Consistency of Bayesian Learning

® The standard result is that Bayesian learning is consistent—
the limit beliefs concentrate around the true model.

® This requires that the prior is “correctly specified”: Bayesians
can't learn the true model if their prior gives its neighborhood

probability 0.

e Will cover models of mispecified learners, but start out by
reviewing the proof for the correctly-specified case.

® We consider the easy special case of finite-support priors; here
“correctly specified” means that the prior assigns strictly

positive probability to the true model.

® Also assume that the environment is exogenous i.i.d.
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Environment

Finite set of possible observations Y C R.

(Y0, B(Y)) is the measurable space of sequences in Y’
endowed with the product topology.

The true model is i.i.d, and described by a time invariant
probability measure § € A (Y') with full support.

Denote the associated probability measure on infinite
sequences by 5, unique extension of the product measure
over the finite sequences.
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Beliefs

Non-empty finite set {0y }rerx := O C A (Y') of models.

Each 6, € © induces a probability measure Py, over the
infinite sequences of outcomes.

Initial full support belief g € A (©), with 6 co.

Assume that for all y and k, A(y) > 0 iff 0),(y) > 0: The truth
and the agent’s set of possible models are mutually absolutely
continuous.

Then Bayesian updating induces a well-defined stochastic
process of beliefs:

0.) = to (6%) Hs—:l Ok (yr) .
pt (Y1, -5 yt) (Ok) Zgje@ o (0;) TT5—1 05 (yr)
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Consistency of correctly specified learning

Theorem
The posterior probability of the true model converges to 1:

tlgglo Lt (é) =1 Pjas.

Reviewing the proof (Doob [1949]) will help set the stage for the
analysis of incorrectly specified Bayesians.
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Proof

* For 6 # 0, let W (y,) = log (0;((%))> .
Yr

® The logarithm function is strictly concave, and 0 # 0 implies
that the WF aren’t constant.

® So by Jensen's inequality

Ep, (Wf) < log Ep, (exp Wf) . (1)
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Bounding the expectation of the log-likelihood

® Also

Ok (-

Es, (exp W) = Eg, l

® Substituting into (1) yields

Es, (W) <log1=0.

® And our absolute continuity assumption implies
E]pé (Wlk) > —00.
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Applying the SLLN

® Since the y, are i.i.d, the WP are i.i.d as well.

® And since —oo < Epé(Wlk) < 0, the strong law of large
numbers implies that

t k
: -1 W7 (yr)
T=1""T7 k
Py (hm " = Ep, (Wl )) =1.

t—o00

®* So

t—o00

t
lim ;Wf (yr) = tli}rgot -Ep, <W1k> = —o0.

7/44



* Now define the random variable Z} as the likelihood ratio
between 05 and 6 given observations until time %:

Z L k é O (yT)
(Y1, Yt) H é —exp Zlog - _
=1

=1 9 (yT)
® Then
t
. : Or (yr)
k o k
Jim Z (g1, -, pe) = lim exp (;llog ( 50 ))

t
= exp (tlggo > W (%)) :
T=1

® Almost surely the likelihood ratio of the observed outcome
path converges to 0.
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Plug this into Bayes rule:

o (0) TTo—y 6 (y-)
> opeo Ho (0k) TTr—1 Ok ()

_ 00
- ()(E@"O I 1e<y>)
:u<>( () + S w7 >) |

00

e () (0) =

So we have shown that

tli>rgo 1243 (yb ) yt) (9)

-1

= no(0) (uo(é) + > w0 (0) lim Z§ (yl,-u,yt)) =1
05,40

where the last equality holds because the likelihood ratios converge

to 0.
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|dentifiability

¢ So far we have defined a model to be a point in A (Y').

® |nstead we could have an abstract family of models, with each
model # associated with a probability distribution over the
observable outcomes through a map 6 — pg € A (Y).

® [dentifiability requires that this map is 1-1.

® If pg, = py,, the agent will be never able to distinguish the
two models, since the likelihood of every observable event is

the same under both.

® With endogenous signals, just what is identified and what is
not will depend on the actions chosen by the agent.
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Consistency in Hidden Markov Models

The consistency of Bayesian updating is not limited to i.i.d.
environments.

