
Esponda and Pouzo [2016]: Berk-Nash equilibrium

• Misspecified learning in static Bayesian games

• Each player privately observes a signal, which is their “type, ”
and players then simultaneously choose actions.

• Agents have subjective beliefs about the map from strategy
profiles to distributions of consequences.

• Berk-Nash equilibrium: each agent’s strategy (map from type
to action) is optimal given beliefs, and beliefs minimize the
KL divergence from what the agent sees.

• Applications include “cursed” behavior when people ignore the
implications of the fact that they won an auction (Example
2.5) and ignoring regression to the mean (Example 2.3).

• Paper also provides a learning foundation for Berk-Nash
equilibrium.
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Model and Notation

• Players i ∈ I, states ω in a compact metric space Ω, finite
signal space S = ×i∈ISi, where each i privately observes si.

• Objective probability distribution p ∈ ∆(Ω × S).
• Each i observes si, then chooses xi from the finite set Xi;
X = ×i∈IXi

• Set of consequences Y = ×i∈IYi.
• Main text of the paper restricts to finite Ω and Y , Online

Appendix relaxes this (which is needed for some of the
examples.) Stick with finite Ω and Y in these slides.

• Each player i observes the output of a consequence function
f i : Ω × X → Yi.

• Payoffs πi : Xi × Yi → R don’t depend on the state ω or on
the consequences yj of the other agents.
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• Strategies σi : Si → ∆(Xi)

• Every strategy profile σ generates maps Qi
σ : Si ×Xi → ∆(Yi)

from signals and actions to distributions over each players’
consequences; this is the objective model.

• Each agent i has a set of subjective models
(
Qi

θi

)
θi∈Θi , where

each Qi
θi : Si × Xi → ∆(Yi). There are the models the agent

believes are possible. (Implicitly this set is the support of the
agent’s prior, but the prior is only introduced when they get to
the learning foundations.)

• Assume each Θi is a compact subset of a Euclidean space and
that the Qi are continuous in θi.

• Beliefs about the opponents’ strategies are left implicit;
agents may or may not be thinking about them.
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• The KL divergence between a model’s predictions and the
true distribution is

Ki(σ, θi) =
∑

(si,xi)∈Si×Xi

EQσ

[
ln
(
Qi

σ(Y i | si, xi)
Qi

θi(Y i | si, xi)

)]
σi(xi | si)p(si)

• The set of closest parameter values of player i given strategy
σ is

Θi(σ) = argmin
θi∈Θi

Ki(σ, θi).

• The agent’s expected distribution over feedback given their
beliefs is

Q̄i
µi(yi | si, xi) ≡

∫
Θi
Qi

θi(yi | si, xi)µi(dθi).
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When are there Multiple KL Miminimizers?
• In space of all probability distributions there is generically a

unique KL minimizer.
• But frameworks with symmetry or parametric restrictions are

not generic, and there multiple KL minimizers can arise
naturally.

• Example: suppose that y is the color of the ball drawn from
an urn which is known to contain 6 balls, with three possible
colors, white, red, blue.

• The agent correctly believes their action doesn’t affect y.
• Outcome distributions Qθ correspond to the urn composition.
• The agent is certain that at most half of the balls have the

same color, i.e., that p(y) ≤ 1/2 for every y.
• In reality the urn has 4 white balls, 1 red, and 1 blue.
• So the two KL minimizers are (3 white, 2 blue, 1 red) and (3

white, 1 blue, 2 red).
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Berk-Nash Equilibrium

Definition
A strategy profile σ is a Berk-Nash equilibrium (BNE) if for all
i ∈ I, there is µi ∈ ∆

(
Θi
)

such that:
▶ suppµi ⊆ Θi(σ),
▶ σi is optimal given µi, i.e. σi(xi | si) > 0 implies

xi ∈ argmaxx̄i∈Xi

∑
yi∈Y i

πi(x̄i, yi)Q̄i
µi(yi | si, x̄i).

