded for the sellers.17

We maintain Assumptions 1–5 throughout the paper.

16Footnote 42 in Appendix B explains the place in our arguments in which Asssumption 5 is used.
17As we discuss later, buyers start with finite incomes and cannot end up with more money than
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2.2.1 Examples of preferences

We next introduce three economically important classes of preferences that satisfy

Assumptions 1–5 in our model. In order to illustrate these classes, we consider valua-

tions for trades in our context. A valuation for i is a function V i : P(Ωi)→ R∪{−∞}
with V i(∅) ∈ R. If i is a buyer, the valuation must be weakly increasing (and hence

cannot take value −∞); if i is a seller, the valuation must be weakly decreasing (and

hence permitting some sets of trades to be valued at −∞).

The following examples illustrate our three key classes of preferences. The first

class is the standard quasilinear utility without a budget constraint.

Example 1 (Quasilinear utility without a budget constraint). We have that

U i (Ξ,m) = V i(Ξ) +m

for some valuation V i. In this case, mi = −∞.

For convenience, we henceforth refer to quasilinear utility without a budget con-

straint simply as quasilinear utility. If an agent’s utility function is quasilinear, it is

sufficient to describe their valuations in order capture the agent’s preferences.

The remaining two classes of preferences are defined for buyers, and feature budget

constraints that can and cannot bind, respectively.

The second example of preferences involves buyers with quasilinear utility func-

tions who additionally experience hard budget constraints.

Example 2 (Quasilinear utility with a hard budget constraint). We have that

U b (Ξ,m) =

V b(Ξ) +m if m ≥ 0

−∞ if m < 0

for some valuation V b. In this case, mb = 0.

In Example 2, buyers behave as if they have quasilinear utility away from the hard

budget constraint at mb = 0, but would be unwilling to end up with debt. Note that

these preferences do not violate the Assumption 3 because utility “jumps down” just

their income because prices must be non-negative (by the monotonicity Assumption 4). For an
analogous reason, sellers cannot make unbounded losses. Thus, Assumption 5 is technical rather
than substantive.
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beyond, rather than at, the budget constraint (i.e., utility is still right-continuous,

but not left-continuous, at m = 0).

The third example covers utility functions that are not quasilinear but for which

some money is essential; such utility functions are continuous. To give an example

of such preferences, we use a convenient functional form developed by Baldwin et al.

(2020).

Example 3 (Quasilogarithmic utility—Baldwin et al., 2020). We have that

U b (Ξ,m) = logm− log(−V b
Q(Ξ))

for some valuation V b
Q. In this case, mb = 0. As V b

Q plays a different role than a

valuation for quasilinear utility functions, we call V b
Q a quasivaluation in the context

of quasilogarithmic utility functions.

In Example 3, buyers would never choose to hit m = mb. To see this, note

that as money amount m approaches mb, the buyer’s utility approaches −∞. Such

preferences capture the possibility that agents find it increasingly difficult to borrow

near a borrowing constraint.

2.3 Demand and substitutability

We next define agents’ Marshallian and Hicksian demand correspondences in our

context and introduce the two restrictions on preferences, the second of which we use

for our existence result.

For notational convenience in this section, let us first define a spending indicator

for agent i by

χi =

1 if i ∈ B

−1 if i ∈ S
.

An income for an agent i is a constant w such that if i is a buyer, then w > mi.

While income of sellers can be arbitrary, we ensure that buyers always start with

some disposable income.

We now define Marshallian demand, which gives the sets of trades that maxi-

mize the utility of an agent with income w at a price vector p ∈ RΩi . Formally,
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correspondence Di
M : RΩi × R ⇒ P(Xi) is given by

Di
M (p, w) = arg max

Ξ⊆Ωi

U i

(
Ξ, w − χi

∑
ξ∈Ξ

pξ

)
.

To understand the role of the parameter w, note that w does not affect Marshallian

demand when utility is quasilinear, but does for preferences such as quasilinear utility

with a hard budget constraint and quasilogarithmic utility.

We now recall the standard notion of gross substitutability (see, e.g., Hatfield

et al. (2013) and Fleiner et al. (2019)).

Definition 1. We say that U i is gross substitutable at income w if for all trades

ω 6= ψ ∈ Ωi, price vectors p, and price increments λ > 0 with Di
M (p, w) = {Ξ} and

Di
M (p + χiλeω, w) = {Ξ′}, if ψ ∈ Ξ, then ψ ∈ Ξ′.18

Intuitively, gross substitutability requires that for buyers (resp. sellers), if the price

of a trade ω increases (resp. decreases), then all other trades ψ become weakly more

desirable. To understand why gross substitutability is particularly restrictive outside

the context of quasilinear utility, we revisit an example of quasilinear utility with a

hard budget constraint that we discussed in the Introduction.

Example 4 (Failure of gross substitutability due to a hard budget constraint). Con-

sider a buyer b for whom Ωb = {ζ, ψ}, and suppose that b has quasilinear utility with

a hard budget constraint (as in Example 2) with V b(Ξ) = 5|Ξ|. Consider the price

vectors p and p′ defined by pψ = 1, p′ψ = 2, and pζ = p′ζ = 3. With a income of w = 4,

we have that Db
M (p, w) = {{ζ, ψ}} but that Db

M (p′, w) = {{ψ}}. Thus, raising the

price of ψ can make b stop demanding ζ. This gross complementarity arises due to

an income effect: when b is demanding ψ, raising the price of ψ lowers her disposable

income—which can affect her willingness to pay for ζ. This complementarity occurs

despite the additivity of valuation V b.

We now consider a different notion of substitutability that is better adapted to

settings outside the standard context of quasilinear utility. To do so, we first define

Hicksian demand, which gives the sets of trades that minimize an agent’s expenditure

required to achieve utility of at least u at a price vector p. Formally, the Hicksian

18Here, eω denotes the elementary basis vector defined by eω = (1ω, 0Ξr{ω}).
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demand correspondence Di
H : RΩi × R ⇒ P(Xi) is given by

Di
H (p;u) =

{
Ξ∗

∣∣∣∣∣(Ξ∗,m∗) ∈ arg min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}}
.

Hicksian demand captures agents’ substitution effects. As in classical consumer

theory, there is a duality between Marshallian and Hicksian demands in our setting

(see Lemma B.1 in Appendix B). The combination of indivisible trades and hard

budget constraints means that Marshallian demand can be discontinuous, and can be

a proper subset of Hicksian demand even at positive prices—contrasting the classical

setting with divisible goods where Marshallian demand is continuous and coincides

with Hicksian demands for positive prices.

To see why Marshallian and Hicksian demands may not coincide in our setting,

consider a buyer b for a trade ω who has quasilinear utility with a hard budget

constraint, values the trade at $2 and has an income of $1. At the price of $1, the

buyer’s Marshallian demand is {{ω}} (which delivers a utility level of 2). But at the

price of $1 and a utility level of 1, the buyer’s Hicksian demand is {∅, {ω}}; these

bundles deliver utility levels of 1 and 2 respectively. Once the price increases above $1,

Marshallian demand changes discontinuously to {∅}, while Hicksian demand changes

upper hemicontinuously to {∅}.
The possible discontinuity of Marshallian demand renders the direct analysis of

utility-maximizing choices problematic in our setting, and therefore taking the Hick-

sian perspective is essential. Indeed, hard budget constraints are the main cause

of discontinuity of Marshallian demand; as we show in Appendix A, in cases where

agents’ incomes are sufficient for the budget constraint not to bind, Marshallian and

Hicksian demands do coincide and are upper hemicontinuous.19

We can now introduce net substitutability—our main assumption on preferences.

Net substitutability says that, for all utility levels and starting at prices where Hick-

sian demand is single-valued, if the price of a trade increases (resp. decreases), then

the seller’s (resp. buyer’s) Hicksian demand for other trades decreases. That is, we

require that agents view the trades as substitutable after they have been compen-

sated for the price change (i.e., restored to their original utility level). Formally, the

19Moreover, when utility functions are quasilinear, Marshallian and Hicksian demands not only
coincide but do not even depend on the wealth or utility levels (hence, we can refer to them simply
as “demand”).
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definition of net substitutability is analogous to the definition of gross substitutabil-

ity but places conditions on Hicksian demand for a fixed utility level rather than on

Marshallian demand for a fixed income.

Definition 2. We say that U i is net substitutable if for all utility levels u, trades

ω 6= ψ ∈ Ωi, price vectors p, and price increments λ > 0 with Di
H (p;u) = {Ξ} and

Di
H (p + χiλeω;u) = {Ξ′}, if ψ ∈ Ξ, then ψ ∈ Ξ′.

When agents’ utilities are quasilinear, net substitutability is equivalent to gross

substitutability since the Marshallian and Hicksian demand correspondences coincide.

As a result we can simply refer to agents having substitutable valuations, and the “net”

and “gross” qualifiers can be dropped.

To illustrate the distinction between gross substitutability and net substitutability

in the presence of budget constraints, let us return to Example 4. In that example,

consider the utility level obtained by the buyer spending all of her income on both

trades

u = max
Ξ⊆Ωb

U b

(
Ξ, w −

∑
ξ∈Ξ

pξ

)
= U b ({ζ, ψ}, 0) = 10.

Observe that following the price change from p = (1, 3) to p′ = (2, 3), we have

that Db
H (p;u) = Db

H (p′;u)—so the violation of gross substitutability does not give

rise to a violation of net substitutability. This is because net substitutability places

conditions on compensated price changes, so changing the price of one trade does

not affect the affordability of another trade. More generally, the utility function in

Example 4 is net substitutable (see Appendix D for a formal proof).

Intuitively, gross substitutabilty places conditions on agents’ substitution and in-

come effects while net substitutability only places conditions on substitution effects.

In fact, subject to a mild regularity condition for buyers, the gross substitutability

condition implies the net substitutability condition.

Proposition 1. Suppose that i is a seller, or that i is a buyer and U i is strictly

increasing in trades away from utility level −∞. If U i is gross substitutable at all

incomes, then U i is net substitutable.

Thus, with income effects or budget constraints, net substitutability is a weaker

condition than gross substitutability. Indeed, gross substitutability is highly restric-

tive when agents demand multiple goods and have budget constraints (see Exam-
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ple 4). By contrast, net substitutability allows for both gross substitutability and

gross complementarity between trades.20

Baldwin et al. (2020) proved a version of Proposition 1 without our regularity

assumption or the monotonicity Assumption 4, but did not allow for hard budget

constraints, and required gross substitutability even for money endowments w ≤
mi.21 The main difficulty in the proof Proposition 1 is to overcome the possible

non-coincidence of Marshallian and Hicksian demands for buyers when hard budget

constraints might bind.

3 Nonexistence of competitive equilibrium

We next turn to the possibility of existence of competitive equilibrium in our model.

To state the definition of competitive equilibrium, we first define an arrangement to

consist of a set Ξ of trades and a vector p of prices.

Definition 3. Given an income profile (wi)i∈I , an arrangement [Ξ; p] is a competitive

equilibrium if Ξi ∈ Di
M (pi, wi) for all agents i.

Our definition of competitive equilibrium is standard. A competitive equilibrium

consists of a set of executed trades and a price for every trade such that the mar-

ket for each trade clears—i.e., that each trade is either demanded by both of its

counterparties or neither.

We next give two examples showing how the combination of indivisibility of trades

and the presence of hard budget constraints can lead to the nonexistence of com-

petitive equilibrium. This nonexistence arises due to the discontinuity of buyers’

Marshallian demands as their budgets are exhausted.

The first example is well-known (see, e.g., Herings and Zhou (2019)).

Example 5 (Competitive equilibria may not exist even with unit demand). As depicted

in Figure 1, there is one seller s and two buyers b1, b2. Each buyer bj can interact with s

via a unique trade ωj. Each buyer has quasilinear utility with a hard budget constraint

with V bj({ωj}) = 2. The seller has a quasilinear utility with V s(∅) = V s({ωj}) = 0

and V s({ω1, ω2}) = −∞, so can execute at most one trade.

20In fact, net substitutability allows, for example, a buyer views a pair of trades as gross comple-
ments while the seller views the same pair of trades as gross substitutes.

21The latter hypothesis is implicit in Baldwin et al.’s (2020) proof of their Proposition 1.
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b1 b2
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Figure 1: Trades in Example 5.

s

b

ψ ζ

Figure 2: Trades in Examples 6 and 9.

When each buyer has an income of $1, there is no competitive equilibrium. Indeed,

note that in competitive equilibrium, the prices of the trades must be equal (to, say,

p), but if p > 1 the trades are under-demanded and if p ≤ 1 the trades are over-

demanded.

Example 5 is knife-edge. If we perturb buyer b1’s income to $1+ε, then there is are

competitive equilibria in which both trades have a price of, say, $1+ ε
2
, and one of the

trades is executed. Nevertheless, the following example shows that the non-existence

of competitive equilibrium with hard budget constraints persists for generic budgets.

Example 6 (Competitive equilibria may not exist even for generic budgets). As de-

picted in Figure 2, there is one seller s and one buyer b, who interact via two trades

ψ, ζ. The buyer’s utility function is

U b (Ξ,m) =



m if m ≥ 0 and |Ξ| = 0

m+ min{m, 1} if m ≥ 0 and |Ξ| = 1

m+ 1 + min{m, 1} if m ≥ 0 and |Ξ| = 2

−∞ if m < 0

.

The seller s has quasilinear utility with V s(Ξ) = 0 for all Ξ ⊆ Ω.

