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Overview: Preferences and Equilibrium via Geometry

Address real-world situations in which new auction designs needed

Use geometric approaches to represent bidders’ preferences
Build them up of simple pieces.
Easy to understand and work with.
Aggregating these pieces can give wide classes of preferences.

Develop new bidding languages

Bank of England Language
Strong Substitutes Language

“Tropical Languages”

All Substitutes Language
Icelandic Auction Language

“Arctic Language”

Implementing Walrasian Equilibrium: the Language of Product-Mix
Auctions (with Paul Klemperer)

}

Understand preferences and equilibrium for indivisible goods.

Understanding Preferences: “Demand Types”, and the Existence of
Equilibrium with Indivisibilities. (with Paul Klemperer)
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Introduction: The Hotel with 2 Rooms

p1

p2
(0, 0)

(0, 1)

(1, 0)

40

30

Elizabeth is willing to pay at most £40 room 1, £30 for room 2.
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(0, 1)

p2

(1, 0)

40

30

p1

60

40

Elizabeth is willing to pay at most £40 room 1, £30 for room 2.

Alex is willing to pay at most £60 room 1, £40 for room 2.

It is easy to aggregate their demands at any price.
There exist prices giving a competitive equilibrium.
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Introduction: The Hotel with 2 Rooms

(0, 0)

p250

50

(1, 1)

p1

Elizabeth is willing to pay at most £40 room 1, £30 for room 2.

Paul is willing to pay at most £50 for both rooms.

If p1 + p2 < 50 then there is excess demand for hotel rooms.
If p1 + p2 > 50 then there is excess supply for hotel rooms.
If p1 + p2 = 50, Paul chooses between those situations.
Competitive equilibrium does not exist!
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First Key Result

The Unimodularity Theorem
Competitive equilibrium:

always exist if valuations ‘look like’ Elizabeth and Alex;

sometimes fails if valuations ‘look like’ Elizabeth and Paul.

Interpret what valuations ‘look like’ in properties that are:

economically meaningful;
mathematically useful

Necessary and sufficient characterisation of such “properties”
to guarantee existence of equilibrium:

easy to test;
exhibits entirely new classes.
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Back to the hotel

(0, 0)

p250

50

(2, 1)

40

30

(0, 1)

(1, 0)

(1, 2)
p1

Elizabeth is willing to pay at most £40 room 1, £30 for room 2.
Paul was willing to pay at most £50 for both rooms.

But if Paul increases his offer to £80, competitive prices do exist.
There are two intersections between the figures drawn.
Previously there was only one intersection.
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Second Result

The Intersection Count Theorem

Given sets of bundles considered, predict max. number of
intersections.

If this bound is met, equilibrium exists.

If there are fewer intersections, certain conditions guarantee
equilibrium fails.

The Unimodularity Theorem Properties of valuations
that guarantee equilibrium

The Intersection Count Theorem Profiles of valuations
for which equilibrium exists.
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Outline of Talk

Individual valuations and trade-offs

Understand economic properties, geometrically
Classify according to “type” of trade-offs.

Aggregations of individual valuations

Understand easily, geometrically
Individual classifications extend.

Competitive equilibrium between agents.

When guaranteed? Why?
How to efficiently check for even if not guaranteed?

Application: the Product-Mix Auction

E. Baldwin and P. Klemperer geometry of preferences September 2021 7 / 46



Geometric Analysis of Demand: Model
 

x2

x1

I indivisible goods.

Finite set Xj ⊂ Zn available to agent j ∈ J
Valuation V j : Xj → R; quasilinear utility V j(x)− p.x

Agent demands bundles in set Dj(p) = argmax
x∈Xj

{V j(x)− p · x}

Investigate what is demanded where: study where demand changes.

Definition: “Locus of Indifference Prices (LIP)”

Lj={ prices p ∈ Rn where |Dj(p)| > 1}.
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Geometric Analysis of Demand: Model

Example
of V j(x)
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The LIP and its Facets

Definition: “Locus of Indifference Prices (LIP)”

Lj={ prices p ∈ Rn where |Dj(p)| > 1}.

p
A

p
B

In two dimensions, made up of
line segments.

In n dimensions, made up of
(n− 1)-dimensional linear pieces.

Definition

The facets are the (n− 1)-dimensional linear pieces which make up a LIP.

