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Motivation
▸ many markets involve indivisible and personalized interactions

▸ auctions, labor markets, online platforms, . . .
▸ focus in most models: sellers’ constraints on what they can sell

▸ e.g., spectrum auctions: government faces interference constraints on sales
▸ e.g., residency and day-care allocation (Kamada and Kojima, 2015 . . .)

hack

▸ buyers are often constrained in how much they can pay
▸ spectrum auctions: telecom companies have limited budgets
▸ labor markets: firms have hiring budgets

▸ difference from Lecture 3: agents can exhaust their budgets in the market
▸ called “(hard) budget constraint” in auction and matching literatures

▸ but competitive equilibria may not exist w/indivisibilities+budget constraints
hack

▸ this paper exploits insights from matching theory to analyze markets for
indivisible goods in which buyers can face budget constraints
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Main contributions

▸ develop a model of two-sided, many-to-many matching with continuous
transfers that allows for budget constraints as well as other income effects
hack
hack

▸ show stable outcomes exist if agents see interactions as net substitutes
▸ applies even though competitive equilibria may fail to exist

hack
hack

▸ illustrate key role of flexible prices in matching markets w/budget constraints



Restrictiveness of gross substitutability with budget constraints
▸ key condition in most matching analyses: gross substitutes

▸ requires, e.g., that an increase in the salary of one worker weakly raise
demand for all other workers (Kelso and Crawford, 1982)

▸ entails that the deferred acceptance algorithm yields a stable outcome
▸ and set of stable outcomes forms a lattice, “Rural Hospitals Theorem”, . . .

hack

▸ but gross substitutes is restrictive w/budget constraints or income effects
▸ e.g., if a firm f values two workers w1,w2 at $5 each and has $3 to spend,

if salaries change from ($1,$2) to ($1 + ϵ,$2), then f stops demanding w2

▸ similar conclusion with income effects (when workers are not inferior)
hack

▸ our approach: assume net substitutes instead of gross
▸ necessitates use of topological methods instead of order-theoretic methods
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Impact of price flexibility

1. price flexibility plays a key role in stability when there are budget constraints
▸ w/rigid prices, stable outcomes may not exist even under net substitutes
▸ unlike case of gross substitutes, where price rigidity doesn’t affect stability

hack

2. price flexibility allows agents to focus on “simple” blocks
▸ makes it suffice for agents to focus on “pairwise blocks” consisting of

deviations between a single pair of agents (under net substitutes)
▸ w/rigid prices, pairwise blocks are insufficient (even under net substitutes)
▸ unlike case of gross substitutes, where pairwise blocks are always sufficient

hack
3. price flexibility is (unsurprisingly) also important to efficiency

▸ ensures stable outcomes are weakly Pareto-efficient (under net substitutes)
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Related literature
▸ matching with (continuous) transfers and income effects

▸ unit-demand: Demange and Gale (1985), Kelso and Crawford (1982), . . .
▸ gross substitutability: Fleiner, J., Jankó, and T. (2019)
▸ housing market: Quinzii (1984), Gale (1984), Svensson (1984), . . .

hack
▸ counterexamples with budget constraints: Mongell and Roth (1986)

hack
▸ existence of equilibrium w/income effects and indivisibilities

▸ Danilov, Koshevoy, and Murota (2001), and Lecture 3
hack

▸ topological fixed-point methods in matching (large markets)
▸ Azevedo and Hatfield (2018), Che, Kim, and Kojima (2019), Greinecker and

Kah (2021), J. and Vocke (2021)



Outline

1. model
hack

2. demand and substitutability
hack

3. nonexistence of competitive equilibrium
hack

4. existence of stable outcomes
hack

5. proof of existence
hack

6. properties of stable outcomes
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Model setup

▸ finite sets B of buyers and S of sellers
hack

▸ for s ∈ S and b ∈ B, finite set Ωs,b of trades between s and b

ω ∈ Ωs,b ∶ s
ω // b

▸ e.g., job contract without salary (Kelso and Crawford, 1982)
▸ e.g., good and counterparties of exchange (Gul and Stacchetti, 1999)

