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1 Introduction

The rapid accumulation of public debt in recent years has intensified the need for
governments worldwide to ensure value for money in their procurement processes.
Traditionally, low-price auctions have been the cornerstone of public procurement,
valued for their transparency and competitive nature. However, there is a marked
shift towards evaluating bids not solely on price but also on non-monetary factors
such as delivery speed, design, and overall quality. Scoring auctions have emerged as
a prominent mechanism designed to balance the dual objectives of price competition
and value maximization.

In a scoring auction, bidders submit multidimensional bids consisting of both
price and quality attributes. These bids are evaluated using a pre-announced scor-
ing rule, which assigns scores to rank the bidders. The seminal work by |Che| (1993)
established that under a symmetric independent private value setting, scoring auc-
tions with quasilinear (QL) scoring rules—where scores are linear in price and addi-
tively separable from quality—can be reduced to the classic unidimensional auction
modelﬂ This reduction brings scoring auctions under the umbrella of the revenue
equivalence theorem, ensuring that price and quality outcomes are consistent across
various auction formats. The QL framework’s simplicity has since attracted sig-
nificant theoretical and empirical interest, reinforcing its status as a cornerstone of
auction theory.

In real-world procurement auctions, however, a variety of scoring rules are used
that are not quasilinear. A typical example is the “price-per-quality-ratio” (PQR)
scoring rule in which a score is given by the price bid divided by the quality bid.
Many state Departments of Transportation (DOTSs) in the United States, including
those in Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota,
have adopted the PQR-equivalent “adjusted bid,” and the Department of Health

and Aging in Australia also employs a PQR awarding rule to achieve better returns

'In this paper, we use the abbreviation QL only for quasilinear scoring rules but not for other

situations such as the quasilinearity of the payoff function.



on public investment (The Department of Health and Ageing, Australia, 2011). In
addition, most public procurement contracts in Japan are allocated to the bidder
with the lowest price-per-quality bid ratio. However, despite the frequent use of
PQR scoring rules in the real world, little is known about their propertiesﬂ

In this paper, we provide a theoretical analysis of PQR scoring auctions in order
to acquire a deeper understanding of bidding behavior and outcomes of non-QL
scoring auctions. We follow |Che| (1993) by focusing on settings with a unidimensional
private signal and unidimensional quality level, and we characterize bidding behavior
and compare auction outcomes for the following two auction formats: first-score (F'S)
and second-score (SS) auctions. In an FS auction, the winner delivers quality at the
price specified in its bid, and in an SS auction, the winner is free to choose any
price—quality pair as long as its score matches the score of the most-competitive
rival. In our model, the winner of both auctions is the lowest-score bidder.

We first demonstrate that under a PQR scoring rule a symmetric Bayesian Nash
equilibrium exists in both FS and SS auctions for a broad class of cost functions
and we then show that SS auctions yield lower expected scores than FS auctions.
Based on the existing literature such as |Che (1993) and Asker and Cantillon| (2008),
multidimensional-bid scoring auctions are transformed into a unidimensional score-
bid auction game. Under the PQR scoring rule, bidders choose higher quality as the
score increases, leading to the profit from winning bids being a convex function in
score. This means that bidders are “risk-loving” in score, taking on greater risk for
potentially larger winning profits in F'S auctions. Consequently, the well-established
“revenue equivalence theorem” fails to hold and the SS auction yields a lower ex-
pected score than the FS auction in equilibrium, which is similar to [Maskin and
Riley| (1984) with non-risk-neutral bidders. This suggests that SS auctions are more

favorable than F'S auctions to buyers seeking to decrease price per quality.

2While bid ranking is preserved in any monotonic transformation of the scoring rule, this trans-
formation does not generally convert a non-QL scoring rule into a QL rule. If, for instance, we take
a logarithm of the price-per-quality-ratio scoring rule, score is not linear in price anymore and so a

necessary condition for quasilinearity is violated.



To present more comprehensive arguments regarding the differences between FS
and SS auctions, we analyze the equilibrium quality and price and then establish
sets of conditions under which FS auctions produce a higher expected quality and
price than in SS auctions. We observe that under these conditions both the quality
and price increase with score, which leads to expected quality and price being higher
in the FS auction than in the SS auction. These findings suggest that when the
bidders’ scores are sorted by price-per-quality, the contracted quality and prices are
more likely to be skewed upward in the F'S auction than in the SS auction.

Furthermore, we discuss the design of scoring rules when the buyer’s objective
is to minimize price per quality ratio. We confirm that the PQR scoring auctions
achieve ex post Pareto efficient contracts. However, it is hard to characterize the
optimal mechanism or optimal scoring rule for the buyer because the standard mech-
anism design by |[Myerson| (1981)) cannot be applied to nonquasilinear objective func-
tions. Nevertheless, we show that a buyer can lower the price per quality ratio by
using a distorted scoring rule that leads to a downward distortion of quality from
the original PQR scoring rule. This is because by adopting a scoring rule in which
bidders propose a lower quality, the buyer can reduce the bidder’s information rent
and thus, the distorted scoring rule is beneficial for the buyer. This result is consis-
tent with an optimal distortion in the traditional mechanism design of [Mussa and
Rosen| (1978) and Myerson| (1981) and an optimal scoring rule in (Che| (1993).

Lastly, we discuss how the equilibrium properties under the PQR scoring rule
can be generalized to other non-QL scoring rules. We characterize the equilibrium
of the SS and FS auctions and show that given a scoring rule, the expected score in
an FS auction is higher (lower) than in an SS auction if the bidders’ indirect payoff

function is convex (concave) in score.

Related Literature This paper contributes to the theoretical literature on scoring
auctions pioneered by (Che, (1993) which to date has focused on QL scoring auctions.

In (Che| (1993))’s original approach, scoring auctions are modelled in such a way that



the price and quality bids reduce to a model of auctions in which bidders submit only
scores as if it were a price-only auction. This research has been extended to cases of
interdependent cost (Branco, [1997)), multidimensional signals (Asker and Cantillon,
2008)) and multidimensional quality (Nishimural [2015). Furthermore, |Asker and
Cantillon| (2008, [2010), Awaya, Fujiwara and Szabo| (2025)) and [Sano| (2023) compare
the performance of QL scoring auctions and alternative mechanisms. While these
previous studies focus on the properties of QL scoring auctions, we extend these
studies by comparing the performance of FS and SS auctions under the non-QL
PQR scoring rule.

In contrast to the research on scoring auctions using a QL scoring rule, there
are few papers to date that study non-QL scoring rules,one of them being Wang
and Liu (2014)), who examine a non-QL scoring rule where price and quality are
additively separable. Meanwhile, |Dastidar| (2014) analyzes scoring auctions with a
general scoring rule and finds that the equilibrium bidding function of the F'S auction
is explicitly obtained if the bidder’s cost function is additively separable in quality
and their private information.

In another study, [Hanazono, Hirose, Nakabayashi and Tsuruoka, (2020), hence-
forth HHNT, discuss the equilibrium existence and the structural estimation of FS
auctions incorporating general scoring rules and multidimensional private signals.
This paper complements HHNT in two ways. First, the cost structure does not fall
into that of HHNT despite multidimensionality: to ensure equilibrium existence,
HHNT require that the cost function have a private fixed cost component. This
paper covers the case of single-dimensional private signal on variable costs which is
out of scope in HHNT. Second, the results of comparing expected price, quality, and
score between different auction formats fails to obtain in HHNT because the mono-
tonicity of equilibrium on a single-dimensional signal space is intrinsically different
from that on a multidimensional signal space.

In addition to theoretical studies, empirical research on scoring auctions is grow-

ing as well (e.g., Lewis and Bajari, 2011} Koning and van de Meerendonkl, [2014; Timi,



2016} [Andreyanov, [2018; [Takahashil, 2018}, [Huang), 2019} [Krasnokutskaya, Song and|
Tang), 2020} Ryanl, [2020; Kong, Perrigne and Vuong, [2022} [Allen, Clark, Hickman and]
Richert| 2023 and |Andreyanov, Decarolis, Pacini and Spagnolo, [2024)). Building on

the literature on scoring auctions, [Bajari, Houghton and Tadelis (2014) and Bolot-|

nyy and Vasserman| (2023) develop structural auction models in which firms post

unit price bids for each item required to complete a construction project. Among

these studies, Takahashi| (2018) examine scoring auctions with the PQR scoring rule

and quantify the impact of uncertainty on reviewers’ evaluations of quality.