These meet in (n− 2)-diml linear pieces, which meet in (n− 3)-diml
pieces.... the linear pieces of dimension k are the “k-cells”.
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How does demand change as you cross a facet?

p2

(0, 1)

(2, 0)

(1, 1)

p1

(0, 0)

(1, 0)

(0, 2)

If p is in a facet then the agent is indifferent between two bundles:

V j(x)− p · x = V j(y)− p · y

⇐⇒ p.(y − x) = V j(y)− V j(x)
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How does demand change as you cross a facet?

p2
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1
1
)
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If p is in a facet then the agent is indifferent between two bundles:

V j(x)− p · x = V j(y)− p · y ⇐⇒ p.(y − x) = V j(y)− V j(x)

The change in bundle is in the direction normal to the facet.

The precise change in bundle is minus this direction times the ‘weight’.
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How does demand change as you cross a facet?
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Economics from Geometry

v1

v2

v3

v4

 

w1
w2

w3w4
Every LIP is balanced: around each
(n− 2)-cell,

∑
iwivi = 0.

“Valuation-Complex Equivalence Theorem” (Mikhalkin, 2004)

A “weighted rational polyhedral complex of pure dimension (n− 1)” forms
a LIP of a valuation iff it is balanced.

We need not write down valuations of discrete bundles.

We can simply draw LIPs.

Project Aim understand economics via geometry.
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Classifying valuations

Economists classify valuations by how agents see trade-offs between goods.

For divisible goods, ask how changes in each price affect each demand.
Let x∗(p) be optimal demands of each good at a given price.

∂x∗
i

∂pj
> 0 means goods are ‘substitutes’ (tea, coffee).

∂x∗
i

∂pj
< 0 means goods are ‘complements’ (coffee, milk).

With LIPs, look first at discrete price changes that cross one facet.

(0,0)

 

p
2

p
1
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The “Law of Demand”

Intuitively, if prices go up, demand must come down. (More complicated
with income effects, simple in our TU setting.)

Lemma

Suppose:

Dj(p) = {x}
Dj(p + λei) = {x′} where λ > 0

Then either x′ = x or x′i < xi.

More general price changes?

Lemma (“The Law of Demand”)

Suppose:

Dj(p) = {x}
Dj(p′) = {x′}

Then either x′ = x or (p′ − p) · (x′ − x) < 0.
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Demand types

Suppose every facet normal v to the LIP Lj ...
has at most one +ve, one -ve coordinate entry.

p2

p1

(0, 3)

(2, 0) (
−2

3

)

Decrease price i to cross a facet.

Demand changes from x to x + d, where d is a facet normal.

By the law of demand, di > 0.
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Suppose every facet normal v to the LIP Lj ...
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Demand types

Suppose every facet normal v to the LIP Lj ...
has all positive (or all negative) coordinate entries.
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Demand changes from x to x + d, where d is a facet normal.
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⇒ dj ≥ 0 for all j 6= i.
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Demand types

Suppose every facet normal v to the LIP Lj ...
is in set D ⊂ Zn.

p2
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(2, 3)

(
2
3
)

Decrease price i to cross a facet.

Demand changes from x to x + d, where d is a facet normal.

By the law of demand, di > 0.

These facts define structure of trade-offs.
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Demand types

Suppose every facet normal v to the LIP Lj ...
is in set D ⊂ Zn.

Definition: “Demand Type”

V j is of demand type D if every facet of Lj has normal in D.

The demand type is the set of all such valuations.

Decrease price i to cross a facet.

Demand changes from x to x + d, where d is a facet normal.

By the law of demand, di > 0.
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Demand Types and Comparative Statics
Work in preparation with Ravi Jagadeesan and Alex Teytelboym.

Theorem

Suppose Xj ⊆ {0, 1}I . Valuation V j is of demand type D iff:
∀p and ∀λ > 0, whenever Dj(p) = {x} and Dj(p + λei) = {x′},
then either x′ − x = 0 or x′ − x ∈ D.

Why? Law of demand: when demand changes, demand for i goes down.
Only one unit of i under consideration: demand can only change once.
Demand type vectors give full set of possible changes in demand.

In general, vectors in D form the building blocks for changes in demand:

Theorem

Suppose D is finite. Valuation V j is of demand type D iff,
∀p,p′ such that Dj(p) = {x} and Dj(p′) = {x′},
then x′ − x is a non-negative linear combination of elements of

{d ∈ D | (p′ − p) · d < 0}
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Duality: The Demand Complex

Recall that Lj lives in price space. The dual space is quantity space.

The Demand Complex is the collection of “cells” Conv(Dj(p)).
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V j not concave Dj(1, 1) not discrete-convex
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Recall that Lj lives in price space. The dual space is quantity space.

The Demand Complex is the collection of “cells” Conv(Dj(p)).
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Lemma

Bundles are only (possibly) demanded at prices corresp. to the demand
complex cell they’re in.