▸ Ω = set of all trades; Ωj = set of trades that involve agent j

hack

▸ allow constraints on what sellers can sell, how much buyers can pay . . .
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Preferences
for each agent j ∈ B ∪ S, there is a utility function U j ∶ P(Ωj) ×R→ R ∪ {−∞}
▸ interpretation of level −∞: violation of feasibility constraints

hack

need five technical assumptions on utility functions

hack

to ensure that sellers have only constraints on what they can sell, assume:
1. for each seller s, there is a family F s ∋ ∅ of sets of trades that are feasible

for s such that U s(Ξ,m) ∈ R for Ξ ∈ F s and U s(Ξ,m) = −∞ for Ξ ∉ F s

hack

to ensure that buyers only have constraints on how much they can pay, assume:
2. for each buyer b, there is a lower bound mb ∈ R ∪ {−∞} on consumption of

money such that U b(Ξ,m) ∈ R for m >mb, and U b(Ξ,m) = −∞ for m <mb
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Preferences (II)
two standard conditions: continuity and monotonicity

3. [continuity] all agents’ utility functions are continuous in money away from
level −∞. and for all buyers b, and sets Ξ ⊆ Ωb of trades

lim
m→(mb)+

U b(Ξ,m) = U b(Ξ,mb),

where we write U b(Ξ,−∞) = −∞
4. [monotonicity] away from utility level −∞, all agents’ utility functions are

strictly increasing in money, and buyers’ (resp. sellers’) utility functions are
weakly increasing (resp. weakly decreasing) in trades

hack

one innocuous assumption to ensure that “Hicksian valuations” are well-behaved:
5. for all sellers s, we have limm→−∞U s(∅,m) = −∞, and

for all buyers b, we have limm→∞U b(∅,m) =∞
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Examples of preferences

example (quasilinear utility “without a budget constraint”)
U j(Ξ,m) = V j(Ξ) +m. here, mj = −∞

example (quasilinear utility “with a hard budget constraint”)

U b(Ξ,m) =
⎧⎪⎪⎨⎪⎪⎩

V b(Ξ) +m if m ≥ 0
−∞ if m < 0

. here, mb = 0, and can run out of money

example (quasilogarithmic utility—Lecture 3)

U b(Ξ,m) =
⎧⎪⎪⎨⎪⎪⎩

log(m) − log(−V b
Q(Ξ)) if m > 0

−∞ if m ≤ 0
. here, mb = 0, but can’t run out
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Marshallian and Hicksian demand for trades
▸ Marshallian: for a buyer b, an income w >mb, and a price vector p ∈ RΩ, let

Db
M(p,w) =

⎧⎪⎪⎨⎪⎪⎩
Ξ∗
RRRRRRRRRRR
(Ξ∗,m∗) maximizes U b(Ξ,m) subject to m +∑

ξ∈Ξ
pξ ≤ w

⎫⎪⎪⎬⎪⎪⎭

▸ Hicksian: for a buyer b, a utility level u, and a price vector p ∈ RΩ, let

Db
H(p;u) =

⎧⎪⎪⎨⎪⎪⎩
Ξ∗
RRRRRRRRRRR
(Ξ∗,m∗) minimizes m +∑

ξ∈Ξ
pξ subject to U b(Ξ,m) ≥ u

⎫⎪⎪⎬⎪⎪⎭

▸ similar definitions with opposite signs on transfers for sellers
▸ as in Lecture 3, Hicksian demand at a utility level has a quasilinear

representation as demand for a “Hicksian valuation”
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Marshallian vs. Hicksian demand with budget constraints
▸ w/o hard budget constraints: Marshallian and Hicksian demand are upper

hemicontinuous, and give the same demand sets “in optimum”
▸ w/hard budget constraints: Hicksian still well-behaved, but Marshallian isn’t

example (difference between Marshallian and Hicksian demands)
▸ consider a buyer b who values trade ω at $2 but is budget-constrained
▸ if pω = 1, two bundles cost $1 and deliver utility ≥ 1: namely (∅,1), ({ω},0)

▸ the bundles deliver different utilities: U b(∅,1) = 1 but U b({ω},0) = 2 Ô⇒

Db
M(p,1) = {{ω}} but Db

H(p; 1) = {∅,{ω}}

▸ Marshallian demand is also not upper hemicontinuous: Db
M(p + ϵ,1) = {∅}

▸ causes technical challenges when looking from the Marshallian side
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Substitutes conditions
▸ gross substitutes is a condition on both substitution and income effects

definition (∼Kelso and Crawford, 1982)
U b is gross substitutable at income w if for all trades ω, price vectors p, and
prices p′ω > pω such that Db

M(p,w) = {Ξ} and Db
M((p′ω,p−ω),w) = {Ξ′},

if ψ ∈ Ξ and ψ /= ω, then ψ ∈ Ξ′

▸ net substitutes is an analogous condition on substitution effects alone

definition (Lecture 3)
U b is net substitutable if for all utility levels u, trades ω, price vectors p, and
prices p′ω > pω such that Db