\Chassang, Kawai and Nakabayashi| (2025) present theoretical predictions based on

repeated procurement auctions and examine bidder collusion in PQR scoring auc-
tions. These empirical studies motivate us to deepen a theoretical understanding of

properties of non-QL scoring auctions.

The remainder of the paper is organized as follows. Section [2] describes the
canonical model of scoring auctions in which they can be transformed into a unidi-
mensional score-bid auction game. In Section [3] we focus on the PQR scoring rule
and analyze symmetric equilibria in FS and SS auctions, comparing the expected
winning score, quality, and price of the two auction formats. Section [4] discusses the
efficiency of the PQR scoring rule and how to design a scoring rule to improve the
price per quality ratio. Section [| analyzes general scoring rules and characterizes
the expected score rankings for F'S and SS auctions, and the final section concludes

the paper.

2 Model

Consider that a procurement buyer auctions off a procurement contract to n > 2
risk-neutral bidders who are all ex ante symmetric. Bidder ¢’s private type is denoted
by 6; and is independently and identically drawn from a cumulative distribution F
over © = [6,0] C R, with a continuous density f(6) > 0 for every € ©. Let ¢ € R

be a non-monetary attribute (quality) so that each bidder’s production cost is given



by C(q,0;). We assume that the cost function C is:
e thrice differentiable and strictly increasing in both ¢ and 6 (Cy, Cyp > 0);
e strictly convex in quality (Cyq > 0);
e exhibits non-decreasing differences (Cgg > 0); and

e there exists a sufficiently large number B > 0, and for all 8, Cy(q,0) > B for

some q > q.

Note that Cy = 0C/00 and that the other subscripts are defined in the same manner.
The production cost is increasing in quality and type so that a bidder of a lower type
is more efficient. The third assumption means that a bidder of a lower type has a
smaller marginal cost, and the last assumption guarantees that that an optimal
quality exists.

When bidder ¢ wins the auction and signs a contract with a price p and a quality
q, their payoff is given by

p—Cl(q,0;),

and we suppose that every losing bidder’s payoff is zero.

In a scoring auction, each bidder submits a proposal (p, ¢), where p < p is a price
bid and ¢ > ¢ is a quality bid, with reserve price and minimum quality denoted
by p > 0 and ¢ > 0. Each proposal is evaluated by a pre-announced scoring rule
S : [0,p] x [g,00) — R which maps a multidimensional bid into a unidimensional
score s = S(p,q). The lowest-score bidder wins. We assume that the scoring rule is
sufficiently smooth and satisfies S, > 0 and S, < 0.

We focus here on first-score (FS) and second-score (SS) auctions. In both types
of auction, each bidder submits (p,q), and the bidder with the lowest score wins.
In an FS auction, the winner’s proposal is finalized as a contract whereas in an SS
auction, the winner is required to match the highest rejected (i.e. the second lowest)

score. To meet the score, the winner is free to choose any quality-price pair, so the



finalized contract of an SS auction generally differs from both the winning bid (p, q)
and the lowest losing bid.

Although our model allows general scoring rules, in most of the paper we focus
on the price-per-quality ratio (PQR) scoring rule:

_Pp
S(p,q) = L (1)

with p < p and ¢ > gﬂ When focusing on the PQR scoring rule, the buyer aims

to lower price per quality ratio, and we suppose that the buyer’s utility function is

given by v(p, q) = —p/q]]

Remark 1 Score ranking is preserved in any monotone transformation of the scor-
ing rule so that most properties of scoring auctions, equilibrium price and quality in
particular, do not change in a monotone transformation of the scoring rule. How-
ever, in the following sections, we evaluate the expected scores of different auction
formats which generally do change in monotone transformation. For example, the
quality-per-price-ratio rule S(p,q) = —¢/p is a monotone (but not affine) transfor-
mation of the PQR scoring rule, so the equilibrium price and quality under such a
scoring rule are the same as those presented in the next section, though the expected
score ranking may differ. Note that the expected score ranking is preserved in any

affine transformation.

2.1 Score-bid Auctions

The equilibrium of scoring auctions is derived in a manner similar to |Che| (1993).
Given an arbitrary score s, every bidder will choose the optimal contract (p, q) that
induces score s so that an auction with a multidimensional bid is reduced to a

unidimensional auction in terms of the score bid.

3Quality ¢ here is measured in terms of “quality score.” One might consider a scoring rule
S(p,q) = p/V(q), where V is an increasing function. This is equivalent to the case in which a

quality is defined as § = V (q).
4We assume that the buyer’s payoff of not contracting is sufficiently small and that the buyer

necessarily procures from some bidder.



Suppose that the winner of type 0 needs to enforce a contract that fulfills score

s. The winner determines a contract (p, ¢) that solves

max p — C(q,0)
(p:9)

s.t. S(p,q) = s, (2)

P<p, q=g.
Throughout the analysis, we assume that the reserve price and the minimum qual-
ity are not binding at . By substituting the score constraint into the objective

function, payoff maximization is written as

m(?“XP(Sa Q) - C(Qv 0)7 (3)

where P is the inverse function of S with respect to p. When the objective function
in is strictly concave in ¢, the maximization problem has a unique solution, with

the optimal quality denoted by
q'(s,0) € argmax P(s,q) — C(q,0) (4)
and the indirect payoff function denoted by
u(s,0) = P (s,q°(s,0)) = C(¢"(s,0),0). (5)

Note that as S), > 0, we have P; > 0. By the envelope theorem, the indirect payoff u
is strictly increasing in s and strictly decreasing in . The equilibrium of the scoring
auction is derived by solving standard auctions in terms of score bid s, where each
bidder has the winning profit u(s, ).

Let z(0) be the break-even score for type 6, which is determined by the unique

solution of

that is, z is the score bid such that the winner’s indirect payoff is zero, which is the

minimum willingness to accept for a bidder of type 6 in the auction.

Lemma 1 Suppose that P(s,q) — C(q,8) is strictly concave in q. Then, z(6) is

well-defined and strictly increasing in 6.



Proof See Appendix.

2.2 QL Scoring Rule

The seminal paper (Che| (1993) examines the quasilinear (QL) scoring rule S(p,q) =

p — ¢ whereby optimal quality is given by the profit maximization problem
max s + ¢ — C(q,0).
q

When the optimal quality is determined by the first-order condition 1—-Cy(g*,0) = 0,
q* depends only on # and is independent of s. The indirect payoff is reduced to a

function

u(s,0) =s—k(0)

that is quasilinear in score, where
k() = —max{q — C(q.0)}

is called the productive potential (Chel [1993) or pseudotype (Asker and Cantillon,
2008). Thus, in this framework, the QL scoring auction is reduced to a score-bid
auction with a quasilinear payoff. Because k is increasing in #, the bidder of the
lowest type wins in both the FS and SS auctions and so the exercised quality is ex
post equivalent between the two formats. The revenue equivalence theorem applies
and thus, the expected scores of the F'S and SS auctions are equivalent in equilibrium.
As there is score equivalence and p = s + ¢, equivalence holds for the expected price

too.

2.3 PQR Scoring Rule

Next we examine a scoring rule that is not QL. Consider the PQR scoring rule
S(p,q) = p/q. The inverse function of S with respect to p is given by P(s,q) = sq,

and the optimal quality is derived by the profit maximization problem

max sq — C(q, ). (6)

q>q

10



It is clear that the objective function is strictly concave in ¢, and we assume that
the optimal quality ¢* always lies in the interior in equilibrium. This is satisfied if

the optimal quality at (2(6),0) is not binding.

Assumption 1 In the PQR scoring rule, for all 8, the optimal quality satisfies

q" (2(0),0) > g.

When the optimal quality ¢* lies in the interior, it is determined by the first-order
condition

s —Cq(q*,0) =0. (7)

By the implicit function theorem, we have ¢} = 1/Cyq > 0 and g = —Cgp/Cyq < 0,
so the optimal quality is increasing in score s and non-increasing in type 6. It is

immediately clear that the indirect payoff function is convex in score s.

