
Consistency of Bayesian Learning

• The standard result is that Bayesian learning is consistent—
the limit beliefs concentrate around the true model.

• This requires that the prior is “correctly specified”: Bayesians
can’t learn the true model if their prior gives its neighborhood
probability 0.

• Will cover models of mispecified learners, but start out by
reviewing the proof for the correctly-specified case.

• We consider the easy special case of finite-support priors; here
“correctly specified” means that the prior assigns strictly
positive probability to the true model.

• Also assume that the environment is exogenous i.i.d.

1 / 44



Environment

• Finite set of possible observations Y ⊂ R.

• (Y ∞, B (Y ∞)) is the measurable space of sequences in Y
endowed with the product topology.

• The true model is i.i.d, and described by a time invariant
probability measure θ̂ ∈ ∆ (Y ) with full support.

• Denote the associated probability measure on infinite
sequences by Pθ̂, unique extension of the product measure
over the finite sequences.
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Beliefs
• Non-empty finite set {θk}k∈K := Θ ⊂ ∆ (Y ) of models.

• Each θk ∈ Θ induces a probability measure Pθk
over the

infinite sequences of outcomes.

• Initial full support belief µ0 ∈ ∆ (Θ), with θ̂ ∈ Θ.

• Assume that for all y and k, θ̂(y) > 0 iff θk(y) > 0: The truth
and the agent’s set of possible models are mutually absolutely
continuous.

• Then Bayesian updating induces a well-defined stochastic
process of beliefs:

µt (y1, ..., yt) (θk) = µ0 (θk)
∏t

τ=1 θk (yτ )∑
θj∈Θ µ0 (θj)

∏t
τ=1 θj (yτ )

.

3 / 44



Consistency of correctly specified learning

Theorem
The posterior probability of the true model converges to 1:

lim
t→∞

µt

(
θ̂
)

= 1 Pθ̂ a.s.

Reviewing the proof (Doob [1949]) will help set the stage for the
analysis of incorrectly specified Bayesians.
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Proof

• For θk ̸= θ̂, let W k
τ (yτ ) = log

(
θk (yτ )
θ̂ (yτ )

)
.

• The logarithm function is strictly concave, and θk ̸= θ̂ implies
that the W k

τ aren’t constant.

• So by Jensen’s inequality

EPθ̂

(
W k

τ

)
< logEPθ̂

(
exp W k

τ

)
. (1)
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Bounding the expectation of the log-likelihood

• Also

EPθ̂

(
exp W k

τ

)
= EPθ̂

[
θk (·)
θ̂ (·)

]
=
∫

Y

θk (y)
θ̂ (y)

θ̂ (y) dy = 1.

• Substituting into (1) yields

EPθ̂

(
W k

1

)
< log 1 = 0.

• And our absolute continuity assumption implies
EPθ̂

(
W k

1

)
> −∞.
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Applying the SLLN

• Since the yτ are i.i.d, the W k
τ are i.i.d as well.

• And since −∞ < EPθ̂
(W k

1 ) < 0, the strong law of large
numbers implies that

Pθ̂

(
lim

t→∞

∑t
τ=1 W k

τ (yτ )
t

= EPθ̂

(
W k

1

))
= 1.

• So

lim
t→∞

t∑
τ=1

W k
τ (yτ ) = lim

t→∞
t · EPθ̂

(
W k

1

)
= −∞.
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• Now define the random variable Zk
t as the likelihood ratio

between θk and θ̂ given observations until time t:

Zk
t (y1, ..., yt) =

t∏
τ=1

θk (yτ )
θ̂ (yτ )

= exp
(

t∑
τ=1

log
(

θk (yτ )
θ̂ (yτ )

))
.

• Then

lim
t→∞

Zk
t (y1, ..., yt) = lim

t→∞
exp

(
t∑

τ=1
log

(
θk (yτ )
θ̂ (yτ )

))

= exp
(

lim
t→∞

t∑
τ=1

W k
τ (yτ )

)
.