H(p;u) = {Ξ} and Db
H((p′ω,p−ω);u) = {Ξ′},

if ψ ∈ Ξ and ψ /= ω, then ψ ∈ Ξ′

▸ equivalent conditions under quasilinearity (without budget constraints)
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Budget constraints and gross vs. net substitutes
example (budget constraints and failure of gross substitutes)
▸ consider a buyer b who has a quasilinear utility function with a hard budget

constraint and values trades ω1, ω2 at $5 each
▸ with an income of w = $3, utility function U b is not gross substitutable

▸ but it is net substitutable (proof using “Hicksian valuations” in the paper)
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Budget constraints and gross vs. net substitutes
example (budget constraints and failure of gross substitutes)
▸ consider a buyer b who has a quasilinear utility function with a hard budget

constraint and values trades ω1, ω2 at $5 each
▸ with an income of w = $3, utility function U b is not gross substitutable
▸ but it is net substitutable (proof using “Hicksian valuations” in the paper)

proposition
if U j is gross substitutable at all incomes, and strictly increasing in trades away
from utility level −∞ if j is a buyer, then U j is net substitutable

▸ shown without budget constraints in Lecture 3
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4. existence of stable outcomes
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5. proof of existence
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Nonexistence of competitive equilibria w/budget constraints (I)

s

b b′

ω ω′

▸ if s is only willing to engage in one trade, and has reservation value 0,
and each buyer values trade at $2 but has an income of only $1,
then there are no competitive equilibria
▸ both buyers demand trade if price ≤ $1; neither if price > $1

hack
hack

▸ example may seem knife-edge, but phenomenon is more general . . .
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Nonexistence of competitive equilibria w/budget constraints (II)

s

b

ω ω′

▸ if s is only willing to engage in one trade, and has reservation value 0, and

U b(Ξ,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m if m ≥ 0 and Ξ = ∅
m +min{m,1} if m ≥ 0 and ∣Ξ∣ = 1
m + 1 +min{m,1} if m ≥ 0 and ∣Ξ∣ = 2
−∞ if m < 0

,

then there are no competitive equilibria if wb < 1
▸ b demands both trades if price ≤ wb

2 ; neither if price > wb

2
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Stable outcomes (I)
▸ since competitive equilibria may not exist, consider instead stable outcomes

hack

▸ a contract is a pair (ω, pω), where pω ∈ R
▸ e.g., job contract with salary (Kelso and Crawford, 1982; Roth, 1984)

▸ an outcome is a set of contracts that contains at most price for each trade
▸ e.g., in a labor market, a matching of workers to firms, and salaries

hack
▸ given a set Y of contracts involving an agent j and an income w, define j’s

choice correspondence by

Cj(Y,w) = argmax
outcomes Z⊆Y

U j(trades in Z, ending money balance if Z executed)
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Stable outcomes (II)
(Roth, 1984; Hatfield and Milgrom 2005; Hatfield et al., 2013)

definition
given an income profile (wj)j∈B∪S, an outcome A is:
▸ individually rational if Aj ∈ Cj(Aj,wj) for all j

▸ blocked by a nonempty set Z of contracts if for all W ∈ Cj(Aj ∪Zj,wj),
we have that W ⊇ Zj

▸ stable if individually rational and unblocked

differs from core in three ways

1. imposition of individual rationality
2. agents in a blocking coalition can retain existing contracts with outsiders
3. agents in a blocking coalition must want to choose all blocking contracts

(rather than merely get a utility improvement)
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Competitive equilibrium vs. stable outcomes

s

b b′

ω ω′

▸ if s is only willing to engage in one trade, and has reservation value 0,
and each buyer values trade at $2 but has an income of only $1,
then there are no competitive equilibria
▸ both buyers demand trade if price ≤ $1; neither if price > $1

hack
▸ but there are stable outcomes, in which one buyer buys at a price of $1

▸ the other buyer is unhappy, but can’t make the seller a better offer



Competitive equilibrium vs. stable outcomes (II)

s

b

ω ω′

▸ if s is only willing to engage in one trade, and has reservation value 0, and

U b(Ξ,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m if m ≥ 0 and Ξ = ∅
m +min{m,1} if m ≥ 0 and ∣Ξ∣ = 1
m + 1 +min{m,1} if m ≥ 0 and ∣Ξ∣ = 2
−∞ if m < 0

then for wb < 1, there are stable outcomes: one trade executed at price wb

2

▸ other trade doesn’t give a block since b can’t offer more than wb

2 for it



Existence of stable outcomes
theorem
under net substitutes, stable outcomes exist for all income profiles