Lemma 2 Under the PQR scoring rule and Assumption[l], the indirect payoff func-

tion u is strictly convex in s.

Proof By the envelope theorem, we have ugs(s,0) = ¢*(s,0) > 0 and ugs(s,0) =
qi(s,0) >0. O

Quality choice and the indirect payoff function under the PQR scoring rule are
both closely related to standard producer theory whereby the maximization problem
@ is equivalent to the profit maximization problem of a firm in a competitive
market when s is the price per unit of quality. The optimal quality supplied is
thus determined by “price equals marginal cost” (7)) and the supply function ¢* is
increasing in price s. Since the suppliers optimally adjust their quality supplied in
response to price, the profit function w is convex in s. The break-even score z(6)
here corresponds to the break-even price for the firm.

From this interpretation, Assumption[I]requires that there exists a non-sunk fixed
cost. As is well known, average cost is minimized and generally equals marginal cost

at the break-even price. With the presence of fixed costs, average cost is U-shaped

11



and minimized in the interior. When there are no fixed costs, the average cost is
always smaller than the marginal cost. Hence, by ignoring the quality constraint
q > gq, suppliers could always earn a positive profit by providing a small quality, and
the quality supplied at the break-even point is zero. Thus, a non-sunk fixed cost is
necessary to satisfy Assumption

The PQR scoring rule is distinct from the QL scoring rule in two respects. First,
the optimal quality under the PQR rule depends not only on bidder type but also
on the required score s. Second, the indirect payoff function is not quasilinear, so

the revenue equivalence theorem does not apply to the PQR rule.

3 Equilibrium Analysis of PQR Scoring Auctions

3.1 Equilibrium

We first characterize the equilibria of the SS and FS auctions, showing that in both
auctions the bidder with the lowest type is selected as the winner.

In the SS auction, it is a weakly dominant strategy to bid z(#) as in the standard
second-price auction. The following proposition is shown in a standard manner and
is similar to Maskin and Riley]| (1984), Saitoh and Serizawa (2008), and |Sakai (2008),

so the proof is omitted.

Proposition 1 In the SS auction, it is a weakly dominant strategy for each bidder

to submit s°%(0) = z(6).

Under the PQR scoring rule, the score-bid auction game can be interpreted as
competition among suppliers in terms of unit price per quality, and the supplier who
submits the lowest price per quality ratio wins. From the perspective of standard
producer theory, the break-even score is equal to the supplier’s minimum average
cost: z(f) = min, C(q,0)/q. In the SS auction, the unit price per quality for the
winner is determined by the best rival offer, so suppliers are price takers. They are

competitive and submit their minimum average cost in equilibrium. The supplier

12



with the lowest minimum average cost wins and supplies quality at the unit price
equal to the second-lowest minimum average cost.

As for the FS auction, [Maskin and Riley| (1984) and |Athey| (2001)) show that it
has a symmetric, monotone Bayesian Nash equilibrium if the payoff function u is

log-supermodular:
0% logu(s, )

> 0. 8
0s00 (8)
To meet this log-supermodularity condition, we additionally impose the technical

conditions below.

Assumption 2 At least one of the following conditions holds.
1. Cy/Cy is non-decreasing in ¢, or
2. qCqq/Cyp is increasing in q.

A wide range of cost functions satisfy either of the above. The first case is
equivalent to CypCyq — CyCq9 > 0 and, roughly speaking, this condition is met when
the marginal cost is more sensitive to a change in quality than to a change in type;
that is, when Cgy, is large and Cyg is small. A special case is Cgp = 0 in which
bidder marginal cost is independent of § whereby bidder variable costs for quality are
identical but fixed costs are heterogeneousﬂ The second case is likely satisfied when
the cost function is polynomial in ¢ and type 6 does not depend on the coefficient of
the maximum degree of g. For example, this condition is met if C(q,0) = ¢* + g +
k(#). Note that these two conditions are not disjoint. For example, a cost function
C(q,0) = c(q + 0) in which c is a convex function satisfies both conditions.

Under the log-supermodularity condition, the equilibrium bidding function is
characterized by the first-order condition. Let G(f) = 1 — (1 — F(6))" ! be the
distribution of the lowest order statistic of n — 1 independent draws from F. In

addition, let ¢ = G’ be its density.

9Dastidar| (2014) focuses on this type of cost function and examines the equilibrium of non-QL

scoring auctions.
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Proposition 2 If Assumptions [1| and [2 hold, there exists a symmetric Bayesian

Nash equilibrium in the FS auction. Equilibrium score-bidding function s™5 is char-
acterized by
(55 (0) = L 0.0 a0 )
us (s£5(0),0) 1 —G(9)’

or equivalently,

sFS(Q) - /0 9(7) : ¢ (q* (SFS(T)’T) ’T) dr. (10)
0

Proof See Appendix.

Recall that a PQR scoring auction is a competition among suppliers in terms of
unit price per quality. In an SS auction, the unit price of the winner is determined by
the best rival offer, and suppliers submit their minimum average cost in equilibrium.
In an F'S auction, by contrast, unit price per quality is determined by the supplier’s
own offer, so bidding one’s minimum average cost is not a best response for suppli-
ers. Instead, suppliers submit a unit price higher than their minimum average cost,
s5(0) > 2(0), and the equilibrium score bid is expressed by the expected average

cost of the most-competitive rival bid .

3.2 Comparison of F'S and SS Auctions

We now compare the equilibrium performance of F'S and SS auctions under the PQR
scoring rule. In contrast to a QL scoring rule, equivalence between the two formats
does not hold, so we evaluate the two formats with respect to expected score, quality

and price.

3.2.1 Score Ranking

Because the buyer aims to minimize price per quality ratio, they prefer an auction
format that yields a lower (expected) score. The expected score rankings of the FS

and SS auctions depends on the curvature of the bidder’s indirect payoff. [Maskin

14



and Riley| (1984) show that if u is concave in payment, the expected revenue from
the first-price auction is higher than that of the second-price auction. Here, by
Lemma 2, u is convex in score in a PQR scoring auction, so we have a similar but
reverse expected score ranking, which is shown in an analogous manner to [Maskin
and Riley| (1984). The following theorem states that the buyer prefers the SS to the

FS auction.

Theorem 1 Suppose that Assumptions[1] and[3 hold. The expected score of the SS
auction is lower than that of the F'S auction. Moreover, for every winner’s type 0,

we have

E[s5 (1) | T > 0] < s79(0), (11)

where T is the lowest order statistic of n — 1 independent draws from F'.

Proof This is shown in a manner parallel to Theorem 4 of Maskin and Riley
(1984). Although |[Maskin and Riley| (1984) consider a concave payoff function, it is
not necessary to assume concavity to ensure the existence of a symmetric equilibrium.
O

Theorem (1| is also proved by using expression . Note that the equilibrium
score bid in the FS auction is the conditional expected average cost of the most
competitive rival. Given that the winner’s type is 6, yields

C (¢"(s™%(1),7),7)
¢ (s"5(r), 7)
)

sP90)=E >0

>F [min
q q

= Elz(r)[7>0],

T>0:|

where 7 is the lowest order statistic of n — 1 independent draws from F. Because
bidders submit a higher score than the break-even score in the FS auction, the
associated average cost is not minimized. Thus, the equilibrium score in the FS

auction is higher than the expected break-even score of the most competitive rival.

15



3.2.2 Quality Ranking

Because optimal quality depends on score s, and score equivalence does not hold for
the PQR scoring rule, the equilibrium quality obtained by the two auction formats
also differs. Note that the optimal quality function ¢* is increasing in score. There-
fore, as the FS auction yields a higher expected score, it is thus likely to provide a
higher quality than the SS auction.

The expected quality is ranked under additional conditions. Note that in an
FS auction, the winner’s quality is deterministic at the bidding stage because the
winner’s quality bid is enforced. In contrast, in an SS auction, the winner’s quality is
stochastic because the optimal quality depends on the second-lowest score which is
uncertain for the winner. Hence, to obtain the expected quality ranking, we need a
condition on the curvature of the optimal quality function ¢*. The following theorem
states that the FS auction provides a higher expected quality than the SS auction

when the optimal quality ¢* is weakly concave in score.