V j not concave Dj(1, 1) not discrete-convex
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Recall that Lj lives in price space. The dual space is quantity space.

The Demand Complex is the collection of “cells” Conv(Dj(p)).
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Lemma

Bundles are only (possibly) demanded at prices corresp. to the demand
complex cell they’re in.

V j not concave Dj(1, 1) not discrete-convex

X ⊂ Zn is discrete-convex if Conv(X) ∩ Zn = X.

V j : Xj → R is concave if Xj discrete-convex and can extend V j to
weakly-concave Conv(V j) : Conv(Xj)→ R.
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Duality: The Demand Complex

Recall that Lj lives in price space. The dual space is quantity space.

The Demand Complex is the collection of “cells” Conv(Dj(p)).
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V j not concave Dj(1, 1) not discrete-convex

Lemma (Standard)

Every x ∈ Conv(Xj) ∩ Zn demanded iff V j is concave.

iff Dj(p) discrete-convex for all p.
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Aggregate demand and equilibrium

Agents j ∈ J . Valuations uj : Xj → R. Domains XJ =
∑

j∈J X
j .

Aggregate demand set
∑

j∈J D
j(p)

= DJ(p) where

Aggregate valuation V J(x)= max
{∑

j V
j(xj) | xj ∈ Xj ,

∑
j x

j = x
}

Definition (Standard)

If supply is x, a competitive equilibrium among agents j consists of

allocations xj such that
∑

j x
j = x.

price p such that xj ∈ Dj(p) for all j.

}
x ∈ DJ(p) for some p
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Aggregate demand and equilibrium

Agents j ∈ J . Valuations uj : Xj → R. Domains XJ =
∑

j∈J X
j .

Aggregate demand set
∑

j∈J D
j(p)= DJ(p) where

Aggregate valuation V J(x)= max
{∑

j V
j(xj) | xj ∈ Xj ,

∑
j x

j = x
}

function X → R

Definition (Standard)

If supply is x, a competitive equilibrium among agents j consists of

allocations xj such that
∑

j x
j = x.

price p such that xj ∈ Dj(p) for all j.

}
x ∈ DJ(p) for some p

Translation to competitive equilibrium from Alex’s talk:

The same as competitive equilibrium in an exchange economy if x = 0.

Otherwise, can include an additional agent whose domain is {−x}.
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∑

j∈J X
j .

Aggregate demand set
∑

j∈J D
j(p)= DJ(p) where

Aggregate valuation V J(x)= max
{∑

j V
j(xj) | xj ∈ Xj ,

∑
j x

j = x
}

function X → R

Definition (Standard)

If supply is x, a competitive equilibrium among agents j consists of

allocations xj such that
∑

j x
j = x.

price p such that xj ∈ Dj(p) for all j.

}
x ∈ DJ(p) for some p

Lemma (Standard)

∃ eqm for every x ∈ Conv(XJ) ∩ Zn iff U is concave.

iff DJ(p) discrete-convex for all p.

Call supplies in Conv(XJ) ∩ Zn “relevant”.
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LIP of aggregate demand
DJ(p) =

∑
j∈J D

j(p)

Easy to draw LJ ,

just superimpose individual LIPs.

Lemma

If individual valuations concave, equilibrium fails iff DJ(p) not
discrete-convex at some p in the intersection.
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LIP of aggregate demand
DJ(p) =

∑
j∈J D

j(p)

Easy to draw LJ , just superimpose individual LIPs.

Corollary

If V j are of demand type D for all j ∈ J then so is V J .

Lemma

If individual valuations concave, equilibrium fails iff DJ(p) not
discrete-convex at some p in the intersection.
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(0, 0)

(2, 1) (0, 1)

(1, 2)

(1, 0)

Then what is DJ(p)?

If p /∈ LJ , easy: use “facet normal × weight = change in demand”.

If p ∈ Lj , only one j, and individual valuations concave, also easy.

Interesting case: p ∈ Lj ,Lk for j 6= k.

Lemma

If individual valuations concave, equilibrium fails iff DJ(p) not
discrete-convex at some p in the intersection.
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Classic theorems of competitive equilibrium

Theorem (Kelso and Crawford 1982)

Suppose

domain Xj = {0, 1}n for all agents j.

V j : Xj → R is a concave substitute valuation for all agents.

Supply x ∈ {0, 1}n.

Then competitive equilibrium exists.

Seek generalised result of this form:

Suppose we fix a demand type D.

Agents all have concave valuations of demand type D.

Supply is in the domain of their aggregate demands.

Ask: does competitive equilibrium always exist?