▸ generalizes previous existence results for matching with transfers that
assume quasilinearity or gross substitutability
▸ Crawford and Knoer (1981), Kelso and Crawford (1982);

two-sided versions of Hatfield, Kominers, Nichifor, Ostrovsky, and
Westkamp (2013), Fleiner, J., Jankó, and T. (2019)

▸ but unlike those results, flexibility of prices plays a critical role
▸ w/o flexible prices: trades with different counterparties “must” (in a

maximal domain sense) be gross substitutes for stable outcomes to exist
▸ shown by Hatfield and Kojima (2008) for many-to-one matching

▸ net substitutes permits gross complementarities between all trades, so is
weaker than Hatfield and Kojima’s (2008) maximal domain condition
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Role of price flexibility
s1 s2

b b′

▸ many-to-one market w/2 sellers and 2 buyers
▸ b has quasilogarithmic utility w/additive quasivaluation
▸ b′ has unit-demand and prefers s2 by $1
▸ s1 prefers to work for b′ by $1; s2 prefers b by $1

▸ say salaries were fixed at $4; then preferences over sets of counterparties are

s1 ∶ {b′} ≻s1 {b} ≻s1 ∅ s2 ∶ {b} ≻s2 {b′} ≻s2 ∅

b ∶ {s1, s2} ≻b {s1} ≻b ∅ b′ ∶ {s2} ≻b′ {s1} ≻b′ ∅

Ô⇒ there would be no stable outcome (Alva, 2013)

▸ but if s1’s salary at b could rise to $41
2 , then b’s preferences would become

b ∶ {s1} ≻b {s1, s2} ≻b ∅

Ô⇒ get stable outcome in which s1 and b matched, and s2 and b′ matched
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Failure of deferred acceptance
▸ Lecture 3: saw multi-unit ascending auctions may fail to lead to competitive

equilibrium when buyers experience income effects
▸ here: example showing deferred acceptance may fail in a labor market when

firms can experience income effects but have net substitutes preferences
hack

▸ six workers: three (s1, s2, s3) of one type, three (ŝ1, ŝ2, ŝ3) of another type
▸ two identical firms b, b′ who each want to hire up to two workers of each type

s1 s2 s3 ŝ1 ŝ2 ŝ3

b b′

▸ buyers/firms have quasilogarithmic utility; sellers/workers quasilinear utility
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Strategy of proof of existence of stable outcomes
▸ want to go via equilibrium existence, but can’t use competitive equilibrium

▸ workaround (from GE): instead of requiring that agents maximize utility,
require they minimize expenditure of obtaining their equilibrium utility

definition
given an income profile (wj)j∈B∪S, a quasiequilibrium consists of a set Ξ of
trades and a price vector p ∈ RΩ

such that, writing

uj = j’s utility of set Ξj of trades at price vector p and income wj,

we have that uj > −∞ and that Ξj ∈Dj
H(p;uj)

▸ correspond to competitive equilibria in Hicksian economies (Lecture 3)
▸ by “forgetting” prices of unrealized trades, obtain a quasiequilibrium

outcome from each quasiequilibrium
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Competitive equilibrium vs. quasiequilibrium

s

b b′

ω ω′

▸ if s is only willing to engage in one trade, and has reservation value 0,
and each buyer values trade at $2 but has an income of only $1,
then there are no competitive equilibria
▸ both buyers demand trade if price ≤ $1; neither if price > $1

▸ but there are quasiequilibria in which the price is $1
▸ one buyer gets to purchase (gets utility 2), the other does not (gets utility 1)
▸ gives a quasiequilibrium since Db

H((1,1); 1) = {∅,{ω}}
▸ and the corresponding quasiequilibrium outcomes are stable
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Strategy of proof of existence of stable outcomes (II)
▸ using quasiequilibrium, can divide the proof into two steps

proposition
under net substitutes, quasiequilibria exist for all income profiles

▸ proof combines arguments from matching theory with the topological fixed
point argument from proof of the Equilibrium Existence Duality (Lecture 3)

proposition
every quasiequilibrium outcome is stable

▸ proof similar to the proof of the first welfare theorem
▸ as adapted to matching by Hatfield, Kominers, Nichifor, Ostrovsky, and