• Almost surely the likelihood ratio of the observed outcome
path converges to 0.
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Plug this into Bayes rule:

µt (y1, ..., yt)
(
θ̂
)

=
µ0
(
θ̂
)∏t

τ=1 θ̂ (yτ )∑
θk∈Θ µ0 (θk)

∏t
τ=1 θk (yτ )

= µ0
(
θ̂
)∑

θk∈Θ
µ0 (θk)

∏t
τ=1 θk (yτ )∏t
τ=1 θ̂ (yτ )

−1

= µ0
(
θ̂
)µ0

(
θ̂
)

+
∑

θk ̸=θ̂

µ0 (θk) Zk
t (y1, ..., yt)

−1

.

So we have shown that

lim
t→∞

µt (y1, ..., yt) (θ̂)

= µ0(θ̂)

µ0(θ̂) +
∑

θk ̸=θ̂

µ0 (θk) lim
t→∞

Zk
t (y1, ..., yt)

−1

= 1,

where the last equality holds because the likelihood ratios converge
to 0.
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Identifiability

• So far we have defined a model to be a point in ∆ (Y ).

• Instead we could have an abstract family of models, with each
model θ associated with a probability distribution over the
observable outcomes through a map θ 7→ pθ ∈ ∆ (Y ).

• Identifiability requires that this map is 1-1.

• If pθ1 = pθ2 , the agent will be never able to distinguish the
two models, since the likelihood of every observable event is
the same under both.

• With endogenous signals, just what is identified and what is
not will depend on the actions chosen by the agent.
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Consistency in Hidden Markov Models

• The consistency of Bayesian updating is not limited to i.i.d.
environments.

• A hidden Markov model is a stochastic process (Xt, Yt)t∈N
where (Xt)t∈N is an irreducible Markov chain with k states in
X .

• The agent only observes (Yt)t∈N.

• Here a model θ = q × M ∈ Θ describes the initial distribution
on the states q and the transition matrix M : X → ∆ (X ).

• The distribution of each Yt depends only on Xt, i.e., there
exists a (known) output kernel K : X → ∆ (Y), and the Y ′s
are independent given the X’s. (Note that the transition
probabilities don’t depend on Y .)
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Theorem (De Gunst and Shcherbakova [2008])

Let θ̂ =
(
q̂, M̂

)
∈ supp µ where q̂ has full support and M̂ ≫ 0.

Then, for every open set U that contains θ̂

Pθ̂

({
lim

t→∞
µ (U | Y1, ..., Yt) = 1

})
= 1.

• Having M̂ ≫ 0 is stronger than necessary; can replace it with
milder but more complicated conditions.
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Misspecified beliefs

• Now suppose that the true model θ̂ is not in the support of
the prior.

• Many motivation have been offered for this. For example the
agent might mistakenly believe outcomes are independent, as
in e.g. Enke and Zimmermann [2019]; will see more examples
next time in Esponda and Pouzo [2016].

• Berk [1966] shows that when the data is exogenous the
posterior concentrates on the models that minimize the
Kullback-Leibler divergence from the correct model θ̂.

• In class today we’ll prove this for the simple case in which Θ
is finite.

• An handout covers the more interesting but involved case of a
compact set of models Θ.
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Kullback-Leibler divergence
• The Kullback-Leibler (KL) divergence between model θ and

the true model θ̂ is defined as

R
(
θ̂||θ

)
=
∫

Y
log

(
θ̂ (y)
θ (y)

)
dθ̂ (y) .

• Can view the KL divergence as a measure of the average
inability of model θ to predict the realized state, where the
expectation is taken w.r.t. θ̂.

• Note that it is convex in its second argument, and it is strictly
convex on the set of probabilities that are absolutely
continuous with respect to the first argument.

• If θ and θ′ differ only on events that have probability 0 under
θ̂, any convex combination of them has the same KL
divergence with θ̂.
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• Let Θ(θ̂) := arg minθ∈Θ R
(
θ̂||θ

)
.

• If Θ is convex and θ̂(y) > 0 for all y (which rules out our
simple case of finite Θ) the minimizer is unique but otherwise
it need not be.

Theorem (Berk)

lim
t→∞

µt(y1, ..., yt)(Θ(θ̂)) = 1 Pθ̂ a.s.

• With finite Θ the proof is a simple extension of the one for
correctly specified Bayesians.

• In the more general case it follows by the SLLN and a result
on belief concentration over the KL-minimizers with respect
to the empirical distribution.
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Proof of Berk’s Theorem

• Fix a model θ̄ ∈ Θ(θ̂) that minimizes the KL divergence from
the true model.