Theorem 2 Suppose that Assumptions and hold and that Cqqq > 0. Then, the

expected quality in the FS auction is higher than that in the SS auction.

Proof See Appendix.

The condition Cyqq > 0 means that marginal cost is weakly convex, which implies
that the optimal quality function ¢* is weakly concave in s. The optimal quality is
determined by (|7]) whereby the unit price per quality equals the marginal cost. When
marginal cost is convex, it rapidly increases as q increases. Hence, the optimal quality
does not increase very much when the score or unit price per quality is increased,

meaning that it is weakly concave.

3.2.3 Price Ranking

Given that an F'S auction yields a higher expected score and quality when marginal
cost is convex, it is natural to conjecture that expected price would also be higher

for an F'S auction. However, the expected price ranking is more ambiguous than the

16



quality ranking. Under the PQR scoring rule, the equilibrium price is given by
7(s,0) = sq*(s,0).

Analogous to the quality ranking, we have an expected price ranking if the optimal
price 7 is weakly concave in score. However, because ¢* is increasing in s, 7 is more
sensitive to a change in s and is likely to be convex. Thus, the concavity of 7 is more
stringent than the concavity of ¢*.

We provide two sufficient conditions for ranking the expected prices of FS and

SS auctions. The first one is when the optimal price is weakly concave in score.
Theorem 3 Suppose that Assumptions[1] and [3 hold and
Cq¢Coqq = Q(qu)2- (12)

Then, the expected price in the FS auction is higher than that in the SS auction.

Proof See Appendix.
The price function 7 is weakly concave under above. An example of such a
cost function is

C(q70):10ga_9_q7

where a > 0 is constant. This cost function satisfies all the basic assumptions and
Assumption [2]

We provide another condition under which the expected price can be ranked even
when the equilibrium price 7 is convex, assuming that the bidders’ type represents
their fixed costs, or Cg9 = 0. In this case, the optimal quality ¢* is independent of
type; that is, ¢*(s,0) = ¢*(s), so the optimal price is also independent of type and
7(s) = sq*(s). Because the quality function ¢* is increasing in s, the optimal price
7(s) = sq*(s) is also increasing so there is a one-to-one correspondence between score
and optimal price. Thus we transform the indirect payoff function u(s, 6) in terms of
s into one in terms of price p; with @(p, ) = u(7~1(p),d). The payoff function u(p, #)

is the winner’s payoff when they sign a contract under which they optimally choose
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the price as p. As the bidder of the lowest score bid also makes the lowest price bid,
the score-bid auction is transformed into a unidimensional price-bid auction. The
equilibrium price of the two auction formats can be ranked when the bidder payoff

@ is convex (or concave) for the associated price-bid auction.

Theorem 4 Consider the PQR scoring rule. Suppose that Assumption[1] holds and
Cq9 = 0. The expected price in the FS auction is at least as high as that in the SS

auction if ¢qCqq/Cy is nondecreasing in q, or equivalently,
CqCaq + 4CqClaqq — 4(Cyq)* 2 0 (13)

holds for all ¢ > q. The expected price in the SS auction is at least as high as that

in the FS auction if ¢Cqq/Cy is nonincreasing in q, or equivalently,
CqCqq + 4C4Coqq — q(qu)2 <0 (14)

holds for all ¢ > q.

Proof See Appendix.
Given Cyp = 0, condition is weaker than the concavity of m, (12)). Indeed,
when holds, we have

CqCqq + qCqClqq — Q(qu)2 =CyCqq + 4 (chqqq - Q(qu)2 + (qu)Q)
> (Cq + qCeq)Coq
> 0.

Note that for the price ranking is relatively stronger than that for the quality
ranking because the price function 7 is more likely to be convex than the quality
function. Thus, although the FS auction yields a higher expected score than the SS
auction, the convex price function could lead to a higher expected price in the SS
auction than the FS auction. In sum, while the expected quality is higher for the
FS auction than the SS auction, the expected price of the FS auction may be equal

to or even lower than that of the SS auction.
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To see this, consider a specific cost function C(q, ) = ¢* + bg + 6 with a > 2 and
be RH Since Cyqq > 0, expected quality is higher in the F'S auction than in the SS

auction. Also, since
CyCyq + 4CqCagq — 4(Cyq)® = ala — 1)%bg" 2,

the expected price is higher in the FS auction than in the SS auction if b > 0 and,
conversely, is lower in the FS auction if b < 0. When b = 0, the optimal quality
1 1

1 a
and price are explicitly given by ¢*(s) = a” *=Tse-1 and 7(s) = sq*(s) = a~ e-Tga-1,

respectively. The indirect payoff function is
1 a
u(s,0) = (1—aMa aisa1—¢

which can be transformed into

ir.0) =" (n-221).

a—1

where p = 7(s). That is, the score-bid auction is transformed into a price-bid auction
with a quasilinear payoff function and a pseudotype afl/(a — 1). Thus, we can apply
the revenue equivalence theorem, and so the equilibrium price is the same in the FS

and SS auctions.

Corollary 1 Consider the PQR scoring rule, and suppose that Assumption [1] and
Cqo = 0 hold. If Cyqq > 0 and qCqq/Cy is nonincreasing in q > q, then the expected
quality is higher in the FS auction than in the SS auction, and the expected price
i the FS auction is at most as high as in the SS auction. Thus, the FS auction

achieves a higher expected quality with a weakly lower expected price.

At first glance, Corollary [If seems inconsistent with Theorem [1| which shows that
the SS auction yields a lower expected score than the FS auction. However, even
though the expected price per quality ratio is higher, the FS auction can lead to

a higher expected quality and lower expected price than the SS auction. Thus, if

5We focus on the region where the cost is increasing in ¢ when b < 0.
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the buyer’s true objective is to achieve a higher expected quality at a lower expense
rather than to minimize the price per quality ratio, the FS auction can be more

beneficial for the buyer than the SS auction.

4 Designing Scoring Rules

As shown by Che| (1993), when the buyer has a quasilinear preference v(p,q) =
V(q) — p, the “truthful” QL scoring rule S(p,q) = p — V(q) achieves efficiency and
maximizes the social surplus. This is because, under the truthful scoring rule, every
bidder voluntarily chooses the optimal quality that solves

I(Ill)%ip —C(¢q,0) st.p—V(g=s = max Vig) — C(q,0) + s,
which is equivalent to the social surplus maximization.

This efficiency property holds even when the buyer has a nonquasilinear prefer-
ence such as price per quality ratio. Note that in both FS and SS auctions, each
bidder chooses a contract that maximizes . This problem is the supplier’s ex
post profit maximization given a buyer’s payoff v(p,q) = —s. Hence, the chosen
contract is Pareto efficient between the buyer and the bidder. Because both FS and
SS auction chooses the most efficient (lowest-type) bidder as the winner, the equilib-
rium outcome of PQR scoring auctions is ex post Pareto efficient when the buyer’s

preference is represented by v(p,q) = —p/q.

Proposition 3 Suppose that the buyer’s utility function is given by v(p,q) = —p/q.
The equilibirum outcomes of both F'S and SS auctions with PQR scoring rule are ex

post Pareto eﬂicientm

This property supports the adoption of PQR scoring auctions when the buyer

has the objective of minimizing price per quality ratio.

"Note that when the buyer has non-quasilinear preferences, the ex post Pareto efficiency does

not imply ex ante Pareto efficiency.
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Another interesting question is what is the optimal mechanism or optimal scor-
ing rule for the buyer. |Che (1993) shows that when the buyer’s utility function is
quasilinear, the buyer-optimal mechanism is obtained using |Myerson| (1981)). Fur-
thermore, Che| (1993) shows that there exists a QL scoring rule that implements the
optimal allocations. In the optimal scoring rule, the buyer sets a scoring rule which
differs from the true utility function (V' (¢) — p) and results in downward distortion
of quality relative to the true value for quality V(q).

Unfortunately, however, when the buyer’s utility function is not quasilinear, the
standard approach by |[Myerson (1981) is not applicable because the expected price
does not capture the buyer’s expected utility. Therefore, it is hard to obtain the
optimal mechanism or optimal scoring rule that minimizes the price per quality
ratio.