A hidden Markov model is a stochastic process (Xy, Y;),cn
where (X;),cy is an irreducible Markov chain with k states in
X.

The agent only observes (Y}),cy.

Here a model § = ¢ x M € © describes the initial distribution
on the states ¢ and the transition matrix M : X — A (X).

The distribution of each Y; depends only on X, i.e., there
exists a (known) output kernel K : X — A (), and the Y's
are independent given the X's. (Note that the transition
probabilities don't depend on Y".)
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Theorem (De Gunst and Shcherbakova [2008])

Let ) = <(], M) € supp p where § has full support and M > 0.

Then, for every open set U that contains 0

P, <{tlig1ou(U | Yi, . Vi) = 1}) _1

® Having M>0is stronger than necessary; can replace it with
milder but more complicated conditions.
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Misspecified beliefs

® Now suppose that the true model 0 is not in the support of
the prior.

® Many motivation have been offered for this. For example the
agent might mistakenly believe outcomes are independent, as
in e.g. Enke and Zimmermann [2019]; will see more examples
next time in Esponda and Pouzo [2016].

® Berk [1966] shows that when the data is exogenous the
posterior concentrates on the models that minimize the
Kullback-Leibler divergence from the correct model 6.

® In class today we'll prove this for the simple case in which ©
is finite.

® An handout covers the more interesting but involved case of a
compact set of models ©.
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Kullback-Leibler divergence

® The between model 6 and
the true model 0 is defined as

R (0]0) = /Ylog (gg;) db (y).

® Can view the KL divergence as a measure of the average
inability of model 6 to predict the realized state, where the
expectation is taken w.r.t. 6.

® Note that it is convex in its second argument, and it is strictly
convex on the set of probabilities that are absolutely
continuous with respect to the first argument.

e If § and @' differ only on events that have probability 0 under
f, any convex combination of them has the same KL
divergence with 6.
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* Let ©(f) := arg mingeo R <§||9> .

* If © is convex and f(y) > 0 for all y (which rules out our
simple case of finite ©) the minimizer is unique but otherwise
it need not be.

Theorem (Berk)

Jim g (g1, -0 9:)(©(0)) =1 Py as.
e With finite © the proof is a simple extension of the one for
correctly specified Bayesians.
® In the more general case it follows by the SLLN and a result

on belief concentration over the KL-minimizers with respect
to the empirical distribution.
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Proof of Berk's Theorem

* Fix a model § € ©(f) that minimizes the KL divergence from
the true model.

* For 6, ¢ ©(6), define the random variable ZF as the
likelihood ratio between model 6 and 6 given the
observations until time t:

¢
0
Zk y17 . 7yt H g

=1

o Zf determines the ratio between the posterior probabilities of
0;. and 6.

° _ t Ok (yr)
ZF (Y1, -, yt) = exp ( 7—11og (5(%) )) :
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Bounding the expectation of the log-likelihood

® Recall that
k o ek(yT) o ek(yT) _lo é(yT)
WT(yT)‘1°g<e<yT>>_k’g(é(%)) lg<é<yf>>'

® Because 6 is not a KL minimizer,

_ ‘9k(yT) 1o é(yT) A
o, 02) =, (e (505 e (503 ))

< 0.
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Applying the SLLN

* Since 0 € O(h),

—00 < /Ylog (0_(%)

and therefore 0 > Ep, (WF) > —0

® Since the y, are i.i.d, the WTk are i.i.d as well.

® So the strong law of large numbers implies that

e

> T;VT’“ (yr) _ E,, (W{g>> 1
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Therefore, Pé a.s. we have

¢
lim Z Wk (y,) = tli}rgot -Ep, (Wlk) = —o00.

t—00 “—

=1
—
t
| 0 (vr)
. . - k\Yr
Jim 2 (o, o ) = lim exp <TZ:1 o ( 0 (yr) ))
t
. . k
oo (i 3w 00

=0.

Almost surely the likelihood ratio converges to 0.
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Plug this into Bayes rule:

2] — Ho (ek‘) Hi:l 0y (yT)
ot (Y1, -5 y) (Or) > oco Ho (0) IT_, 0 (yr)

—1
) Hf_: 9(:1/7)
— o (0) (Z o (9) Htllek(y))

fcO
Hf—:l 0 (yr) ) !
Ili:ﬂ,gk(yf) .

