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Abstract

We consider a one-to-one matching with contracts model in the presence of liq-

uidity constraints on the buyers side. Liquidity constraints can be either soft or hard.

Competitive equilibria do exist in economies with soft liquidity constraints, but not

necessarily in the presence of hard liquidity constraints. The limit of a convergent

sequence of competitive equilibria in economies with increasingly stringent soft liq-

uidity constraints may fail to be a competitive equilibrium in the limit economy

with hard liquidity constraints. We establish equivalence and existence results of

two alternative notions of competitive equilibrium, quantity-constrained competitive

equilibrium and expectational equilibrium, together with stable outcomes and core

outcomes, in the economies with both types of liquidity constraints. We argue that

these notions of equilibrium and stability do not suffer from discontinuity problems

by showing appropriate limit results.
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1 Introduction

Financial market imperfections often cause economic agents to be subject to liquidity

constraints. Such constraints have important consequences for the saving behavior of con-

sumers and investment and operational decisions by producers.1 There is also a wide

range of empirical and anecdotal evidence that highlights the practical importance of buy-

ers’limited purchasing power in auction settings.2 Understanding how liquidity constraints

influence market outcomes is therefore of great importance.

Liquidity constraints come in two forms. A soft liquidity constraint refers to the case

where an agent can always get some additional liquidity by paying appropriate borrowing

costs. A hard liquidity constraint refers to the case where an agent is subject to a strict

payment limit and cannot obtain any additional liquidity.

In matching theory, there are remarkable differences between models with soft liquidity

constraints and those with hard liquidity constraints.3 Conditions that guarantee the

existence and nice properties of competitive equilibria with soft constraints are no longer

suffi cient to tackle models with hard constraints, in which competitive equilibria may not

exist and those properties may not hold. Besides, these two types of liquidity constraints

may also result in different monotone matching patterns among agents.

We introduce an integrated framework that encompasses both economies with soft and

hard liquidity constraints and that smoothens the connection between them as economies

with hard liquidity constraints can also be treated as the limit of economies with increas-

ingly stringent soft liquidity constraints. We study various notions of equilibrium which do

not suffer from non-existence problem in economies with different types of liquidity con-

straints. We further examine the behavior of those equilibria when going from economies

with increasingly stringent soft to the limit economy with hard liquidity constraints. In-

deed, studying the continuity of equilibria with respect to a continuous change in some

primitive of the economy is an important and classical theme in general equilibrium and

game theory (Hildenbrand and Mertens, 1972; Echenique, 2002; Balder and Yannelis,

2006). This line of research sheds light on the robustness of equilibrium notions in relation

to perturbations of the market environment.

We consider a two-sided matching model with bilateral contracts in the sense of Hatfield

and Milgrom (2005), Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013), and

Fleiner, Jagadeesan, Jankó, and Teytelboym (2019). We focus on the one-to-one setting,

which does not subsume those models, but extend them by the accommodation of both soft

1See, e.g., Carroll (2001) and Blalock, Gertler, and Levine (2008).
2See, e.g., Che and Gale (1998).
3See, e.g., Legros and Newman (2007), Talman and Yang (2015), Herings and Zhou (2022), and Ja-

gadeesan and Teytelboym (2023).
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and hard liquidity constraints. Buyers and sellers choose from a finite set of possible trades.

Each trade is bilateral and designates its buyer and its seller. A contract consists of a trade

and an amount of money transferred from the buyer to the seller. Buyers and sellers have

general utility functions, allowing for income effects. At a technical level, agents’utility

functions are not continuous when going from increasingly stringent soft to hard liquidity

constraints, which explains the observed anomalies.

With soft liquidity constraints, when the amount of money in a contract exceeds the

buyer’s initial budget, the buyer can get additional liquidity on financial markets after

paying an appropriate interest rate.4 A higher interest rate corresponds to a more stringent

soft liquidity constraint. At the limit, when the interest rate approaches plus infinity, the

buyer faces a hard liquidity constraint and any monetary transfer exceeding the initial

budget is not feasible. By varying interest rates, our model covers the entire spectrum of

liquidity constraints and allows for the coexistence of soft and hard liquidity constraints.