Nevertheless, we provide a qualitative result that the buyer can achieve a lower
price per quality ratio by distorting the PQR scoring rules. We show that it is
beneficial for the buyer to skew the quality lower than that achieved under the PQR
scoring rule.

Consider a scoring rule

S'(p.q) = p;t, (15)

where t is a parameter representing the extent of distortion from the PQR scoring
rule. When the scoring rule S is interpreted as a utility function on (p,q), the
relative value of quality over price is captured by the marginal rate of substitution
of ¢ for p, which is given by

t

Sy _pt
¢
S, q

This is decreasing in ¢, and thus, a scoring rule S* with ¢t > 0 evaluates quality lower
than the original PQR scoring rule. The following theorem states that the scoring

rule S with a small t > 0 achieves a lower price per quality ratio than the PQR

scoring rule.

Theorem 5 Suppose Cy9 > 0. For any type profile of bidders in which the lowest
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and second lowest types differ, an SS auction employing the scoring rule S, where
t > 0 s sufficiently small, results in a lower price per quality ratio than an SS auction

employing the PQR scoring rule.

This theorem is consistent with the standard mechanism design of Mussa and
Rosen| (1978) and [Myerson| (1981)). Since the cost function satisfies increasing differ-
ences Cgg > 0, the higher the quality, the more sensitive the cost is to type, resulting
in an increase in the supplier’s information rent. Thus, the buyer has an incentive
to procure at a lower quality than a (Pareto) efficient quality level and reduce the
supplier’s information rent. This result is also consistent with an optimal scoring
rule in (Che| (1993)).

The distorted scoring rule S* can be interpreted as a mechanism where the buyer
pays a fixed subsidy ¢ to the winner in a PQR scoring auction. This subsidy reduces
the bidder’s (non-sunk) fixed cost and lowers the break-even score, implying lower
bidding in the SS auction. Thus, the subsidy decreases the quality bid, and the price
per quality ratio improves. Note that the distortion improves the price per quality
ratio in an ex post sense. Hence, distorting scoring rule is beneficial for the buyer
even if their true preference is a nonlinear transformation of the price per quality

ratio, such as the quality-per-price-ratio maximizer.

5 General Scoring Rules

The analysis thus far can be applied to more general scoring rules. Unfortunately,
however, it is difficult to obtain sharp theoretical results for general non-QL scoring
rules. Suppose that a scoring rule S is increasing in p and decreasing in ¢. The
inverse function in terms of p is denoted by P(s, q), which is the price function given
score s and quality ¢, with Py > 0 and P, > 0. The bidder indirect payoff function
is given by

u(s,0) = max P(s,q) — C(q,0).

22



We assume that the payoff function P — C' is strictly concave in ¢ and that the payoff
maximization problem always has a (unique) interior solution. That is, the optimal

quality ¢* is determined by the first-order condition
Py(s,47) = Cqlq,0) = 0. (16)

We further assume that the indirect payoff function u satisfies the log-supermodularity
condition 9%logu/0s06 > 0. The equilibrium of the SS and FS auctions is charac-

terized in the same manner with the PQR. scoring rule.

Proposition 4 Suppose that P(s,q) — C(q,0) is strictly concave in q and that the
optimal quality q* is determined by the first-order condition (@ In the SS auction,
it is a weakly dominant strategy for each bidder to submit s5°(0) = z(0). In the FS
auction, the symmetric equilibrium score-bidding function s is characterized by (@

with s75(0) = z(0) if u is log-supermodular.

Proof The proof is the same as Propositions [T] and 2} O

Suppose that the buyer’s utility is identical to the scoring rule; v(p, ¢) = —S(p, q)-
The argument of Section [3]2.1 can be directly applied to general scoring rules.
Namely, the expected score is lower (higher) in the SS than in the FS auction if
u(s,0) is convex (concave) in s. The following proposition is shown in the same

manner as Theorem [I]

Proposition 5 Suppose that the FS auction has a symmetric Bayesian Nash equi-
librium. Then, the expected score in the SS auction is weakly lower (higher) than in

the F'S auction if u(s, 0) is convezr (concave) in s for all 6.

The curvature of the bidder’s indirect payoff function depends on both scoring
rule and cost function. The indirect payoff function is relatively likely to be convex,
but can be concave. It is even more difficult to obtain clear properties with respect
to equilibrium quality and price. We will discuss the details of the indirect payoff

function and equilibrium quality and price in Appendix B.
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6 Concluding Remarks

This study has examined scoring auctions using PQR and more general non-QL
scoring rules. For the PQR scoring rule, we have characterized the equilibrium
bidding strategies in F'S and SS auctions and have found that the expected score is
lower in SS auctions and that under a set of conditions expected quality and price
are also lower. We also provided an example in which the expected quality in an
FS auction is higher than in an SS auction while the expected price is equivalent or
lower. These results suggest that if the price per quality ratio is the procurement
buyer’s true objective function, an SS auction is better for the buyer than an FS
auction. However, the results also imply that the FS auction may perform better
than the SS auction with respect to expected quality and price. Moreover, for the
buyer with the objective of minimizing price per quality ratio, it is beneficial for them
to adopt a scoring rule that skews quality downwardly relative to the original PQR
scoring rule. Finally, we characterized the expected score ranking via the curvature
of the indirect payoff function.

There are several potential extensions for further research. One important exten-
sion would be a theoretical consideration of a scoring auction with an interdependent
scoring rule. In this study, we have restricted our attention to scoring rules in which
each bidder’s score depends only on its own price and quality. However, in practice,
the buyer sometimes uses an interdependent scoring rule in which the score depends
not only on the bidder’s own price and quality bid but also on some or all com-
petitors’ price and quality bids. Another would be to incorporate the uncertainty
of buyer’s quality bid evaluation. Our model, following (Che| (1993), assumes that
bidders do not face uncertainty in how their quality bids are evaluated by the buyer
but, in practice, the bids are evaluated by reviewers and hence the scores of quality
bids include noise (Takahashi, |2018). These theoretical analyses are left to future

research.

24



Acknowledgments

The authors thank Christian Hellwig for his insightful comments on an earlier ver-
sion of this paper. We are also grateful to Yu Awaya, Michihiro Kandori, Philip
MacLellan, Nozomu Muto, Satoru Takahashi, conference participants at CTW Sum-
mer Camp 2024, 30th Decentralization Conference in Japan, EARIE 2024, and Aus-
tralasia meeting of the Econometric Society 2024, and seminar participants at the
University of Tokyo, the University of Osaka, and Shiga University for their help-
ful comments. We acknowledge financial support from the Japan Society for the

Promotion of Science (KAKENHI 21K01401, 23H00051, and 25K05073).

References

Allen, Jason, Robert Clark, Brent Hickman, and Eric Richert, “Resolv-
ing Failed Banks: Uncertainty, Multiple Bidding & Auction Design,” Review of
FEconomic Studies, 2023, p. rdad062.

Andreyanov, Pasha, “Mechanism Choice in Scoring Auctions,” Technical Report

2018.

_ , Francesco Decarolis, Riccardo Pacini, and Giancarlo Spagnolo, “Past

Performance and Procurement Outcomes,” Awvailable at SSRN 4929595, 2024.

Asker, John and Estelle Cantillon, “Properties of Scoring Auctions,” RAND
Journal of Economics, 2008, 39 (1), 69-85.

and _ , “Procurement When Price and Quality Matter,” RAND Journal of
Economics, 2010, 41 (1), 1-34.

Athey, Susan, “Single Crossing Properties and the Existence of Pure Strategy
Equilibria in Games of Incomplete Information,” Econometrica, July 2001, 69 (4),

861-889.

25



Awaya, Yu, Naoki Fujiwara, and Marton Szabo, “Quality and Price in Scoring
Auctions,” Journal of Mathematical Economics, 2025, 116, 103083.

Bajari, Patrick, Stephanie Houghton, and Steven Tadelis, “Bidding for In-
complete Contracts: An Empirical Analysis of Adaptation Costs,” American Eco-

nomic Review, April 2014, 104 (4), 1288-1319.