When the buyer has an income 0 ≤ wb < 1, there is no competitive equilibrium. To

see why, note that the Pareto efficiency of competitive equilibria entails that exactly

one trade must be realized in competitive equilibrium. Without loss of generality,

suppose that ψ is realized. For b (resp. s) to demand ψ, we must have that pψ ≤ pζ

(resp. pζ ≤ pψ); it follows that pψ = pζ in equilibrium. But if pψ = pζ ≤ wb

2
, then b

demands both trades; if pψ = pζ >
wb

2
, then b demands neither trade.
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4 Existence of stable outcomes

The possibility that competitive equilibrium may not exist in our model motivates

us to consider alternative solution concepts. In this section, we show that stable

outcomes—a standard solution concept from matching theory—always exist as long

as prices are flexible.

4.1 Stable outcomes

Rather than taking prices as given and unilaterally selecting utility-maximizing bun-

dles, we now instead assume that agents can contract on trades and prices. Formally,

a contract is a pair (ω, p) of a trade ω and a price p for ω (Hatfield et al., 2013). For

a set of contracts Y ⊆ X, we let τ(Y ) = {ω ∈ Ω | (ω, p) ∈ Y for some p} denote the

set of trades that are associated with contracts in Y . Given a set Y ⊆ X of contracts

and an agent i ∈ I, let Yi denote the set of trades in Y in which i is involved (as

either buyer or seller).

An outcome is a set Y ⊆ X of contracts such that each trade is associated with

at most one price in Y—formally, |τ(Y )| = |Y |. Unlike for competitive equilibrium,

outcomes do not specify prices of unrealized trades.

To define stability, we need two further pieces of notation. Given an agent i, an

income w, and an outcome Z ⊆ Xi, we let

Ui (Z,w) = U i

τ(Z), w − χi
∑

(ω,p)∈Z

p


denote the utility that i achieves from the set Z of contracts given income w. We can

then define the choice correspondence Ci : P(Xi) ⇒ P(Xi) by

Ci (Y,w) = arg max
outcomes Z⊆Y

Ui (Z,w) ;

here Ci (Y,w) consists of agent i’s most-preferred sets of contracts from Y .

We can now recall the definition of stability.

Definition 4 (Roth, 1984; Hatfield and Milgrom, 2005; Hatfield et al., 2013). Given

an income profile (wi)i∈I :

• An outcome A is individually rational if Ai ∈ Ci (Ai, w
i) for all agents i.
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• A nonempty set Z ⊆ X r A blocks an outcome A if for all agents i and all

choices Y ∈ Ci (Ai ∪ Zi, wi) , we have that Zi ⊆ Y .

• An outcome is stable if it is individually rational and there is no blocking set.

An outcome is stable if all agents choose all their contracts in the outcome given

their incomes, and there is no blocking set of other contracts that all agents would

choose when given access to their existing and blocking contracts.22

The following theorem is the main result of this paper.

Theorem 1. Under net substitutability, for all income profiles, stable outcomes exist.

We discuss the proof of Theorem 1 below, but we first return to two examples of

non-existence of competitive equilibrium from the previous section to illustrate how

considering stable outcomes restores existence. In Example 5, there are two stable

outcomes {(ω1, 1)} and {(ω2, 1)}, in which one trade is executed at a price of $1.

Here, the first outcome cannot be supported in competitive equilibrium as buyer b2

would like to buy ω2 for $1 and the seller cannot sell to both buyers; there is no block

because b2 offering $1 to the seller would not make her strictly prefer to sell to b2

rather than b1. Similarly, in Example 6, there are also two stable outcomes {(ψ, wb

2
)}

and {(ζ, wb

2
)}, in which one trade is executed at a price of wb

2
.

It is worth emphasizing how general Theorem 1 is from the point of view of agents’

preferences. Hatfield and Kojima (2008) showed that gross substitutability between

contracts with different counterparties is necessary (in a maximal domain sense) for

the existence of stable outcomes even in many-to-one markets without flexible prices.

As net substitutability permits gross complementarities across contracts even with

different counterparties, net substitutable preferences do not generally satisfy Hatfield

and Kojima’s (2008) necessary condition.

4.2 Relationship to previous existence results

In models of two-sided matching under gross substitutability, the existence of stable

outcomes does not depend on whether prices of trades are flexible. In particular,

under gross substitutability, even if the price of each trade were fixed in advance,

stable outcomes would exist (Roth, 1984; Hatfield and Milgrom, 2005). If prices were

22Here, we agents can retain, or unilaterally drop, some or any of their existing contracts.
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s1 s2

b b′

Figure 3: Trades in Exam-
ple 7. We denote the trade
between sk and b (resp. b′) by
ωk (resp. ω′k).

s1 s2 s3 ŝ1 ŝ2 ŝ3

b b′

Figure 4: Trades in Example 8. We denote
the trade between sj and b (resp. b′) by ωj
(resp. ω′j), and the trade between ŝj and b
(resp. b′) by ω̂j (resp. ω̂′j).

made more flexible in such a matching market, the efficiency of the outcome could

improve—this point is at the heart of Crawford’s (2008) proposal to introduce flexible

salaries into the National Resident Matching Program.

However, under net substitutability, price flexibility is crucial even for the exis-

tence, rather than just for the efficiency, of stable outcomes. Indeed, the following

example shows that if we made prices rigid in our model, then stable outcomes could

cease to exist.

Example 7. As depicted in Figure 3, there are two sellers s1 and s2 and two buyers b

and b′ who interact via four trades. Intuitively, the market is a many-to-one matching

market in which the buyers are firms and the sellers are workers who are only inter-

ested in working for at most one firm. Buyer b has a quasilogarithmic utility function

(as in Example 3) with an endowment of wb = 10. Buyer b′ has a quasilinear utility

function. The quasivaluation of b and the valuation of b′ are given by23

V b
Q(∅) = −10 V b′ (∅) = 0

V b
Q({ω1}) = −4 V b′ ({ω′1}) = 6

V b
Q({ω2}) = −7 V b′ ({ω′2}) = 7

V b
Q({ω1, ω2}) = −1 V b′ ({ω′1, ω′2}) = 7.

The sellers have quasilinear utility functions with valuations such that they can each

only participate in one trade, and s1 (resp. s2) has a reservation value of $1 for ω1

23Both V b
Q and V b′ are substitutable as valuations. Buyer b’s utility function is therefore net

substitutable as the quasilogarithmic utility functions with substitutable quasivaluations are net
substitutable (see Example 7 in Baldwin et al. (2020)).
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(resp. ω′2) and $0 for ω2 (resp. ω′2).24

Suppose that prices were rigid and the prices of all trades were set at $4. In this

case, it turns out that there are no stable outcomes. Indeed, considering the contracts

xk = (ωk, 4) and x′k = (ω′k, 4) for k ∈ {1, 2}, the buyers’ preferences over bundles of

contracts are

b : {x1, x2} �b {x1} �b ∅ �b {x2}

b′ : {x′2} �b′ {x′1} �b′ ∅ �b′ {x′1, x′2},

while the sellers’ preferences over bundles of contracts are

s1 : {x′1} �s1 {x1} �s1 ∅ �s1 {x1, x
′
1}

s2 : {x2} �s2 {x′2} �s2 ∅ �s2 {x2, x
′
2}.

With these preferences, there is no stable outcome among the contracts x1, x
′
1, x2, x

′
2.25

This non-existence arises due to the gross complementarity between x1 and x2 for b.

By contrast, Theorem 1 guarantees that there is a stable outcome when prices are

flexible. For example, the outcome {(ω1, 5), x′2} is stable. Intuitively, raising the price

of ω1 mitigates the gross complementarity between ω1 and ω2—leading to existence.

Inspired by the seminal work of Gale and Shapley (1962), in all existing models

of matching markets with a finite number of agents, the existence of stable outcomes

is found by a constructive argument.26 Under gross substitutability, a stable match-

ing can be found by the Deferred Acceptance algorithm (Kelso and Crawford, 1982;

24Formally, the sellers’ valuations are given by

V s1 (∅) = 0 V s2 (∅) = 0

V s1 ({ω1}) = −1 V s2 ({ω2}) = 0

V s1 ({ω′1}) = 0 V s2 ({ω′2}) = −1

V s1 ({ω1, ω
′
1}) = −∞ V s2 ({ω2, ω

′
2}) = −∞.

25See, e.g., Alva (2013, Chapter 2). Indeed, note that any outcome involving both x1 and x′1, or
both x2 and x′2, is not individually rational (for s1 and s2, respectively). And {x2} and {x′1, x2}
is not individually rational (for b), while {x1} and {x1, x

′
2} are blocked by {x2}, and {x1, x2} is

blocked by {x′1}.
26Topological arguments are sometimes used to prove existence results in models with a continuum

of agents (Azevedo and Hatfield, 2018; Che et al., 2019; Greinecker and Kah, 2021; Jagadeesan and
Vocke, 2021).
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Roth, 1984); under weaker substitutability conditions in models of matching with con-

tracts, the Cumulative Offer process of Hatfield and Milgrom (2005) can work where

Deferred Acceptance might fail (e.g., in the case of “bilateral” substitutes introduced

by Hatfield and Kojima (2010)). When prices are explicit in the matching model,

these algorithms operate similarly to a monotone (i.e., ascending or a descending)

auction. The following example shows that the Deferred Acceptance algorithm and

the Cumulative Offer process do not generally work under net substitutability.

Example 8. As depicted in Figure 4, there are two buyers b and b′ and six sellers

s1, s2, s3, ŝ1, ŝ2, ŝ3; each buyer and seller can interact via a unique trade. Intuitively,

the market is a many-to-one matching market in which there are two identical firms

b, b′, and three copies of each of two types of workers (s1, s2, s3 are of one type,

and ŝ1, ŝ2, ŝ3 are of the other). Each seller’s utility function is quasilinear, with

valuations such that they can each only participate in one trade; sellers s1, s2, s3 have

reservation values of $2, and sellers ŝ1, ŝ2, ŝ3 have reservation values of $1.27 Each

buyer has a quasilogarithmic utility function (as in Example 3) with an endowment

of wb = wb
′
= 10. Buyer b’s quasivaluation is given by

V b
Q(Ξ) = f(|Ξ ∩ {ω1, ω2, ω3}|) + g(|Ξ ∩ {ω̂1, ω̂2, ω̂3}|)− 10,

where

f(0) = 0 g(0) = 0

f(1) = 4 g(1) = 2

f(2) = f(3) = 6 g(2) = g(3) = 3.

Intuitively, workers of each type are identical, and the quasivaluation is additive across

types and concave within type.28 Buyer b′’s quasivaluation is analogous.

27Formally, sellers’ valuations are given by

V sj (∅) = 0 V ŝj (∅) = 0

V sj ({ωj}) = −2 V ŝj ({ω̂j}) = −1

V sj
(
{ω′j}

)
= −2 V ŝj ({ω̂′k}) = −1

V sj
(
{ωj , ω

′
j}
)

= −∞ V ŝj
(
{ω̂j , ω̂

′
j}
)

= −∞.

28The quasivaluation V b
Q is substitutable as a valuation. Buyer b’s utility function is therefore
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Figure 5: Stable outcomes and trajectories of matching processes in Example 8. The
figure depicts the buyers’ demands as a function of p and p̂, where p denotes the prices
of trades involving sellers s1, s2, s3 (which are assumed to be equal for the purposes
of this figure), and p̂ denotes the prices of trades involving sellers ŝ1, ŝ2, ŝ3 (which are
likewise assumed to be equal). The intercepts of the axes are set at the reservation
values p = 2 and p̂ = 1; the figure is otherwise drawn to scale. The solid black lines
partition the price space into the region where trades are uniquely demanded by each
buyer, and are labeled by (x, x̂), where x (resp. x̂) denotes the number of trades with
s1, s2, s3 (resp. ŝ1, ŝ2, ŝ3) that are demanded. The prices in the unique stable outcome
are represented by a black dot at (p, p̂) = (26

7
, 13

7
). The dashed lines represent two

possible trajectories of the Deferred Acceptance algorithm, the descending salary
adjustment process, and the Cumulative Offer process discussed in Example 8. If
s1, s2, s3 made their offers first, then the prices of those offers would decrease along
the horizontal dashed arrow until p = 5

2
, but then offers would have to be retracted to

reach a stable outcome, as p would have fallen too far. If ŝ1, ŝ2, ŝ3 made their offers
first, then the prices of those offers would decrease along the vertical dashed arrow
until p̂ = 10

9
, but then offers would have to be retracted to reach a stable outcome, as

p̂ would have fallen too far.
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There is an essentially unique stable outcome in this example. More precisely, the

stable outcomes are the ones in which each seller matches with three workers, two of

one type and one of the other, sellers s1, s2, s3 are paid $26
7
, and sellers ŝ1, ŝ2, ŝ3 are

paid $13
7
.29

However, the Deferred Acceptance (DA) algorithm (Gale and Shapley, 1962), the

descending salary adjustment (DSA) process (Kelso and Crawford, 1982), and the

Cumulative Offer (CO) process (Hatfield and Milgrom, 2005) may not find stable

outcomes. Indeed, suppose that sellers s1, s2, s3 start by making offers in DA or CO

until they no longer wish to make further offers, or, equivalently, that their prices

would be decreased first under DSA until all of them are matched or their reservation

values reached. Then, those sellers would have to offer to match at a price of 21
2

in

DA or CO, or their prices would have to be decreased to that level in DSA, before all

of them would be matched. But as 21
2
< 26

7
, offers would have to be retracted under

DA or CO, or prices would need to rise under DSA, to find a stable matching—which

the processes do not allow. A similar conclusion would apply if ŝ1, ŝ2, ŝ3 instead made

offers first under DA or CO, or their prices would be decreased first under DSA.30

Figure 5 depicts buyers’ demand and the trajectories of these processes.31

net substitutable as the quasilogarithmic utility functions with substitutable quasivaluations are net
substitutable (see Example 7 in Baldwin et al. (2020)).

