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1 Introduction

The rapid accumulation of public debt in recent years has intensified the need for

governments worldwide to ensure value for money in their procurement processes.

Traditionally, low-price auctions have been the cornerstone of public procurement,

valued for their transparency and competitive nature. However, there is a marked

shift towards evaluating bids not solely on price but also on non-monetary factors

such as delivery speed, design, and overall quality. Scoring auctions have emerged as

a prominent mechanism designed to balance the dual objectives of price competition

and value maximization.

In a scoring auction, bidders submit multidimensional bids consisting of both

price and quality attributes. These bids are evaluated using a pre-announced scor-

ing rule, which assigns scores to rank the bidders. The seminal work by Che (1993)

established that under a symmetric independent private value setting, scoring auc-

tions with quasilinear (QL) scoring rules—where scores are linear in price and addi-

tively separable from quality—can be reduced to the classic unidimensional auction

model.1 This reduction brings scoring auctions under the umbrella of the revenue

equivalence theorem, ensuring that price and quality outcomes are consistent across

various auction formats. The QL framework’s simplicity has since attracted sig-

nificant theoretical and empirical interest, reinforcing its status as a cornerstone of

auction theory.

In real-world procurement auctions, however, a variety of scoring rules are used

that are not quasilinear. A typical example is the “price-per-quality-ratio” (PQR)

scoring rule in which a score is given by the price bid divided by the quality bid.

Many state Departments of Transportation (DOTs) in the United States, including

those in Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota,

have adopted the PQR-equivalent “adjusted bid,” and the Department of Health

and Aging in Australia also employs a PQR awarding rule to achieve better returns

1In this paper, we use the abbreviation QL only for quasilinear scoring rules but not for other

situations such as the quasilinearity of the payoff function.
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on public investment (The Department of Health and Ageing, Australia, 2011). In

addition, most public procurement contracts in Japan are allocated to the bidder

with the lowest price-per-quality bid ratio. However, despite the frequent use of

PQR scoring rules in the real world, little is known about their properties.2

In this paper, we provide a theoretical analysis of PQR scoring auctions in order

to acquire a deeper understanding of bidding behavior and outcomes of non-QL

scoring auctions. We follow Che (1993) by focusing on settings with a unidimensional

private signal and unidimensional quality level, and we characterize bidding behavior

and compare auction outcomes for the following two auction formats: first-score (FS)

and second-score (SS) auctions. In an FS auction, the winner delivers quality at the

price specified in its bid, and in an SS auction, the winner is free to choose any

price–quality pair as long as its score matches the score of the most-competitive

rival. In our model, the winner of both auctions is the lowest-score bidder.

We first demonstrate that under a PQR scoring rule a symmetric Bayesian Nash

equilibrium exists in both FS and SS auctions for a broad class of cost functions

and we then show that SS auctions yield lower expected scores than FS auctions.

Based on the existing literature such as Che (1993) and Asker and Cantillon (2008),

multidimensional-bid scoring auctions are transformed into a unidimensional score-

bid auction game. Under the PQR scoring rule, bidders choose higher quality as the

score increases, leading to the profit from winning bids being a convex function in

score. This means that bidders are “risk-loving” in score, taking on greater risk for

potentially larger winning profits in FS auctions. Consequently, the well-established

“revenue equivalence theorem” fails to hold and the SS auction yields a lower ex-

pected score than the FS auction in equilibrium, which is similar to Maskin and

Riley (1984) with non-risk-neutral bidders. This suggests that SS auctions are more

favorable than FS auctions to buyers seeking to decrease price per quality.

2While bid ranking is preserved in any monotonic transformation of the scoring rule, this trans-

formation does not generally convert a non-QL scoring rule into a QL rule. If, for instance, we take

a logarithm of the price-per-quality-ratio scoring rule, score is not linear in price anymore and so a

necessary condition for quasilinearity is violated.

3



To present more comprehensive arguments regarding the differences between FS

and SS auctions, we analyze the equilibrium quality and price and then establish

sets of conditions under which FS auctions produce a higher expected quality and

price than in SS auctions. We observe that under these conditions both the quality

and price increase with score, which leads to expected quality and price being higher

in the FS auction than in the SS auction. These findings suggest that when the

bidders’ scores are sorted by price-per-quality, the contracted quality and prices are

more likely to be skewed upward in the FS auction than in the SS auction.

Furthermore, we discuss the design of scoring rules when the buyer’s objective

is to minimize price per quality ratio. We confirm that the PQR scoring auctions

achieve ex post Pareto efficient contracts. However, it is hard to characterize the

optimal mechanism or optimal scoring rule for the buyer because the standard mech-

anism design by Myerson (1981) cannot be applied to nonquasilinear objective func-

tions. Nevertheless, we show that a buyer can lower the price per quality ratio by

using a distorted scoring rule that leads to a downward distortion of quality from

the original PQR scoring rule. This is because by adopting a scoring rule in which

bidders propose a lower quality, the buyer can reduce the bidder’s information rent

and thus, the distorted scoring rule is beneficial for the buyer. This result is consis-

tent with an optimal distortion in the traditional mechanism design of Mussa and

Rosen (1978) and Myerson (1981) and an optimal scoring rule in Che (1993).

Lastly, we discuss how the equilibrium properties under the PQR scoring rule

can be generalized to other non-QL scoring rules. We characterize the equilibrium

of the SS and FS auctions and show that given a scoring rule, the expected score in

an FS auction is higher (lower) than in an SS auction if the bidders’ indirect payoff

function is convex (concave) in score.

Related Literature This paper contributes to the theoretical literature on scoring

auctions pioneered by Che (1993) which to date has focused on QL scoring auctions.

In Che (1993)’s original approach, scoring auctions are modelled in such a way that
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the price and quality bids reduce to a model of auctions in which bidders submit only

scores as if it were a price-only auction. This research has been extended to cases of

interdependent cost (Branco, 1997), multidimensional signals (Asker and Cantillon,

2008) and multidimensional quality (Nishimura, 2015). Furthermore, Asker and

Cantillon (2008, 2010), Awaya, Fujiwara and Szabo (2025) and Sano (2023) compare

the performance of QL scoring auctions and alternative mechanisms. While these

previous studies focus on the properties of QL scoring auctions, we extend these

studies by comparing the performance of FS and SS auctions under the non-QL

PQR scoring rule.

In contrast to the research on scoring auctions using a QL scoring rule, there

are few papers to date that study non-QL scoring rules,one of them being Wang

and Liu (2014), who examine a non-QL scoring rule where price and quality are

additively separable. Meanwhile, Dastidar (2014) analyzes scoring auctions with a

general scoring rule and finds that the equilibrium bidding function of the FS auction

is explicitly obtained if the bidder’s cost function is additively separable in quality

and their private information.

In another study, Hanazono, Hirose, Nakabayashi and Tsuruoka (2020), hence-

forth HHNT, discuss the equilibrium existence and the structural estimation of FS

auctions incorporating general scoring rules and multidimensional private signals.

This paper complements HHNT in two ways. First, the cost structure does not fall

into that of HHNT despite multidimensionality: to ensure equilibrium existence,

HHNT require that the cost function have a private fixed cost component. This

paper covers the case of single-dimensional private signal on variable costs which is

out of scope in HHNT. Second, the results of comparing expected price, quality, and

score between different auction formats fails to obtain in HHNT because the mono-

tonicity of equilibrium on a single-dimensional signal space is intrinsically different

from that on a multidimensional signal space.

In addition to theoretical studies, empirical research on scoring auctions is grow-

ing as well (e.g., Lewis and Bajari, 2011; Koning and van de Meerendonk, 2014; Iimi,
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2016; Andreyanov, 2018; Takahashi, 2018; Huang, 2019; Krasnokutskaya, Song and

Tang, 2020; Ryan, 2020; Kong, Perrigne and Vuong, 2022; Allen, Clark, Hickman and

Richert, 2023 and Andreyanov, Decarolis, Pacini and Spagnolo, 2024). Building on

the literature on scoring auctions, Bajari, Houghton and Tadelis (2014) and Bolot-

nyy and Vasserman (2023) develop structural auction models in which firms post

unit price bids for each item required to complete a construction project. Among

these studies, Takahashi (2018) examine scoring auctions with the PQR scoring rule

and quantify the impact of uncertainty on reviewers’ evaluations of quality. Ortner,

Chassang, Kawai and Nakabayashi (2025) present theoretical predictions based on

repeated procurement auctions and examine bidder collusion in PQR scoring auc-

tions. These empirical studies motivate us to deepen a theoretical understanding of

properties of non-QL scoring auctions.