Yes, iff D has a certain property. . .
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Classic theorems of competitive equilibrium

Theorem (Milgrom and Strulovici 2009)

Suppose

domain Xj = X, a fixed product of intervals, for all agents j.

V j : Xj → R is a concave strong substitute valuation for all agents.

Supply x ∈ X.

Then competitive equilibrium exists.

Seek generalised result of this form:

Suppose we fix a demand type D.

Agents all have concave valuations of demand type D.

Supply is in the domain of their aggregate demands.

Ask: does competitive equilibrium always exist?

Yes, iff D has a certain property. . .
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Classic theorems of competitive equilibrium

Theorem (Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp 2013)

Suppose

domain Xj ⊂ {−1, 0, 1}n for all agents j.

V j : Xj → R is a concave strong (‘full’) substitute valuation for all
agents.

Supply x = 0.

Then competitive equilibrium exists.

Seek generalised result of this form:

Suppose we fix a demand type D.

Agents all have concave valuations of demand type D.

Supply is in the domain of their aggregate demands.

Ask: does competitive equilibrium always exist?

Yes, iff D has a certain property. . .
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Supply is in the domain of their aggregate demands.
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Yes, iff D has a certain property. . .
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Aggregate demand and equilibrium

(0, 0)

F (0, 1)

(1, 2)

(2, 1)

(1, 0)

?

Is DJ(F) discrete-convex?

At price F,

Red demands (1, 0) or (0, 1)
Blue demands (0, 0) or (1, 1)

Aggregate demand set is sum of individual demands.

There is no way to demand the bundle in the middle.

NO!

∗When vectors in D span Rn, unimodularity ⇔ all sets of n vectors have det ±1 or 0.
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Aggregate demand and equilibrium

(0, 0)

F (0, 1)

(1, 2)

(2, 1)

(1, 0)

 Area=2.

There exists a non-vertex bundle because the square’s area is > 1.

The area is (abs. value of) the determinant of vectors along its edges.

det

(
1 −1
1 1

)
= 2

Avoid problems iff all sets of n demand type vectors have det ±1 or 0.
⇒ “unimodularity”∗.

∗When vectors in D span Rn, unimodularity ⇔ all sets of n vectors have det ±1 or 0.
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The Unimodularity Theorem

“Unimodularity Theorem”

Fix a set D ( Zn. A competitive equilibrium exists for

every finite set of agents with concave valuations of type D
all relevant supply bundles

iff D is unimodular.
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The Unimodularity Theorem

“Unimodularity Theorem”

Fix a set D ( Zn. A competitive equilibrium exists for

every finite set of agents with concave valuations of type D
all relevant supply bundles

iff D is unimodular.

Can also show (with Omer Edhan, Ravi Jagadeesan and Alex Teytelboym)
that if D is a maximal unimodular set of vectors then it defines a
maximal domain of valuations such that equilibrium exists.
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The Unimodularity Theorem

“Unimodularity Theorem”

Fix a set D ( Zn. A competitive equilibrium exists for

every finite set of agents with concave valuations of type D
all relevant supply bundles

iff D is unimodular.

From this, follows existence of equilibrium in:

Gross substitutes (Kelso and Crawford, 1982, ECMA).

Step-wise / Strong substitutes (Danilov et al., 2003, Discrete Applied
Math., Milgrom and Strulovici, 2009, JET).

Gross substitutes and complements (Sun and Yang, 2006, ECMA).

Full substitutability on a trading network (Hatfield et al. 2013, JPE).

Cf. Danilov et al. (2001), Danilov and Koshevoy (2004) for sufficiency.
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Unimodular examples: Strong / step-wise substitutes

Dn
ss ⊂ Zn vectors have at most one +1, at most one -1, otherwise 0s.

Substitutes where trade-offs are 1-1.

(
1 0 −1
0 1 1

) (
−1

1

)p2

p1

(
0
1
)

(
1
0
)

Unimodular set (classic result).

Equilibrium always exists

Model of Kelso and Crawford (1982), Danilov et al. (2003), Milgrom
and Strulovici (2009), Hatfield et al. (2013).

The model of Sun and Yang (2006) is a basis change.
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Unimodular examples: Strong / step-wise substitutes

Dn
ss ⊂ Zn vectors have at most one +1, at most one -1, otherwise 0s.

Substitutes where trade-offs are 1-1.

 1 0 0 1 1 0
0 1 0 −1 0 1
0 0 1 0 −1 −1


p3

p2

p1
Unimodular set (classic result).

Equilibrium always exists

Model of Kelso and Crawford (1982), Danilov et al. (2003), Milgrom
and Strulovici (2009), Hatfield et al. (2013).