Bolotnyy, Valentin and Shoshana Vasserman, “Scaling Auctions as Insurance:
A Case Study in Infrastructure Procurement,” Econometrica, 2023, 91 (4), 1205
1259.

Branco, Fernando, “The Design of Multidimensional Auctions,” RAND Journal

of Economics, 1997, 28 (1), 63-81.

Che, Yeon-Koo, “Design Competition through Multidimensional Auctions,”

RAND Journal of Economics, Winter 1993, 2/ (4), 668—680.

Dastidar, Krishnendu Ghosh, “Scoring Auctions with Non-Quasilinear Scoring
Rules,” ISER Discussion Paper 0902, Institute of Social and Economic Research,

Osaka University June 2014.

Hanazono, Makoto, Yosuke Hirose, Jun Nakabayashi, and Masanori Tsu-
ruoka, “Theory, Identification and Estimation of Scoring Auctions,” Technical

Report August 2020.

Huang, Yangguang, “An Empirical Study of Scoring Auctions and Quality Ma-
nipulation Corruption,” European Economic Review, 2019, 120, 103322.

TIimi, Atsushi, “Multidimensional Auctions for Public Energy Efficiency Projects:
Evidence from Japanese ESCO Market,” Review of Industrial Organization, 2016,
49, 491-514.

Kong, Yunmi, Isabelle Perrigne, and Quang Vuong, “Multidimensional Auc-
tions of Contracts: An Empirical Analysis,” American Economic Review, 2022,

112 (5), 1703-1736.

26



Koning, Pierre and Arthur van de Meerendonk, “The Impact of Scoring
Weights on Price and Quality Outcomes: An Application to the Procurement of
Welfare-to-Work Contracts,” Furopean Economic Review, 2014, 71 (C), 1-14.

Krasnokutskaya, Elena, Kyungchul Song, and Xun Tang, “The Role of Qual-
ity in Internet Service Markets,” Journal of Political Economy, 2020, 128 (1),
75-117.

Lewis, Gregory and Patrick Bajari, “Procurement Contracting With Time In-
centives: Theory and Evidence,” The Quarterly Journal of Economics, 2011, 126
(3), 1173-1211.

Maskin, Eric and John Riley, “Optimal Auctions with Risk Averse Buyers,”
Econometrica, 1984, 52 (6), pp. 1473-1518.

Mussa, Michael and Sherwin Rosen, “Monopoly and Product Quality,” Journal
of Economic Theory, 1978, 18 (2), 301-317.

Myerson, Roger B, “Optimal Auction Design,” Mathematics of Operations Re-
search, 1981, 6 (1), 58-73.

Nishimura, Takeshi, “Optimal Design of Scoring Auctions with Multidimensional

Quality,” Review of Economic Design, 2015, 19 (2), 117-143.

Ortner, Juan, Sylvain Chassang, Kei Kawai, and Jun Nakabayashi, “Scor-

ing and Cartel Discipline in Procurement Auctions,” Technical Report 2025.

Ryan, Nicholas, “Contract Enforcement and Productive Efficiency: Evidence from
the Bidding and Renegotiation of Power Contracts in India,” Econometrica, 2020,

88 (2), 383-424.

Saitoh, Hiroki and Shigehiro Serizawa, “Vickrey Allocation Rule with Income

Effect,” Economic Theory, 2008, 35, 391-401.

Sakai, Toyotaka, “Second Price Auctions on General Preference Domains: Two

Characterizations,” Economic Theory, 2008, 37, 347-356.

27



Sano, Ryuji, “Post-Auction Investment by Financially Constrained Bidders,” Jour-

nal of Economic Theory, 2023, 213, 105742.

Takahashi, Hidenori, “Strategic Design under Uncertain Evaluations: Structural
Analysis of Design-Build Auctions,” RAND Journal of Economics, 2018, 49 (3),
594-618.

The Department of Health and Ageing, Australia, “Tender Evaluation Plan,”
2011. http://www.health.gov.au/internet/main/publishing.nsf/Content/
205B1A69101B75C3CA257909000720F1/$File/F0I1%20264_1011%20doc%2013.

pdfl

Wang, Mingxi and Shulin Liu, “Equilibrium Bids in Practical Multi-Attribute
Auctions,” Economics Letters, 2014, 123 (3), 352-355.

A Proofs

A.1 Proof of Lemma [I]
Consider the following minimization problem:

min S(C(q,0), ).

q>q
Given an arbitrary qo, set sop = S(C(qo,0),q0). We can restrict the constraint set
to {q > q|S(C(g,),q) < so} without affecting the solution. We show that the re-
stricted set is compact: Suppose not. Since the set is closed, it must be unbounded.
Then we can take an arbitrarily large ¢; such that S(C(q1,0),q1) < so, which implies

that P(so,q1) > C(q1,0). Thus
0

A

ql{Pq(Soaﬁ) — Cy(§,0)}d§ = P(s0,q1) — Clq1,0) — {P(s0,90) — Cqo,0)} = 0.

90

Because P(s,q) — C(q,0) is strictly concave in ¢, Py(so,q) < Cy(q, ) for all ¢ > g,
where P, (s, q2) = Cy4(g2,0). Therefore

(P06 - 0N+ [ (P50, ~ G0Nz 0. )

q0 q2
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The second term of the left-hand side is negative and has a sufficiently large
absolute value as ¢ — oo, which is a contradiction to inequality . By the
Weierstrass Theorem, a solution to the score minimization exists, and the value is
the break-even score.

To show that z(-) is strictly increasing, let ¢*(#) denote a solution to the above
score-minimization problem. Then z(0) = S(C(¢*(0),0), ¢*(0)). Note that P(z(0),q) <
C(q,0) for all ¢ (with equality at ¢ = ¢*(6)). Consider > 0. Since C(q,6) < C(q,0),

we must have P(z(0),q) < C(q,0) for all ¢, implying that there is no intersection

between P(z(6),-) and C(-,8). Since Py(s,q) > 0 and P(z(9),¢*(0)) = C(q%(0),0),

z(0) > z(0). O

A.2 Proof of Proposition

Note that ¢f = 1/Cyq and q; = —Cyg/Cyq. By differentiation, we have

dlogu(s,0)  q¢*(s,0)

Os u(s,0)
and
2log u(s
& lagsa(a ) - u(319)2 (g5 (5, 0)u(s, 0) + q*(s,0)Ca(q*(5,0),0))
B u(sle)2 (=43 (5,0)Can(a”, O)u(s,6) + 0’ (5,0)Cold", 6))

It is immediately clear that log-supermodularity holds if Cpy < 0. In what fol-
lows, we assume Cy > 0 and provide two sufficient conditions under which the
log-supermodularity condition holds.

Condition 1. Suppose that C;/Cy is non-decreasing in ¢q. That is, we have

Cu, Co

CqpCq — CpCqqy <0 & — Cog c,

for all ¢ and 0. By evaluating this at ¢ = ¢*(s, 6), we have

QZ(& 9) > =
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Because u(s, ) > 0 for s > z(6), we have

02 log u(s, ) 1

g = U(S)Q (g5 (s)u(s) + a*(5)Colq"(5)))
> o (TR + ()Cola (o))
= W (¢7(5)Cq(a"(s) = (sq"(s) = Clg"(s))))  (19)
> L Cula’ () =)
=0.

Note that we omit the parameter 6 from the presentation. The second line is derived
from ([18). The third line comes from the definition of the indirect payoff u(s,6).
The strict inequality is due to C'(¢*,0) > 0 under Assumption [I} Finally, the last
line comes from the first-order condition for the optimal quality s — Cy(q*,6) = 0.
Thus, log-supermodularity condition holds.

Condition 2. Fix an arbitrary § and define a function V of score s byf|

Vi(s) = —45(5)Cop (47(s)) uls) + " (5)C (47(s)) -

What we want to show is that V(s) > 0 for all s > z(#). Note that V(z(0)) =
q¢*Cp > 0 by u(z(6)) = 0. Hence, it suffices to show that V(s) =0 = V'(s) > 0 for
every s > z(0).