A competitive equilibrium always exists in the case of soft liquidity constraints, but

may fail to do so in the presence of hard liquidity constraints. As a consequence, the limit

of a convergent sequence of competitive equilibria in economies with increasingly stringent

soft liquidity constraints may fail to be a competitive equilibrium in the limit economy

with hard liquidity constraints.

We study alternative equilibrium notions that do not suffer from such discontinuity

problems. The first two are alternative notions of competitive equilibrium introduced by

Herings (2020) and Herings and Zhou (2022).

Herings and Zhou (2022) argue that the standard notion of competitive equilibrium

is not appropriate and introduce a quantity-constrained competitive equilibrium (QCCE).

A QCCE extends a standard competitive equilibrium by introducing endogenously deter-

mined expectations of buyers about the availability of trades. In particular, when there is

a hard liquidity constraint and the price of a trade is equal to or above this constraint, a

buyer is allowed to expect no supply of the trade, and therefore demands another trade

that is expected to be supplied.

A more fundamental notion of competitive equilibrium is expectational equilibrium as

introduced in Herings (2020). The concept is formulated for general many-to-one matching

models. At an expectational equilibrium, agents have endogenously determined expecta-

tions about the tradability of contracts. Agents hold expectations about the contracts that

are to be supplied by agents on the other side of the market. Rationing constraints are

used to express that certain contracts are not expected to be supplied. At equilibrium,

agents choose optimal contracts subject to the rationing constraints, and for each contract

4In the object assignment model with monetary transfers, Saitoh and Serizawa (2008) and Morimoto

and Serizawa (2015) mention the idea of using an interest rate for buyers when borrowing money. They

use this to motivate their setting with preferences exhibiting income effects.
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at least one side is not rationed.

We provide a novel equivalence between QCCE outcomes and expectational equilibrium

outcomes. Herings and Zhou (2022) show the existence and coincidence of QCCE outcomes,

stable outcomes, and core outcomes in matching models with hard liquidity constraints.

We argue that such a result also holds with possible coexistence of both types of liquidity

constraint. Putting them together, we establish a general equivalence and existence result

of the above-mentioned four concepts in our model.

Then we present the limit results for those four concepts, with particular attention to

the limit result of QCCEs. Consider a sequence of economies with increasingly stringent

soft liquidity constraints. We show that a corresponding sequence of QCCE prices and

outcomes always contains a convergent subsequence, and every convergent subsequence

always leads to prices and outcome that are compatible with a QCCE of the limit economy.

Notice that such a result does not hold for competitive equilibria. The fact that, contrary to

competitive equilibria, QCCEs behave continuously when going from increasingly stringent

soft to hard liquidity constraints, reinforces the view that QCCE is the appropriate notion

of competitive equilibrium. The corresponding limit results of expectational equilibrium

outcomes, stable outcomes, and core outcomes follow from the equivalence result.

We demonstrate that like competitive equilibrium, strongly stable outcomes and strict

core outcomes suffer from the same discontinuity problem. Moreover, we show that our

results can be extended to settings where liquidity constraints correspond to more general

forms of borrowing costs.

Notions like competitive equilibrium, stable outcome, and core outcome, and their

structural properties have been intensively studied in all sorts of matching models when

agents have general utility functions, see, e.g., Crawford and Knoer (1981), Quinzii (1984),

Demange and Gale (1985), Legros and Newman (2007), Fleiner et al. (2019), and Schlegel

(2022). A matching model with general utility functions can be used to analyze matching

models with soft liquidity constraints and results established in a model with general utility

functions carry over to models with soft liquidity constraints. However, such models cannot

be used to analyze matching models with hard liquidity constraints and results established

in models with general utility functions may fail to hold in matching models with hard

liquidity constraints. Therefore, these two types of models are fundamentally different,

see, e.g, Herings and Zhou (2022) and Section 3 for detailed discussions.