The model of Sun and Yang (2006) is a basis change.
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Beyond strong substitutes

But (strong) substitutes are not necessary for equilibrium when n ≥ 4:

Have unimodular demand types, not a basis change of substitutes.

All unimodular demand types are a basis change of complements!

Smallest example: let D be the columns of:
1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1


 front-line workers}

manager

Interpretation:

The first three goods (rows) represent front-line workers.

The final good (row) is a manager.
‘Bundles’, i.e. teams, worth bidding for, are:

a worker on their own (not a manager on their own);
a worker and a manager;
two workers and a manager.

Interpret as coalitions: model matching with transferable utility.

E. Baldwin and P. Klemperer geometry of preferences September 2021 23 / 46



Beyond strong substitutes

But (strong) substitutes are not necessary for equilibrium when n ≥ 4:

Have unimodular demand types, not a basis change of substitutes.

All unimodular demand types are a basis change of complements!

Smallest example: let D be the columns of:
1 0 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 1 1


 front-line workers}

manager

Interpretation:

The first three goods (rows) represent front-line workers.

The final good (row) is a manager.
‘Bundles’, i.e. teams, worth bidding for, are:

a worker on their own (not a manager on their own);
a worker and a manager;
two workers and a manager.

Interpret as coalitions: model matching with transferable utility.
E. Baldwin and P. Klemperer geometry of preferences September 2021 23 / 46



The Intersection Count Theorem

Return to substitutes / complements example.
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The Intersection Count Theorem

Return to substitutes / complements example. Modify the valuations.
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The Intersection Count Theorem

Return to substitutes / complements example. Modify the valuations.
Now:

Bundle (1, 1) is demanded for some prices.

Every bundle is demanded for some prices.
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The Intersection Count Theorem

★

★

★

Before the shift

One intersection.

Demand complex cell area 2.

After the shift

Two intersections.

Demand complex cells area 1.
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The Intersection Count Theorem

★

★

★

Before the shift

One intersection.

Demand complex cell area 2.

After the shift

Two intersections.

Demand complex cells area 1.

Call this demand complex area the multiplicity of the intersection.
Up to multiplicity, # of intersections is constant

is Γ2(X1, X2) :=area(Conv(X1 +X2))-area(Conv(X1))-area(Conv(X1))
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The Intersection Count Theorem

Ԃ

Ԃ
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Before the shift

One intersection.

Demand complex cell area 2.

After the shift

Two intersections.

Demand complex cells area 1.

Call this demand complex area the multiplicity of the intersection.
Up to multiplicity, # of intersections is constant
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The Intersection Count Theorem

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Ԃ

Theorem

When n = 2, and intersection is ‘transverse’, then equilibrium exists for all
relevant supply bundles iff # intersections, weighted by product of facet
weights, equals Γ2(X1, X2).

Higher Dimensions
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Summary so far

Individual valuations and trade-offs

Understand geometrically
Classify according to “type” of trade-offs.

Aggregations of individual valuations

Understand easily, geometrically
Individual classifications extend.

Competitive equilibrium between agents.

When guaranteed? Why?
How to efficiently check for even if not guaranteed?

Applications
Further development of the product-mix auction.
Implementing Walrasian Equilibrium: The Language of Product-Mix
Auctions
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Product-Mix Auctions

Address real-world situations in which new auction designs needed

Use geometric approaches to represent bidders’ preferences

Build them up of simple pieces.
Easy to understand and work with.
Aggregating these pieces can give wide classes of preferences.

Develop new bidding languages

Bank of England Language
Strong Substitutes Language “Tropical Languages”
All Substitutes Language
Icelandic Auction Language “Arctic Language”

Implementing Walrasian Equilibrium: the Language of Product-Mix
Auctions (with Paul Klemperer)

}
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Bank of England Problem

After Northern Rock bank run, Bank of England urgently wants to loan
funds to banks, etc., – willing to take weaker-than-usual collateral, but
only in return for higher interest rate.

i.e., wanted to sell related goods to banks (loans against different kinds of
collateral: “strong” (UK / US sovereign debt), “weak” (mortgage-backed
securities?!), etc.
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Central Bank of Iceland’s Problem

After financial crisis Iceland imposed capital controls. How to exit?

Central Bank of Iceland planned to buy back the “offshore” accounts they
had blocked. Offer owners three choices of bonds or cash.

June 2015: CBI announces it will use a Product-Mix Auction

April 2016: “Panama papers” reveal Prime Minister’s wife has money in
such an account herself. Plan is abandoned.
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General Problem

Supplier wants to sell multiple versions of a product: multiple “goods”.