The remainder of the paper is organized as follows. Section 2 describes the

canonical model of scoring auctions in which they can be transformed into a unidi-

mensional score-bid auction game. In Section 3, we focus on the PQR scoring rule

and analyze symmetric equilibria in FS and SS auctions, comparing the expected

winning score, quality, and price of the two auction formats. Section 4 discusses the

efficiency of the PQR scoring rule and how to design a scoring rule to improve the

price per quality ratio. Section 5 analyzes general scoring rules and characterizes

the expected score rankings for FS and SS auctions, and the final section concludes

the paper.

2 Model

Consider that a procurement buyer auctions off a procurement contract to n ≥ 2

risk-neutral bidders who are all ex ante symmetric. Bidder i ’s private type is denoted

by θi and is independently and identically drawn from a cumulative distribution F

over Θ ≡ [θ, θ̄] ⊂ R+ with a continuous density f(θ) > 0 for every θ ∈ Θ. Let q ∈ R+

be a non-monetary attribute (quality) so that each bidder’s production cost is given
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by C(q, θi). We assume that the cost function C is:

• thrice differentiable and strictly increasing in both q and θ (Cq, Cθ > 0);

• strictly convex in quality (Cqq > 0);

• exhibits non-decreasing differences (Cqθ ≥ 0); and

• there exists a sufficiently large number B > 0, and for all θ, Cq(q, θ) ≥ B for

some q > q.

Note that Cθ = ∂C/∂θ and that the other subscripts are defined in the same manner.

The production cost is increasing in quality and type so that a bidder of a lower type

is more efficient. The third assumption means that a bidder of a lower type has a

smaller marginal cost, and the last assumption guarantees that that an optimal

quality exists.

When bidder i wins the auction and signs a contract with a price p and a quality

q, their payoff is given by

p− C(q, θi),

and we suppose that every losing bidder’s payoff is zero.

In a scoring auction, each bidder submits a proposal (p, q), where p ≤ p̄ is a price

bid and q ≥ q is a quality bid, with reserve price and minimum quality denoted

by p̄ > 0 and q > 0. Each proposal is evaluated by a pre-announced scoring rule

S : [0, p̄] × [q,∞) → R which maps a multidimensional bid into a unidimensional

score s = S(p, q). The lowest-score bidder wins. We assume that the scoring rule is

sufficiently smooth and satisfies Sp > 0 and Sq < 0.

We focus here on first-score (FS) and second-score (SS) auctions. In both types

of auction, each bidder submits (p, q), and the bidder with the lowest score wins.

In an FS auction, the winner’s proposal is finalized as a contract whereas in an SS

auction, the winner is required to match the highest rejected (i.e. the second lowest)

score. To meet the score, the winner is free to choose any quality-price pair, so the
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finalized contract of an SS auction generally differs from both the winning bid (p, q)

and the lowest losing bid.

Although our model allows general scoring rules, in most of the paper we focus

on the price-per-quality ratio (PQR) scoring rule:

S(p, q) =
p

q
, (1)

with p ≤ p̄ and q ≥ q.3 When focusing on the PQR scoring rule, the buyer aims

to lower price per quality ratio, and we suppose that the buyer’s utility function is

given by v(p, q) = −p/q.4

Remark 1 Score ranking is preserved in any monotone transformation of the scor-

ing rule so that most properties of scoring auctions, equilibrium price and quality in

particular, do not change in a monotone transformation of the scoring rule. How-

ever, in the following sections, we evaluate the expected scores of different auction

formats which generally do change in monotone transformation. For example, the

quality-per-price-ratio rule S(p, q) = −q/p is a monotone (but not affine) transfor-

mation of the PQR scoring rule, so the equilibrium price and quality under such a

scoring rule are the same as those presented in the next section, though the expected

score ranking may differ. Note that the expected score ranking is preserved in any

affine transformation.

2.1 Score-bid Auctions

The equilibrium of scoring auctions is derived in a manner similar to Che (1993).

Given an arbitrary score s, every bidder will choose the optimal contract (p, q) that

induces score s so that an auction with a multidimensional bid is reduced to a

unidimensional auction in terms of the score bid.

3Quality q here is measured in terms of “quality score.” One might consider a scoring rule

S(p, q) = p/V (q), where V is an increasing function. This is equivalent to the case in which a

quality is defined as q̃ = V (q).
4We assume that the buyer’s payoff of not contracting is sufficiently small and that the buyer

necessarily procures from some bidder.
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Suppose that the winner of type θ needs to enforce a contract that fulfills score

s. The winner determines a contract (p, q) that solves

max
(p,q)

p− C(q, θ)

s.t. S(p, q) = s,

p ≤ p̄, q ≥ q.

(2)

Throughout the analysis, we assume that the reserve price and the minimum qual-

ity are not binding at (2). By substituting the score constraint into the objective

function, payoff maximization is written as

max
q

P (s, q)− C(q, θ), (3)

where P is the inverse function of S with respect to p. When the objective function

in (3) is strictly concave in q, the maximization problem has a unique solution, with

the optimal quality denoted by

q∗(s, θ) ∈ argmax
q

P (s, q)− C(q, θ) (4)

and the indirect payoff function denoted by

u(s, θ) ≡ P (s, q∗(s, θ))− C (q∗(s, θ), θ) . (5)

Note that as Sp > 0, we have Ps > 0. By the envelope theorem, the indirect payoff u

is strictly increasing in s and strictly decreasing in θ. The equilibrium of the scoring

auction is derived by solving standard auctions in terms of score bid s, where each

bidder has the winning profit u(s, θ).

Let z(θ) be the break-even score for type θ, which is determined by the unique

solution of

u(z(θ), θ) = 0;

that is, z is the score bid such that the winner’s indirect payoff is zero, which is the

minimum willingness to accept for a bidder of type θ in the auction.

Lemma 1 Suppose that P (s, q) − C(q, θ) is strictly concave in q. Then, z(θ) is

well-defined and strictly increasing in θ.

9



Proof See Appendix.

2.2 QL Scoring Rule

The seminal paper Che (1993) examines the quasilinear (QL) scoring rule S(p, q) =

p− q whereby optimal quality is given by the profit maximization problem

max
q

s+ q − C(q, θ).

When the optimal quality is determined by the first-order condition 1−Cq(q
∗, θ) = 0,

q∗ depends only on θ and is independent of s. The indirect payoff is reduced to a

function

u(s, θ) = s− k(θ)

that is quasilinear in score, where

k(θ) = −max
q

{q − C(q, θ)}

is called the productive potential (Che, 1993) or pseudotype (Asker and Cantillon,

2008). Thus, in this framework, the QL scoring auction is reduced to a score-bid

auction with a quasilinear payoff. Because k is increasing in θ, the bidder of the

lowest type wins in both the FS and SS auctions and so the exercised quality is ex

post equivalent between the two formats. The revenue equivalence theorem applies

and thus, the expected scores of the FS and SS auctions are equivalent in equilibrium.

As there is score equivalence and p = s+ q, equivalence holds for the expected price

too.

2.3 PQR Scoring Rule

Next we examine a scoring rule that is not QL. Consider the PQR scoring rule

S(p, q) = p/q. The inverse function of S with respect to p is given by P (s, q) = sq,

and the optimal quality is derived by the profit maximization problem

max
q≥q

sq − C(q, θ). (6)
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It is clear that the objective function is strictly concave in q, and we assume that

the optimal quality q∗ always lies in the interior in equilibrium. This is satisfied if

the optimal quality at (z(θ), θ) is not binding.

Assumption 1 In the PQR scoring rule, for all θ, the optimal quality satisfies

q∗ (z(θ), θ) > q.

When the optimal quality q∗ lies in the interior, it is determined by the first-order

condition

s− Cq(q
∗, θ) = 0. (7)

By the implicit function theorem, we have q∗s = 1/Cqq > 0 and q∗θ = −Cqθ/Cqq ≤ 0,

so the optimal quality is increasing in score s and non-increasing in type θ. It is

immediately clear that the indirect payoff function is convex in score s.

Lemma 2 Under the PQR scoring rule and Assumption 1, the indirect payoff func-

tion u is strictly convex in s.

Proof By the envelope theorem, we have us(s, θ) = q∗(s, θ) > 0 and uss(s, θ) =

q∗s(s, θ) > 0. □

Quality choice and the indirect payoff function under the PQR scoring rule are

both closely related to standard producer theory whereby the maximization problem

(6) is equivalent to the profit maximization problem of a firm in a competitive

market when s is the price per unit of quality. The optimal quality supplied is

thus determined by “price equals marginal cost” (7) and the supply function q∗ is

increasing in price s. Since the suppliers optimally adjust their quality supplied in

response to price, the profit function u is convex in s. The break-even score z(θ)

here corresponds to the break-even price for the firm.