29These outcomes correspond to competitive equilibria in which s1, s2, s3 are paid 2 6
7 , and ŝ1, ŝ2, ŝ3

are paid 1 3
7—which Figure 5 depicts. (As we show in Appendix A, stable outcomes generally

correspond to competitive equilibria when lower bounds on money consumption cannot be hit.)
30In this case, they would have to make offers to match at a price of 1 1

9 in DA or CO, or their
prices have to be decreased to that level in DSA, before all of them would be matched. But as
1 1

9 < 1 3
7 , offers would have to be retracted under DA or CO, or prices would need to rise under

DSA, to find a stable matching—which the processes do not allow.
31In this particular example, Sun and Yang’s (2009) double-track adjustment procedure would

find a stable outcome as the sellers can be partitioned into two groups within which they are
gross substitutes and between which they are gross complements (Sun and Yang, 2006). These two
groups are {s1, s2, s3} and {ŝ1, ŝ2, ŝ3}. The double-track adjustment procedure would operate by
starting the salaries of s1, s2, s3 at a high level, and the salaries of ŝ1, ŝ2, ŝ3 at a low level, and then
decreasing the former and increasing the latter. However, this approach would also fail in a suitable
extension with three types of workers instead of two, as Sun and Yang’s (2009) approach relies on
the partitioning goods into exactly two groups within which goods are gross substitutes and between
which goods are gross complements (Sun and Yang, 2006). We focus on a two-type example for sake
of simplicity, and to enable a graphical depiction of the trajectories of standard matching processes.
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4.3 Quasiequilibrium and the proof of Theorem 1

Having emphasized the role of flexible prices in our model and shown the inadequacy

of standard methods for proving the existence of a stable outcome, we now discuss

the proof of Theorem 1.

The proof involves analyzing a solution concept called “quasiequilibrium” (Debreu,

1962) from the general equilibrium theory literature.

Definition 5. An arrangement [Ξ; p] is a quasiequilibrium if for each agent i, writing

ui = U i

(
Ξ, χi

∑
ξ∈Ξ

pξ

)
,

we have that ui > −∞ and that Ξi ∈ Di
H (p;ui).

In a quasiequilibrium, all agents choose their expenditure-minimizing bundles and,

as in a competitive equilibrium, all markets clear. For instance, in Example 5, ar-

rangements [{ω1}; (1, 1)] and [{ω2}; (1, 1)] are both quasiequilibria; while in Exam-

ple 6, arrangements [{ψ}; (w
b

2
, w

b

2
)] and [{ζ}; (w

b

2
, w

b

2
)] are both quasiequilibria. The

correspondence of these quasiequilibria to stable outcomes turns out not to be a

coincidence in these examples, but is rather a general feature of our model.

The first step of the proof of Theorem 1 is to show that quasiequilibria exist under

net substitutability.

Proposition 2. Under net substitutability, for all income profiles, quasiequilibria

exist.

To prove Proposition 2, we adapt and combine Hatfield et al.’s (2013) arguments

to show the existence of competitive equilibrium in trading networks with transfer-

able utility with a topological fixed-point argument of Baldwin et al. (2020). Specif-

ically, we first modify sellers’ utility functions to bound prices from above (Hatfield

et al., 2013). We then apply a topological fixed-point argument to solve for a profile

of quasiequilibrium utility levels: we adjust utility levels of agents to make agents’

(quasi-)equilibrium expenditures equal their money endowments.32

32Baldwin et al. (2020) used a similar argument to show the existence of competitive equilibrium
in settings with income effects but without hard budget constraints.
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The second step of the proof of Theorem 1 involves showing that each outcome

associated with a quasiequilibrium is stable. Formally, given an arrangement [Ξ; p] ,

we define an associated outcome by

κ([Ξ; p]) = {(ξ, pξ) | ξ ∈ Ξ}.

That is, κ([Ξ; p]) is the outcome at which the trades in Ξ are realized at the prices

given by p. An outcome A is a quasiequilibrium outcome if A = κ([Ξ; p]) for some

quasiequilibrium [Ξ; p] . A quasiequilibrium outcome only retains contracts for all the

realized trades at their equilibrium prices (i.e., it does not include any contracts for

unrealized trades or contracts for trades at any price other than quasiequilibrium

prices).

The following proposition serves as the second step of the proof of Theorem 1.

Proposition 3. For all income profiles, every quasiequilibrium outcome is stable.

The proof of Proposition 3 adapts arguments of Hatfield et al. (2013) and Fleiner

et al. (2019) demonstrating analogous results for competitive equilibrium; the key

difference is that our argument relies on the monotonicity Assumption 4.

Theorem 1 follows by simply combining Proposition 2 with Proposition 3.

5 Other cooperative solution concepts

We next turn to the relationships between stability and two classic solution concepts:

core and pairwise stability. Flexible prices will play a crucial role in both of these

relationships.

5.1 The core

The first classic cooperative solution concept we consider is the core.

Definition 6. An outcome A is core unblocked if there do not exist a non-empty

set J ⊆ I of agents and a set Z ⊆ X of contracts such that b(Z) ∪ s(Z) ⊆ J and

Ui (Zi, w
i) > Ui (Ai, w

i) for all i ∈ J . An outcome is in the core if it is core unblocked.

An outcome is in the core if there is no set of contracts that strictly improves the

utility of all agents involved in these contracts. In core blocks, unlike for blocks in
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the sense of Definition 4, agents may not retain any of their existing contracts with

agents outside the blocking coalition. And core outcomes are weakly Pareto-efficient

by construction.

The following result can be viewed as a version of the First Fundamental Theorem

of Welfare Economics for our setting.

Theorem 2. Under net substitutability, for all income profiles, every stable outcome

is in the core.

The conclusion of Theorem 2 relies crucially on price flexibility.33 Indeed, it is well

known that in many-to-many matching markets with rigid prices stable outcomes may

be outside the core (Blair, 1988). Hence, Theorem 2 shows that price flexibility can

improve the efficiency of stable outcomes even in the presence of budget constraints

and gross complementarities. As a result, stability can be used a solution concept in

market settings with flexible prices, such as auctions, in which efficiency is important.

To prove Theorem 2, we establish a partial converse to Proposition 3.

Proposition 4. Under net substitutability, for all income profiles, every stable out-

come is a quasiequilibrium outcome.

Unlike Proposition 3, Proposition 4 relies on net substitutability, and its proof is

based on applying Hatfield et al.’s (2013, 2021) and Fleiner et al.’s (2019) analogous

results in a suitably defined auxiliary transferable utility economy. To complete the

proof of Theorem 2, we show that quasiequilibrium outcomes are in the core—a

conclusion that again relies on the monotonicity Assumption 4.34

5.2 Pairwise stability

Stability requires that agents have a lot of ability of coordinate on their blocking sets.

If agents were less able to coordinate, it might be reasonable to only require that

outcomes be immune to pairwise blocks.

33Assuming that prices are flexible, Hatfield et al. (2013) and Fleiner et al. (2019) showed a version
of Theorem 2 under gross substitutability.

34The argument actually shows that all quasiequilibrium outcomes (and hence, under net sub-
stitutability, all stable outcomes) are in fact strongly group stable (in the sense of Hatfield et al.
(2013)).
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Definition 7 (Gale and Shapley, 1962). Given a profile of incomes, an outcome is

pairwise stable if it is individually rational and there is no blocking set that consists

of a single contract.

By definition, every stable outcome is pairwise stable. Under gross substitutabil-

ity, in many-to-many matching markets with either rigid or flexible prices, stable

outcomes coincide with pairwise stable outcomes (Hatfield and Kominers, 2017; Hat-

field et al., 2021; Fleiner et al., 2019). The following theorem shows that the same

relationship holds under net substitutability in our model.

Theorem 3. Under net substitutability, for all income profiles, every pairwise stable

outcome is stable.

This result may appear surprising at first: it shows that agents can focus simply

on pairwise deviations to block an unstable outcome (such as an outcome that is

not weakly Pareto-efficient) even though net substitutability allows for gross com-

plementarities. However, the sufficiency of pairwise deviations to block an unstable

outcome in the presence of gross complementarities in our model relies crucially on

price flexibility. Under gross substitutability, each contract in a blocking set consti-

tutes a single-contract pairwise block. By contrast, in our model, the single-contract

block might need to be executed at a price that is different from the one specified in

the blocking set—as the following example shows.

Example 9 (A blocking set that does not contain a blocking contract under net sub-

stitutability). As depicted in Figure 2, there is one seller s and one buyer b, who

interact via two trades, ζ and ψ. Define valuations

V b (∅) = 0 V s (∅) = 0

V b ({ζ}) = 20 V s ({ζ}) = −2

V b ({ψ}) = 1 V s ({ψ}) = −2

V b ({ψ, ζ}) = 21 V s ({ψ, ζ}) = −4.
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Letting Ũ b (Ξ,m) = V b (Ξ) +m and Ũ s (Ξ,m) = V s (Ξ) +m, we define

U s (Ξ,m) = Ũ s (Ξ,m) +

0 if ζ /∈ Ξ or Ũ s (Ξ,m) ≥ 11

10(Ũ s (Ξ,m)− 11) otherwise

U b (Ξ,m) = Ũ b (Ξ,m) +

0 if ψ /∈ Ξ or Ũ b (Ξ,m) ≤ 0

10Ũ b (Ξ,m) otherwise

Intuitively, these utility functions are defined from the quasilinear utility functions by

introducing income effects at low (resp. high) utility levels for b (resp. s) with respect

to the realization of ψ (resp. ζ). In Appendix D, we show that these utility functions

are indeed net substitutable.

Suppose that both b and s have incomes of 0. In this case, the autarky outcome

is blocked by {(ζ, 10), (ψ, 10)}. But neither (ζ, 10) nor (ψ, 10) is a block on its own.

Indeed, agents’ preferences over bundles of contracts in {(ζ, 10), (ψ, 10)} are given by

b : {(ζ, 10), (ψ, 10)} �b {(ζ, 10)} �b ∅ �b {(ψ, 10)}

s : {(ζ, 10), (ψ, 10)} �s {(ψ, 10)} �s ∅ �s {(ζ, 10)},

so (ζ, 10) (resp. (ψ, 10)) would not be desirable to s (resp. b) on its own.

In particular, if prices were fixed at 10, then the autarky outcome would be

pairwise stable but unstable. However, with flexible prices, there exist blocking

contracts—such as (ζ, p) for 12 < p < 20.

The following proposition generalizes the key takeaways from Example 9.

Proposition 5. Under net substitutability, for all income profiles, if a set Z of con-

tracts blocks an individually rational outcome A, then there exists a contract (ω, pω)

blocking A for which ω ∈ τ(Z).

Thus, price flexibility is both necessary and sufficient (under net substitutability)

for agents to be able to focus on single-contract blocks and still ensure stability.

6 Properties of the set of stable outcomes

We finally turn to the analysis of the structure of stable outcomes under net substi-

tutability. When preferences satisfy gross substitutability, stable outcomes are known
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s1 s2 ŝ

b b′

Figure 6: Trades in Example 10. We denote the trade between sj and b (resp. b′) by
ωj (resp. ω′j), and the trade between ŝ and b (resp. b′) by ω̂ (resp. ω̂′).

to have a striking structure. First, stable outcomes form a lattice (Fleiner, 2003; Hat-

field and Kominers, 2017).35 Second, under the additional assumption of the “Law

of Aggregate Demand” (Hatfield and Milgrom, 2005),36 if an agent receives strictly

more than her autarky payoff in one stable outcome, then she must participate in

every stable outcome (Jagadeesan et al., 2020).37 Third, when agents on one side of

the market each demand at most one trade, stable outcomes can be implemented by

a mechanism that is strategy-proof for all agents on that side (Hatfield and Milgrom,

2005; Hatfield and Kominers, 2012, 2017). The most general versions of these results

for settings with flexible prices are due to Schlegel (2021).

The following example shows that all of these properties can fail under net sub-

stitutability, even though stable outcomes always exist.

Example 10. As depicted in Figure 6, there are two buyers b, b′ and three sellers

s1, s2, ŝ, and each buyer and seller can interact via a unique trade. Intuitively, the

market is a many-to-one matching market in which two sellers s1, s2 are identical.

Each seller’s utility function is quasilinear, with valuations such that they can each

only participate in one trade, and such that s1, s2 have reservation values of $0 and ŝ

35In particular, there exist buyer-optimal and seller-optimal outcomes.
36In our context, the “Law of Aggregate Demand” would require that as prices of trades rise, each

buyer (resp. seller) must demand fewer (resp. more) trades.
37This result relies on the absence of budget constraints (Herings and Zhou, 2019). A more general

version of this “Lone Wolf Theorem”, called the “Rural Hospital Theorem,” states without flexible
prices, agents execute the same number of trades in all stable outcomes (Hatfield and Kominers,
2012, 2017).
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has a reservation value of $4.38 Buyer b has a quasilogarithmic utility function with

quasivaluation given by

V b
Q(Ξ) =



−10 if Ξ = ∅

−4 if Ξ ∩ {ω1, ω2} 6= ∅ and ω̂ /∈ Ξ

−7 if Ξ ∩ {ω1, ω2} = ∅ and ω̂ ∈ Ξ

−1 if Ξ ∩ {ω1, ω2} 6= ∅ and ω̂ ∈ Ξ

,

and an endowment of wb = 10.39 Intuitively, the quasivaluation V b
Q values autarky at

−10, and places marginal values of 6 on executing at least one of ω1, ω2, and 3 on ω′.