Seller costs depend on bundle of goods sold. So their preferred bundle to
sell depends on prices on all goods.

Bidders’ demand depends on prices on all goods.

Reason to prefer a sealed bid mechanism.
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Product-Mix Auctions: Basic Steps and Issues

1. Gather bid data

What form of preferences are relevant and allowed?

How should preferences be communicated?

How can bidders think about and derive their own preferences?

Does simplicity of bid data restrict the class of preferences?

Is that bid data in a reasonable form to aggregate?

2. Find prices and allocations

What is the objective - profit maximisation or equilibrium?

How can we include seller preferences?

Do allowed preferences ensure competitive equilibrium exists?

Can we find that equilibrium in reasonable time?
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Existing Approaches

Discrete Convex Analysis approaches, and related work

Kelso and Crawford (1982), Murota and co-authors (long literature);
Milgrom (2000), Ausubel (2006); Paes Leme and Wong (2015)

Focus on finding Walrasian equilibrium

Preference data either gathered dynamically or assumed already
known and aggregated

“Bidding language” approaches

Milgrom (2009); Nisan (2006); Klemperer (2008, 2010)

Focus on gathering bid data

Limitations on the form of preferences that may be communicated

Limitations on tractability of algorithms described.

All in context of “strong substitute” (M \-concave) preferences
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Bank of England Bidding Language Assumptions

Goods

Divisible or indivisible

Bidder valuations

Associated integer valuation is for strong substitutes

Valuations break down as simple “either/or” trade-offs.

Sellers

Maximise efficiency

Considerable flexibility in preferences
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Bank of England “Dot Bids”

A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand
Easy to aggregate
Easy to optimise

p1

p2
(0, 0)
demanded

(0, 1) demanded

(1, 0)

demanded r

Bid for at most one unit. Gul and Stacchetti (1999) “unit demand”

Which good? One with best price pi relative to ri.
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Bank of England “Dot Bids”

A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand

Easy to aggregate
Easy to optimise

p1

p2
(0, 0)
demanded

(0, 1) demanded

(1, 0)

demanded r

Associate with V r simple LIP Lr, with facets:

Where bidder indifferent between nothing and unit of good i

Where bidder indifferent between good i and good j
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Bank of England “Dot Bids”

A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand

Easy to aggregate
Easy to optimise

(1,1,1)

p
1

p
2

p
3

Associate with V r simple LIP Lr, with facets:

Where bidder indifferent between nothing and unit of good i

Where bidder indifferent between good i and good j
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Bank of England “Dot Bids”

A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand

Easy to aggregate
Easy to optimise

p1

p2 (0, 0)

(0, 1)

(1, 0)

p
Dj(p) = (0, 0)

Given a price:

Reject the bid if it is too low on all goods

Or accept on the most favourable good.

Aggregate demand is easy to find.
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A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand
Easy to aggregate

Easy to optimise
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p2
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Dj(p) = (4, 3)

Given a price:
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Bank of England “Dot Bids”

A single dot bid at r represents valuation V r

V r(0) = 0, V r(ei) = ri

Easy to understand
Easy to aggregate

Easy to optimise

p1

p2

p
Dj(p) = (4, 3)

Finding market clearing price:

Optimise individual bids via linear / integer programming

Aggregate these linear programs by adding them up
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Need for the Strong Substitute Bidding Language

So we can depict any valuation like this, in any dimension.

But not like this as yet.

Works if we “subtract a bit”
But what does that mean?

Price on b

(0, 1)

(0, 2)

(1, 1)

P
ri

ce
on

g

(0, 0)
(1, 0)

(2, 0)
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Strong Substitute Bidding Language: The Objective

Want to break the figure down with the dots:

Easy to understand

?

Easy to aggregate

?

Easy to optimise

?

Still true with negative dots?

Pay-off: depict all preferences for strong substitutes.

Goods

Divisible or indivisible

Bidder valuations

Associated integer valuation is for strong substitutes

Sellers

Maximise efficiency

Strong substitute preferences
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Multiple Dot Bids: “Addition” of LIPs

A collection of positive dot bids r ∈ R
⇔ Aggregate valuation of {V r, r ∈ R}.
⇔ LIP LR =

⋃
r∈R Lr

the weights are the number of dot bids associated with each facet

p1

p2

Write (LR,w) = �r∈R(Lr,1). “Addition” of LIPs
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Similarly, we can formally subtract

(L,w) = (L1,w1)� (L2,w2)

Take the union

Subtract weights

Remove 0-weighted facets

L is balanced, but some facets might have negative weights.