From this interpretation, Assumption 1 requires that there exists a non-sunk fixed

cost. As is well known, average cost is minimized and generally equals marginal cost

at the break-even price. With the presence of fixed costs, average cost is U-shaped
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and minimized in the interior. When there are no fixed costs, the average cost is

always smaller than the marginal cost. Hence, by ignoring the quality constraint

q ≥ q, suppliers could always earn a positive profit by providing a small quality, and

the quality supplied at the break-even point is zero. Thus, a non-sunk fixed cost is

necessary to satisfy Assumption 1.

The PQR scoring rule is distinct from the QL scoring rule in two respects. First,

the optimal quality under the PQR rule depends not only on bidder type but also

on the required score s. Second, the indirect payoff function is not quasilinear, so

the revenue equivalence theorem does not apply to the PQR rule.

3 Equilibrium Analysis of PQR Scoring Auctions

3.1 Equilibrium

We first characterize the equilibria of the SS and FS auctions, showing that in both

auctions the bidder with the lowest type is selected as the winner.

In the SS auction, it is a weakly dominant strategy to bid z(θ) as in the standard

second-price auction. The following proposition is shown in a standard manner and

is similar to Maskin and Riley (1984), Saitoh and Serizawa (2008), and Sakai (2008),

so the proof is omitted.

Proposition 1 In the SS auction, it is a weakly dominant strategy for each bidder

to submit sSS (θ) = z(θ).

Under the PQR scoring rule, the score-bid auction game can be interpreted as

competition among suppliers in terms of unit price per quality, and the supplier who

submits the lowest price per quality ratio wins. From the perspective of standard

producer theory, the break-even score is equal to the supplier’s minimum average

cost: z(θ) = minq C(q, θ)/q. In the SS auction, the unit price per quality for the

winner is determined by the best rival offer, so suppliers are price takers. They are

competitive and submit their minimum average cost in equilibrium. The supplier
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with the lowest minimum average cost wins and supplies quality at the unit price

equal to the second-lowest minimum average cost.

As for the FS auction, Maskin and Riley (1984) and Athey (2001) show that it

has a symmetric, monotone Bayesian Nash equilibrium if the payoff function u is

log-supermodular:
∂2 log u(s, θ)

∂s∂θ
> 0. (8)

To meet this log-supermodularity condition, we additionally impose the technical

conditions below.

Assumption 2 At least one of the following conditions holds.

1. Cq/Cθ is non-decreasing in q, or

2. qCqq/Cqθ is increasing in q.

A wide range of cost functions satisfy either of the above. The first case is

equivalent to CθCqq − CqCqθ ≥ 0 and, roughly speaking, this condition is met when

the marginal cost is more sensitive to a change in quality than to a change in type;

that is, when Cqq is large and Cqθ is small. A special case is Cqθ = 0 in which

bidder marginal cost is independent of θ whereby bidder variable costs for quality are

identical but fixed costs are heterogeneous.5 The second case is likely satisfied when

the cost function is polynomial in q and type θ does not depend on the coefficient of

the maximum degree of q. For example, this condition is met if C(q, θ) = q2 + θq +

κ(θ). Note that these two conditions are not disjoint. For example, a cost function

C(q, θ) = c(q + θ) in which c is a convex function satisfies both conditions.

Under the log-supermodularity condition, the equilibrium bidding function is

characterized by the first-order condition. Let G(θ) = 1 − (1− F (θ))n−1 be the

distribution of the lowest order statistic of n − 1 independent draws from F . In

addition, let g = G′ be its density.

5Dastidar (2014) focuses on this type of cost function and examines the equilibrium of non-QL

scoring auctions.
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Proposition 2 If Assumptions 1 and 2 hold, there exists a symmetric Bayesian

Nash equilibrium in the FS auction. Equilibrium score-bidding function sFS is char-

acterized by

(sFS)′(θ) =
u
(
sFS(θ), θ

)
us (sFS(θ), θ)

· g(θ)

1−G(θ)
, (9)

or equivalently,

sFS(θ) =

∫ θ̄

θ

g(τ)

1−G(θ)
·
C
(
q∗

(
sFS(τ), τ

)
, τ
)

q∗ (sFS(τ), τ)
dτ. (10)

with sFS(θ̄) = z(θ̄).

Proof See Appendix.

Recall that a PQR scoring auction is a competition among suppliers in terms of

unit price per quality. In an SS auction, the unit price of the winner is determined by

the best rival offer, and suppliers submit their minimum average cost in equilibrium.

In an FS auction, by contrast, unit price per quality is determined by the supplier’s

own offer, so bidding one’s minimum average cost is not a best response for suppli-

ers. Instead, suppliers submit a unit price higher than their minimum average cost,

sFS (θ) > z(θ), and the equilibrium score bid is expressed by the expected average

cost of the most-competitive rival bid (10).

3.2 Comparison of FS and SS Auctions

We now compare the equilibrium performance of FS and SS auctions under the PQR

scoring rule. In contrast to a QL scoring rule, equivalence between the two formats

does not hold, so we evaluate the two formats with respect to expected score, quality

and price.

3.2.1 Score Ranking

Because the buyer aims to minimize price per quality ratio, they prefer an auction

format that yields a lower (expected) score. The expected score rankings of the FS

and SS auctions depends on the curvature of the bidder’s indirect payoff. Maskin

14



and Riley (1984) show that if u is concave in payment, the expected revenue from

the first-price auction is higher than that of the second-price auction. Here, by

Lemma 2, u is convex in score in a PQR scoring auction, so we have a similar but

reverse expected score ranking, which is shown in an analogous manner to Maskin

and Riley (1984). The following theorem states that the buyer prefers the SS to the

FS auction.

Theorem 1 Suppose that Assumptions 1 and 2 hold. The expected score of the SS

auction is lower than that of the FS auction. Moreover, for every winner’s type θ,

we have

E[sSS(τ) | τ > θ] ≤ sFS(θ), (11)

where τ is the lowest order statistic of n− 1 independent draws from F .

Proof This is shown in a manner parallel to Theorem 4 of Maskin and Riley

(1984). Although Maskin and Riley (1984) consider a concave payoff function, it is

not necessary to assume concavity to ensure the existence of a symmetric equilibrium.

□

Theorem 1 is also proved by using expression (10). Note that the equilibrium

score bid in the FS auction is the conditional expected average cost of the most

competitive rival. Given that the winner’s type is θ, (10) yields

sFS(θ) = E

[
C
(
q∗(sFS(τ), τ), τ

)
q∗(sFS(τ), τ)

∣∣∣∣∣ τ > θ

]

≥ E

[
min
q

C(q, τ)

q

∣∣∣∣ τ > θ

]
= E [z(τ) | τ > θ] ,

where τ is the lowest order statistic of n − 1 independent draws from F . Because

bidders submit a higher score than the break-even score in the FS auction, the

associated average cost is not minimized. Thus, the equilibrium score in the FS

auction is higher than the expected break-even score of the most competitive rival.
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3.2.2 Quality Ranking

Because optimal quality depends on score s, and score equivalence does not hold for

the PQR scoring rule, the equilibrium quality obtained by the two auction formats

also differs. Note that the optimal quality function q∗ is increasing in score. There-

fore, as the FS auction yields a higher expected score, it is thus likely to provide a

higher quality than the SS auction.

The expected quality is ranked under additional conditions. Note that in an

FS auction, the winner’s quality is deterministic at the bidding stage because the

winner’s quality bid is enforced. In contrast, in an SS auction, the winner’s quality is

stochastic because the optimal quality depends on the second-lowest score which is

uncertain for the winner. Hence, to obtain the expected quality ranking, we need a

condition on the curvature of the optimal quality function q∗. The following theorem

states that the FS auction provides a higher expected quality than the SS auction

when the optimal quality q∗ is weakly concave in score.

Theorem 2 Suppose that Assumptions 1 and 2 hold and that Cqqq ≥ 0. Then, the

expected quality in the FS auction is higher than that in the SS auction.

Proof See Appendix.

The condition Cqqq ≥ 0 means that marginal cost is weakly convex, which implies

that the optimal quality function q∗ is weakly concave in s. The optimal quality is

determined by (7) whereby the unit price per quality equals the marginal cost. When

marginal cost is convex, it rapidly increases as q increases. Hence, the optimal quality

does not increase very much when the score or unit price per quality is increased,

meaning that it is weakly concave.

3.2.3 Price Ranking

Given that an FS auction yields a higher expected score and quality when marginal

cost is convex, it is natural to conjecture that expected price would also be higher

for an FS auction. However, the expected price ranking is more ambiguous than the
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quality ranking. Under the PQR scoring rule, the equilibrium price is given by

π(s, θ) ≡ sq∗(s, θ).