• For θk /∈ Θ(θ̂), define the random variable Zk
t as the

likelihood ratio between model θk and θ̄ given the
observations until time t:

Zk
t (y1, ..., yt) =

t∏
τ=1

θk (yτ )
θ̄ (yτ )

.

• Zk
t determines the ratio between the posterior probabilities of

θk and θ̄.

• Zk
t (y1, ..., yt) = exp

(∑t
τ=1 log

(
θk (yτ )
θ̄ (yτ )

))
.
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Bounding the expectation of the log-likelihood

• Recall that

W k
τ (yτ ) = log

(
θk (yτ )
θ̄ (yτ )

)
= log

(
θk (yτ )
θ̂ (yτ )

)
− log

(
θ̄ (yτ )
θ̂ (yτ )

)
.

• Because θk is not a KL minimizer,

EPθ̂

(
W k

τ

)
=

∫
Y

(
log

(
θk (yτ )
θ̂ (yτ )

)
− log

(
θ̄ (yτ )
θ̂ (yτ )

))
dθ̂(y)

< 0.
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Applying the SLLN

• Since θ̄ ∈ Θ(θ̂),

−∞ <

∫
Y

log
(

θ̂ (yτ )
θ̄ (yτ )

)
θ̂ (y) dy

and therefore 0 > EPθ̂
(W k

1 ) > −∞.

• Since the yτ are i.i.d, the W k
τ are i.i.d as well.

• So the strong law of large numbers implies that

Pθ̂

(
lim

t→∞

∑t
τ=1 W k

τ (yτ )
t

= Epθ̂

(
W k

1

))
= 1.
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Therefore, Pθ̂ a.s. we have

lim
t→∞

t∑
τ=1

W k
τ (yτ ) = lim

t→∞
t · EPθ̂

(
W k

1

)
= −∞.

=⇒

lim
t→∞

Zk
t (y1, ..., yt) = lim

t→∞
exp

(
t∑

τ=1
log

(
θk (yτ )
θ̄ (yτ )

))

= exp
(

lim
t→∞

t∑
τ=1

W k
τ (yτ )

)
= 0.

Almost surely the likelihood ratio converges to 0.
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Plug this into Bayes rule:

µt (y1, ..., yt) (θk) = µ0 (θk)
∏t

τ=1 θk (yτ )∑
θ∈Θ µ0 (θ)

∏t
τ=1 θ (yτ )

= µ0 (θk)

∑
θ∈Θ

µ0 (θ)
∏t

τ=1 θ (yτ )∏t
τ=1 θk (yτ )

−1

≤ µ0 (θk)
(

µ0
(
θ̄
) ∏t

τ=1 θ̄ (yτ )∏t
τ=1 θk (yτ )

)−1

.

Taking the limit yields:

lim
t→∞

µt (y1, ..., yt) (θk)

≤ µ0 (θk)
(

µ0(θ̄)
limt→∞ Zk

t (y1, ..., y1)

)−1

= 0.

This holds for every θk /∈ Θ(θ̂), which proves the theorem (and
explains why we’ll be seeing a lot of the KL divergence and nothing
about other divergence notions.)
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Uniform Exponential Concentration

• When Θ is finite the proof above also gives a uniform rate of
convergence.

• Berk’s more general proof doesn’t provide that.

• Fudenberg, Lanzani, and Strack [forthcoming] provides one.

• It first shows that under an additional “ϕ positivity”
assumption on the prior, beliefs concentrate around the
parameters that almost best fit the observed distribution, with
a rate that is exponential in t, and uniform over the empirical
frequencies.

• This lets us give a rate of convergence for Berk’s theorem.
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Idea of Proof :

• With probability that goes to 1 at an exponential rate the
empirical distribution is very close to the true data generating
process. (This is Sanov’s theorem, a “concentration
inequality.”)

• And when this concentration happens, the belief assigned to
every θ outside a ball around the KL-minimizer drops to 0
exponentially fast.

• The full support condition can be relaxed.
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Oscillation in beliefs

• The fact that the limit probability assigned to Θ
(
θ̂
)

converges to 1 doesn’t imply beliefs converge.

• Simple example: Y = {0, 1}, and the true data generating
process is a fair coin.