Buyer b′ has a quasilinear utility function with a (substitutable) valuation

V b′ (Ξ) =


0 if Ξ = ∅

6 if Ξ ∩ {ω′1, ω′2} 6= ∅

3 if Ξ ∩ {ω′1, ω′2} = ∅ and ω̂′ ∈ Ξ

.

To understand the failure of lattice structure, we calculate the stable outcomes

that are most preferred by each seller. Note that s′ would never trade for less than

$4, and neither s1 nor s2 would trade for a negative price. In this case, neither buyer

would engage in trade with either s1 or s2 for a price of greater than $6. There are

exactly two stable outcomes in which s1 or s2 is paid $6, namely A = {(ω1, 6), (ω′2, 6)}
and A′ = {(ω′1, 6), (ω′2, 6)}. These outcomes are strictly preferred by s1 and s2 to all

other stable outcomes. On the other hand, there are also stable outcomes in which

ŝ is matched at above her reservation value, such as Â = {(ω1, 0), (ω′2, 0), (ω̂, 71
2
)}.

Therefore, there exists no stable outcome that is unanimously preferred by all sellers

38Formally, the sellers’ valuations are given by

V sj (∅) = 0 V ŝ1 (∅) = 0

V sj ({ωj}) = 0 V ŝj ({ω̂}) = −4

V sj
(
{ω′j}

)
= 0 V ŝj ({ω̂′}) = −4

V sj
(
{ωj , ω

′
j}
)

= −∞ V ŝ ({ω̂, ω̂′}) = −∞.

39The quasivaluation V b
Q is substitutable as a valuation. Buyer b’s utility function is therefore

net substitutable as the quasilogarithmic utility functions with substitutable quasivaluations are net
substitutable (see Example 7 in Baldwin et al. (2020)).
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to all other stable outcomes (as a result the lattice structure of stable outcomes also

fails). Moreover, seller ŝ gets more than her autarky payoff in outcome Â, but does

not trade in outcome A.40

Finally, we show that there is no mechanism that implements stable outcomes

that is strategy-proof for sellers. The details of the argument are in Appendix D. To

see why, note that if any stable outcome other than A or A′ were selected, s1 or s2

could profitably misreport a reservation value of $6−ε. Indeed, in the market defined

by such a misreport by either seller, both s1 and s2 would be matched and paid at

least $6− ε each. On the other hand, if A or A′ were selected, then ŝ could profit by

misreporting that her reservation value for ω̂′ were $5 and that her reservation value

for ω̂ were $ε. Indeed, in the market defined by such a report, ŝ would be matched

with b at a salary of at least $5 in every stable outcome. Intuitively, misreporting the

reservation value for ω̂′ lowers the price that s1 and s2 can demand from b′, which in

turn lowers s1 and s2’s payments from b, and thereby raises ŝ’s payment from b due

to a gross complementarity.

7 Conclusion

Competitive prices may fail to clear markets with indivisibilities and budget con-

straints. We showed that, under the net substitutability condition, markets with

indivisibilities and budget constraints nevertheless admit stable outcomes. Price flex-

ibility plays a crucial role in our existence and efficiency results, and in the ability

of agents to focus on simple blocking contracts. Net substitutability allows agents to

view trades as either gross complements or gross substitutes—thereby substantially

weakening known conditions for the existence of stable outcomes in finite markets.

However, the structural properties of stable outcomes under gross substitutability can

fail under net substitutability.

40Hence, the conclusion of the “Lone Wolf Theorem” fails. Unlike in Herings and Zhou (2019), this
failure is not driven by the possibility of agents hitting their lower bounds on money consumption.

And indeed, the “law of aggregate demand” also holds in this example: increasing the price
of a trade can never increase the total number of demanded trades. To see why, consider buyer
b. Her quasivaluation implies that she views ω1 and ω̂ as gross complements; ω2 and ω̂ as gross
complements; and ω1 and ω2 as perfect substitutes. If the price of ω̂ increased, b would never start
demanding either ω1 or ω2; if the price of ω1 (resp. ω2) increased, b might switch from demanding ω1

(resp. ω2)to ω2 (resp. ω1), but would never start demanding ω̂. Hence, the failure of the conclusion
of the Lone Wolf Theorem is driven entirely by gross complementarities between ω̂ and the other
trades.
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Figure 7: Summary of our results. Squiggly arrows represent existence results, and
solid arrows represent relationships between solution concepts. Arrow are labeled by
hypothesis, abbrevated as ns = net substitutability; si = sufficient incomes (defined
in Appendix A). Implicit in the figure is the coincidence of stability and pairwise
stability under net substitutability (Theorem 3).

In Appendix A, we explore a special case of our model on which buyers’ budget

constraints never bind (e.g., as in Example 3). In that case, competitive equilibrium

outcomes exist, are in the strict core, and coincide with stable outcomes under net

substitutability. Figure 7 summarizes our results.

Our results have interesting implications for the design of auctions with budget

constraints. We showed that in the presence of budget constraints, dynamic auctions

may not find desirable outcomes. However, our existence and efficiency results suggest

that, by using stability as a solution concept, there is scope for adapting sealed-bid

auction designs (e.g., Klemperer (2010) and Milgrom (2009)) to settings with budget

constraints—despite the resulting gross complementarities.

In future theoretical work, one could also put additional restrictions on net sub-

stitutability to recover some of the structure of classic matching markets; revisit our

results in a model of trading networks or with transaction frictions (as in Fleiner et al.

(2019) and Schlegel (2021)); explore algorithms for finding stable outcomes under net

substitutability; and consider whether net substitutability forms a maximal domain

of preferences for the existence of stable outcomes.
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A The case with sufficient incomes

In this appendix, we present stronger results for a special case in which buyers’

incomes are large enough that their budget constraints do not bind. Formally, we say

that an income w for a buyer b is sufficient if U b (∅, w) > U b
(
Ξ,mb

)
. A sufficient

income profile is an income profile (wi)i∈I such that for each buyer b, we have that

wb is a sufficient income for b.

The key point underlying this special case is that competitive equilibrium and

quasiequilibrium coincide for sufficient incomes.

Lemma A.1 (Competitive equilibrium versus quasiequilibrium).

(a) For all income profiles, every competitive equilibrium is a quasiequilibrium.

(b) For all sufficient income profiles, every quasiequilibrium is a competitive equi-

librium.

In particular, under the sufficient incomes condition, Proposition 2 specializes to

an existence result for competitive equilibrium.

Corollary A.1. Under net substitutability, for all sufficient income profiles, compet-

itive equilibria exist.

Under sufficiency, Proposition 3 and Lemma A.1 give a connection between stabil-

ity and competitive equilibrium. To state the connection, analogously to quasiequi-

librium outcomes, we call an outcome A a competitive equilibrium outcome if A =

κ([Ξ; p]) for some competitive equilibrium [Ξ; p] .

Corollary A.2. Under net substitutability, for all sufficient income profiles, an out-

come is stable if and only if it is a competitive equilibrium outcome.

For our two-sided matching market setting, Corollary A.2 generalizes analogous

results for substitutes valuations (Theorem 5 in Hatfield et al. (2013)), and for gross

substitutable utility functions (Theorem E.1 in Fleiner et al. (2019)).

With sufficient incomes, we can also show a stronger version of the First Funda-

mental Theorem of Welfare Economics. Let us first strengthen the definition of the

core by requiring that only one agent in the block needs to be made strictly better

off (the other agents can remain indifferent).
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Definition A.1. An outcome A is strict-core unblocked if there do not exist a non-

empty set J ⊆ I of agents and a set Z ⊆ XrA of contracts such that b(Z)∪s(Z) ⊆ J

and Ui (Zi, w
i) ≥ Ui (Ai, w

i) for all i ∈ J and Ui (Zi, w
i) > Ui (Ai, w

i) for some i ∈ J .

An outcome is in the strict core if it is strict-core unblocked.

Outcomes in the strict core are strictly Pareto-efficient. The definition of the

strict core features prominently in the standard analysis of competitive equilibrium

outcomes with divisible goods. The proof of the following fact carries over to the

indivisible good case.

Fact A.1 (see, e.g., Proposition 18.B.1 in Mas-Colell et al., 1995). For all income

profiles, every competitive equilibrium outcome is in the strict core.

By combining Corollary A.2 and Fact A.1, we obtain that a somewhat stronger

efficiency result than Theorem 2 for the case with sufficient incomes.

Corollary A.3. Under net substitutability, for all sufficient income profiles, every

stable outcome is in the strict core.

B Understanding Hicksian demand

We first develop a new relationship between Marshallian and Hicksian demand in our

setting with indivisible goods and hard budget constraints.

Lemma B.1. Let i be an agent. Let p be a price vector.

(a) For all incomes w, we have that Di
M (p, w) = Di

H (p;u) , where

u = max
Ξ⊆Ωi

U i

(
m− χi

∑
ξ∈Ξ

pξ, .

)

(b) For all utility levels u, writing

w = min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}

if w is an income for i, then we have that Di
H (p;u) ⊇ Di

M (p, w) . If furthermore

i is a seller, or i is a buyer and w is a sufficient income for i, then we have

that Di
H (p;u) = Di

M (p, w) .
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We next extend the quasilinear interpretation of Hicksian demand developed by

Baldwin et al. (2020) to settings with hard budget constraints.41 Formally, given an

agent i and a utility level u, we define a valuation V i
H (·;u) by

V i
H (Ξ;u) = max

U i(Ξ,m)≥u
{−m},

which we call agent i’s Hicksian valuation at utility level u. Assumptions 3, 4, and 5

ensure that V i
H (Ξ;u) is in fact a valuation and that it varies continuously with u

(when the range R ∪ {−∞} of Hicksian valuations is equipped with the topology

inherited from the topology of the extended real line).42 The following result relates

the Hicksian valuations to Hicksian demand.

Lemma B.2 (Lemma 1 in Baldwin et al. (2020)43). Let i be an agent. For all price

vectors p and utility levels u, we have that

Di
H (p;u) = arg max

Ξ⊆Ωi

{
V i

H (Ξ;u)− χi
∑
ξ∈Ξ

pξ

}
.

Net substitutability can be expressed as a condition on the Hicksian valuations.

Specifically, U i is net substitutable if and only if each of agent i’s Hicksian valuations

is substitutable (in the sense of Hatfield et al. (2013, 2019); see Remark 1 in Baldwin

et al. (2020)).

We also consider Baldwin et al.’s (2020) Hicksian economies. Formally, the Hick-

sian economy for a profile (ui)i∈I of utility levels is the economy in which each agent

i has quasilinear utility without a budget constraint and V i = V i
H (·;u). In light of

Lemma B.2, agents’ demands in each Hicksian economy are given by their Hicksian

demands in the original economy, as in Baldwin et al. (2020). We use the construction

of the Hicksian economy in several proofs.

41Baldwin et al. (2020) implicitly assume that all incomes are sufficient (see Appendix A), as they
in effect assume that U i

(
Ξ,mi

)
= −∞ always holds.

42Here, Assumption 5 ensures that sellers’ Hicksian valuations never take value∞, and that buyers’
Hicksian valuations never evaluate to −∞ at ∅.

43While Baldwin et al. (2020) considered an exchange economy and imposed additional conditions
on utility functions, an identical argument carries over to our setting.
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C Proofs

C.1 Proof of Proposition 1

Our proof follows the structure of the proof of Proposition 1 in Baldwin et al. (2020),

but allows for the possibility of hard budget constraints for buyers. The proof uses the

following fact regarding valuations. Here, we write Di for the demand correspondence

for a valuation V i.

Fact C.1. A valuation V i is substitutable if and only if for all price vectors p̂ with

|Di (p̂) | = 2, writing Di (p̂) = {Ξ,Ξ′}, we have that |Ξ r Ξ′|, |Ξ′ r Ξ| < 1.

For the main argument, we actually prove the contrapositive of the proposition.

Suppose that U i is not net substitutable; we show that there must exist an income

for which U i is not gross substitutable. We consider the cases of sellers and buyers

separately.

Case of sellers. Suppose that i is a seller. By construction, there exists a utility

level u such that V i
H (·;u) is not a substitutable valuation. Hence, by Lemma B.2 and

the “if” direction of Fact C.1 for V i = V i
H (·;u), there exists a price vector p̂ such that

|Dj
H (p̂;u) | = 2, and writing Dj

H (p̂;u) = {Ξ,Ξ′}, we have that |Ξ r Ξ′| ≥ 2 or that

|Ξ′ r Ξ| ≥ 2. Without loss of generality, we can assume that |Ξ r Ξ′| ≥ 2. Suppose

that ω ∈ Ξ r Ξ′ and that ψ ∈ Ξ r Ξ′ r {ω}.
Consider the income

w = −
∑
ξ∈Ξ

p̂ξ − V i
H (Ξ;u) = −

∑
ξ∈Ξ′

p̂ξ − V i
H (Ξ′;u) ;

Lemma B.1(b) implies that Dj
M (p̂, w) = {Ξ,Ξ′}. Let µ be such that

Di
M (p̂− µeω, w) , Di

M (p̂ + µeω, w) ⊆ {Ξ,Ξ′};

such a µ exists due to the upper hemicontinuity of Dj
M (which in turn follows from

Assumptions 1 and 3).