• If all agents consider the true model possible, then every
Berk-Nash equilibrium is self-confirming: only the models for
which Qθi = Qi

σ minimize the KL-divergence.
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Theorem
A Berk-Nash equilibrium exists if either:

1. For each θ ∈ Θ and (si, xi) ∈ Si × Xi, Qi
θi(·|si, xi) and

Qδx(·|si, xi) are mutually absolutely continuous
2. Every Qθi can be approximated by a model where every

feasible observation has full support.

• The conditions aren’t nested, but both are satisfied by the
examples in the paper.

• We prove the theorem under the first assumption; the paper
has a longer proof under the second.

• As with NE, pure-strategy best responses aren’t convex
valued, and existence of equilibrium can require mixed
strategies.
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Proof

• See the original game as |2I| players game,
{1, 1′, 2, 2′, ..., I, I ′}.

• i =the original agent, i′ = i’s “adversary.”

• Action sets: Ai = Xi, Ai′ = Θi.

• Utility functions:

Ui (a, θ) =
∫

Y
ui (a, y) dQθ′ (y|a) ,

Ui′ (a, θ) =
∫

Y
logQθi

(y|a) dQδa (y|a)

• i’s adversary wants to choose a distribution on consequences
to maximize the negative of KL divergence between i’s beliefs
and the true distribution.
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• Denote mixed strategies by ψi and µi′ .

• Nash equilibrium requires both players only assign positive
probability to their best responses.

• Player i′’s pure best responses to ψi are

arg max
θi∈Θ

∑
a∈A

∏
i∈I

ψi (ai)Ui′ (a, θi)

= arg max
θ∈Θ

∑
a∈A

∏
i∈I

ψi (ai)
∫

Y
logQθi

(y) dQδa (y)

= Θi (ψ) .

where the first line follows from the fact that Ui′ doesn’t
depend on θj , j ̸= i.

• Player i’s best pure responses to µi′ are
arg maxai∈Ai EQµi′ [ui (ai, y)] .
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• So a Nash equilibrium of the induced game is a pair (ψ∗, µ∗)
where µ∗ ∈ ∆ (Θ (ψ∗)) and
ψ∗ ∈ ∆

(
arg maxai∈Ai EQµ∗ [ui (ai, y)]

)
.

• This is exactly a Berk-Nash equilibrium of the original game.

• When each Θi is finite, existence of Berk-Nash is an
application of the Nash’s result for games with finite set of
strategies.

• When Θi is compact, the result follows from Glicksberg [1952]
existence theorem for Nash equilibria of games with compact
space of actions. (See e.g. Fudenberg and Tirole [1991]
section 1.3.3.)

• To apply the theorem observe that Esponda and Pouzo [2016]
assume Ai finite, Θi compact, and Ui continuous. The
absolute continuity assumption guarantees that Ui′ is also
continuous.

10 / 43



(fully) Cursed equilibrium (Eyster and Rabin [2005])

• Each agent i believes that conditional on their own signal si

the state ω is independent of opponent’s actions x−i. (ER
also define “partially cursed" equilibrium. . . )

• Motivated by evidence of the “winner’s curse” in
common-value auctions, where bidders fail to realize that it’s
bad news when others have low signals.

• EP show that with this sort of misspecification, if the state
space is finite and each player gets perfect feedback (see next
slide), a strategy profile is a cursed equilibrium iff it is
Berk-Nash.

11 / 43



Example: Additive Lemons Problem

• Seller (player 1) owns an object and values it at s1 = ω.

• Buyer value is v = ω + 2.5

• Double auction: Seller submits bid x1, buyer submits bid
p = x2; trade at p iff x1 ≤ x2.

• So seller sets x1 = ω.

• Distribution of ω is uniform on {1, 2, 3}.

• Objectively, payoffs are (1/3)(1 − 1 + 2.5) = 5/6 for p = 1,
(2/3)(−.5 + 2.5) = 4/3 for p = 2 and −1 + 2.5 = 1.5 for
p = 3.