• Three biased coins: Θ = {p, q, r} with

p (y) =
{ 3

4 y = 1
1
4 y = 0

q (y) =
{ 1

4 y = 1
3
4 y = 0

r (y) =
{ 1

10 y = 1
9
10 y = 0
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• The closest model to the truth are p and q, so Berk’s theorem
guarantees that

lim
n→∞

µ ({p, q} | (Y1, ..., Yn)) = 1.

• However, Berk showed that regardless of the prior µ, the
beliefs will oscillate between concentrating around p and q:

lim sup
n→∞

µ (p| (Y1, ..., Yn)) = lim sup
n→∞

µ (q| (Y1, ..., Yn)) = 1.

• Fudenberg, Lanzani, and Strack [2021] generalizes this:
lim supn→∞ µ (Bε(p)| (Y1, ..., Yn)) = 1 for every p ∈ Θ(θ̂) and
ε > 0.

• In active learning problems, this implies that behavior can only
converge to actions that are best replies to all of the models
that minimize the KL divergence.
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Oscillation in location experiments
• Diaconis and Freedman [1986] give an example with an

infinite-dimensional prior where oscillations occur even with a
correctly specified agent.

• In the example the data generating process is a real-valued
location experiment

Yt = ν + εt

where the ε’s are independent with unknown cumulative
distribution function F .

• They consider priors that are common in Bayesian statistics:
normal distribution on ν and a Beta distribution for the errors,
with a Cauchy measure on the Beta parameter.

• Trade-off between better behavior of beliefs in finite
dimensional models and the increased risk of being
misspecified.
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Martingales and upcrossings

• Martingales are fundamental in learning theory and the
Martingale Convergence Theorem is a key result.

• The proof of the theorem uses the idea of “upcrossings.”

• The properties of supermartingale upcrossings can be are also
used directly in e.g. in the reputation literature (Fudenberg
and Levine [1992a] or Pei [2020]).
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• Consider a filtered probability space
(
Ω, F , (Fn)n∈N ,P

)
.

• Each Fn is a sigma-algebra; xn is what has been observed by
stage n. (Filtration means “no forgetting”: any set that is
measurable given period n information is measurable at
n + 1.)

• F is the sigma-algebra generated by the union of the Fn.

Definition
▶ (Xn)n∈N is adapted to the filtration if Xn is Fn-measurable ∀n ∈ N.

▶ A stopping time is a random variable τ with values in N ∪ ∞ that is
adapted to the filtration, that is {τ = n} ∈ Fn for all n: the
decision to stop at n can only depend on information that is
available then.

▶ A supermartingale is an adapted stochastic process such that
|E[Xn]| ≤ ∞ and E[Xn+1|X1, ..., Xn] ≤ Xn for all n ∈ N.
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Upcrossing Numbers

• For an interval [a, b] of R, the upcrossing number UN [a, b] (ω)
of upcrossings made in state ω by time N is the largest k ∈ N
such that

0 ≤ s1 < t1 < s2 < t2 < ... < sk < tk ≤ N

with
Xsi < a and Xti > b.

• In words, UN [a, b] (ω) counts how many times the stochastic
process rises from below a to above b before time N .

• U∞[a, b](ω) is the total number of upcrossings on the whole
sample path.
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Theorem (Dubins’ Upcrossing Inequality)
If (Xt)t∈N is a positive supermartingale, and 0 < a < b < ∞, then

P (U∞ [a, b] ≥ k) ≤
(

a

b

)k (
min

{
X0
a

, 1
})

.
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• Dubins’ inequality is a generalization of Markov’s inequality
for non-negative random variables, which says

P (Y ≥ k) ≤
E
[
Y I{Y ≥k}

]
k

≤ E [Y ]
k

.

• This follows from kI{Y ≥k} ≤ Y I{Y ≥k} and taking
expectations.

Y0

k

k

kI{Y≥k}

Y I{Y≥k}

1
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Theorem (Dubins’ Upcrossing Inequality)
If (Xt)t∈N is a positive supermartingale, and 0 < a < b < ∞, then

P (U∞ [a, b] ≥ k) ≤
(

a

b

)k (
min

{
X0
a

, 1
})

.