In the assignment model with unit-demand agents and hard liquidity constraints, Tal-

man and Yang (2015) propose an auction that constructively finds a core outcome. In

one-to-one matching models with imperfectly transferable utility and unobserved hetero-

geneity in tastes, Galichon, Kominers, and Weber (2019) define the notion of aggregate

equilibrium. In many-to-one matching models with general constraints, Herings (2020)
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proposes expectational equilibrium and discusses its equivalence with standard notions of

competitive equilibrium and stable outcomes in a large variety of settings. In one-to-one

matching models with hard liquidity constraints, Herings and Zhou (2022) propose the

notion of a QCCE. They study the formation of QCCEs in decentralized markets and the

structural properties of QCCEs. In many-to-many matching models with liquidity con-

straints, Jagadeesan and Teytelboym (2023) show the existence of stable outcomes under

the net substitutability condition and analyze various properties of stable outcomes. All

these results are different from ours as none of them explicitly studies a model with the

coexistence of different types of liquidity constraints and analyzes the continuity property

of equilibrium notions by relating economies with hard liquidity constraints to those with

increasingly stringent soft liquidity constraints.5

We contribute to the works mentioned above by formulating an integrated model that

allows for different types of liquidity constraints and by throwing light on the continuity

properties of various equilibrium notions via their equivalence, existence, and limit results.

Our analysis provides a new connection between equilibria in matching models with soft

liquidity constraints and those with hard liquidity constraints.

The remaining part of the paper is organized as follows. Section 2 presents the model

and Section 3 shows the problematic behavior of competitive equilibria in limit economies.

Section 4 shows the coincidence and existence of QCCEs, expectational equilibria, stable

outcomes, and core outcomes. Section 5 presents the limit results of the concepts studied

in Section 4. Section 6 discusses the robustness of our results. Section 7 contains the

conclusion.

2 The Matching Model with Liquidity Constraints

There is a finite set of buyers B and a finite set of sellers S. Buyers and sellers participate

in bilateral trades in a finite set Ω. Each trade ω ∈ Ω is associated with a buyer b(ω) ∈ B
and a seller s(ω) ∈ S. A trade specifies the precise contractual terms of the delivery of a
good or a service from the seller to the buyer, with the exception of the price against which

such a transaction occurs. We denote the set of trades in Ω involving buyer b ∈ B and

seller s ∈ S, respectively, by

Ωb = {ω ∈ Ω | b(ω) = b},
Ωs = {ω ∈ Ω | s(ω) = s}.

5Dupuy, Galichon, Jaffe, and Kominers (2020) study how changes in taxes influence the firm-worker

sorting patterns and effi ciency. Their results provide a link between matching models with and with-

out transfers. In contrast to the hard liquidity constraints, the introduction of taxes does not influence

equilibrium existence.
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Transactions take place by signing contracts. A contract c = (ω, t) ∈ Ω × R specifies
a trade ω ∈ Ω and a payment t ∈ R that is transferred from buyer b(ω) to seller s(ω).

For every contract c ∈ Ω × R, let ω(c) and t(c) be the corresponding trade and payment,

respectively. For a set of contracts Y ⊆ Ω×R, ω(Y ) = {ω(c) ∈ Ω | c ∈ Y } corresponds to
the set of trades related to contracts in Y .

We consider a one-to-one matching set-up. A buyer signs a contract with at most one

seller and a seller signs a contract with at most one buyer. An agent i ∈ B ∪ S who does
not sign any contract receives the no-trade option oi.

For every buyer b ∈ B, the utility function ub : (Ωb × R) ∪ {ob} → R is such that,

(b-i) for every ω ∈ Ωb, ub(ω, ·) is continuous and strictly decreasing on R and, (b-ii) for
every ω ∈ Ωb, the range of ub(ω, ·) is all of R. Condition (b-i) says that given a trade, a
lower payment improves the buyer’s utility. Condition (b-ii) says that there is no trade ω

that is infinitely good or bad. That is, for every trade ω ∈ Ωb, there is tbω ∈ R such that
ub(ω, tbω) = ub(ob). Moreover, for every contract c ∈ Ωb × R, for every trade ω′ ∈ Ωb, there

is t′ ∈ R such that ub(c) = ub(ω′, t′). For every ω ∈ Ωb, we define ub(ω,+∞) = −∞.
For every seller s ∈ S, the utility function us : (Ωs × R) ∪ {os} → R is such that, (s-i)

for every ω ∈ Ωs, us(ω, ·) is continuous and strictly increasing on R and, (s-ii) for every
ω ∈ Ωs, the range of us(ω, ·) is all of R. The economic explanation for (s-i) and (s-ii) is
analogous to (b-i) and (b-ii). Thus, for every trade ω ∈ Ωs, there is tsω ∈ R such that

us(ω, tsω) = us(os). Moreover, for every contract c ∈ Ωs ×R, for every trade ω′ ∈ Ωs, there

is t′ ∈ R such that us(c) = us(ω′, t′).