• So NE price is 3.
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Cursed equilibrium in the lemons example

• Buyer doesn’t have a signal.

• Perfect feedback: f2(x, ω) = (x1, ω).

• Buyer’s models are all the product measures on X1 × Ω: buyer
thinks seller’s bid is independent of their price.

• BN-E: buyer learns that the distribution of seller bids and the
distribution of ω are both uniform on {1, 2, 3}

• The buyer can’t learn anything about the correlation between
seller’s bid and the value because they are convinced these are
independent.

• Subjective payoff to p = 1 is (1/3)(1 + 5/2) = 7/6; subjective
payoff to 2 is (2/3)(5/2) = 5/3 and subjective payoff to 3 is
−1 + 5/2 = 3/2.

• Thus the Berk-Nash price is 2.
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• Berk-Nash price is lower than in NE because buyer doesn’t
internalize the reduction in average quality conditional on the
sellers accepting the offer.

• Buyer expects to get payoff 5/2 conditional on purchase and
actually gets 2, should we expect them to notice? If so how
fast?

• See Gagnon-Bartsch, Rabin, and Schwartzstein [2023] and
Fudenberg and Lanzani [2023].
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Monopolist with unknown demand
Nyarko [1991]

• Monopolist chooses price x ∈ {2, 10}

• Payoff: π(x, y) = xy

• Demand Function: y = a0 − b0x+ ω.

• Noise term ω ∼ N(0, 1), so y ∼ N(a0 − b0x, 1).

• Monopolist believes y ∼ N(a− bx, 1) where θ = {a, b} is
uniformly distributed on a square that doesn’t contain (a0, b0).
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Evolution of Beliefs and Actions

• Seller is myopic: sets prices each period to maximize that
period’s expected payoff.

• Nyarko shows that the price doesn’t have a deterministic limit:
If it converged to 2, the firm would come to believe it should
charge 10, and if price converged to 10 firm eventually wants
to charge 2.

• In contrast when the seller is correctly specified their beliefs
converge even when the data is endogenous.

• Simpler observation: If price is fixed at 10 the KL minimizers
are on the segment AB on the next figure, and if price is fixed
at 2 the KL minimizers are on CD.
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Definition
A game is correctly specified given σ if for all i ∈ I there is
θi ∈ Θi s.t. Qi

θi(yi | si, xi) = Qi
σ

(
yi | si, xi

)
for all

(si, xi) ∈ Si × Xi and yi ∈ Yi. The game is correctly specified if it
is correctly specified for all σ; otherwise it is misspecified.

Definition
A game is strongly identified given σ if for all i ∈ I, if
θi

1, θ
i
2 ∈ Θi(σ), then Qi

θi
1
(· | si, xi) = Qi

θi
2
(· | si, xi) for all

(si, xi) ∈ Si × Xi.
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Proposition
Berk-Nash equilibrium is equivalent to Nash equilibrium when the
game is correctly specified and strongly identified for all σ.

Definition
Strategy profile σ is a unitary self-confirming equilibrium (SCE) if
for each player i there is a conjecture µi ∈ ∆(Θi) such that for
each si and xi with σi(si)(xi) > 0

(a) xi is a best response to µi given signal si, and
(b) Q̄i

µi(· | si, xi) = Qi
σ(· | si, xi).

Proposition
Berk-Nash equilibrium is equivalent to unitary self-confirming
equilibrium when the game is correctly specified for all σ.
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Berk-Nash in a bandit problem

• Out gives 0, this is outcome y0.
• In leads to a move by Nature with outcomes y1 and y−1,

payoffs 1 and −1 respectively.
• No signals.
• Ω = {ω0.1, ω0.6} = Qi; these are the probabilities Nature plays
y1.

• True distribution corresponds to ω0.6 so agent is correctly
specified.

• Feedback function is that agent sees the realized outcome.
• When agent plays Out, both models give the same

distribution on feedback.
• When agent plays In, the unique KL minimizer is the true

model.
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• “Out” together with µ(ω0.1) = .9 is Berk Nash because with
this belief the agent’s expected payoff to In is
.9(−.8) + .1(.2) < 0.