< 1o (6x) (Mo (9)
Taking the limit yields:

T g (1, -es30) (60)

_ 1
< Mo(%)( to(6) ) =0.

limt_wo Zf (y17 ceey yl)

This holds for every 6 ¢ ©(0), which proves the theorem (and
explains why we'll be seeing a lot of the KL divergence and nothing

about other divergence notions.)
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Uniform Exponential Concentration

When © is finite the proof above also gives a uniform rate of
convergence.

® Berk's more general proof doesn't provide that.

¢ Fudenberg, Lanzani, and Strack [forthcoming] provides one.

® |t first shows that under an additional “¢ positivity”
assumption on the prior, beliefs concentrate around the
parameters that almost best fit the observed distribution, with
a rate that is exponential in ¢, and uniform over the empirical

frequencies.

® This lets us give a rate of convergence for Berk's theorem.
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Idea of Proof:

e With probability that goes to 1 at an exponential rate the
empirical distribution is very close to the true data generating
process. (This is Sanov's theorem, a “concentration
inequality.”)

® And when this concentration happens, the belief assigned to
every 6 outside a ball around the KL-minimizer drops to 0
exponentially fast.

® The full support condition can be relaxed.
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Oscillation in beliefs

® The fact that the limit probability assigned to © (é)
converges to 1 doesn't imply beliefs converge.

® Simple example: Y = {0,1}, and the true data generating

process is a fair coin.

® Three biased coins: © = {p, q,r} with

p(y)

{

EN N[N

EN[JUTNE
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The closest model to the truth are p and ¢, so Berk's theorem
guarantees that

Jm g ({p, g | (Vi V) = 1.

However, Berk showed that regardless of the prior u, the
beliefs will oscillate between concentrating around p and ¢:

lim sup p (p|(Y1,.... Yn)) = lim sup p(q| (Y1,....Yn)) = 1.

n—oo n—oo

Fudenberg, Lanzani, and Strack [2021] generalizes this:
lim sup,,_, . pt (B:(p)| (Y1, ..., Ys)) = 1 for every p € ©(0) and
e > 0.

In active learning problems, this implies that behavior can only
converge to actions that are best replies to all of the models
that minimize the KL divergence.
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Oscillation in location experiments

¢ Diaconis and Freedman [1986] give an example with an
infinite-dimensional prior where oscillations occur even with a
correctly specified agent.

® |n the example the data generating process is a real-valued
location experiment
Yi=v+e

where the €'s are independent with unknown cumulative
distribution function F'.

® They consider priors that are common in Bayesian statistics:
normal distribution on v and a Beta distribution for the errors,
with a Cauchy measure on the Beta parameter.

® Trade-off between better behavior of beliefs in finite
dimensional models and the increased risk of being
misspecified.
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Martingales and upcrossings

® Martingales are fundamental in learning theory and the
Martingale Convergence Theorem is a key result.

® The proof of the theorem uses the idea of "upcrossings.”

® The properties of supermartingale upcrossings can be are also
used directly in e.g. in the reputation literature (Fudenberg
and Levine [1992a] or Pei [2020]).
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* Consider a filtered probability space (2, F, (Fp),cn > P).-

® Fach F, is a sigma-algebra; x,, is what has been observed by
stage n. (Filtration means “no forgetting”: any set that is
measurable given period n information is measurable at
n+1.)

® F is the sigma-algebra generated by the union of the F,.

Definition
> (Xn)neN is adapted to the filtration if X, is F,,-measurable Vn € N.

» A stopping time is a random variable 7 with values in N U oo that is
adapted to the filtration, that is {r = n} € F,, for all n: the
decision to stop at n can only depend on information that is
available then.

» A supermartingale is an adapted stochastic process such that
[E[X,]| < oo and E[X,,+1| X1, ..., X,,] < X, for all n € N.
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Upcrossing Numbers

® For an interval [a, b] of R, the Uy [a,b] (w)
of upcrossings made in state w by time NN is the largest kK € N
such that

0<s1<ti<sg<to<..<sp<tpr <N

with
X,, <aand X3, >b.