Analogous to the quality ranking, we have an expected price ranking if the optimal

price π is weakly concave in score. However, because q∗ is increasing in s, π is more

sensitive to a change in s and is likely to be convex. Thus, the concavity of π is more

stringent than the concavity of q∗.

We provide two sufficient conditions for ranking the expected prices of FS and

SS auctions. The first one is when the optimal price is weakly concave in score.

Theorem 3 Suppose that Assumptions 1 and 2 hold and

CqCqqq ≥ 2(Cqq)
2. (12)

Then, the expected price in the FS auction is higher than that in the SS auction.

Proof See Appendix.

The price function π is weakly concave under (12) above. An example of such a

cost function is

C(q, θ) = log
a

a− θ − q
,

where a > θ̄ is constant. This cost function satisfies all the basic assumptions and

Assumption 2.

We provide another condition under which the expected price can be ranked even

when the equilibrium price π is convex, assuming that the bidders’ type represents

their fixed costs, or Cqθ = 0. In this case, the optimal quality q∗ is independent of

type; that is, q∗(s, θ) = q∗(s), so the optimal price is also independent of type and

π(s) = sq∗(s). Because the quality function q∗ is increasing in s, the optimal price

π(s) = sq∗(s) is also increasing so there is a one-to-one correspondence between score

and optimal price. Thus we transform the indirect payoff function u(s, θ) in terms of

s into one in terms of price p; with û(p, θ) ≡ u(π−1(p), θ). The payoff function û(p, θ)

is the winner’s payoff when they sign a contract under which they optimally choose
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the price as p. As the bidder of the lowest score bid also makes the lowest price bid,

the score-bid auction is transformed into a unidimensional price-bid auction. The

equilibrium price of the two auction formats can be ranked when the bidder payoff

û is convex (or concave) for the associated price-bid auction.

Theorem 4 Consider the PQR scoring rule. Suppose that Assumption 1 holds and

Cqθ = 0. The expected price in the FS auction is at least as high as that in the SS

auction if qCqq/Cq is nondecreasing in q, or equivalently,

CqCqq + qCqCqqq − q(Cqq)
2 ≥ 0 (13)

holds for all q ≥ q. The expected price in the SS auction is at least as high as that

in the FS auction if qCqq/Cq is nonincreasing in q, or equivalently,

CqCqq + qCqCqqq − q(Cqq)
2 ≤ 0 (14)

holds for all q ≥ q.

Proof See Appendix.

Given Cqθ = 0, condition (13) is weaker than the concavity of π, (12). Indeed,

when (12) holds, we have

CqCqq + qCqCqqq − q(Cqq)
2 = CqCqq + q

(
CqCqqq − 2(Cqq)

2 + (Cqq)
2
)

≥ (Cq + qCqq)Cqq

> 0.

Note that (13) for the price ranking is relatively stronger than that for the quality

ranking because the price function π is more likely to be convex than the quality

function. Thus, although the FS auction yields a higher expected score than the SS

auction, the convex price function could lead to a higher expected price in the SS

auction than the FS auction. In sum, while the expected quality is higher for the

FS auction than the SS auction, the expected price of the FS auction may be equal

to or even lower than that of the SS auction.
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To see this, consider a specific cost function C(q, θ) = qa+ bq+ θ with a ≥ 2 and

b ∈ R.6 Since Cqqq ≥ 0, expected quality is higher in the FS auction than in the SS

auction. Also, since

CqCqq + qCqCqqq − q(Cqq)
2 = a(a− 1)2bqa−2,

the expected price is higher in the FS auction than in the SS auction if b > 0 and,

conversely, is lower in the FS auction if b < 0. When b = 0, the optimal quality

and price are explicitly given by q∗(s) = a−
1

a−1 s
1

a−1 and π(s) = sq∗(s) = a−
1

a−1 s
a

a−1 ,

respectively. The indirect payoff function is

u(s, θ) =
(
1− a−1

)
a−

1
a−1 s

a
a−1 − θ

which can be transformed into

û(p, θ) =
a− 1

a

(
p− aθ

a− 1

)
,

where p = π(s). That is, the score-bid auction is transformed into a price-bid auction

with a quasilinear payoff function and a pseudotype aθ/(a− 1). Thus, we can apply

the revenue equivalence theorem, and so the equilibrium price is the same in the FS

and SS auctions.

Corollary 1 Consider the PQR scoring rule, and suppose that Assumption 1 and

Cqθ = 0 hold. If Cqqq ≥ 0 and qCqq/Cq is nonincreasing in q ≥ q, then the expected

quality is higher in the FS auction than in the SS auction, and the expected price

in the FS auction is at most as high as in the SS auction. Thus, the FS auction

achieves a higher expected quality with a weakly lower expected price.

At first glance, Corollary 1 seems inconsistent with Theorem 1 which shows that

the SS auction yields a lower expected score than the FS auction. However, even

though the expected price per quality ratio is higher, the FS auction can lead to

a higher expected quality and lower expected price than the SS auction. Thus, if

6We focus on the region where the cost is increasing in q when b < 0.
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the buyer’s true objective is to achieve a higher expected quality at a lower expense

rather than to minimize the price per quality ratio, the FS auction can be more

beneficial for the buyer than the SS auction.

4 Designing Scoring Rules

As shown by Che (1993), when the buyer has a quasilinear preference v(p, q) =

V (q) − p, the “truthful” QL scoring rule S(p, q) = p − V (q) achieves efficiency and

maximizes the social surplus. This is because, under the truthful scoring rule, every

bidder voluntarily chooses the optimal quality that solves

max
(p,q)

p− C(q, θ) s.t. p− V (q) = s ⇒ max
q

V (q)− C(q, θ) + s,

which is equivalent to the social surplus maximization.

This efficiency property holds even when the buyer has a nonquasilinear prefer-

ence such as price per quality ratio. Note that in both FS and SS auctions, each

bidder chooses a contract that maximizes (2). This problem is the supplier’s ex

post profit maximization given a buyer’s payoff v(p, q) = −s. Hence, the chosen

contract is Pareto efficient between the buyer and the bidder. Because both FS and

SS auction chooses the most efficient (lowest-type) bidder as the winner, the equilib-

rium outcome of PQR scoring auctions is ex post Pareto efficient when the buyer’s

preference is represented by v(p, q) = −p/q.

Proposition 3 Suppose that the buyer’s utility function is given by v(p, q) = −p/q.

The equilibirum outcomes of both FS and SS auctions with PQR scoring rule are ex

post Pareto efficient.7

This property supports the adoption of PQR scoring auctions when the buyer

has the objective of minimizing price per quality ratio.

7Note that when the buyer has non-quasilinear preferences, the ex post Pareto efficiency does

not imply ex ante Pareto efficiency.
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Another interesting question is what is the optimal mechanism or optimal scor-

ing rule for the buyer. Che (1993) shows that when the buyer’s utility function is

quasilinear, the buyer-optimal mechanism is obtained using Myerson (1981). Fur-

thermore, Che (1993) shows that there exists a QL scoring rule that implements the

optimal allocations. In the optimal scoring rule, the buyer sets a scoring rule which

differs from the true utility function (V (q) − p) and results in downward distortion

of quality relative to the true value for quality V (q).

Unfortunately, however, when the buyer’s utility function is not quasilinear, the

standard approach by Myerson (1981) is not applicable because the expected price

does not capture the buyer’s expected utility. Therefore, it is hard to obtain the

optimal mechanism or optimal scoring rule that minimizes the price per quality

ratio.

Nevertheless, we provide a qualitative result that the buyer can achieve a lower

price per quality ratio by distorting the PQR scoring rules. We show that it is

beneficial for the buyer to skew the quality lower than that achieved under the PQR

scoring rule.

Consider a scoring rule

St(p, q) =
p− t

q
, (15)

where t is a parameter representing the extent of distortion from the PQR scoring

rule. When the scoring rule St is interpreted as a utility function on (p, q), the

relative value of quality over price is captured by the marginal rate of substitution

of q for p, which is given by

−
St
q

St
p

=
p− t

q
.

This is decreasing in t, and thus, a scoring rule St with t > 0 evaluates quality lower

than the original PQR scoring rule. The following theorem states that the scoring

rule St with a small t > 0 achieves a lower price per quality ratio than the PQR

scoring rule.

Theorem 5 Suppose Cqθ > 0. For any type profile of bidders in which the lowest
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and second lowest types differ, an SS auction employing the scoring rule St, where

t > 0 is sufficiently small, results in a lower price per quality ratio than an SS auction

employing the PQR scoring rule.

This theorem is consistent with the standard mechanism design of Mussa and

Rosen (1978) and Myerson (1981). Since the cost function satisfies increasing differ-

ences Cqθ > 0, the higher the quality, the more sensitive the cost is to type, resulting

in an increase in the supplier’s information rent. Thus, the buyer has an incentive

to procure at a lower quality than a (Pareto) efficient quality level and reduce the

supplier’s information rent. This result is also consistent with an optimal scoring

rule in Che (1993).