• Not Nash but a unitary SCE.

• Proposition: If a game is correctly specified at σ and σ is a
Berk-Nash equilibrium then it is a SCE.

• If game isn’t correctly specified, Berk-Nash isn’t necessarily
SCE: Misspecified agents needn’t learn the path of play.
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Molavi [2019]
• Extends EP 2016 to recursive dynamic general equilibrium

macro settings with a continuum of agents and continuous
actions, observables, and state variables.

• Prices and choices simultaneously determined through
price-taking behavior and market clearing conditions.

• The economy has state variables and stochastic fluctuations
so replace fixed “rest points” with ergodic distributions over
aggregates.

• Uses results on continuous Markov chains over general state
spaces to establish the convergence of empirical distributions
and concentration of beliefs.

• Beliefs now minimize “weighted KL divergence” where the
endogenous weights depend on the ergodic distribution of the
limiting “temporary equilibrium.” (cf Esponda and Pouzo,
2021)
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Discussion

• Like EP, Molavi defends models of misspecified learning as a
way to relax full rationality while letting behavior be
endogenous.

• There is a long tradition of macro models with misspecified or
boundedly rational learning—Bray (1982), Sargent (1993,
1999, ...), Marcet-Sargent (1989), Cho-Williams-Sargent
(2002), Marcet-Nicolini (2003), Preston (2005), Adam-Marcet
(2011), Evans-Honkapohja (2012), Malmendier-Nagel (2016),
Eusepi-Preston (2018), etc.

• Molavi generalizes some of these (e.g. Bray [1982]) and is the
special case of Adam-Marcet where beliefs come from Bayes
rule. Molavi also gives a non-Bayesian MLE foundation that
generalizes e.g. Evans-Honkapohja and others on OLS
learning.
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Fudenberg, Lanzani, and Strack [2021]

• Sharper necessary condition for an action to be a limit point
of the learning process.

• A characterization of the actions that are limit points for all
“nearby” beliefs.

• Sufficient conditions for an action to have positive probability
of being the limit outcome from any initial beliefs.

• Main differences with previous work:

1. Don’t require random shocks to the payoff functions;

2. Don’t impose functional-form restrictions on the objective and
subjective data generating processes;

3. Don’t assume myopia.
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• Relate limit outcomes to two refinements of Berk-Nash
equilibrium.

• A uniform Berk-Nash equilibrium is a best reply to any
mixture over KL minimizers.

• A uniformly strict Berk-Nash equilibrium is an action that is a
strict best reply to every mixture over KL minimizers.

• Any limit point must be a uniform Berk-Nash equilibrium.

• Uniformly strict Berk-Nash equilibria are uniformly stable:
behavior converges to them with high probability from all
nearby beliefs.

• Conversely, uniformly stable B-NE must be uniformly strict.

• Unif. Strict B-NE = Unif. Stable ⊆ Limit points =
Unif. B-NE.
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Positive Attractiveness
• Equilibria are positively attractive if they have positive

probability from any starting beliefs.

• Uniformly strict Berk-Nash equilibria are positively attractive
under various types of misspecification:

▶ Causation Neglect, where the agent mistakenly believes that
their action does not affect the outcome distribution,

▶ Subjective Bandits, where the agent thinks that the outcomes
observed when playing one action are uninformative about the
distribution induced by the others,

▶ In supermodular environments, extremal equilibria are
positively attractive.
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Actions, Utilities, and Objective Outcome Distributions
• Every period t ∈ N, the agent chooses an action a from the

finite set A.

• Finite set of outcomes Y .

• Action a has two consequences:

▶ Induces objective probability distribution over outcomes
p∗

a ∈ ∆ (Y );

▶ Directly influences the agent’s payoff through u : A× Y → R.
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Subjective Beliefs of the Agent
• Let P := ×a∈A∆ (Y ) be the space of all action-dependent

outcome distributions.

• Elements p ∈ P , components pa.