So if w ≥ 0, then L is a LIP of some valuation.

p1

p2

Lu1
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(L,w) = (L1,w1)� (L2,w2)

Take the union

Subtract weights

Remove 0-weighted facets

L is balanced, but some facets might have negative weights.

So if w ≥ 0, then L is a LIP of some valuation.

Given positive dot bids r ∈ R and negative dot bids s ∈ S, define

(LR−S ,wR−S) := (LR,wR)� (LS ,wS).

Definition

A collection of positive and negative dot bids are valid if wR−S ≥ 0.

Lr is strong subs, so by valuation-complex equivalence theorem:

If bids are valid, they generate a strong substitute valuation.
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Demand from Positive and Negative Bids

Translating R,S to V R−S is convoluted.

Translating R,S to DR−S(p) is easy when demand is unique.

DR−S(p) = DR(p)−DS(p)

In general, find all nearby unique demands and take discrete convex hull.
Use this principle to implement the auction. Details
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Demand from Positive and Negative Bids

Translating R,S to V R−S is convoluted.
Translating R,S to DR−S(p) is easy when demand is unique.

DR−S(p) = DR(p)−DS(p)

p1

p2

r2

s1

r1

r3
p

DR−S(p)

= {(1, 0), (0, 1), (1, 1)}

In general, find all nearby unique demands and take discrete convex hull.
Use this principle to implement the auction. Details
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Representation of Strong Substitute Valuations

Suppose A is a “d-simplex”, i.e. A = {x ∈ Zn
+ :
∑

i xi ≤ d} for some d.
For A not of this form, we can extend to the minimal d-simplex domain
containing it, giving the valuation arbitrarily low / high values.

Theorem (Characterisation of Strong Substitutes)

A valuation V j : Xj → R is a strong substitute valuation iff it can be
presented using a valid finite collection of positive and negative dot bids.

Sketch Proof
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3-dimensional example

Skip to Summary
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Weighted Dots

A single dot bid at r with weight a represents valuation V (r,a)

V (r,a)(0) = 0, V (r,a)(aie
i) = airi

p1

p2 (0, 0)

(0, a2)

(a1, 0)

r
a2

a1(
−a1
a2

)

At price r, indifferent between:

a1 units of good 1;
a2 units of good 2;
0.
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All Substitutes Bidding Language

Assumptions as for Strong Substitutes, but

All “ordinary” substitute preferences can be communicated

Goods must be divisible to guarantee equilibrium. Why?

Language: consists of weighted positive and negative dot bids.

Let A ⊂ Zn
≥0 satisfy:

0 ∈ A
argmax{xi | x ∈ A} = {Wie

i} for some Wi ∈ Z>0, for all i ∈ I

Theorem

A valuation V j : Xj → R is a substitute valuation iff it can be presented
using a valid finite collection of weighted positive and negative dot bids.

Example
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“Arctic” Languages

Recall the Central Bank of Iceland’s problem:

After financial crisis Iceland imposed capital controls. Needed to exit.

Planned to buy back the “offshore” accounts they had blocked.

Offer owners three choices of bonds or cash.
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“Arctic” Language

Goods are divisible.

Each buyer has a fixed budget.

Constant value for each good.

Intuition: fixed sum for currency transaction. Now a bid of v means:

With budget m could buy m
pi

units of good i, worth vim
pi

.

So choose good maximising vi
pi

s.t. vi > pi.

p1

p2

v

m
p2

m
p1
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Seller in Iceland Bidding Language

Unlike in tropical languages, we assume seller is profit-maximising.

Optimal point for a seller will always be at an intersection of bidders’ LIPs.

Find these intersections. Maximise objective over finite set of points.

p1

p2
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Summary

Need for sealed-bid auctions simultaneously selling multiple goods

We can approach auction design using “bidding languages”

We can design bidding languages using geometry

We have theoretically analysed and practically implemented three
languages

Bank of England Bidding Language
Strong Substitutes Bidding Language
Icelandic Auction Bidding Language

Third is very different from the other two

We can depict all substitute valuations with our languages (no
implementation as yet).

This is an important application of our earlier work on the geometry
of preferences, which developed our understanding of individual and
aggregate valuations, and of competitive equilibrium between agents.
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General “Intersection Count Theorem”

Given concave valuations V j : Xj → R, j = 1, 2.

An “intersection 0-cell” for L1,L2 is a 0-cell of their aggregate that
lies in their intersection.
Generalise “facet weight” to lower-dimensional “cells” of LIP.
“Näıve multiplicities” at intersection 0-cells: in simple (“transverse”)
cases, this is product of the weights of cells intersecting there.
Γn(X1, X2) is a non-negative integer.