By differentiation, we have

V,(S) = *q:scqeu - (Q:)QquGU - qcheq* + Q:CG + q*qche

(20)
= 45Cp — 45,Captt — (4)*Cogou.
Suppose V(s) = 0 < u = ¢*Cy/q:Cyo. By substituting this into (20, we have
" 754" Co _ 45Ca0q"Co
S _a=q.Cy— " — . 21
My om0 = 360 = L o 1)

Note that ¢¢ = 1/Cyy and ¢, = —Cyqq/(Cyq)®. By substituting them into , we

8We omit the fixed parameter  from the presentation.
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have

Co  Cuq@*Co  q"CuepCo
V(s =0 e . qq
)|V(S)7O Cyq (qu)2 CoqCop

- @ (1+q* (quq o qu@)) )
Coq Coq Coo
Note that Cp, Cyqq > 0, and

9 <qCQQ> _ Coq <1 tq (quq _ qu9>> '
0q \ Cyo o Cqq Cyo

Hence, V’(s)|v( =0 > 0 and the log-supermodularity holds if ¢Cqq/Cyp is increasing

in q.

If the log-supermodularity condition holds, there exists a monotone pure-
strategy Bayesian Nash equilibrium in FPA (Athey, 2001). The equilibrium strategy
is symmetric and characterized by the first-order condition as shown by Maskin and
Riley (1984, Theorem 2)E| Suppose that the equilibrium is symmetric and let s be
the symmetric equilibrium strategy. Suppose that every bidder other than ¢ follows
s¥S. The interim expected payoff when bidder i makes an equilibrium bid of type 7
is

(1-G(m))u (SFS(T), 9).

The first-order condition for the payoff maximization is
—g(T)u (SFS(T), 9) + (SFS)'(T) (1 —G(7)) us (SFS(T), 0) =0.
Because the first-order condition should hold with 7 = 6, we have
—9(0)u (s7°(6).0) + (s") (O)((1 — G(6)) us (s75(6),0) = 0, (23)

which is @ The terminal condition for the differential equation is u(s7(6), ) = 0.
Thus, s7%() = 2(#). Under the log-supermodularity condition , the monotonicity

of a strategy and the first-order condition are sufficient for the best response. Hence,

9 Although [Maskin and Riley| (1984) assume that U is concave, this is not used nor is it necessary
to obtain the FSA equilibrium. For instance, Board (2007, Lemma 3) is an example of a convex

payoff function.
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the strategy s characterized by @ is the symmetric equilibrium. In addition, note

that
u(s, 0) Clq*(s,0),0)

us(s, 0) s q*(s,0) 7
thus that the first-order condition yields

* SFS
- (75 - S LD0) 460) + (7 000 - G0 ~ 0

Solving the differential equation gives (10). O

A.3 Proof of Theorem 2|

By the first-order condition for the optimal quality s = Cy(q*, ), we have

g, = — Cagq .
T (G’

Hence, the optimal quality function ¢* is weakly concave if Cyqq > 0. Let 6(1) and
f(2) be the lowest and second lowest order statistics of bidder types. When ¢* is

weakly concave in s, we have
E [q" (s°(02).00))] = Ea,y [Eogy la" (s°5(02).0)) | 802 > 011
< Eu, [a" (Boe, [5°5(00) | 92y > 000)] .00 )|
< E[q* (s"(0)),00))] -

Note that E'x means that we take an expectation regarding X. The first inequality

is Jensen’s inequality. The second inequality comes from Theorem [T} O

A.4 Proof of Theorem [3

Let 7(s,0) = sq*(s,0) be the optimal price given score s and type 6. Then, by
differentiation, we have

Tss(s,0) = sq5s + 245
Bu substituting ¢ = 1/Cyq, ¢&5 = —Clqq/(Cyq)?, and the first-order condition s =

Cy, we have
2(Cyq)* — Cquqq.
(Caq)?
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Thus, the optimal price is weakly concave if holds. When 7 is weakly concave in
s, we have the expected price ranking in the same manner with the quality ranking

Theorem Pl OJ

A.5 Proof of Theorem [4]

Suppose that Cyg = 0. Then, it is clear that the optimal quality ¢* is independent of
6 and is denoted by ¢*(s). Let 7 be the optimal price function 7(s) = sq¢*(s). Because
q* is increasing in s, 7 is also increasing in s. Thus, each price bid corresponds to
a score bid in the one-to-one sense. That is, for every score s, we have a unique

associated price p = 7(s). We define a payoff function in terms of the price bid @ as
a(p,0) = u(r~ ' (p), ).

Abusing notation, the cost function is denoted by C' = C(q) + 0, where C(q) is

variable cost and 6 is the fixed cost[l’] Then, we have

ﬂ(p,9)=p—0< b )—

™ 1(p)

By differentiation, we have

vt () © (F)
() o () ()} o (Hw)

By differentiation, we have

and

and

(W_zf(p)> _ (W_ll)?) [—p(ﬂ'_l)ﬂﬁ_l o 2(7'(_1)/7'(_1 +2p((7r_1),)2]

1 [pﬂ'_lw” 21 2p

_(7.(71)3 (7')3 o +(7r/)2
_ 1

= P

"+ opn’ — 27771(7r’)2] .

10Because the cost function is increasing in 6 (by assumption), # can be defined by fixed cost

without any loss of generality.
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Note that by definition, we have p = 7(s) = sq¢*(s), 771 (p) = s, 7'(s) = ¢* + s¢,
and 7" (s) = sq¥, + 2q%. By substituting them into the above, we have

( p >': (@" +sq3)s —s¢* _ a
7=1(p) (g + sqz)s? q + sq;

"

p 1 * * * * * * * *

(ﬂ.—l(p)> =@ 1505 [s%q* (s + 24%) + 25q" (¢" + sq}) — 2s(q" + sq)?]
S

_ ag — 2(q))?
(¢* + 5q%)?
By the first-order condition for the optimal quality s = Cj, we have
N 7:C4 q"Cyq

b T +5q; ¢ Cyq+ Cy

Also, we have

2 - (q2)*
— s 58 O (g*) — s C *
= g s )T G gy G @)
1
= ———— [2(¢))’Cy — " ¢%Cq — (¢2)*Cqld* + sd;
(q*+sq;)3[(Q) 0 — O @Cq — () Coq(a* + s¢%)]
_ 1 20, ¢"CyCagq  4"Caq +Cy
(q* + sq§)3 (qu)2 (qu)3 (qu)2

_ CqCaq +4°C4Coqq — q*(qu)Q.
(" + 5q5)*(Cqq)?

The third line comes from ¢ = 1/Cyy and ¢}, = —Clqq/(Cyq)®. Hence, 4 is convex
in p if C;Cyq + qCyCqqq — @(Cyqq)? > 0. Then, the expected price in the FS auction
is higher than in the SS auction, which is analogous to Theorem [1| and [Maskin and
Riley| (1984). O

A.6 Proof of Theorem [5

Consider a scoring rule S'(p,q) = (p — t)/q. Under the scoring rule S?, bidders’

indirect payoff function is given by

u'(s,0) = maxsq+t — C(q,0)
q
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by s = (p —t)/q < p = sq+t. Thus, the optimal quality is independent of ¢ and
denoted by ¢*(s,0). The indirect payoff function satisfies

u'(s,0) = u(s,0) +t,

where u is the indirect payoff function under the PQR scoring rule S°. The break-

even score for the scoring rule S* is denoted by z(6,t), which is determined by
u'(2(0,t),0) = u(z(0,t),0) +t = 0.

By the implicit function theorem and the previous analysis, we have

1 1
200 =0 - 00,0 24

Consider the SS auction with the scoring rule S*. It is weakly dominant for

each bidder to submit their break-even score z(0,t). Let 6; and 6; be the low-
est and the second lowest types among all bidders, respectively. Bidder ¢ of type
¢; wins and chooses the contract with quality ¢; = ¢*(2(0;,t),6;) and price p; =
2(0;,t)q*(2(0;,1),6;) + t. Thus, the associated price per quality ratio is

t

PQR=200,0+ o, 0.0

(25)

By differentiation, we have

(2(0;, 1), i) — tz4(6;,t)g5(2(05, 1), 0)
(q*(2(05,1),0:))?
1 1 q;*(z(ej,t),ﬁi)

Tt (=:05,),00)  ¢*(2(05,),0)) i (q*(2(65,1), 6:))%q* (2(65,1), 65)

Note that 6; < 6; and ¢* is decreasing in by Cgg > 0. Hence, we have ¢*(2(0;,1),6;) <
q*(z(ejv t)a 61) and

PQRt = Zt(gj,t) + 4

t.