• The agent is Bayesian.

• They have a prior µ0 ∈ ∆ (P ).

• Θ := suppµ0 is the set of conceivable outcome distributions.

• The agent may be misspecified, i.e. p∗ /∈ Θ.
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Behavior of the Agent
• A history of length t is an (aτ , yτ )t

τ=0 = (at, yt) ∈ At × Y t.

• A (pure) policy π :
⋃∞

t=0A
t × Y t → A specifies an action for

every history.

• The agent wants to maximize expected discounted utility with
discount factor β ∈ [0, 1).

• Am (µ) = arg maxa∈A
∫

P Epa [u(a, y)] dµ(p) is the set of
myopic best replies to belief µ.
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• Two outcome distributions p, p′ ∈ Θ are observationally
equivalent under action a, written p ∼a p

′, if pa(y) = p′
a(y).

• Let Ea(p) ⊆ Θ denote the outcome distributions in Θ that are
observationally equivalent to p under a.

• Agents are not arbitrarily patient, so no reason to expect them
to have much data about the consequences of every action.

• For each action a, let

Θ (a) = argmin
p∈Θ

∑
y∈Y

p∗
a(y) log p∗

a(y) −
∑
y∈Y

p∗
a(y) log pa(y)


= argmin

p∈Θ

−
∑
y∈Y

p∗
a(y) log pa(y)


denote the KL-minimizers (or likelihood maximizers)
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Refinements of Berk-Nash Equilibrium

Definition (Uniform and Uniformly Strict Berk-Nash Equilibria)
Action a is a

(i) uniform Berk-Nash equilibrium if for every KL minimizing
outcome distribution p ∈ Θ(a), there is a belief over the
observationally equivalent distributions ν ∈ ∆ (Ea(p)) such
that a ∈ Am(ν).

(ii) uniformly strict Berk-Nash equilibrium if {a} = Am(ν) for
every belief in ν ∈ ∆(Θ (a)).

When the agent is correctly specified (i.e. p∗ ∈ Θ),

Uniform B-NE = B-NE = Self-Confirming,

as p∗
a is the unique KL minimizer for a.
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Technical Assumptions
• Simplyfing assumption: For all p ∈ Θ, p and p∗ are

mutually absolutely continuous. This guarantees that no
conceivable distribution is ruled out after a finite number of
observations.

• Also assume that the prior µ0 has subexponential decay: there
is Φ : R+ → R such that for every p ∈ Θ and ε > 0 we have

µ0(Bε(p)) ≥ Φ(ε)

with
lim Φ(K/n) exp(n) = ∞ ∀K > 0.

• Priors with a density that is bounded away from 0 on their
support, priors with finite support, and Dirichlet priors all have
subexponential decay. Fudenberg, He, and Imhof [2017] show
that Bayesian updating can behave oddly on priors w/o
subexponential decay.
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Only Uniform-Berk Nash Equilibria are Limit Actions

Theorem (Limit Actions are Uniform Berk-Nash Equilibria)
If actions converge to a ∈ A with positive probability, a is a
uniform Berk-Nash equilibrium.

• Other results on convergence to B-NE require myopia and
either i.i.d. payoff shocks or a finite-support prior Esponda
and Pouzo [2016], Frick, Iijima, and Ishii [2021], Bohren and
Hauser [2021].

• Sharper conclusion: a limit action must be a best reply to all
of the KL minimizers it induces.

• Key lemma: Beliefs of misspecified agents converge to the KL
minimizers at a uniform rate.
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Proof Sketch

• The agent’s belief concentrates around the distributions that
minimize the KL divergence from the empirical frequency at
an exponential rate eKt that is uniform over the sample
realizations.

• While playing a, the empirical frequency converges to p∗
a

• The difference between the empirical frequency and p∗
a is a

random walk, and it oscillates in the direction of the different
minimizers.

• By the Central Limit Theorem these oscillations die out at
rate 1√

t
, which is slower than the exponential concentration of

beliefs.
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Proof Sketch

• So we can use an extension of the second Borel-Cantelli
lemma for events that are not "too correlated" to show that
infinitely often the beliefs concentrate around every minimizer.