® In words, Uy [a,b] (w) counts how many times the stochastic
process rises from below a to above b before time NNV.

¢ Usla,b](w) is the total number of upcrossings on the whole
sample path.
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Theorem (Dubins’ Upcrossing Inequality)

If (Xt),cn is a positive supermartingale, and 0 < a < b < oo, then

P (U [0,8] > k) < (%)k @m{%, 1}) .
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® Dubins' inequality is a generalization of Markov's inequality
for non-negative random variables, which says

E[VIyon] _El]

P(Y > k)<
Y2k < k -k

e This follows from kllfy>py < Ygy>y and taking
expectations.
Yy sh

k T kH{YZk}

30/44



Theorem (Dubins’ Upcrossing Inequality)

If (X¢t),cn is a positive supermartingale, and 0 < a < b < oo, then

P (Us [a,b] > k) < (%)k @m{%, 1}) .

® |dea: Because X is a supermartingale, the probability of
moving from below a to above b is at most a/b, so the
probability k& + 1 upcrossings of [a, b] is at most a/b times the
probability of k upcrossings.
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The proof of Dubin’s inequality uses the following lemma:

If (X}),cn and (X7),oy are positive supermartingales and v is a
stopping time such that Xi(w) (w) > X2 ) (w),

v(w

is a positive supermartingale.

® Intuition: If we start with a process that decreases on average,
and replace it (at a random stopping time) with something
weakly lower, the new process is also decreasing.
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Proof of Dubins’ upcrossing inequality
Define stopping times by when X, crosses below a or above b:
v1 (w) = min{n: X, W) <a}
vo (w) = min{n >v;: X, (w) > b}
v3(w), vg(w), ...

Now fix a k and define an ancillary process that caps X,, at (b/a)’
in the i-th excursion above b, 1 <7 <k

1 0<n<wv(w)

Xn(w) v1 (W) <1 < vy (w)

b v2 (W) < n < vz (w)
Yo(w)={ &. Xl vs (@) < 1 < g (w)

k-1

(%) . X”T(w) Vok—1 (w) <n < v (w)

k
(2) Vg (w) < 7.
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® Let Z; beidentically 1, and Z be X,,/a. Then switching from
Z1 to Zsy at vi(w) is switching to a lower supermartingale.

® Then let Z3 = b/a; switching to Z3 at va(w) is switching to a
lower supermartingale.

® And iteration of the switching lemma shows that (Y},), oy is a
supermartingale
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If Xo/a > 1 then Yy =1;if Xo/a <1 then and Yy = Xy/a.
So ¥p = min {1, %0} = B (¥;).

Since (Y},),,cn is a supermartingale,

min{l, )io} =E(Yy) > E(Ya).

And Yo 2 (g)k 1{U2k§”}'
So

(Z)kmin{l, )20} > P ({var, < n}).

Because
{var < 00} = {Ux [a,b] > K},

the theorem follows.
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More Upcrossings

® An upcrossing argument due to Doob is also used to prove the
Martingale Convergence Theorem.

® Dubins’ result bounds the probability of more than k
upcrossing in the whole sample path; Doob's result bounds
the expected value of the upcrossing in a finite time.

Doob’s Upcrossing Lemma
Let X be a supermartingale. Then

(b—a)E(Uy [a,b]) < E (max{a — Xn,0}).
As a consequence, if sup,, E (| X,,|) < oo,

P (Ux [a,b] is finite) = 1.
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The Martingale Convergence Theorem

Let X be a supermartingale with sup,, E (|X,,|) < co. Then, a.s.,
X := lim X,, exists and is finite.

® |et

Agp = {w :liminf X, (w) < a < b < limsup X,, (w)} .

® Then,

A: = {w: X, (w) does not converge to a limit in [—o0, +00]}
= {w:liminf X, (w) < limsup X, (w)}
= U {w :liminf X, (w) < a <b < limsup X, (w)}.
{a,beQ:a<b}
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® But
Aoy CH{w : Ux [a,b] (w) = oo}

and by Doob's Upcrossing Lemma, P (Ayp) =0, and so
P (A) = 0. Therefore

X = lim X, exists a.s. in [—00, 0] .
® Finally
E (| Xs|) = E (liminf | X,,|) <liminf E (| X,,|) < sng(\Xn\) < 00
where the equality follows from the previous argument, the

first inequality by Fatou’'s Lemma, and the strict inequality is
assumped by the theorem. But this implies that

P (X is finite) = 1.