• Idea: Because X is a supermartingale, the probability of
moving from below a to above b is at most a/b, so the
probability k + 1 upcrossings of [a, b] is at most a/b times the
probability of k upcrossings.
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The proof of Dubin’s inequality uses the following lemma:

Lemma
If
(
X1

t

)
t∈N and

(
X2

t

)
t∈N are positive supermartingales and v is a

stopping time such that X1
v(ω) (ω) ≥ X2

v(ω) (ω),

Zn (ω) =
{

X1
n (ω) 0 ≤ n < v (ω)

X2
n (ω) v (ω) ≤ n

is a positive supermartingale.

• Intuition: If we start with a process that decreases on average,
and replace it (at a random stopping time) with something
weakly lower, the new process is also decreasing.
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Proof of Dubins’ upcrossing inequality
Define stopping times by when Xn crosses below a or above b:

v1 (ω) = min {n : Xn (ω) < a}
v2 (ω) = min {n ≥ v1 : Xn (ω) > b}

v3(ω), v4(ω), ...

Now fix a k and define an ancillary process that caps Xn at (b/a)i

in the i-th excursion above b, 1 ≤ i ≤ k

Yn (ω) =



1 0 ≤ n < v1 (ω)
Xn(ω)

a v1 (ω) ≤ n < v2 (ω)
b
a · 1 v2 (ω) ≤ n < v3 (ω)
b
a · Xn(ω)

a v3 (ω) ≤ n < v4 (ω)
... ...(

b
a

)k−1
· Xn(ω)

a v2k−1 (ω) ≤ n < v2k (ω)(
b
a

)k
v2k (ω) ≤ n.
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• Let Z1 be identically 1, and Z2 be Xn/a. Then switching from
Z1 to Z2 at v1(ω) is switching to a lower supermartingale.

• Then let Z3 = b/a; switching to Z3 at v2(ω) is switching to a
lower supermartingale.

• And iteration of the switching lemma shows that (Yn)n∈N is a
supermartingale
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• If X0/a > 1 then Y0 = 1; if X0/a ≤ 1 then and Y0 = X0/a.

• So Y0 = min
{

1, X0
a

}
= E (Y0).

• Since (Yn)n∈N is a supermartingale,

min
{

1,
X0
a

}
= E (Y0) ≥ E (Yn) .

• And Yn ≥
(

b
a

)k
1{v2k≤n}.

• So (
a

b

)k

min
{

1,
X0
a

}
≥ P ({v2k ≤ n}) .

• Because
{v2k < ∞} = {U∞ [a, b] ≥ k} ,

the theorem follows.
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More Upcrossings

• An upcrossing argument due to Doob is also used to prove the
Martingale Convergence Theorem.

• Dubins’ result bounds the probability of more than k
upcrossing in the whole sample path; Doob’s result bounds
the expected value of the upcrossing in a finite time.

Doob’s Upcrossing Lemma
Let X be a supermartingale. Then

(b − a)E (UN [a, b]) ≤ E (max{a − XN , 0}) .

As a consequence, if supn E (|Xn|) < ∞,

P (U∞ [a, b] is finite) = 1.
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The Martingale Convergence Theorem

Theorem
Let X be a supermartingale with supn E (|Xn|) < ∞. Then, a.s.,
X∞ := lim Xn exists and is finite.

• Let

Λa,b := {ω : lim inf Xn (ω) < a < b < lim sup Xn (ω)} .

• Then,

Λ : = {ω : Xn (ω) does not converge to a limit in [−∞, +∞]}
= {ω : lim inf Xn (ω) < lim sup Xn (ω)}
=

⋃
{a,b∈Q:a<b}

{ω : lim inf Xn (ω) < a < b < lim sup Xn (ω)} .
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• But
Λa,b ⊆ {ω : U∞ [a, b] (ω) = ∞}

and by Doob’s Upcrossing Lemma, P (Λa,b) = 0, and so
P (Λ) = 0. Therefore

X∞ := lim Xn exists a.s. in [−∞, ∞] .
• Finally

E (|X∞|) = E (lim inf |Xn|) ≤ lim inf E (|Xn|) ≤ sup
n

E (|Xn|) < ∞

where the equality follows from the previous argument, the
first inequality by Fatou’s Lemma, and the strict inequality is
assumped by the theorem. But this implies that

P (X∞ is finite) = 1.