Thus, the equilibrium price per quality ratio decreases by slightly adding a distortion
t > 0 to the PQR scoring rule. O
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B Properties of General Scoring Rules

In this appendix, we explore a set of conditions on primitives that guarantees the
log-supermodularity condition for general scoring rules. We can restrict the domain
to {(s,0)|u(s,d) > 0}, since otherwise, the score bid is clearly suboptimal for a type 6
bidder. Suppose that ugg exists. We suppose that the payoff function P(s, q¢)—C/(q, 6)

is strictly concave in ¢ and that the optimal quality ¢* always lies in the interior

q*(s,0) > q.

Proposition 6 The log-supermodularity condition holds if the optimal quality (and
price) are not binding for all (s,0) and

1. PyyCqp <0, or

2. Pyqg >0, Cyp > 0, P/P; weakly increasing in q,and Cyg/(Cqq — Pyq) < Cy/Cy.

Proof The log-supermodular condition holds if and only if

u(s, )
us(57 9) et

Note that by the envelope theorem, we have us(s, 0) = Ps(s, q"), ug(s,0) = —Cp(q*, ),
and us(s,0) = Psq(s,q*)q;(s,0). Thus, holds if

u(s, 0)
us(s, 0)

Because ¢;(s,0) = —Cy0/[Cqq(q*(5,0),0) — Pyq(s,q*(s,0))], we have condition 1 by

(s,0) —ug(s,0) > 0. (26)

PSQ(qu*(Sve))q;(S>9)+09(q*(870)79) > 0. (27)

the concavity of P(s,q) — C(q,0) in g.
In what follows, we provide the proof for condition 2. We assume that Cy(q, 0) >
0 and that P(s,q)/Ps(s,q) is weakly increasing in ¢. Let us further assume that
Cool-
ey |-t
Caq(-) = Pyq(")

holds for all ¢ and 6. Then we evaluate this inequality at ¢ = ¢*(s,6). Recall that

+Cy(-) >0

the square-bracket term equals gj (s, 0) if ¢ = ¢*(s,0). Hence, we obtain

CQ(q*(sae)ae)qz(Sve) + CH(q*(5a0)>9) > 0. (28)

36



Next, we show that if P(s,q)/Ps(s,q) is weakly increasing in ¢ for all s and ¢
and Pg,(-) > 0, then [u(s,0)/us(s, )] Psy(-) < Cy. First, the condition that P/Ps is

weakly increasing in ¢ implies that

d P(s,q) 1
W Pa(o.q) ~ (Boto,q))? Fao OP(5:0) = Pls @) Pogl5,0)] 2.0

for all s and q. Given the fact that Ps; > 0, this inequality is equivalent to

P(s,q)
———=P(s,q9) < P,(s,q) for all s and q.
Py(s,q) o(5:0) o5 0)

Then we consider this (weak) inequality, replacing P(s, q) with P(s,q) — C(q,#) on
the left-hand side. Given that Py, > 0 and that C(q, #) is nonnegative, the inequality

implies that

P < Ps.q) (29)
for all s and q.
By substituting ¢ = ¢*(s, ) into , we have
e Pl (5,0) = TS p (s,
< Py(s.q")
= Cylq",0). (30)

The last equality comes from the first-order condition for the optimal quality ¢*.

Expressions and imply

u(s,0)
us(s, 6)

> CQ(q*(S’ 9)7 O)q;‘(s, q*(S, 9)) + Cg(q*(S, 9)79)

>0

Psq(s,47(5,0))q5(s,47(s,0)) + Colq" (5, 0),0)

by Py, > 0 and gy < 0. Thus, log-supermodularity holds. [
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Next, we explore the curvature of the bidder’s indirect payoff function.Two fac-
tors affect the curvature of the indirect payoff function. Note that, by differentiation,

we have

uss(s,0) = Pss(s,47(5,0)) + Psq(s,47(s,0))45 (s, 0). (31)

The first term on the right-hand side of captures the direct effect on ugs of a
change in the marginal payments with respect to s given ¢, while the second term in
captures the indirect effect of the change in the marginal payments with respect
to s through the change in q.

Regarding the direct effect, the curvature of the scoring rule directly affects
the bidder’s induced utility function. Since Pss(s,q) = —S,,/(Sp)3, as the scoring
function becomes more concave (convex) in p, u(s, ) becomes more (less) convex in
s, ceteris paribus. Note that this direct effect is independent of the properties of the
cost function.

On the other hand, the indirect effect, Ps4(s,q*(s,0))qi(s,8), is always nonneg-
ative. Indeed, by the first-order condition for optimal quality and the implicit

function theorem, we have
. _ Py

G TR o (32)
Hence, Py,q; is always nonnegative because of the strict concavity of the payoff
function in ¢. Intuitively, with a scoring rule in which the associated Py falls (rises)
as ¢ rises, the bidder will optimally choose a smaller (larger) ¢ as s becomes larger.
Moreover, as the indirect effect increases, u(s, ) becomes more convex in s, ceteris
paribus. Thus, given that the indirect effect is always nonnegative, u(s,6) is convex
if S, < 0.

We then discuss the properties of expected price and quality. An interesting
feature of the PQR scoring rule is that the optimal quality ¢* is increasing in score
s. This suggests that under a PQR scoring auction, the lower-type bidders compete
on price at the expense of quality. Note that the lower-type bidder submits a lower-

score bid in equilibrium, so these bidders propose a lower quality with a much lower

price as they become more efficient. This property may not be desirable for the
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procurer unless the scoring function represents their true preferences over a price-
quality choice.

Note that by , the signs of ¢; and P, coincide. Also, we have

_ SppPy + Spg _ SppSq — SpSpq'
(Sp)? (Sp)°

The sign of S, is crucial for the slope of the optimal quality in s. In particular, if

Py, = (33)

the scoring rule is linear in p (i.e., Sp, = 0), then the sign of ¢} is determined by
—Spq- In the PQR scoring rule, Sp; < 0 and the optimal quality is increasing in
score s[H]

A scoring rule with S,, < 0 implies that S}, the marginal score with respect
to price, increases as quality decreases. That is, when quality is already relatively
low, a lower price lowers the score even more. In other words, the lower the quality,
the more price competition is encouraged. Thus, even though lower-type bidders
choose higher quality, scoring rules such as PQR are prone to price competition at
the expense of quality.

Additionally, the quality ranking between FS and SS auctions depends on the
curvature of the quality function ¢*. When the indirect payoff u is convex, the FS
auction yields a higher expected score than the SS auction. Similar to the discussion
in the previous section, the expected quality is higher in the FS than in the SS
auction if ¢* is increasing and weakly concave in s but is higher in the SS auction
if ¢* is decreasing and weakly convex in s. However, because the condition for the
concavity or convexity of ¢* is complicated, it is difficult to obtain a clear comparison
of quality between FS and SS auctions.

Moreover, the price ranking between FS and SS auctions is more ambiguous
than quality. Let m(s,0) = P(s,q"(s,0)) be the price associated with score s and the
optimal quality ¢*. Then,

s = Ps + ¢ P,

1Note that the optimal quality is not affected by any monotone transformation of scoring rule
S. Hence, we can focus on scoring rules with S,, = 0 because every reasonable scoring rule can be

transformed into this.

39



and

* (PSQ)2 qu
=P P, — 2 —
s s s qu - qu qu - qu

by . The last term of 7y is positive if Pj; > 0. Hence, the optimal price 7 is
likely to be convex and so the expected price ranking becomes ambiguous when
is convex and ¢* is increasing in s. This is analogous to Theorem [3| for the PQR
scoring rule.

Further, for a scoring rule in which the associated optimal quality ¢* is decreasing
in s, the price function m may no longer be monotone, which makes the price ranking
more ambiguous. Thus, with respect to general scoring rules, whether the expected
price (quality) in the FS auction is lower relative to that in the SS auction is an

empirical question.
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