Corollary

If X is a positive supermartingale then
E(|X,]) =E(X,) <E(Xp) so a.s., X :=lim X,, exists and is
finite.
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Reputation Effects
® | R player 1, infinite sequence of SR player 2's, time periods
n=0,1,2,...

® Each period n players 1 and 2 simultaneously choose actions
a1p, G2, respectively (or mixed actions «; € A(A;))

e Simplify by assuming that at end of each period, players
observe actions played. (Results extend to case of signals that
needn't fully identify the actions.)

® Each player 2 picks ag, to maximize expected value of
u2(a1n, azn).-
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The “rational type” 8* of player 1 has time stationary
preferences: maximizes expected discounted value of utility u;
with discount factor 4.

B(ai) = {ag € argmax ug(ay, a9)}
Be(a1) = {az2 € B(a}),||e) — a1]] < e}
The IS MaXa, MiNg,ep(a;) U1 (a1, a2).

Intuition behind this literature is that when player 1 is patient
they should be able to do about as well as their Stackleberg
payoff.

Let o] be a —an element of the argmax.

To model the possibility of building a reputation for playing
Stackelberg, suppose there is positive prior probability that
player 1 is a “Stackleberg type” w* that always plays a].

This type is private information, not known to the player 2's.
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To simplify we suppose that the support of the prior is
0* = {6*,w*}.

A Nash equilibrium exists in this game.

Let W(9) be the infimum of rational type's payoff over all of
the Nash equilibria when the discount factor is 6.

Let u; be 1's lowest possible payoff, and

ui(e) = inf  wuy (af,a2) —e.
agEB(a}‘)

Theorem (Fudenberg and Levine [1992b])
Ve > 0, 3k s.t. Vo:

(1= &)d ur(e) + [1— (1 - £)0"] w <W(9).
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Outline of proof

® Fix a Nash equilibrium (NE); the NE strategies and the prior
determine a joint probability distribution over types and
histories.

® In equilibrium, SR players use Bayesian updates from this
distribution to form their posterior beliefs at any history that
has positive probability.

® Suppose that every period LR plays . (This needn't be the
optimal play, but it is a feasible one.)

® Because the Stackelberg type has positive probability, SR
beliefs should come to expect this play.

® Note this doesn't say that the SR learn the LR is the
commitment type—there may be a “pooling equilibrium”
where the rational type also always plays a].
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In a pooling equilibrium beliefs converge from the start- and
LR gets at least the Stackelberg payoff associated with af.

Fix an £ and § > 0 and say a period is “bad"” if SR play an
(6] € BE(CM’{).

In the pooling equilibrium there aren’t any bad periods.
Now we need to bound how many bad periods there are.
Study the evolution of the SR beliefs in the bad periods only.

Since best response correspondence has closed graph, the
equilibrium play of the rational type in the bad periods is
uniformly bounded away from ofj.

Idea: In good periods the LR player gets a high payoff; in bad
periods the SR players are “surprised” and increase the
probability they assign to w*.
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Want to show that there can't be too many such surprises, as
once the probability of w* is high enough all subsequent
periods will be good.

Here the play of the rational type is history dependent and not
i.i.d.

Easy lemma There is a v s.t. for all bad periods ¢,
llai —0%[| > .

Under strategy aj the process 1;%5?)*) is a supermartingale.

And one can use Dubins' inequality to show the following:

Claim

For every L > 0 and € € (

1), there is T < oo s.t.

0,
P [supssr lpf(t((f*) <L[>(1-¢).

w*)

So it is unlikely there will be many bad periods, which proves the
theorem.
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Fatou's Lemma

Lemma

Let (fn)nen be a sequence of measurable functions and

(@) = liminf f(2).

ne

Then f is measurable and

< i
/fd/i_h%legllf/fndﬂ

Back to slides
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