Corollary
If X is a positive supermartingale then
E (|Xn|) = E (Xn) ≤ E (X0) so a.s., X∞ := lim Xn exists and is
finite.
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Reputation Effects

• LR player 1, infinite sequence of SR player 2’s, time periods
n = 0, 1, 2, ....

• Each period n players 1 and 2 simultaneously choose actions
a1n, a2n respectively (or mixed actions αi ∈ ∆(Ai))

• Simplify by assuming that at end of each period, players
observe actions played. (Results extend to case of signals that
needn’t fully identify the actions.)

• Each player 2 picks a2n to maximize expected value of
u2(a1n, a2n).
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• The “rational type” θ∗ of player 1 has time stationary
preferences: maximizes expected discounted value of utility u1
with discount factor δ.

• B(α1) = {α2 ∈ argmax u2(α1, α2)}

• Bε(α1) = {α2 ∈ B(α′
1), ||α′

1 − α1|| < ε}

• The Stackelberg payoff is maxα1 minα2∈B(α1) u1(α1, α2).

• Intuition behind this literature is that when player 1 is patient
they should be able to do about as well as their Stackleberg
payoff.

• Let α∗
1 be a Stackelberg action—an element of the argmax.

• To model the possibility of building a reputation for playing
Stackelberg, suppose there is positive prior probability that
player 1 is a “Stackleberg type” ω∗ that always plays α∗

1.

• This type is private information, not known to the player 2’s.
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• To simplify we suppose that the support of the prior is
Θ∗ = {θ∗, ω∗}.

• A Nash equilibrium exists in this game.

• Let W (δ) be the infimum of rational type’s payoff over all of
the Nash equilibria when the discount factor is δ.

• Let u1 be 1’s lowest possible payoff, and

u1(ε) = inf
α2∈B(α∗

1)
u1 (α∗

1, α2) − ε.

Theorem (Fudenberg and Levine [1992b])
∀ε > 0, ∃k s.t. ∀δ:

(1 − ε)δku1(ε) +
[
1 − (1 − ε)δk

]
u1 ≤W (δ).
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Outline of proof

• Fix a Nash equilibrium (NE); the NE strategies and the prior
determine a joint probability distribution over types and
histories.

• In equilibrium, SR players use Bayesian updates from this
distribution to form their posterior beliefs at any history that
has positive probability.

• Suppose that every period LR plays α∗
1. (This needn’t be the

optimal play, but it is a feasible one.)

• Because the Stackelberg type has positive probability, SR
beliefs should come to expect this play.

• Note this doesn’t say that the SR learn the LR is the
commitment type—there may be a “pooling equilibrium”
where the rational type also always plays α∗

1.
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• In a pooling equilibrium beliefs converge from the start- and
LR gets at least the Stackelberg payoff associated with α∗

1.

• Fix an ε and δ > 0 and say a period is “bad” if SR play an
α2 ̸∈ Bε(α∗

1).

• In the pooling equilibrium there aren’t any bad periods.

• Now we need to bound how many bad periods there are.

• Study the evolution of the SR beliefs in the bad periods only.

• Since best response correspondence has closed graph, the
equilibrium play of the rational type in the bad periods is
uniformly bounded away from α∗

1.

• Idea: In good periods the LR player gets a high payoff; in bad
periods the SR players are “surprised” and increase the
probability they assign to ω∗.
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• Want to show that there can’t be too many such surprises, as
once the probability of ω∗ is high enough all subsequent
periods will be good.

• Here the play of the rational type is history dependent and not
i.i.d.

• Easy lemma There is a γ s.t. for all bad periods t,
||α∗

1 − θ∗|| > γ.

• Under strategy α∗
1 the process 1−µt(ω∗)

µt(ω∗) is a supermartingale.

• And one can use Dubins’ inequality to show the following:

Claim
For every L > 0 and ϵ ∈ (0, 1), there is T < ∞ s.t.
Pα∗

1
[supt≥T

1−µt(ω∗)
µt(ω∗) ≤ L] ≥ (1 − ϵ) .

So it is unlikely there will be many bad periods, which proves the
theorem.
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Fatou’s Lemma

Lemma
Let (fn)n∈N be a sequence of measurable functions and

f(x) = lim inf
n∈N

fn(x).

Then f is measurable and∫
fdµ ≤ lim inf

n∈N

∫
fndµ

Back to slides
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