The distorted scoring rule St can be interpreted as a mechanism where the buyer

pays a fixed subsidy t to the winner in a PQR scoring auction. This subsidy reduces

the bidder’s (non-sunk) fixed cost and lowers the break-even score, implying lower

bidding in the SS auction. Thus, the subsidy decreases the quality bid, and the price

per quality ratio improves. Note that the distortion improves the price per quality

ratio in an ex post sense. Hence, distorting scoring rule is beneficial for the buyer

even if their true preference is a nonlinear transformation of the price per quality

ratio, such as the quality-per-price-ratio maximizer.

5 General Scoring Rules

The analysis thus far can be applied to more general scoring rules. Unfortunately,

however, it is difficult to obtain sharp theoretical results for general non-QL scoring

rules. Suppose that a scoring rule S is increasing in p and decreasing in q. The

inverse function in terms of p is denoted by P (s, q), which is the price function given

score s and quality q, with Ps > 0 and Pq > 0. The bidder indirect payoff function

is given by

u(s, θ) ≡ max
q

P (s, q)− C(q, θ).
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We assume that the payoff function P −C is strictly concave in q and that the payoff

maximization problem always has a (unique) interior solution. That is, the optimal

quality q∗ is determined by the first-order condition

Pq(s, q
∗)− Cq(q

∗, θ) = 0. (16)

We further assume that the indirect payoff function u satisfies the log-supermodularity

condition ∂2 log u/∂s∂θ > 0. The equilibrium of the SS and FS auctions is charac-

terized in the same manner with the PQR scoring rule.

Proposition 4 Suppose that P (s, q) − C(q, θ) is strictly concave in q and that the

optimal quality q∗ is determined by the first-order condition (16). In the SS auction,

it is a weakly dominant strategy for each bidder to submit sSS (θ) = z(θ). In the FS

auction, the symmetric equilibrium score-bidding function sFS is characterized by (9)

with sFS (θ̄) = z(θ̄) if u is log-supermodular.

Proof The proof is the same as Propositions 1 and 2. □

Suppose that the buyer’s utility is identical to the scoring rule; v(p, q) = −S(p, q).

The argument of Section 3.2.1 can be directly applied to general scoring rules.

Namely, the expected score is lower (higher) in the SS than in the FS auction if

u(s, θ) is convex (concave) in s. The following proposition is shown in the same

manner as Theorem 1.

Proposition 5 Suppose that the FS auction has a symmetric Bayesian Nash equi-

librium. Then, the expected score in the SS auction is weakly lower (higher) than in

the FS auction if u(s, θ) is convex (concave) in s for all θ.

The curvature of the bidder’s indirect payoff function depends on both scoring

rule and cost function. The indirect payoff function is relatively likely to be convex,

but can be concave. It is even more difficult to obtain clear properties with respect

to equilibrium quality and price. We will discuss the details of the indirect payoff

function and equilibrium quality and price in Appendix B.
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6 Concluding Remarks

This study has examined scoring auctions using PQR and more general non-QL

scoring rules. For the PQR scoring rule, we have characterized the equilibrium

bidding strategies in FS and SS auctions and have found that the expected score is

lower in SS auctions and that under a set of conditions expected quality and price

are also lower. We also provided an example in which the expected quality in an

FS auction is higher than in an SS auction while the expected price is equivalent or

lower. These results suggest that if the price per quality ratio is the procurement

buyer’s true objective function, an SS auction is better for the buyer than an FS

auction. However, the results also imply that the FS auction may perform better

than the SS auction with respect to expected quality and price. Moreover, for the

buyer with the objective of minimizing price per quality ratio, it is beneficial for them

to adopt a scoring rule that skews quality downwardly relative to the original PQR

scoring rule. Finally, we characterized the expected score ranking via the curvature

of the indirect payoff function.

There are several potential extensions for further research. One important exten-

sion would be a theoretical consideration of a scoring auction with an interdependent

scoring rule. In this study, we have restricted our attention to scoring rules in which

each bidder’s score depends only on its own price and quality. However, in practice,

the buyer sometimes uses an interdependent scoring rule in which the score depends

not only on the bidder’s own price and quality bid but also on some or all com-

petitors’ price and quality bids. Another would be to incorporate the uncertainty

of buyer’s quality bid evaluation. Our model, following Che (1993), assumes that

bidders do not face uncertainty in how their quality bids are evaluated by the buyer

but, in practice, the bids are evaluated by reviewers and hence the scores of quality

bids include noise (Takahashi, 2018). These theoretical analyses are left to future

research.

24



Acknowledgments

The authors thank Christian Hellwig for his insightful comments on an earlier ver-

sion of this paper. We are also grateful to Yu Awaya, Michihiro Kandori, Philip

MacLellan, Nozomu Muto, Satoru Takahashi, conference participants at CTW Sum-

mer Camp 2024, 30th Decentralization Conference in Japan, EARIE 2024, and Aus-

tralasia meeting of the Econometric Society 2024, and seminar participants at the

University of Tokyo, the University of Osaka, and Shiga University for their help-

ful comments. We acknowledge financial support from the Japan Society for the

Promotion of Science (KAKENHI 21K01401, 23H00051, and 25K05073).

References

Allen, Jason, Robert Clark, Brent Hickman, and Eric Richert, “Resolv-

ing Failed Banks: Uncertainty, Multiple Bidding & Auction Design,” Review of

Economic Studies, 2023, p. rdad062.

Andreyanov, Pasha, “Mechanism Choice in Scoring Auctions,” Technical Report

2018.

, Francesco Decarolis, Riccardo Pacini, and Giancarlo Spagnolo, “Past

Performance and Procurement Outcomes,” Available at SSRN 4929595, 2024.

Asker, John and Estelle Cantillon, “Properties of Scoring Auctions,” RAND

Journal of Economics, 2008, 39 (1), 69–85.

and , “Procurement When Price and Quality Matter,” RAND Journal of

Economics, 2010, 41 (1), 1–34.

Athey, Susan, “Single Crossing Properties and the Existence of Pure Strategy

Equilibria in Games of Incomplete Information,” Econometrica, July 2001, 69 (4),

861–889.

25



Awaya, Yu, Naoki Fujiwara, and Marton Szabo, “Quality and Price in Scoring

Auctions,” Journal of Mathematical Economics, 2025, 116, 103083.

Bajari, Patrick, Stephanie Houghton, and Steven Tadelis, “Bidding for In-

complete Contracts: An Empirical Analysis of Adaptation Costs,” American Eco-

nomic Review, April 2014, 104 (4), 1288–1319.

Bolotnyy, Valentin and Shoshana Vasserman, “Scaling Auctions as Insurance:

A Case Study in Infrastructure Procurement,” Econometrica, 2023, 91 (4), 1205–

1259.

Branco, Fernando, “The Design of Multidimensional Auctions,” RAND Journal

of Economics, 1997, 28 (1), 63–81.

Che, Yeon-Koo, “Design Competition through Multidimensional Auctions,”

RAND Journal of Economics, Winter 1993, 24 (4), 668–680.

Dastidar, Krishnendu Ghosh, “Scoring Auctions with Non-Quasilinear Scoring

Rules,” ISER Discussion Paper 0902, Institute of Social and Economic Research,

Osaka University June 2014.

Hanazono, Makoto, Yosuke Hirose, Jun Nakabayashi, and Masanori Tsu-

ruoka, “Theory, Identification and Estimation of Scoring Auctions,” Technical

Report August 2020.

Huang, Yangguang, “An Empirical Study of Scoring Auctions and Quality Ma-

nipulation Corruption,” European Economic Review, 2019, 120, 103322.

Iimi, Atsushi, “Multidimensional Auctions for Public Energy Efficiency Projects:

Evidence from Japanese ESCO Market,” Review of Industrial Organization, 2016,

49, 491–514.

Kong, Yunmi, Isabelle Perrigne, and Quang Vuong, “Multidimensional Auc-

tions of Contracts: An Empirical Analysis,” American Economic Review, 2022,

112 (5), 1703–1736.

26



Koning, Pierre and Arthur van de Meerendonk, “The Impact of Scoring

Weights on Price and Quality Outcomes: An Application to the Procurement of

Welfare-to-Work Contracts,” European Economic Review, 2014, 71 (C), 1–14.

Krasnokutskaya, Elena, Kyungchul Song, and Xun Tang, “The Role of Qual-

ity in Internet Service Markets,” Journal of Political Economy, 2020, 128 (1),

75–117.

Lewis, Gregory and Patrick Bajari, “Procurement Contracting With Time In-

centives: Theory and Evidence,” The Quarterly Journal of Economics, 2011, 126

(3), 1173–1211.