Westkamp (2013), Fleiner, J., Jankó, & T. (2019)
▸ unlike most matching results, proof relies on monotonicity of utility in trades
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Sketch of proof of existence of quasiequilibrium
▸ technical difficulty relative to Lecture 3: if

lim
m→∞

U s(∅,m) > lim
m→∞

U s(Ξ,m),

then the Hicksian value V s
H(Ξ;u) can be −∞

steps of proof:
1. apply a transformation to the economy to make Hicksian values lie in R

▸ by endowing sellers with the option to unilaterally drop a trade for a high
cost (Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp, 2013)

2. apply topological fixed-point argument from Lecture 3 to show there is a
profile (ũj)j∈J of utility levels and a competitive equilibrium in the
corresponding Hicksian economy for which expenditure = income

3. show that the equilibrium gives a quasiequilibrium in the original economy
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1. model
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2. demand and substitutability
hack

3. nonexistence of competitive equilibrium
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5. proof of existence
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Efficiency of stable outcomes

▸ outcome is in the weak core if no blocking coalition that can strictly
improve the utilities of all members by recontracting only among themselves
▸ grand coalition Ô⇒ weak core outcomes are weakly Pareto efficient

theorem
under net substitutes, every stable outcome is in the weak core

▸ flexible prices also critical to this result (cf. Blair (1988))
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Efficiency of stable outcomes: proof strategy
▸ proof of efficiency goes via quasiequilibrium

proposition
under net substitutes, every stable outcome is a quasiequilibrium outcome

▸ subtle statement that relies on net substitutes (unlike converse)
▸ proof based on applying analogous result for TU economies (Hatfield,

Kominers, Nichifor, Ostrovsky, and Westkamp, 2013) in a Hicksian economy

hack
lemma
every quasiequilibrium outcome is in the weak core

▸ just the first welfare theorem for a Hicksian economy
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Pairwise stability

definition
given an income profile, an outcome A is pairwise stable if it is individually
rational and not blocked by any set consisting of a single contract

▸ under gross substitutes, if {z1, . . . , zk} blocks A, then so does each {zℓ}

▸ under net substitutes, there can be gross complementarities. . .

theorem
under net substitutability, stability and pairwise stability coincide

▸ so “simple” blocks suffice even in the presence of income effects
▸ despite possibility of gross complementarities among large sets of contracts
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Pairwise stability: role of prices
▸ under gross substitutes, if {z1, . . . , zk} blocks A, then so does each {zℓ}
▸ in general, with fixed prices, pairwise stable outcomes can be unstable

▸ even under net substitutes, example in paper

▸ moving prices helps undo income effects, mitigate gross complementarities

proposition
given an income profile, let A be an individually rational outcome.
if {(ω1, pω1), . . . , (ωk, pωk

)} blocks A, then for some ℓ, p′ωℓ
, {(ωℓ, p′ωℓ

)} blocks A

▸ proof also goes via quasiequilibrium
▸ uses coincidence between solution concepts in a Hicksian economy (Hatfield,

Kominers, Nichifor, Ostrovsky, and Westkamp, 2013, 2021)
▸ so although “simple” blocks still suffice, budget constraints and income

effects can “simplifying a block” more subtle
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Revisiting the structure of the set of stable outcomes
despite existence of stable outcomes, give example in the paper showing:
▸ set of stable outcomes may not form a lattice

▸ buyer-optimal and seller-optimal stable outcomes may not exist
▸ intuition: budget constraints can generate opposed interests between sellers

hack

▸ the “Lone Wolf Theorem” (or “Rural Hospitals Theorem”) can fail
▸ agents can be matched in one stable outcome (and receive higher than their

autarky utility) but unmatched in others
▸ intuition: raising one worker’s salary can make another worker unaffordable

hack
▸ there may be no stable matching mechanism that is strategy-proof for all

unit-supply sellers (or for all unit-demand buyers)
▸ intuition: misreporting a value can lower others’ salaries (standard), which

can make more budget available for the misreporter
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Conclusion
▸ prices may not clear markets with indivisibilities and budget constraints
▸ nevertheless, we show that stable outcomes exist and are efficient even in

the presence of budget constraints under the net substitutes condition

▸ so stable outcomes can exist despite the presence of gross complementarities
▸ and agents can even focus on “simple” blocks to identify stable outcomes
▸ but gross complementarities make structure of set of stable outcomes break

▸ price flexibility plays a critical role in our results, unlike previous work

hack

implications for auction design with budget constraints:
▸ gross complementarities can cause problems for dynamic auctions
▸ but sealed-bid auctions that implement stable outcomes may work well

▸ e.g., versions of the Product-Mix Auction (Klemperer, 2010; Milgrom, 2009)
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