Let p = p̂ + µeω, let λ = 2µ, and let p′ = p− λeω = p̂− µeω. We now show that
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Di
M (p, w) = {Ξ} and that Di

M (p′, w) = {Ξ′}. We have that

U i

(
Ξ, w +

∑
ξ∈Ξ

pξ

)
> U i

(
Ξ, w +

∑
ξ∈Ξ

p̂ξ

)

= U i

(
Ξ′, w +

∑
ξ∈Ξ′

p̂ξ

)

= U i

(
Ξ′, w +

∑
ξ∈Ξ′

pξ

)
,

where the inequality holds due to Assumption 4 because pω > p̂ω and ω ∈ Ξ, the first

equality holds because {Ξ,Ξ′} ⊆ Dj
M (p̂, w) , and the second equality holds because

ω /∈ Ξ′. Similarly, we have that

U i

(
Ξ, w +

∑
ξ∈Ξ

p′ξ

)
< U i

(
Ξ, w +

∑
ξ∈Ξ

p̂ξ

)

= U i

(
Ξ′, w +

∑
ξ∈Ξ′

p̂ξ

)

= U i

(
Ξ′, w +

∑
ξ∈Ξ′

p′ξ

)
,

where the inequality holds due to Assumption 4 because p′ω < p̂ω and ω ∈ Ξ, the first

equality holds because {Ξ,Ξ′} ⊆ Dj
M (p̂, w) , and the second equality holds because

ω /∈ Ξ′.

As Di
M (p, w) , Di

M (p′, w) ⊆ {Ξ,Ξ′}, we must have that Di
M (p, w) = {Ξ} and that

Di
M (p′, w) = {Ξ′}. As |ΞrΞ′| ≥ 2, there exists ξ ∈ ΞrΞ′r {ω}, and thus U i is not

gross substitutable at income w.

Case of buyers. Now suppose that i is a buyer. We apply a similar argument to

the case of sellers, but need to carefully deal with the hard budget constraints, and

ensure that the income at which gross substitutability fails in fact satisfies w > mi.

Our strategy is to first show that gross substitutability sharply restricts the values of

utility of that lower bound mi (Claim C.1). We then follow the approach of the case

of sellers, but move prices and utility levels so the utility level is not a utility level

that can be achieved with m = mi (Claim C.2) and prices are nearly nonnegative
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(Claim C.3). We then characterize how perturbing prices can affect Hicksian demand

(Claim C.4), and complete the argument similarly to the case of sellers.

We first show a claim regarding the interaction between gross substitutability

and utility evaluated at the lower bound mi The claim extends the conclusion of

Example 4.

Claim C.1. Let i be a buyer, and suppose that U i is strictly increasing in trades away

from utility level −∞. If U i is gross substitutable for all incomes and |Ωi| > 1, then

U i (Ξ,mi) = −∞ for all Ξ ( Ωi.

Proof. Let

S = {Ξ ⊆ Ωi | U i
(
Ξ,mi

)
∈ R}

denote the family of sets of trades at which i can feasibly hit the lower bound mi. If

S = ∅, then the claim holds. Hence, we can assume that S 6= ∅.

We now prove that there must exist an income at which U i is not gross substi-

tutable. By Assumption 4, if Ξ ∈ S and Ψ ⊇ Ξ, then Ψ ∈ S. Hence, S 6= {∅}.
Let n = minΨ∈Sr{∅} |Ψ|. If n = |Ωi|, then since |Ωi| > 1, we must have that

S = {Ωi}. Now, let Ξ maximize U i (Ψ,mi) over all Ψ ∈ S with |Ψ| = n; we show

that Ξ = Ωi must hold.

Suppose for sake of deriving a contradiction that Ξ ( Ωi. Let ψ ∈ Ωi r Ξ be

arbitrary. Let w be an income such that U i (Ψ, w) < U i (Ξ,mi) for all Ψ with |Ψ| < n,

and U i (Ξ, w) < U i (Ξ ∪ {ψ},mi); such an income exists due to the choice of Ξ, the

strict monotonicity of U i in trades away from utility level −∞, and Assumption 3.

Let ω ∈ Ξ be arbitrary, let K = w −mi > 0, and define price vectors

p =
(
0Ξ, Kψ, (2K)ΩirΞr{ψ}

)
p′ = p +

K

2
eω

We now show that Di
M (p, w) = {Ξ ∪ {ψ}}, let Ψ ∈ Di

M (p, w) . By strict mono-

tonicity in trades, we must have that Ξ ⊆ Ψ, and by Assumption 2, we must have

that Ψ ⊆ Ξ ∪ {ψ}. Since U i (Ξ, w) < U i (Ξ ∪ {ψ},mi), it follows that Ψ = Ξ ∪ {ψ}.
We next show that Di

M (p′, w) = {Ξ}, let Ψ ∈ Di
M (p′, w) . Again, by strict mono-

tonicity in trades, we must have that Ξ r {ω} ⊆ Ψ, and by Assumption 2, we must

have that Ψ ( Ξ∪ {ψ}. Hence, we must have that Ψ ∈ {Ξr {ω},Ξ∪ {ψ}r {ω},Ξ}.
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But the choice of w and Assumption 4 imply that

U i

(
Ξ,mi +

K

2

)
> U i

(
Ξ,mi

)
> U i (Ξ r {ω}, w) ,

and hence that Ξ r {ω} /∈ Di
M (p, w) . And similarly, due to the choice of Ξ and

Assumption 4, we have that

U i

(
Ξ,mi +

K

2

)
> U i

(
Ξ,mi

)
≥ U i

(
Ξ ∪ {ψ}r {ω},mi

)
,

and hence that Ξ∪{ψ}r{ω} /∈ Di
M (p, w) . Thus, we must have thatDi

M (p′, w) = {Ξ}.
It follows that U i is not gross substitutable at income w—a contradiction.

The following claim provides a version of Fact C.1 that focuses on utility levels

at which hard budget constraints do not bind for the bundles under consideration.

Formally, let L = {U i (Ψ,mi) | Ψ ⊆ Ωi} denote the set of utility levels other than

−∞ that can be achieved by i by hitting her lower bound on money consumption;

this set has size at most 1 by Claim C.1.

Claim C.2. If i is a buyer and U i is not net substitutable, then there exists a price

vector p̂ and a utility level u /∈ L such that |Di
H (p̂;u) | = 2, and writing Di

H (p̂;u) =

{Ξ,Ξ′}, we have that |Ξ r Ξ′| ≥ 2.

Proof. By construction, there exists a utility level u0 such that V i
H (·;u0) is not a

substitutable valuation. Since the set of substitutable valuations is closed,44 and the

Hicksian valuations vary continuously with the utility level, and the set S is finite,

we can assume that u0 /∈ L.

The “only if” direction of Fact C.1 and Lemma B.2 together imply that there is

a price vector p̂′ with |Di
H (p̂′;u0) | = 2 such that writing Di

H (p̂′;u) = {Ξ,Ξ′}, we

have that |Ξ r Ξ′| ≥ 2 or that |Ξ′ r Ξ| ≥ 2. By exchanging the roles of Ξ and Ξ′ if

necessary, we can ensure that |Ξ r Ξ′| ≥ 2.

We next show that it is sufficient to restrict consideration to price vectors that

are nearly nonnegative to detect net complementarities.

44This property is a consequence of characterization of substitutable valuations in terms of “M \-
concavity” (see Fujishige and Yang (2003); Hatfield et al. (2019) gave a similar characterization in
a matching setting).
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Claim C.3. If i is a buyer and U i is not net substitutable, then there exist a price

vector p̂ and a utility level u /∈ L such that |Di
H (p̂;u) | = 2, and writing Di

H (p̂;u) =

{Ξ,Ξ′}, we have that |Ξ r Ξ′| ≥ 2 and one of the following conditions holds:

(1) we have that V i
H (Ξ;u) = −mi and that V i

H (Ξ′;u)−
∑

ξ∈Ξ′ min{p̂ξ, 0} < −mi

(2) we have that V i
H (Ξ;u)−

∑
ξ∈Ξ min{p̂ξ, 0} < −mi.

Proof. Claim C.2 implies that there exist a price vector p̂′ and a utility level u /∈ S
such that |Di

H (p̂;u) | = 2, and writing Di
H (p̂′;u) = {Ξ,Ξ′}, we have that |ΞrΞ′| ≥ 2.

We divide into cases to define a constant ε, which will restrict the degree of negativity

of prices to be considered.

Case 1: V i
H (Ξ;u) = −mi. In this case, we must have that U i (Ξ,mi) 6= −∞.

As |Ξ r Ξ′| ≥ 2, we must have that |Ωi| > 1. By Claim C.1, it follows that

U i (Ξ′,mi) = −∞. Thus, we must have that V i
H (Ξ′;u) = −mi; let ε > 0 be such

that |Ω|ε < −V i
H (Ξ′;u)−mi.

Case 2: V i
H (Ξ′;u) < −mi. In this case, let ε > 0 be such that |Ω|ε < −V i

H (Ξ;u)−
mi.

Let Ωε = {ω ∈ Ω | pω < −ε}. It follows from Assumption 4 that Ωε ⊆ Ξ,Ξ′.

Define a price vector p̂ = (p̂′ΩirΩε
, (−ε)Ωε). Let K = −

∑
ω∈Ωε

(p̂′ω + ε). Note that in

Case 1, we have that

V i
H (Ξ′;u)−

∑
ξ∈Ξ′

min{p̂ξ, 0} ≤ V i
H (Ξ′;u) + |Ω|ε < −mi

and in Case 2, we have that

V i
H (Ξ;u)−

∑
ξ∈Ξ

min{p̂ξ, 0} ≤ V i
H (Ξ;u) + |Ω|ε < −mi.

Thus, Case (1) and (2) of the claim correspond to Cases 1 and 2 above, respectively.

It remains to show that Di
H (p̂;u) = {Ξ,Ξ′}. Let Ψ ∈ Di

H (p̂;u). By Lemma B.2,

we must have that

V i
H (Ψ;u)− V i

H (Ξ;u) ≥
∑
ξ∈Ψ

p̂ξ −
∑
ξ∈Ξ

p̂ξ.
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It follows from Assumption 4 that Ωε ⊆ Ψ. Hence, we have that∑
ξ∈Ψ

p̂i = −K +
∑
ξ∈Ψ

p̂′ξ.

But since Ξ ⊇ Ωε, we also have that∑
ξ∈Ξ

p̂ξ = −K +
∑
ξ∈Ξ

p̂′ξ.

Hence, we must have that

V i
H (Ψ;u)− V i

H (Ξ;u) ≥
∑
ξ∈Ψ

p̂′ξ −
∑
ξ∈Ξ

p̂′ξ,

as since Ξ ∈ Di
H (p̂′;u) , it follows from Lemma B.2 that Ψ ∈ Di

H (p̂′;u). Since

Ψ ∈ Di
H (p̂;u) was arbitrary, we have shown that Di

H (p̂;u) ⊆ Di
H (p̂′;u) = {Ξ,Ξ′}.

But since Di
H (p̂′;u) = {Ξ,Ξ′}, it follows from Lemma B.2 that

V i
H (Ξ′;u)− V i

H (Ξ;u) ≥
∑
ξ∈Ξ′

p̂′ξ −
∑
ξ∈Ξ

p̂′ξ.

And as Ξ′ ⊇ Ωε as well, we have that∑
ξ∈Ξ′

p̂ξ = −K +
∑
ξ∈Ξ′

p̂′ξ.

Hence, we must have that

V i
H (Ξ′;u)− V i

H (Ξ;u) ≥
∑
ξ∈Ξ′

p̂ξ −
∑
ξ∈Ξ

p̂ξ.

By Lemma B.2, it follows that Di
H (p̂;u) = {Ξ,Ξ′}.

To complete the argument, we will also need the following claim regarding Hicksian

demand.

Claim C.4. Let i is a buyer, let p̂ be a price vector, and let u be a utility level such

that |Di
H (p̂;u) | = 2. Writing Di

H (p̂;u) = {Ξ,Ξ′}, let ω ∈ Ξ r Ξ′. For all sufficiently

small ε > 0, we have that Di
H (p̂ + εeω;u) = {Ξ′}.
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Proof. It follows from Lemma B.2 that Di
H (·;u) is upper hemicontinuous. Hence,

taking ε sufficiently small and letting p′ = p̂ + εeω, we can ensure that

Di
H (p′;u) ⊆ Di

H (p̂;u) = {Ξ,Ξ′}.

By Lemma B.2, we have that

V i
H (Ξ;u)−

∑
ξ∈Ξ

p̂ξ = V i
H (Ξ′;u)−

∑
ξ∈Ξ′

p̂ξ.

Since ω ∈ Ξ r Ξ′, the definition of p′ then implies that

V i
H (Ξ;u)−

∑
ξ∈Ξ

p′ξ < V i
H (Ξ;u)−

∑
ξ∈Ξ

p̂ξ = V i
H (Ξ′;u)−

∑
ξ∈Ξ′

p̂ξ = V i
H (Ξ′;u)−

∑
ξ∈Ξ′

p′ξ.

By Lemma B.2, it follows that Ξ /∈ Di
H (p′;u). Hence, we must have that Di

H (p′;u) =

{Ξ′}.

Now let p̂, u,Ξ,Ξ′ be as in Claim C.3. Without loss of generality, we can assume

that |Ξ r Ξ′| ≥ 2. Let ω ∈ Ξ r Ξ′. To complete the argument, we divide into cases

based on which

Case 1: V i
H (Ξ;u) = −mi and V i

H (Ξ;u)−
∑

ξ∈Ξ min{p̂ξ, 0} < −mi.

By construction, we have that U i (Ξ,mi) ≥ u; since u /∈ L, we must have that

U i (Ξ,mi) > u. By contrast, since V i
H (Ξ′;u) < −mi, it follows from Assumptions 3

and 4 that U i (Ξ′,−V i
H (Ξ′;u)) = u.

Consider a scalar

w =
∑
ξ∈Ξ

p̂ξ − V i
H (Ξ;u) =

∑
ξ∈Ξ′

p̂ξ − V i
H (Ξ′;u) .