Maskin, Eric and John Riley, “Optimal Auctions with Risk Averse Buyers,”

Econometrica, 1984, 52 (6), pp. 1473–1518.

Mussa, Michael and Sherwin Rosen, “Monopoly and Product Quality,” Journal

of Economic Theory, 1978, 18 (2), 301–317.

Myerson, Roger B, “Optimal Auction Design,” Mathematics of Operations Re-

search, 1981, 6 (1), 58–73.

Nishimura, Takeshi, “Optimal Design of Scoring Auctions with Multidimensional

Quality,” Review of Economic Design, 2015, 19 (2), 117–143.

Ortner, Juan, Sylvain Chassang, Kei Kawai, and Jun Nakabayashi, “Scor-

ing and Cartel Discipline in Procurement Auctions,” Technical Report 2025.

Ryan, Nicholas, “Contract Enforcement and Productive Efficiency: Evidence from

the Bidding and Renegotiation of Power Contracts in India,” Econometrica, 2020,

88 (2), 383–424.

Saitoh, Hiroki and Shigehiro Serizawa, “Vickrey Allocation Rule with Income

Effect,” Economic Theory, 2008, 35, 391–401.

Sakai, Toyotaka, “Second Price Auctions on General Preference Domains: Two

Characterizations,” Economic Theory, 2008, 37, 347–356.

27



Sano, Ryuji, “Post-Auction Investment by Financially Constrained Bidders,” Jour-

nal of Economic Theory, 2023, 213, 105742.

Takahashi, Hidenori, “Strategic Design under Uncertain Evaluations: Structural

Analysis of Design-Build Auctions,” RAND Journal of Economics, 2018, 49 (3),

594–618.

The Department of Health and Ageing, Australia, “Tender Evaluation Plan,”

2011. http://www.health.gov.au/internet/main/publishing.nsf/Content/

205B1A69101B75C3CA257909000720F1/$File/FOI%20264_1011%20doc%2013.

pdf.

Wang, Mingxi and Shulin Liu, “Equilibrium Bids in Practical Multi-Attribute

Auctions,” Economics Letters, 2014, 123 (3), 352–355.

A Proofs

A.1 Proof of Lemma 1

Consider the following minimization problem:

min
q≥q

S(C(q, θ), q).

Given an arbitrary q0, set s0 = S(C(q0, θ), q0). We can restrict the constraint set

to
{
q ≥ q|S(C(q, θ), q) ≤ s0

}
without affecting the solution. We show that the re-

stricted set is compact: Suppose not. Since the set is closed, it must be unbounded.

Then we can take an arbitrarily large q1 such that S(C(q1, θ), q1) ≤ s0, which implies

that P (s0, q1) ≥ C(q1, θ). Thus∫ q1

q0

{Pq(s0, ξ)− Cq(ξ, θ)}dξ = P (s0, q1)− C(q1, θ)− {
0︷ ︸︸ ︷

P (s0, q0)− C(q0, θ)} ≥ 0.

Because P (s, q)− C(q, θ) is strictly concave in q, Pq(s0, q) < Cq(q, θ) for all q > q2,

where Pq(s0, q2) = Cq(q2, θ). Therefore∫ q2

q0

{Pq(s0, ξ)− Cq(ξ, θ)}dξ +
∫ q1

q2

{Pq(s0, ξ)− Cq(ξ, θ)}dξ ≥ 0. (17)
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The second term of the left-hand side is negative and has a sufficiently large

absolute value as q1 → ∞, which is a contradiction to inequality (17). By the

Weierstrass Theorem, a solution to the score minimization exists, and the value is

the break-even score.

To show that z(·) is strictly increasing, let qz(θ) denote a solution to the above

score-minimization problem. Then z(θ) = S(C(qz(θ), θ), qz(θ)). Note that P (z(θ), q) ≤

C(q, θ) for all q (with equality at q = qz(θ)). Consider θ̃ > θ. Since C(q, θ) < C(q, θ̃),

we must have P (z(θ), q) < C(q, θ̃) for all q, implying that there is no intersection

between P (z(θ), ·) and C(·, θ̃). Since Ps(s, q) > 0 and P (z(θ̃), qz(θ̃)) = C(qz(θ̃), θ̃),

z(θ̃) > z(θ). □

A.2 Proof of Proposition 2

Note that q∗s = 1/Cqq and q∗θ = −Cqθ/Cqq. By differentiation, we have

∂ log u(s, θ)

∂s
=

q∗(s, θ)

u(s, θ)

and

∂2 log u(s, θ)

∂s∂θ
=

1

u(s, θ)2
(q∗θ(s, θ)u(s, θ) + q∗(s, θ)Cθ(q

∗(s, θ), θ))

=
1

u(s, θ)2
(−q∗s(s, θ)Cqθ(q

∗, θ)u(s, θ) + q∗(s, θ)Cθ(q
∗, θ)) .

It is immediately clear that log-supermodularity holds if Cqθ ≤ 0. In what fol-

lows, we assume Cqθ > 0 and provide two sufficient conditions under which the

log-supermodularity condition holds.

Condition 1. Suppose that Cq/Cθ is non-decreasing in q. That is, we have

CqθCq − CθCqq ≤ 0 ⇔ −
Cqθ

Cqq
≥ −Cθ

Cq

for all q and θ. By evaluating this at q = q∗(s, θ), we have

q∗θ(s, θ) > −Cθ(q
∗, θ)

Cq(q∗, θ)
. (18)
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Because u(s, θ) ≥ 0 for s ≥ z(θ), we have

∂2 log u(s, θ)

∂s∂θ
=

1

u(s)2
(q∗θ(s)u(s) + q∗(s)Cθ(q

∗(s)))

≥ 1

u(s)2

(
−Cθ(q

∗(s))

Cq(q∗(s))
u(s) + q∗(s)Cθ(q

∗(s))

)
=

Cθ(q
∗(s))

Cq(q∗(s))u(s)2
(q∗(s)Cq(q

∗(s))− (sq∗(s)− C(q∗(s))))

>
q∗(s)Cθ(q

∗(s))

Cq(q∗(s))u(s)2
(Cq(q

∗(s))− s)

= 0.

(19)

Note that we omit the parameter θ from the presentation. The second line is derived

from (18). The third line comes from the definition of the indirect payoff u(s, θ).

The strict inequality is due to C(q∗, θ) > 0 under Assumption 1. Finally, the last

line comes from the first-order condition for the optimal quality s − Cq(q
∗, θ) = 0.

Thus, log-supermodularity condition holds.

Condition 2. Fix an arbitrary θ and define a function V of score s by8

V (s) ≡ −q∗s(s)Cqθ (q
∗(s))u(s) + q∗(s)Cθ (q

∗(s)) .

What we want to show is that V (s) > 0 for all s ≥ z(θ). Note that V (z(θ)) =

q∗Cθ > 0 by u(z(θ)) = 0. Hence, it suffices to show that V (s) = 0 ⇒ V ′(s) > 0 for

every s > z(θ).

By differentiation, we have

V ′(s) = −q∗ssCqθu− (q∗s)
2Cqqθu− q∗sCqθq

∗ + q∗sCθ + q∗q∗sCqθ

= q∗sCθ − q∗ssCqθu− (q∗s)
2Cqqθu.

(20)

Suppose V (s) = 0 ⇔ u = q∗Cθ/q
∗
sCqθ. By substituting this into (20), we have

V ′(s)
∣∣
V (s)=0

= q∗sCθ −
q∗ssq

∗Cθ

q∗s
−

q∗sCqqθq
∗Cθ

Cqθ
. (21)

Note that q∗s = 1/Cqq and q∗ss = −Cqqq/(Cqq)
3. By substituting them into (21), we

8We omit the fixed parameter θ from the presentation.
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have

V ′(s)
∣∣
V (s)=0

=
Cθ

Cqq
+

Cqqqq
∗Cθ

(Cqq)2
−

q∗CqqθCθ

CqqCqθ

=
Cθ

Cqq

(
1 + q∗

(
Cqqq

Cqq
−

Cqqθ

Cqθ

))
.

(22)

Note that Cθ, Cqq > 0, and

∂

∂q

(
qCqq

Cqθ

)
=

Cqq

Cqθ

(
1 + q

(
Cqqq

Cqq
−

Cqqθ

Cqθ

))
.

Hence, V ′(s)|V (s)=0 > 0 and the log-supermodularity holds if qCqq/Cqθ is increasing

in q.