Theorem

1. Eqm exists for all relevant supplies iff exists at all intersection 0-cells.

2. Count of intersection 0-cells, weighted by näıve multiplicities, is
bounded above by Γn(X1, X2).

3. If bound is tight, equilibrium exists for all relevant supplies.

4. If n ≤ 3, intersection is “transverse”, and bound is not tight, then
equilibrium fails for some relevant supply.

Back
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Implementation Phase 1: Find an Equilibrium Price

Wish to sell bundle y.

Method 1: (with Paul Goldberg and Edwin Lock)

Using dot bids, easy to calculate aggregate indirect utility
U(p) = maxx∈X{V (x)− p · x} at generic prices

g(p) = U(p) + p · y minimised at p with y ∈ DJ(p).

g is submodular.

Use steepest descent methods, taking “long steps”.

Method 2: (with Martin Bichler and Maximilian Fichtl)

Recall that in the Bank of England auction (positive bids only) we
can find prices using linear programming.

Split bids into two sets: positive and negative.

Each set defines a linear program

Minimise the difference between objectives of these lin progs, subject
to the difference between bids accepted being the target y
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Finding an equilibrium allocation

with Paul Goldberg and Edwin Lock

Worst case rather a nuisance! What if many bids from many bidders
are marginal? What to give to whom?

Start by allocating everything ‘obvious’ (non-marginal).

Construct graph with nodes as goods, edges labelled with bidder
identity for existence of marginal bids.

Iteratively eliminate leaves

Break cycles labelled by more than one bidder by ‘tweaking’ bids up
slightly (requires defined order of priority).
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Finding an equilibrium allocation

with Paul Goldberg and Edwin Lock

Worst case rather a nuisance! What if many bids from many bidders
are marginal? What to give to whom?

Start by allocating everything ‘obvious’ (non-marginal).

Construct graph with nodes as goods, edges labelled with bidder
identity for existence of marginal bids.

Iteratively eliminate leaves

Break cycles labelled by more than one bidder by ‘tweaking’ bids up
slightly (requires defined order of priority).

Demand in Strong Substitutes Bidding Language Summary
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Allowing More General Substitute Trade-offs?

Suppose trade-offs are not all 1-1.

p1

p2 (0, 0)

(0, 1)

(1, 0)

(2, 0)

p1

p2

(0, 0)

(0, 1)

Equilibrium not guaranteed with indivisible goods:
Bundle (1, 1) “should” be demanded at price ∗ .
Weaken again to divisible goods.

Back
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(2, 1)
∗
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(0, 1)
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Ordinary Substitutes via Weighted Dot Bids

p1

p2
(0, 0)

(0, 1)

(1, 0)

(2, 0)

Back
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Illustration of the construction of the dot bid set

p1

p2

Â

Lu
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Illustration of the construction of the dot bid set

p1

p2

Â

Lu

r11

r12

r13

Identify minimal points on horizontal and vertical facets.
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Illustration of the construction of the dot bid set

p1

p2

Â

Lu

LR

r11

r12

r13

Putting bids at these points gives LR ‘covering’ Lj .
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Illustration of the construction of the dot bid set

p1

p2

Â

L2

Subtract the original LIP.

E. Baldwin and P. Klemperer geometry of preferences September 2021 45 / 46



Illustration of the construction of the dot bid set

p1

p2

Â

L2

The remainder is the LIP of a strong substitutes valuation.

E. Baldwin and P. Klemperer geometry of preferences September 2021 45 / 46



Illustration of the construction of the dot bid set

p1

p2

Â

r21

L2

So we can go again.
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Illustration of the construction of the dot bid set

p1

p2

Â

r21

L2

LR2LR2LR2

So we can go again. Eventually this terminates.
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Illustration of the construction of the dot bid set

p1

p2

Â

L3

So we can go again. Eventually this terminates.

E. Baldwin and P. Klemperer geometry of preferences September 2021 45 / 46



Termination of the algorithm

Identify finite set of points at which dot bids might ever be placed:
Intersections of affine spans of facets in Lj normal to ei for all i.

The minimal point we might use strictly increases at each stage.

Then

(Lj ,wu) = (LR1
,wR

1
)� (LR2

,wR
2
)� · · ·� (−1)l−1(LRl

,wR
l
)

= (LR,wR)� (LS ,wS)

where R = R1 ∪R3 ∪ · · · and S = R2 ∪R4 ∪ · · · .

This completes the proof.

Theorem Statement Summary
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