Note that

w ≥
∑
ξ∈Ξ′

min{p̂ξ, 0} − V i
H (Ξ′;u) > mi,

so w is an income for i.
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By Lemma B.1(b), we have that Di
M (p̂, w) ⊆ {Ξ,Ξ′}. And note that

U i

(
Ξ, w − χi

∑
ξ∈Ξ

p̂ξ

)
= U i

(
Ξ,mi

)
> u

while

U i

(
Ξ′, w − χi

∑
ξ∈Ξ′

p̂ξ

)
= U i

(
Ξ′,−V i

H (Ξ′;u)
)

= u.

Hence, we have that Di
M (p̂, w) = {Ξ}.

By Claim C.4, for sufficiently small ε > 0, letting p′ = p̂ + χiεeω, we have that

Di
H (p′;u) = {Ξ′}. Since ω /∈ Ξ′, it follows from Lemma B.1(b) that Di

M (p′, w) =

{Ξ′}. As |Ξ r Ξ′| ≥ 2, there exists ξ ∈ Ξ r Ξ′ r {ω}, and hence U i is not gross

substitutable at income w.

Case 2: V i
H (Ξ;u)−

∑
ξ∈Ξ min{p̂ξ, 0} < −mi.

Consider a scalar

w =
∑
ξ∈Ξ

p̂ξ − V i
H (Ξ;u′) =

∑
ξ∈Ξ

p̂ξ − V i
H (Ξ′;u′) .

By the hypothesis of the case, we have that

w ≥
∑
ξ∈Ξ

min{p̂ξ, 0} − V i
H (Ξ;u) > mi.

Hence, w is an income for i.

By Lemma B.2, we have that

{Ξ,Ξ′} = arg max
Ψ⊆Ωi

{
V i

H (Ψ;u)−
∑
ξ∈Ψ

pξ

}
. (C.1)

Hence, there exists µ > 0 such that

V i
H (Ψ;u)−

∑
ξ∈Ψ

pξ < V i
H (Ξ;u)−

∑
ξ∈Ξ

pξ − 5µ

for all Ψ ∈ P(Ωi) r {Ξ,Ξ′}.
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Let p = p̂− µeω, let λ = 2µ, and let p′ = p + λeω = p̂ + µeω.

In light of Claim C.4, by reducing µ if necessary, we can ensure that Di
H (p′;u) =

{Ξ′}. By Lemma B.1(b), it follows that Di
M (p′, w) = {Ξ′}.

We next show that Di
M (p, w) = {Ξ}. Let u′ = U i (Ξ, µ− V i

H (Ξ;u)) > u,

where the inequality follows from Assumption 4. By construction, we have that

V i
H (Ξ;u′) ≥ V i

H (Ξ;u)− µ, and it follows that

V i
H (Ξ;u)−

∑
ξ∈Ξ

p̂ξ ≤ V i
H (Ξ;u′)−

∑
ξ∈Ξ

p̂ξ + µ = V i
H (Ξ;u′)−

∑
ξ∈Ξ

pξ, (C.2)

We also have that V i
H (Ψ;u′) ≤ V i

H (Ψ;u) for all Ψ ⊆ Ωi. It follows that, for all

Ψ ∈ P(Ωi) r {Ξ,Ξ′}, we have that

V i
H (Ψ;u′)−

∑
ξ∈Ψ

pξ ≤ V i
H (Ψ;u)−

∑
ξ∈Ψ

pξ

≤ V i
H (Ψ;u)−

∑
ξ∈Ψ

p̂ξ + µ

< V i
H (Ξ;u)−

∑
ξ∈Ξ

p̂ξ

≤ V i
H (Ξ;u′)−

∑
ξ∈Ξ

pξ,

where the second inequality follows from the definition of p, and the third inequal-

ity follows from the definition of µ, and the fourth inequality is (C.2) Hence, by

Lemma B.2, we have that Di
H (p;u′) ⊆ {Ξ,Ξ′} And since |Ξ r Ξ′| ≥ 2, Claim C.1

implies that U i (Ξ′,mi) = −∞. By Assumptions 2, 3, and 4, it follows that

V i
H (Ξ′;u′) < V i

H (Ξ′;u). Hence, we have that

V i
H (Ξ′;u′)−

∑
ξ∈Ξ′

pξ < V i
H (Ξ′;u)−

∑
ξ∈Ξ′

pξ

= V i
H (Ξ′;u)−

∑
ξ∈Ξ′

p̂ξ

= V i
H (Ξ;u)−

∑
ξ∈Ξ

p̂ξ

≤ V i
H (Ξ;u′)−

∑
ξ∈Ξ

pξ,
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where the first equality holds due to the definition of p since ω /∈ Ξ′, the second

equality follows from (C.1), and the second inequality is (C.2). By Lemma B.2,

we must therefore have that Di
H (p;u′) = {Ξ}. And by Lemma B.1(b), it follows

that Di
M (p, w) = {Ξ}.

As |Ξ r Ξ′| ≥ 2, there exists ξ ∈ Ξ r Ξ′ r {ω}, and hence U i is not gross

substitutable at income w.

By construction, the cases exhaust all possibilities, and we have therefore proven that

there exists an income at which U i is not gross substitutable.

C.2 Proof of Proposition 2

To prove the proposition, we modify the market so the following technical condition

is satisfied in a way that preserves net substitutability.

Assumption C.1. For each agent i, letting ui = sup(Ξ,m) U
i (Ξ,m), we have that

lim
m→∞

U i (Ξ,m) = ui

for all Ξ ⊆ Ωi.

Assumption C.1 ensures that the Hicksian valuations never take value −∞, and

allows us to adapt an argument of Baldwin et al. (2020) to prove the existence of

quasiequilibrium under net substitutability.

Proposition C.1. Under Assumption C.1, for all income profiles, quasiequilibria

exist.

We then show that quasiequilibria in the modified economy correspond to quasiequi-

libria in the original economy to complete the argument.

In the remainder of this section, we first prove Proposition 2 by exploiting Propo-

sition C.1 in a modified market, and then prove Proposition C.1.

C.2.1 Proof of Proposition 2 assuming Proposition C.1

Consider an income profile (wi)i∈I . For each buyer b, define a quantity

M b = max
Ξ⊆Ωb

{V b
H

(
Ξ;U b

(
∅, wb

))
+ wb}.
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Assumption 4 implies that M b ≥ 0 for all buyers b. Let Π ≥ 1 + maxb∈BM
b be an

arbitrary real number.

We modify sellers’ utility functions by giving them the options to dispose of any

trade by paying Π. Formally, for each seller s, we define

Û s (Ξ,m) = max
Ψ⊆Ξ

U s (Ψ,m− Π|Ξ r Ψ|) .

It is straightforward to verify that Û s satisfies Assumptions 1 holds for Û s with

F s = P(Ωs) since U s (∅,m) ∈ R for allm (by Assumption 1 for U s). Assumptions 3–5

for Û s follow from the corresponding assumptions for U s.

Consider a modified market in which each seller s’s utility function is Û s, and each

buyer’s utility function is U b.

Claim C.5. Under net substitutability in the original market, net substitutability and

Assumption C.1 hold in the modified market.

Proof. Denoting the Hicksian valuation at utility level u for Û s by V̂ s
H(·;u), we have

that

V̂ s
H(Ξ;u) = max

Ψ⊆Ξ
{V i

H (Ψ;u)− Π|Ξ r Ψ|} (C.3)

for all sellers s by construction. Under net substitutability, it follows from Lemma B.2

that each Hicksian valuation V s
H (·;u) is substitutable. For each seller s, (C.3) entails

that V̂ s
H(·;u) can be generated from V s

H (·;u) by “allowing s to produce each trade

at a cost of Π” in the sense of the proof of Theorem 1 in Appendix A of Hatfield

et al. (2013). Hence, Lemma A.2 in Hatfield et al. (2013) (which shows that this

transformation preserves substitutability) implies that V̂ s
H(·;u) is substitutable for

each seller s. Thus, net substitutability is satisfied in the modified market.

Next, we show that Assumption C.1 is satisfied. For buyers b, note that Assump-

tion 5 implies

lim
m→∞

U b (∅,m) =∞,

hence in particular that ub =∞. But by Assumption 4, it follows that

lim
m→∞

U b (Ξ,m) =∞
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for all Ξ ⊆ Ωb—as desired. On the other hand, for sellers s, note that

Û s (∅,m) ≤ Û s (Ξ,m− Π|Ξ|) ≤ Û s (∅,m− Π|Ξ|)

for all Ξ ⊆ Ωs by construction. By Assumption 4, the limit limm→∞ U
s (Ξ,m) exists

(in R ∪ {∞}), and it follows that

lim
m→∞

U s (Ξ,m) = lim
m→∞

U s (∅,m)

for all Ξ ⊆ Ωs. Hence, we have that

lim
m→∞

U s (Ξ,m) = us,

as desired.

By Proposition C.1, which we prove independently in the next subsection, there

exists a quasiequilibrium in the modified market for the income profile (wi)i∈I . The

following claim completes the argument.

Claim C.6. If [Ξ; p] is a quasiequilibrium in the modified market for the income

profile (wi)i∈I , then [Ξ; p] is a quasiequilibrium in the original market (for the same

income profile).

Proof. For each agent i, let mi = wi − χi
∑

ξ∈Ξi
pξ and let ui = U i (Ξi,m

i) . By

construction, for all buyers b, we have that ub > −∞ and that Ξb ∈ Db
H

(
p;ub

)
. It

remains to prove that us > −∞ and that Ξs ∈ Ds
H (p;us) for sellers s.

For sellers s, letting

ûs = Û s

(
Ξs, w

s +
∑
ξ∈Ξs

pξ

)

and letting D̂s
H denote the Hicksian demand correspondence for Û s, we have that

ûs > −∞ and that Ξs ∈ D̂s
H(p;us) by construction as well.

In particular, in light of Assumption 4, if pξ < 0, we would have to have that

ξ ∈ Ξb(ω) but ξ /∈ Ξs(ω)—a contradiction. Hence, we can conclude that pξ ≥ 0 must

hold for all trades ξ.

We next show that ub ≥ U b
(
∅, wb

)
must hold for all buyers b. Suppose for sake

of deriving a contradiction that ub < U b
(
∅, wb

)
. As wb is an income for b, it follows
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from Assumption 4 that V b
H

(
∅;ub

)
> −wb. But it also follows from Assumption 4

and the definition of ub that

V b
H

(
Ξb;u

b
)

=
∑
ξ∈Ξb

pξ − wb.

Hence, we have that

V b
H

(
Ξb;u

b
)
−
∑
ξ∈Ξb

pξ = −wb < V b
H

(
∅;ub

)
,

which contradicts Lemma B.1 as Ξb ∈ Db
H

(
p;ub

)
. Hence, we can conclude that

ub ≥ U b
(
∅, wb

)
. It follows from the definition of M b that mb ≥ wb − M b for all

buyers b.

We now show that pξ < Π must hold for all trades ξ. Suppose for sake of deriving

a contradiction that pω ≥ Π. In light of (C.3) and Lemma B.1, we must have that

ω ∈ Ξs(ω), and hence that ω ∈ Ξ. But then as pξ ≥ 0 for all trades ξ, we have that∑
ξ∈Ξb(ω)

pξ ≥ Π > Mb(ω) ≥ wb(ω) −mb(ω) =
∑

ξ∈Ξb(ω)

pξ,

where the strict inequality follows from the definition of Π—a contradiction. Hence,

we can conclude that pω < Π must hold.

To complete the argument, let s be a seller. By Lemma B.1(b), we must have that

Ξs ∈ arg max
Ψ⊆Ωs

{
Û s

(
Ψ, ws +

∑
ξ∈Ψ

pξ

)}
(C.4)

= arg max
Ψ⊆Ωs

{
max
Ψ′⊆Ψ

{
Û s

(
Ψ, ws +

∑
ξ∈Ψ

pξ − Π|Ψ r Ψ′|

)}}
(C.5)

=

{
Ψ

∣∣∣∣∣ (Ψ,Ψ′) ∈ arg max
Ψ′⊆Ψ⊆Ωs

{
Û s

(
Ψ, ws +

∑
ξ∈Ψ

pξ − Π|Ψ r Ψ′|

)}}
. (C.6)

But since pξ < Π for all trades ξ, we must have that Ψ = Ψ′ in every optimum in

(C.6). It follows that Ψ′ = Ψ must hold in the inner maximization problem in (C.5)

for every optimizer Ψ of the outer maximization problem. Applying this conclusion
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to Ψ = Ξ, we have that

−∞ 6= ûs = Û s

(
Ξs, w

s +
∑
ξ∈Ξs

pξ

)
= U s

(
Ξs, w

s +
∑
ξ∈Ξs

pξ

)
= us.

Since Û s (Ξ′,m′) ≥ U s (Ξ′,m′) holds for all (Ξ′,m′) by construction, in light of (C.4),

it follows that Ξs ∈ Ds
M (p, ws) . Lemma B.1(a) then yields that Ξs ∈ Ds

H (p;us)—as

desired.

C.2.2 Proof of Proposition C.1

The proof follows Baldwin et al.’s (2020) argument to prove their Theorem 1, but

obtains existence of quasiequilibrium instead of competitive equilibrium, and has

technical some differences due to the possibility of hard budget constraints.

Consider a income profile (wi)i∈I . For each agent j, we define a utility level

uimin = U i (∅, wi) and let

Ki = wi + max
Ξ⊆Ωi

V i
H

(
Ξ;uimin

)
,

which is non-negative by construction. Furthermore, let K = 1 +
∑

i∈I K
i and let

uimax = max
Ξ⊆Ωi

U i
(
Ξ, wi +K

)
.