If the log-supermodularity condition (8) holds, there exists a monotone pure-

strategy Bayesian Nash equilibrium in FPA (Athey, 2001). The equilibrium strategy

is symmetric and characterized by the first-order condition as shown by Maskin and

Riley (1984, Theorem 2).9 Suppose that the equilibrium is symmetric and let sFS be

the symmetric equilibrium strategy. Suppose that every bidder other than i follows

sFS . The interim expected payoff when bidder i makes an equilibrium bid of type τ

is

(1−G(τ))u
(
sFS(τ), θ

)
.

The first-order condition for the payoff maximization is

−g(τ)u
(
sFS(τ), θ

)
+ (sFS)′(τ) (1−G(τ))us

(
sFS(τ), θ

)
= 0.

Because the first-order condition should hold with τ = θ, we have

−g(θ)u
(
sFS(θ), θ

)
+ (sFS)′(θ)((1−G(θ))us

(
sFS(θ), θ

)
= 0, (23)

which is (9). The terminal condition for the differential equation is u(sFS(θ̄), θ̄) = 0.

Thus, sFS(θ̄) = z(θ̄). Under the log-supermodularity condition (8), the monotonicity

of a strategy and the first-order condition are sufficient for the best response. Hence,

9Although Maskin and Riley (1984) assume that U is concave, this is not used nor is it necessary

to obtain the FSA equilibrium. For instance, Board (2007, Lemma 3) is an example of a convex

payoff function.
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the strategy sFS characterized by (9) is the symmetric equilibrium. In addition, note

that
u(s, θ)

us(s, θ)
= s− C(q∗(s, θ), θ)

q∗(s, θ)
,

thus that the first-order condition (23) yields

−
(
sFS(θ)− C(q∗(sFS(θ), θ), θ)

q∗(sFS(θ), θ)

)
g(θ) + (sFS)′(θ)(1−G(θ)) = 0.

Solving the differential equation gives (10). □

A.3 Proof of Theorem 2

By the first-order condition for the optimal quality s = Cq(q
∗, θ), we have

q∗ss = − Cqqq

(Cqq)3
.

Hence, the optimal quality function q∗ is weakly concave if Cqqq ≥ 0. Let θ(1) and

θ(2) be the lowest and second lowest order statistics of bidder types. When q∗ is

weakly concave in s, we have

E
[
q∗

(
sSS(θ(2)), θ(1)

)]
= Eθ(1)

[
Eθ(2)

[
q∗

(
sSS(θ(2)), θ(1)

)
| θ(2) > θ(1)

]]
≤ Eθ(1)

[
q∗

(
Eθ(2)

[
sSS(θ(2)) | θ(2) > θ(1)

]
, θ(1)

)]
≤ E

[
q∗

(
sFS(θ(1)), θ(1)

)]
.

Note that EX means that we take an expectation regarding X. The first inequality

is Jensen’s inequality. The second inequality comes from Theorem 1. □

A.4 Proof of Theorem 3

Let π(s, θ) = sq∗(s, θ) be the optimal price given score s and type θ. Then, by

differentiation, we have

πss(s, θ) = sq∗ss + 2q∗s .

Bu substituting q∗s = 1/Cqq, q
∗
ss = −Cqqq/(Cqq)

3, and the first-order condition s =

Cq, we have

πss =
2(Cqq)

2 − CqCqqq

(Cqq)3
.
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Thus, the optimal price is weakly concave if (12) holds. When π is weakly concave in

s, we have the expected price ranking in the same manner with the quality ranking

Theorem 2. □

A.5 Proof of Theorem 4

Suppose that Cqθ = 0. Then, it is clear that the optimal quality q∗ is independent of

θ and is denoted by q∗(s). Let π be the optimal price function π(s) = sq∗(s). Because

q∗ is increasing in s, π is also increasing in s. Thus, each price bid corresponds to

a score bid in the one-to-one sense. That is, for every score s, we have a unique

associated price p = π(s). We define a payoff function in terms of the price bid û as

û(p, θ) ≡ u(π−1(p), θ).

Abusing notation, the cost function is denoted by C = C(q) + θ, where C(q) is

variable cost and θ is the fixed cost.10 Then, we have

û(p, θ) = p− C

(
p

π−1(p)

)
− θ.

By differentiation, we have

ûp = 1−
(

p

π−1(p)

)′
C ′

(
p

π−1(p)

)
and

ûpp = −
(

p

π−1(p)

)′′
C ′

(
p

π−1(p)

)
−
{(

p

π−1(p)

)′}2

C ′′
(

p

π−1(p)

)
.

By differentiation, we have(
p

π−1(p)

)′
=

π−1(p)− p(π−1)′(p)

(π−1(p))2
=

π′(π−1(p))π−1(p)− p

π′(π−1(p))(π−1(p))2

and (
p

π−1(p)

)′′
=

1

(π−1)3
[
−p(π−1)′′π−1 − 2(π−1)′π−1 + 2p((π−1)′)2

]
=

1

(π−1)3

[
pπ−1π′′

(π′)3
− 2π−1

π′ +
2p

(π′)2

]
=

1

(π′)3(π−1)3
[
pπ−1π′′ + 2pπ′ − 2π−1(π′)2

]
.

10Because the cost function is increasing in θ (by assumption), θ can be defined by fixed cost

without any loss of generality.
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Note that by definition, we have p = π(s) = sq∗(s), π−1(p) = s, π′(s) = q∗+ sq∗s ,

and π′′(s) = sq∗ss + 2q∗s . By substituting them into the above, we have(
p

π−1(p)

)′
=

(q∗ + sq∗s)s− sq∗

(q∗ + sq∗s)s
2

=
q∗s

q∗ + sq∗s

and(
p

π−1(p)

)′′
=

1

(q∗ + sq∗s)
3s3

[
s2q∗(sq∗ss + 2q∗s) + 2sq∗(q∗ + sq∗s)− 2s(q∗ + sq∗s)

2
]

=
q∗q∗ss − 2(q∗s)

2

(q∗ + sq∗s)
3

.

By the first-order condition for the optimal quality s = Cq, we have

ûp = 1− q∗sCq

q∗ + sq∗s
=

q∗Cqq

q∗Cqq + Cq
> 0.

Also, we have

ûpp =
2(q∗s)

2 − q∗q∗ss
(q∗ + sq∗s)

3
Cq(q

∗)− (q∗s)
2

(q∗ + sq∗s)
2
Cqq(q

∗)

=
1

(q∗ + sq∗s)
3

[
2(q∗s)

2Cq − q∗q∗ssCq − (q∗s)
2Cqq(q

∗ + sq∗s)
]

=
1

(q∗ + sq∗s)
3

[
2Cq

(Cqq)2
+

q∗CqCqqq

(Cqq)3
− q∗Cqq + Cq

(Cqq)2

]
=

CqCqq + q∗CqCqqq − q∗(Cqq)
2

(q∗ + sq∗s)
3(Cqq)3

.

The third line comes from q∗s = 1/Cqq and q∗ss = −Cqqq/(Cqq)
3. Hence, û is convex

in p if CqCqq + qCqCqqq − q(Cqq)
2 ≥ 0. Then, the expected price in the FS auction

is higher than in the SS auction, which is analogous to Theorem 1 and Maskin and

Riley (1984). □

A.6 Proof of Theorem 5

Consider a scoring rule St(p, q) = (p − t)/q. Under the scoring rule St, bidders’

indirect payoff function is given by

ut(s, θ) ≡ max
q

sq + t− C(q, θ)
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by s = (p − t)/q ⇔ p = sq + t. Thus, the optimal quality is independent of t and

denoted by q∗(s, θ). The indirect payoff function satisfies

ut(s, θ) = u(s, θ) + t,

where u is the indirect payoff function under the PQR scoring rule S0. The break-

even score for the scoring rule St is denoted by z(θ, t), which is determined by

ut(z(θ, t), θ) = u(z(θ, t), θ) + t = 0.

By the implicit function theorem and the previous analysis, we have

zt(θ, t) = − 1

us(q∗, θ)
= − 1

q∗(z(θ, t), θ)
. (24)

Consider the SS auction with the scoring rule St. It is weakly dominant for

each bidder to submit their break-even score z(θ, t). Let θi and θj be the low-

est and the second lowest types among all bidders, respectively. Bidder i of type

θi wins and chooses the contract with quality qi = q∗(z(θj , t), θi) and price pi =

z(θj , t)q
∗(z(θj , t), θi) + t. Thus, the associated price per quality ratio is

PQR ≡ z(θj , t) +
t

q∗(z(θj , t), θi)
. (25)

By differentiation, we have

PQRt = zt(θj , t) +
q∗(z(θj , t), θi)− tzt(θj , t)q

∗
s(z(θj , t), θi)

(q∗(z(θj , t), θi))2

=
1

q∗(z(θj , t), θi)
− 1

q∗(z(θj , t), θj)
+

q∗s(z(θj , t), θi)

(q∗(z(θj , t), θi))2q∗(z(θj , t), θj)
t.