• If a is not uniform B-NE, this induces the agent to switch to
another action.
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Non-convergence
• Nyarko [1991] shows by example that misspecified learning

may not converge.

• There always exists a B-NE, but Fudenberg, Lanzani, and
Strack [2021] shows there need not be a uniform BN-E.

• One case where they do exist is if the agent is correctly
specified.

• If no equilibrium is uniform, actions cannot converge; this may
be easier to check than directly verifying non-convergence.
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Stability Notion

Definition (Stability)
A Berk-Nash equilibrium a is uniformly stable if for every
κ ∈ (0, 1), there is an ϵ > 0 such that for all initial beliefs
ν ∈ ∆(Θ) such that ν(Θ(a)) > 1 − ϵ, the action prescribed by any
optimal policy converges to a ∈ A with probability greater than
1 − κ.

Theorem (Characterization theorem)
Action a ∈ A is uniformly stable if and only if it is a uniformly
strict Berk-Nash equilibrium.

• Theorem doesn’t extend to strict BN-E that are not uniformly
strict.

• In general there is a gap between uniformly strict BN-E and
stability, but in “sufficiently rich” problems, this gap is absent
(Theorem 3).
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Proof Sketch for Uniformly Strict Implies Uniformly Stable

• Since a is a uniformly strict B-N equilibrium, a is the unique
myopic best reply to every action-contingent outcome
distribution p in a ball around the KL minimizers Θ(a).

• The agent needn’t be myopic, and non-equilibrium actions can
convey information, but when beliefs are concentrated around
the minimizers, the subjective value of an alternative action
can’t much higher than its value against the most favorable
minimizer, and since a is a uniformly strict BN-E the dynamic
optimum policy is to play a.
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• Then use the fact that a transformation of the odds-ratio
between the non-KL minimizers and KL minimizers is a
positive supermartingale (as in Frick, Iijima, and Ishii [2021])
to generalize the “active supermartingale” result of Fudenberg
and Levine (1993) to misspecification.

• Use the Dubins upcrossing inequality to show that if this odd
ratio starts sufficiently low, with an arbitrarily large probability
it never crosses the threshold needed to switch action.
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Positive Attractiveness

Definition (Positively Attracting)
Action a ∈ A is positively attracting if for every optimal policy π

Pπ

[
lim

t→∞
at = a

]
> 0 .
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Causation Neglect
• When the agent has causation neglect they believe that the

distribution over outcomes is the same for all actions:

pa = pb ∀a, b ∈ A, p ∈ Θ.

Theorem

Suppose that the agent has causation neglect. If a is a uniformly
strict Berk-Nash equilibrium, then it is positively attracting.

• Example: The agent is randomly matched with an opponent
and believes they are playing a simultaneous move game, and
they are uncertain about the distribution over strategies p in
the opponents’ population.

• In reality the opponents observe a noisy signal about the
action taken by the agent before moving, so p∗

a ̸= p∗
b if a = b.
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Sketch of the Proof of Positive Attractiveness
• The uniform consistency of beliefs guarantees that on every

path of outcome realizations, beliefs concentrate around the
empirical frequency.

• We use this concentration to show that if the empirical
frequency is close to p∗

a, the beliefs concentrate around Θ(a).

• Causation neglect guarantees that the empirical frequency is a
sufficient statistic.

• We combine this with our stability result to guarantee that
once the beliefs get sufficiently close to the KL minimizers,
the agent never switches to another action.
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Summary

• All uniformly strict Berk Nash equilibria are uniformly stable,
and only uniform Berk Nash equilibria can be limit points.

• Sufficient conditions for uniformly strict B-NE to be positively
attracting under several forms of misspecification:
▶ Causation Neglect;
▶ Subjective Bandit Problems;
▶ Extreme actions in Supermodular Environments.

• Missing: conditions that ensure convergence with probability
1.
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