Given a profile u = (ui)i∈I of utility levels, let

T (u) =


(
χi
∑
ξ∈Ξi

pi

)
i∈I

− V i
H

(
Ξi;u

i
)
− wi

∣∣∣∣∣∣∣
[Ξ; p] is a competitive equilibrium

in the Hicksian economy for the

profile (ui)i∈I of utility levels


denote the set of profiles of net expenditures over all competitive equilibria in the

Hicksian economy for the profile (ui)i∈I of utility levels.

Claim C.7 (Claim A.3 in Baldwin et al., 2020). Under Assumption C.1, there exist

M,M such that the correspondence T :×i∈I [u
i
min, u

i
max] ⇒ RI is upper hemicontinu-

ous and has compact, convex values and range contained in [M,M ]I .

Technically, Baldwin et al.’s (2020) model also assumes that U i (Ξ,mi) is inde-

pendent of Ξ for each agent i (see Equation (1) in Baldwin et al. (2020)). However, in
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terms of conditions on preferences, the proof of their Claim A.3 only uses the facts that

V i
H (Ξ;u) is continuous and real-valued—properties that hold under Assumption C.1.

Claim C.8. Under Assumption C.1 and net substitutability, there exists a profile

u = (ui)i∈I of utility levels such that 0 ∈ T (u).

The proof follows the proof of Claim A.6 in Baldwin et al. (2020), but applies in a

matching market. While most of the argument is identical, there are two differences—

one at the beginning of the argument and one at the end—which we highlight.

Proof. Consider the compact, convex set

Z = [M,M ]J ××
j∈J

[ujmin, u
j
max].

As T (u) ⊆ [M,M ]J for all u ∈×j∈J [ujmin, u
j
max], we can define a correspondence

Φ : Z ⇒ Z by

Φ(t,u) = T (u)× arg min
û∈×i∈I [uimin,u

i
max]

{∑
i∈I

tiûi

}
.

Claim C.7 guarantees that T :×i∈I [u
i
min, u

i
max] ⇒ RI is upper hemicontinuous

and has compact, convex values. Since net substitutability implies that each Hicksian

valuation is substitutable, Theorem 1 in Hatfield et al. (2013) guarantees that com-

petitive equilibria exist in each Hicksian economy. Hence, T is non-empty valued.45

Because×i∈I [u
i
min, u

i
max] is compact and convex, it follows that the correspondence Φ

is upper hemicontinuous and has non-empty, compact, convex values as well. Hence,

Kakutani’s Fixed Point Theorem guarantees that Φ has a fixed point (t,u).

By construction, we have that t ∈ T (u) and that

ui ∈ arg min
ûi∈[uimin,u

i
max]

tiûi (C.7)

for all agents i. It suffices to prove that t = 0.

Let [Ξ; p] be a competitive equilibrium in the Hicksian economy for the profile

45Here, Baldwin et al. (2020) instead directly assumed the existence of competitive equilibrium in
each Hicksian economy to formulate their Theorem 1.
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(uj)j∈J of utility levels with

χi
∑
ξ∈Ξi

pξ − V i
H

(
Ξi;u

i
)
− wi = ti (C.8)

for all agents i. As ui ≥ uimin and V i
H (Ξi; ·) is weakly decreasing for each agent i (by

construction), it follows from Equation (C.8) and the definition of Ki that

ti = χi
∑
ξ∈Ξi

pξ − V i
H

(
Ξi;u

i
)
− wi

≥ χi
∑
ξ∈Ξi

pξ − V i
H

(
Ξi;u

i
min

)
− wi

≥ χi
∑
ξ∈Ξi

pξ −Ki (C.9)

for all agents i.

Next, we claim that tj ≤ 0 for all agents j. If ti > 0, then Equation (C.7) would

imply that ui = uimin. But as t ∈ T (u), it would follow that

ti = χi
∑
ξ∈Ξi

pξ − V i
H

(
Ξi;u

i
)
− wi ≤ −V i

H

(
∅;uimin

)
− wi = 0,

where the inequality holds since [Ξ; p] is a competitive equilibrium in the Hicksian

for the profile (ui)i∈I of utility levels, and the last equality holds by Assumption 4

due to the definitions of V i
H and uimin. Thus, we can conclude that ti ≤ 0 must hold

for all agents j.

By construction, we have that

∑
i∈I

(
χi
∑
ξ∈Ξi

pξ

)
= 0 ≥

∑
i∈I

ti,

where the inequality holds because ti ≤ 0 for all agents i. It follows that for all agents

i, we have that

ti − χi
∑
ξ∈Ξi

pξ ≤
∑

j∈Ir{i}

χj ∑
ξ∈Ξj

pξ − tj
 ≤ ∑

j∈Ir{i}

Kj ≤
∑
j∈I

Kj < K,
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where the second inequality follows from Equation (C.9), the third inequality holds

because Kj ≥ 0, and the fourth inequality holds due to the definition of K. Hence,

by Equation (C.8), we have that

−V i
H

(
Ξi;u

i
)

= wi + ti − χi
∑
ξ∈Ξi

pξ < wi +K

for all agents i. Since utility is strictly increasing in the consumption of money, it

follows that

ui ≤ U i
(
Ξi,−V i

H

(
Ξi;u

i
))
< U i

(
Ξi, w

i +K
)
≤ uimax,

where the first inequality in fact holds due to the definition of V i
H and the second

inequality holds due to the definition of uimax.46 Equation (C.7) then implies that

ti ≥ 0 for all agents i, so we must have that ti = 0 for all agents i.

By Claim C.8, there exists a profile û = (ûi)i∈I of utility levels and a competitive

equilibrium [Ξ; p] in the corresponding Hicksian economy with

wi = −V i
H

(
Ξi; û

i
)

+ χi
∑
ξ∈Ξi

pξ (C.10)

for all i ∈ I. Lemma B.2 implies that Ξi ∈ Di
H (p; ûi) for all i ∈ I, and we have that

U i
(

Ξi, w
i − χi

∑
ξ∈Ξi

pi

)
≥ ûi for all i ∈ I by Equation (C.10).

Let ui = U i
(

Ξi, w
i − χi

∑
ξ∈Ξi

pξ

)
≥ ûi. We claim that Ξi ∈ Di

H (p;ui) must hold.

Indeed, m = wi − χi
∑

ξ∈Ξi
= −V i

H (Ξi; û
i) , let (Ξ′,m′) be such that U i (Ξ′,m′) ≥ ui.

By construction, we must have that U i (Ξ′,m′) ≥ ûi. But as Ξi ∈ Di
H (p;ui) , we must

have that

m+ χi
∑
ξ∈Ξi

pξ ≤ m′ + χi
∑
ξ∈Ξ′

pξ.

Since U i (Ξi,m) ≥ ui and (Ξ′,m′) was arbitrary, we can conclude that Ξi ∈ Di
H (p;ui)

must hold.

Hence, [Ξ; p] is a quasiequilibrium for the income profile (wi)i∈I .

46In Baldwin et al.’s (2020) context, the first inequality is in fact an equality due to the absence
of hard budget constraints.
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C.3 Proof of Proposition 3

We actually prove a stronger statement, which we also use in the proof of Theorem 2.

To do so, we consider a strengthening of stability that is also a refinement of the core.

Definition C.1 (Hatfield et al., 2013). An outcome A is strongly unblocked if there

do not exist a non-empty set Z ⊆ X r A and sets of contracts Y i ⊆ Ai ∪ Zi for

i ∈ I such that Y i ⊇ Zi and Ui (Y i, wi) > Ui (Ai, w
i) for all agents i with Zi 6= ∅. An

outcome is strongly group stable if it is individually rational and strongly unblocked.

Strongly group stable outcomes are stable and in weak core (Hatfield et al., 2013).

We next formulate a strengthening of Proposition 3 that applies to strong group

stability and does not rely on net substitutability.

Proposition C.2. For all income profiles, every quasiequilibrium outcome is strongly

group stable.

Since strongly group stable outcomes are stable, Proposition 3 follows immediately

from Proposition C.2. Note that this argument shows that the “if” direction does

not rely on net substitutability.

The proof of Propositions C.2 in turn builds on arguments that show that com-

petitive equilibrium outcomes are strongly group stable (Hatfield et al., 2013; Fleiner

et al., 2019); the focus on quasiequilibrium instead of competitive equilibrium, and the

possibility of hard budget constraints for buyers in our model, introduce additional

complexities.

Proof of Proposition C.2. We prove the contrapositive. Let (wi)i∈I be an income

profile, let [Ξ; p] be an arrangement, and suppose that A = κ([Ξ; p]) is not strongly

group stable. We prove that [Ξ; p] cannot be a quasiequilibrium.

First, suppose that A is not individually rational—i.e., that Ai /∈ Ci (Ai, w
i) for

some agent i. For such an agent i, we must have that Ξi /∈ Di
M (p, wi). If i is a seller,

then the contrapositive of Lemma B.1(b) implies that Ξi /∈ Di
H (p;wi)—so [Ξ; p] is

not a quasiequilibrium. By contrast, if i is a buyer, then if furthermore

mi +
∑
ξ∈Ξi

pξ > wi,
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the arrangement [Ξ; p] could not be a quasiequilibrium as Assumption 2 would then

entail that

U i

(
Ξi, w

i −
∑
ξ∈Ξi

pξ

)
= −∞.

Hence, we can assume that i is a buyer and that

mi +
∑
ξ∈Ξi

pξ ≤ wi.

Let Y ∈ Ci (Ai, w
i) maximize |W | over all W ∈ Ci (Ai, w

i). By Assumption 4, we

must have that pξ > 0 for each trade ξ ∈ τ(Ai r Y ). It follows that

mi +
∑

ξ∈τ(W )

pξ < wi.

As

U i

τ(W ), wi −
∑

ξ∈τ(W )

pξ

 = Ui
(
W,wi

)
> Ui

(
Ai, w

i
)

= U i

(
Ξi, w

i −
∑
ξ∈Ξi

pξ

)

by construction and Assumption 3, there must exist ε > 0 such that

U i

τ(W ), wi − ε−
∑

ξ∈τ(W )

pξ

 ≥ U i

(
Ξi, w

i −
∑
ξ∈Ξi

pξ

)

still holds. It follows that

Ξi /∈ Di
H

p;U i

Ξi, w
i −

∑
ξ∈τ(Ξi)

pξ

 ,

so [Ξ; p] cannot be a quasiequilibrium.

Hence, we can assume that A is individually rational but not strongly unblocked—

that is, that there exists a non-empty set of contracts Z ⊆ XrA and, for each agent i

with Zi 6= ∅, a set of contracts Y i ⊆ Zi∪Ai with Y i ⊇ Zi and Ui (Y i, wi) > Ui (Ai, w
i)

(see Definition C.1).
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We let J = {i ∈ I | Zi 6= ∅}. For each i ∈ J, we let

Mi = max

t
∣∣∣∣∣∣U i

τ(Y i), wi − χi
∑

ξ∈τ(Y i)

pξ − t

 ≥ Ui
(
Ai, w

i
)

denote the negative of the compensating variation for i from the change from τ(Ai)

to τ(Y i) at price vector p; the maximum is defined due to Assumptions 3 and 4 and

the individual rationality of A. For ξ ∈ τ(Z), let qξ be the unique price such that

(ξ, qξ) ∈ Z. Define qξ = pξ for ξ ∈ Ω r τ(Z). For each i ∈ J , the definition of Y i

ensures that

U i

τ(Y i), wi − χi
∑

ξ∈τ(Y i)

qξ

 > Ui
(
Ai, w

i
)

;

it follows that

Mi − χi
∑

ξ∈τ(Y i)

(pξ − qξ) ≥ 0.

Moreover, for sellers s ∈ J ∩ S, it follows from Assumptions 1, 3, and 4 that

Ms − χs
∑

ξ∈τ(Y s)

(pξ − qξ) > 0.

Because pξ = qω for ξ /∈ τ(Z) and Zi ⊆ Y i for all i ∈ J, we have that

Mi − χi
∑

ξ∈τ(Zi)

(pξ − qξ) ≥ 0

for all i ∈ J with strict inequality for i ∈ J ∩ S.

Since Z is non-empty and each trade involves a seller and a buyer, we have that

J ∩ S 6= ∅. Hence, summing over i ∈ J, we have that
∑

i∈JMi > 0. In particular,

there exists i ∈ J with Mi > 0. For such i, since

U i

τ(Y i), wi − χi
∑

ξ∈τ(Y i)

pξ −Mi

 ≥ Ui
(
Ai, w

i
)

= U i

Ξi, w
i − χi

∑
ξ∈τ(Ξi)

pξ


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and U i is strictly increasing in money away from utility level −∞, we have that

Ξi /∈ Di
H

p;U i

Ξi, w
i − χi

∑
ξ∈τ(Ξi)

pξ

 .

Therefore, [Ξ; p] is not a quasiequilibrium.

C.4 Proof of Proposition 4

We actually prove a stronger result that applies to pairwise stable outcomes; we also

use this strengthening to prove Proposition 5.

Proposition C.3. Under net substitutability, for all income profiles, every pairwise

stable outcome is a quasiequilibrium outcome.

Since stable outcomes are pairwise stable, Proposition 4 follows from Proposi-

tion C.3.

The key to the proof of Proposition C.3 is the following lemma.

Lemma C.1. Let (wi)i∈I be a income profile. If A is a pairwise stable outcome, then

A is a pairwise stable outcome in the Hicksian economy for the profile (ui)i∈I of utility

levels, where ui = Ui (Ai, w
i).

Proof. Since A is individually rational, it must contain at most one contract corre-

sponding to each trade. For each trade ξ ∈ τ(A), let pξ be such that (ξ, pξ) ∈ A.