Note that θi < θj and q∗ is decreasing in θ by Cqθ > 0. Hence, we have q∗(z(θj , t), θj) <

q∗(z(θj , t), θi) and

PQRt|t=0 < 0.

Thus, the equilibrium price per quality ratio decreases by slightly adding a distortion

t > 0 to the PQR scoring rule. □
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B Properties of General Scoring Rules

In this appendix, we explore a set of conditions on primitives that guarantees the

log-supermodularity condition for general scoring rules. We can restrict the domain

to {(s, θ)|u(s, θ) > 0}, since otherwise, the score bid is clearly suboptimal for a type θ

bidder. Suppose that usθ exists. We suppose that the payoff function P (s, q)−C(q, θ)

is strictly concave in q and that the optimal quality q∗ always lies in the interior

q∗(s, θ) > q.

Proposition 6 The log-supermodularity condition holds if the optimal quality (and

price) are not binding for all (s, θ) and

1. PsqCqθ ≤ 0, or

2. Psq > 0, Cqθ ≥ 0, P/Ps weakly increasing in q,and Cqθ/(Cqq − Pqq) < Cθ/Cq.

Proof The log-supermodular condition holds if and only if

u(s, θ)

us(s, θ)
usθ(s, θ)− uθ(s, θ) > 0. (26)

Note that by the envelope theorem, we have us(s, θ) = Ps(s, q
∗), uθ(s, θ) = −Cθ(q

∗, θ),

and usθ(s, θ) = Psq(s, q
∗)q∗θ(s, θ). Thus, (26) holds if

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ))q∗θ(s, θ) + Cθ(q
∗(s, θ), θ) > 0. (27)

Because q∗θ(s, θ) = −Cqθ/[Cqq(q
∗(s, θ), θ) − Pqq(s, q

∗(s, θ))], we have condition 1 by

the concavity of P (s, q)− C(q, θ) in q.

In what follows, we provide the proof for condition 2. We assume that Cqθ(q, θ) ≥

0 and that P (s, q)/Ps(s, q) is weakly increasing in q. Let us further assume that

Cq(·)
[
−

Cqθ(·)
Cqq(·)− Pqq(·)

]
+ Cθ(·) > 0

holds for all q and θ. Then we evaluate this inequality at q = q∗(s, θ). Recall that

the square-bracket term equals q∗θ(s, θ) if q = q∗(s, θ). Hence, we obtain

Cq(q
∗(s, θ), θ)q∗θ(s, θ) + Cθ(q

∗(s, θ), θ) > 0. (28)
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Next, we show that if P (s, q)/Ps(s, q) is weakly increasing in q for all s and q

and Psq(·) ≥ 0, then [u(s, θ)/us(s, θ)]Psq(·) ≤ Cq. First, the condition that P/Ps is

weakly increasing in q implies that

d

dq

P (s, q)

Ps(s, q)
=

1

(Ps(s, q))2
[Pq(s, q)Ps(s, q)− P (s, q)Psq(s, q)] ≥ 0

for all s and q. Given the fact that Ps > 0, this inequality is equivalent to

P (s, q)

Ps(s, q)
Psq(s, q) ≤ Pq(s, q) for all s and q.

Then we consider this (weak) inequality, replacing P (s, q) with P (s, q)− C(q, θ) on

the left-hand side. Given that Psq ≥ 0 and that C(q, θ) is nonnegative, the inequality

implies that

[P (s, q)− C(q, θ)]Psq(s, q)

Ps(s, q)
≤ Pq(s, q) (29)

for all s and q.

By substituting q = q∗(s, θ) into (29), we have

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ)) =
P (s, q∗)− C(q∗, θ)

Ps(s, q∗)
Psq(s, q

∗)

≤ Pq(s, q
∗)

= Cq(q
∗, θ). (30)

The last equality comes from the first-order condition for the optimal quality q∗.

Expressions (28) and (30) imply

u(s, θ)

us(s, θ)
Psq(s, q

∗(s, θ))q∗θ(s, q
∗(s, θ)) + Cθ(q

∗(s, θ), θ)

≥ Cq(q
∗(s, θ), θ)q∗θ(s, q

∗(s, θ)) + Cθ(q
∗(s, θ), θ)

> 0

by Psq > 0 and q∗θ ≤ 0. Thus, log-supermodularity holds. □
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Next, we explore the curvature of the bidder’s indirect payoff function.Two fac-

tors affect the curvature of the indirect payoff function. Note that, by differentiation,

we have

uss(s, θ) = Pss(s, q
∗(s, θ)) + Psq(s, q

∗(s, θ))q∗s(s, θ). (31)

The first term on the right-hand side of (31) captures the direct effect on uss of a

change in the marginal payments with respect to s given q, while the second term in

(31) captures the indirect effect of the change in the marginal payments with respect

to s through the change in q.

Regarding the direct effect, the curvature of the scoring rule directly affects

the bidder’s induced utility function. Since Pss(s, q) = −Spp/(Sp)
3, as the scoring

function becomes more concave (convex) in p, u(s, θ) becomes more (less) convex in

s, ceteris paribus. Note that this direct effect is independent of the properties of the

cost function.

On the other hand, the indirect effect, Psq(s, q
∗(s, θ))q∗s(s, θ), is always nonneg-

ative. Indeed, by the first-order condition (16) for optimal quality and the implicit

function theorem, we have

q∗s = − Psq

Pqq − Cqq
. (32)

Hence, Psqq
∗
s is always nonnegative because of the strict concavity of the payoff

function in q. Intuitively, with a scoring rule in which the associated Ps falls (rises)

as q rises, the bidder will optimally choose a smaller (larger) q as s becomes larger.

Moreover, as the indirect effect increases, u(s, θ) becomes more convex in s, ceteris

paribus. Thus, given that the indirect effect is always nonnegative, u(s, θ) is convex

if Spp ≤ 0.

We then discuss the properties of expected price and quality. An interesting

feature of the PQR scoring rule is that the optimal quality q∗ is increasing in score

s. This suggests that under a PQR scoring auction, the lower-type bidders compete

on price at the expense of quality. Note that the lower-type bidder submits a lower-

score bid in equilibrium, so these bidders propose a lower quality with a much lower

price as they become more efficient. This property may not be desirable for the
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procurer unless the scoring function represents their true preferences over a price-

quality choice.

Note that by (32), the signs of q∗s and Psq coincide. Also, we have

Psq = −SppPq + Spq

(Sp)2
=

SppSq − SpSpq

(Sp)3
. (33)

The sign of Spq is crucial for the slope of the optimal quality in s. In particular, if

the scoring rule is linear in p (i.e., Spp = 0), then the sign of q∗s is determined by

−Spq. In the PQR scoring rule, Spq < 0 and the optimal quality is increasing in

score s.11

A scoring rule with Spq < 0 implies that Sp, the marginal score with respect

to price, increases as quality decreases. That is, when quality is already relatively

low, a lower price lowers the score even more. In other words, the lower the quality,

the more price competition is encouraged. Thus, even though lower-type bidders

choose higher quality, scoring rules such as PQR are prone to price competition at

the expense of quality.

Additionally, the quality ranking between FS and SS auctions depends on the

curvature of the quality function q∗. When the indirect payoff u is convex, the FS

auction yields a higher expected score than the SS auction. Similar to the discussion

in the previous section, the expected quality is higher in the FS than in the SS

auction if q∗ is increasing and weakly concave in s but is higher in the SS auction

if q∗ is decreasing and weakly convex in s. However, because the condition for the

concavity or convexity of q∗ is complicated, it is difficult to obtain a clear comparison

of quality between FS and SS auctions.

Moreover, the price ranking between FS and SS auctions is more ambiguous

than quality. Let π(s, θ) ≡ P (s, q∗(s, θ)) be the price associated with score s and the

optimal quality q∗. Then,

πs = Ps + q∗sPq

11Note that the optimal quality is not affected by any monotone transformation of scoring rule

S. Hence, we can focus on scoring rules with Spp = 0 because every reasonable scoring rule can be

transformed into this.
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and

πss = Pss + q∗ssPq −
(Psq)

2

Pqq − Cqq

(
2− Pqq

Pqq − Cqq

)
by (32). The last term of πss is positive if Pqq ≥ 0. Hence, the optimal price π is

likely to be convex and so the expected price ranking becomes ambiguous when u

is convex and q∗ is increasing in s. This is analogous to Theorem 3 for the PQR

scoring rule.

Further, for a scoring rule in which the associated optimal quality q∗ is decreasing

in s, the price function π may no longer be monotone, which makes the price ranking

more ambiguous. Thus, with respect to general scoring rules, whether the expected

price (quality) in the FS auction is lower relative to that in the SS auction is an

empirical question.
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