We first show that A is individually rational in the Hicksian economy for the profile

(ui)i∈I of utility levels. Consider a modified market in which the set of all trades in

τ(A) and agents’ preferences are restrictions of the ones in the original market. The

individual rationality of A in the original market implies the individual rationality of

A in the modified market. In particular, in the modified market, we must have that

τ(Ai) ∈ Di
M (p, wi) in the modified market for all agents i ∈ I. By Lemma B.1(a),

we then have that τ(Ai) ∈ Di
H (p;wi) in the modified market for all agents i. In light

of Lemma B.2, it follows that A is individually rational the Hicksian economy for the

profile (ui)i∈I of utility levels.

We next show that A is not blocked by any contract in the Hicksian economy for

the profile (ui)i∈I of utility levels. Let x = (ω, pω) ∈ X be a contract with ω /∈ τ(A).

Since A is pairwise stable, there exists i ∈ {b(ω), s(ω)} and Y ∈ Ci (Ai ∪ {x}, wi)
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with x /∈ Y . Since Ai ∈ Ci (Ai, w
i), it follows that Ai ∈ Ci (Ai ∪ {x}, wi) by revealed

preference. Consider a modified market in which the set of all trades in τ(A)∪{ω} and

agents’ preferences are restrictions of the ones in the original market. By construction,

we have that τ(Ai) ∈ Di
M (p, wi) in the modified economy. By Lemma B.1(a), we

then have that τ(Ai) ∈ Di
H (p;wi). It follows that x cannot block A in the Hicksian

economy for the profile (ui)i∈I of utility levels. Thus, A cannot be blocked by any

contract x = (ω, pω) with ω /∈ τ(A) in the Hicksian economy for the profile (ui)i∈I

of utility levels. As agents cannot choose more than one contract for any trade, A

cannot be blocked by any contract in the Hicksian economy for the profile (ui)i∈I of

utility levels.

Proof of Proposition C.3. Fix a income profile (wi)i∈I and consider a pairwise stable

outcome A. Lemma C.1 guarantees that A is a pairwise stable outcome in the Hicksian

economy for the profile (ui)i∈I of utility levels, where ui = U i (Ai, w
i). Theorem E.1 in

Fleiner et al. (2019) (see also Corollary 1 in Appendix B of Hatfield et al. (2021)) then

implies that A is a competitive equilibrium outcome in that Hicksian economy—say

A = τ([Ξ; p]). Then, by Lemma B.2, we have that Ξi ∈ Di
H (p;ui) for all i ∈ I—so

[Ξ; p] is a quasiequilibrium for the income profile (wi)i∈I .

C.5 Proof of Theorem 2

Fix an income profile, and consider a stable outcome A. By Proposition 4, A is a

quasiequilibrium outcome. By Proposition C.2, it follows that A is strongly group

stable, hence in the core.

C.6 Proof of Theorem 3

Theorem 3 follows immediately from Proposition 5, which we prove independently.

C.7 Proof of Proposition 5

Let (wi)i∈I be a income profile. Suppose that for that income profile, A is an individ-

ually rational outcome and a set Z of contracts blocks A. Consider a modified market

in which the set of all trades is τ(Z ∪ A) and agents’ preferences are restrictions of

the ones in the original market. In the modified market, (wi)i∈I is a income profile for

which A is an individually rational outcome and Z blocks A. By Proposition C.3, A
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is a quasiequilibrium outcome in the modified market. Hence, by the contrapositive

of Proposition C.3, A cannot be pairwise stable in the modified market. As A is

individually rational (in the modified market), there must exist a contract x in the

modified market that blocks A.

By construction, x must block A in the original market, and we must have that

τ(x) ∈ τ(Z ∪ A). As agents cannot choose more than one contract with trade τ(x),

we must have that τ(x) /∈ A. Hence, we must have that τ(x) ∈ τ(Z)—as desired.

C.8 Proof of Lemma A.1

Parts (a) and (b) of the lemma follow from Parts (a) and (b) of Lemma B.1, respec-

tively.

C.9 Proof of Lemma B.1

Proof of Part (a). We first show that

w = min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}
(C.11)

and that Di
H (p;u) ⊇ Di

M (p, w); the argument for this follows the proof of Claim C.1

in Baldwin et al. (2020). Letting Ξ′ ∈ Di
M (p, w) and m′ = w − χi

∑
ξ∈Ξ′ pξ, we have

that U i (Ξ′,m′) = u and that m′ + χi
∑

ξ∈Ξ′ pξ = w by construction. It follows that

w ≥ min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}

Suppose for the sake of deriving a contradiction that there exists (Ξ′′,m′′) with m′′+

χi
∑

ξ∈Ξ′′ pξ < w and U i (Ξ′′,m′′) ≥ u. Then, we have that m′′ < w−χi
∑

ξ∈Ξ′′ pξ. By

Assumption 4, it follows that

U i

(
Ξ′′, w − χi

∑
ξ∈Ξ′′

pξ

)
> u

—contradicting the definition of u. Hence, we can conclude that (C.11) must hold.

Since U i (Ξ′,m′) = u and m′ + χi
∑

ξ∈Ξ′ pξ = w, it follows that Ξ′ ∈ Di
H (p;u). Since
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Ξ′ ∈ Di
M (p, w) was arbitrary, we can also conclude that Di

M (p, w) ⊆ Di
H (p;u).

To complete the argument, we show that Di
H (p;u) ⊇ Di

M (p, w). Let Ξ′′ ∈
Di

H (p;u) be arbitrary, and let m′′ be such that

(Ξ′′,m′′) ∈ arg min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}
.

We have that U i (Ξ′′,m′′) ≥ u. And by (C.11), we have that m′′ = w − χi
∑

ξ∈Ξ′′ pξ.

By the definition of u, it follows that Ξ′′ ∈ Di
M (p, w) . Since Ξ′′ ∈ Di

H (p;w) was

arbitrary, we can also conclude that Di
M (p, w) ⊇ Di

H (p;u).

It follows that Di
M (p, w) = Di

H (p;u)—as claimed.

Proof of Part (b). Taking Ξ′′ ∈ Di
H (p;u), and letting m′′ be such that

(Ξ′′,m′′) ∈ arg min
(Ξ,m)|U i(Ξ,m)≥u

{
m+ χi

∑
ξ∈Ξ

pξ

}
,

we have that m′′ + χi
∑

ξ∈Ξ′′ pξ = w and that U i (Ξ′′,m′′) ≥ u by construction. It

follows that

u ≤ max
Ξ⊆Ωi

U i

(
Ξ,m− χi

∑
ξ∈Ξ

pξ

)
. (C.12)

Next, let Ξ′ ∈ Di
M (p, w). Letting m′ = w − χi

∑
ξ∈Ξ′ pξ, it follows from (C.12)

that U i (Ξ′,m′) ≥ u. Since w = m′ + χi
∑

ξ∈Ξ′ pξ, it thus follows from the definition

of w that Ξ′ ∈ Di
H (p;u). Since Ξ′ ∈ Di

M (p, w) was arbitrary, we can conclude that

Di
M (p, w) ⊆ Di

H (p;u).

Now suppose that i is a seller, or that i is a buyer and w is a sufficient income

for i. We claim that Ξ′′ ∈ Di
M (p, w). Suppose for sake of deriving a contradiction

that Ξ′′ /∈ Di
M (p, w). In this case, as m′′ = w − χi

∑
ξ∈Ξ′′ pξw and U i (Ξ′′,m′′) ≥ u,

we must have that U i (Ξ′,m′) > u. We show that there exists ε > 0 such that

U i (Ξ′,m′ − ε) ≥ u by dividing into cases based on whether i is a seller or a buyer.

Case 1: i is a seller. In this case, the existence of such a ε follows from Assump-

tions 1 and 3.

Case 2: i is a buyer and w is a sufficient income for i. In this case, note that

U i (∅, w) ≤ U i (Ξ′,m′) must hold by the definition of Ξ′. Hence, the sufficiency of
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w as an income implies that m′ > mi. Therefore, the existence of an ε satisfying

the desired condition follows from Assumptions 2 and 3.

But m′− ε+ χi
∑

ξ∈Ξ pξ < w—which contradicts the definition of w as the minimum

expenditure needed to obtain utility at least u since U i (Ξ′,m′ − ε) ≥ u. Hence, we

can conclude that Ξ′′ ∈ Di
M (p, w). Since Ξ′ ∈ Di

M (p, w) was arbitrary, it follows that

Di
M (p, w) ⊆ Di

H (p;u).

D Additional details for the examples

D.1 Net substitutability in Example 4

To show that b’s utility function is net substitutable, we use the approach described

in Appendix B and characterize b’s Hicksian valuations. The definition of Hicksian

valuations entail that

V b
H (Ξ;u) = min{V b (Ξ)− u, 0}.

And since valuations on the right-hand side are substitutable for all u, b’s utility

function is net substitutable.

D.2 Net substitutability in Example 9

To show that b’s utility function is net substitutable, we use the approach described

in Appendix B and characterize b’s Hicksian valuations. The definition of Hicksian

valuations entails that

V b
H (Ξ;u) =

V b (Ξ)− u if u ≤ 0 or ζ /∈ Ξ

V b (Ξ)− u
11

if u ≥ 0 and ζ ∈ Ξ
.

Since V b is additive across trades, we see that V b
H (·;u) is additive across trades,

hence in particular substitutable, for all utility levels u. It follows that U b is net

substitutable.

A similar argument shows that s’s utility function is net substitutable.
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D.3 Manipulability of stable mechanisms in Example 10

If s1 reported a reservation value of $6 − ε, we claim that s1 would be matched in

every stable outcome (and paid at least $6− ε). To see this, consider an outcome A

in which s1 is unmatched. Note that A cannot be individually rational if either ω̂′

were executed: ŝ’s reservation value for the trade exceeds b′’s value for it. Since s2’s

reservation value is 0, A cannot be stable if she were unmatched. If s2 is matched

to b′ (i.e., ω′2 is executed) then (ω1, 6 − ε
2
) is a block. If s2 is matched to b (i.e., ω2

is executed) then (ω′1, 6 − ε
2
) is a block. Hence, we can conclude that s1 would be

matched after the deviation under any stable mechanism. But then she would be

paid at least $6− ε after a deviation, and therefore has a profitable deviation in the

original economy under any stable mechanism under which she is paid less than $6.

On the other hand, if ŝ reported a reservation value of $5 for ω̂ and a reservation

value of $ε for ω̂′ (where ε < 0.1), we claim that ω̂ would be executed (at a price of

at least $5) in every stable outcome. To complete the argument, we divide into cases

to show that outcomes in which ω̂ is not executed must be unstable.

Case 1: Consider an outcome A in which ŝ is unmatched. In this case, if either

of s1, s2 remains unmatched, then there is a block involving them. If neither ω′1

nor ω′2 is executed, or one of them is executed at a price greater than $3 + ε, then

(ω̂′, ε + δ) is a block for δ sufficiently small. Hence, one of ω′1, ω
′
2—say ω′1—must

be executed at a price of at most $3 + ε. If ω2 is executed at a price greater than

$3 + ε, then (ω1, 3 + ε+ δ) is a block for sufficiently small δ. But if ω2 is executed

as a price of $3 + ε or less, then (ω̂, 5 + δ) is a block for a sufficiently small δ.

Case 2: Consider an outcome A in which ω̂′ is executed. The price of ω̂′ must be

positive to ensure that A be individually rational for ŝ. And if A is individually

rational for b, then ω1 and ω2 cannot both be executed at positive prices. But if ω1

is not executed, or executed at a price of $0, then (ω′1, 2) is a block; a symmetric

argument applies if ω2 is not executed.

Both cases are incompatible with stability, and hence we can conclude that ω̂ must

be executed in every stable outcome after the deviation. But then ŝ would be paid

at least $5 after a deviation, and therefore has a profitable deviation in the original

economy under any stable mechanism under which she is unmatched.

60



References

Alkan, A. (2002). A class of multipartner matching markets with a strong lattice
structure. Economic Theory 19 (4), 737–746.

Alva, S. (2013). Essays on Matching Theory and Networks. Ph. D. thesis, Boston
College, Graduate School of Arts and Sciences.

Azevedo, E. M. and J. W. Hatfield (2018). Existence of equilibrium in large matching
markets with complementarities. Working paper, University of Pennsylvania.

Baldwin, E., O. Edhan, R. Jagadeesan, P. Klemperer, and A. Teytelboym (2020). The
equilibrium existence duality: Equilibrium with indivisibilities and income effects.
Working paper, University of Oxford.

Blair, C. (1988). The lattice structure of the set of stable matchings with multiple
partners. Mathematics of Operations Research 13 (4), 619–628.

Bulow, J., J. Levin, and P. Milgrom (2017). Winning play in spectrum auctions.
In M. Bichler and J. K. Goeree (Eds.), Handbook of Spectrum Auction Design,
Chapter 31, pp. 689–712. Cambridge University Press.

Che, Y.-K., J. Kim, and F. Kojima (2019). Stable matching in large economies.
Econometrica 87 (1), 65–110.

Crawford, V. P. (2008). The flexible-salary match: A proposal to increase the salary
flexibility of the National Resident Matching Program. Journal of Economic Be-
havior & Organization 66 (2), 149–160.

Crawford, V. P. and E. M. Knoer (1981). Job matching with heterogeneous firms and
workers. Econometrica 49 (2), 437–450.

Debreu, G. (1962). New concepts and techniques for equilibrium analysis. Interna-
tional Economic Review 3 (3), 257–273.

Echenique, F. and J. Oviedo (2006). A theory of stability in many-to-many matching
markets. Theoretical Economics 1 (1), 233–273.

Fleiner, T. (2003). A fixed-point approach to stable matchings and some applications.
Mathematics of Operations Research 28 (1), 103–126.
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