Assumptions (b-ii) and (s-ii) are standard in the matching literature when agents have

general utility functions, see, e.g., Demange and Gale (1985). The commonly used quasi-

linear utility functions satisfy these assumptions.

We denote the profile of utility functions by u = (ui)i∈B∪S.

Given a set of contracts Y ⊆ Ω × R, Y b denotes the set of contracts involving buyer

b ∈ B and Y s denotes the set of contracts involving seller s ∈ S, so

Y b = {c ∈ Y | b(ω(c)) = b},
Y s = {c ∈ Y | s(ω(c)) = s}.

Notice that in case agent i ∈ B ∪ S is not part of a contract in Y, then Y i = ∅.
The consumption set of agent i ∈ B ∪ S is equal to

X i = {Y ⊆ Ωi × R | |Y | ≤ 1}.

Thus, X i consists of the singleton subsets of Ωi × R and the empty set.
A set of contracts A ⊆ Ω×R is an outcome if, for every i ∈ B ∪ S, Ai ∈ X i. Let A be

the collection of outcomes, i.e.,

A = {A ⊆ Ω× R | for every i ∈ B ∪ S, Ai ∈ X i}.
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Notice that ∅ ∈ A, so ∅ is an outcome. More generally, for every i ∈ B ∪ S, any element
of X i is an outcome as well.

In the following, we introduce soft and hard liquidity constraints. Every buyer b ∈ B is
endowed with an amount of money M b ∈ [0,+∞). If a payment exceeds M b, then buyer

b can borrow money on the financial markets against an interest rate rb ∈ [0,+∞].6 In

case rb ∈ [0,+∞), buyer b faces a soft liquidity constraint. A special case of a soft liquidity

constraint is the absence of a liquidity constraint if rb = 0. In case rb = +∞, buyer b never
chooses to make a payment exceeding M b and is subject to a hard liquidity constraint.

Depending on their amount of collateral or their social network, different buyers may be

able to acquire additional liquidity against different interest rates. Thus, we allow interest

rates to be buyer-dependent. Let M = (M b)b∈B be the profile of monetary endowments

and r = (rb)b∈B be the profile of interest rates.

For every buyer b ∈ B, for every contract c ∈ Ωb × R, the transfer plus borrowing cost
for contract c is given by

t+(c; rb) =

{
t(c),

t(c) + rb(t(c)−M b),

if t(c) ≤M b,

if t(c) > M b.

The amount t+(c; rb) is larger than or equal to t(c). In case t(c) ≤ M b, buyer b does not

need to borrow and t+(c; rb) = t(c). In case t(c) > M b, buyer b pays a borrowing cost

rb(t(c)−M b) and t+(c; rb) = t(c)+rb(t(c)−M b). If buyer b faces a hard liquidity constraint,

then t(c) > M b implies t+(c; rb) = +∞. By our assumptions on utility functions, such a
contract is never chosen by the buyer, since it is inferior to the no-trade option.

The utility function ub of buyer b ∈ B over contracts induces the utility function U b

over outcomes. For every profile of interest rates r ∈ [0,+∞]B, for every A ∈ A, in case
Ab = ∅, U b(A; r) = ub(ob), and in case Ab = {c}, U b(A; r) = ub(ω(c), t+(c; rb)). In the case

of soft liquidity constraints, assumption (b-i) on ub implies that for a given trade ω ∈ Ωb,

U b({(ω, ·)}; r) is continuous and strictly decreasing in transfers. In the case of hard liquidity
constraints, the same assumption implies that U b({(ω, ·)}; r) exhibits a discontinuity at a
transfer equal to the monetary endowment, U b({(ω, ·)}; r) is equal to −∞ at transfers

exceeding the monetary endowment, and U b({(ω, ·)}; r) is continuous at transfers lower
than the monetary endowment.7

The utility function us of seller s ∈ S over contracts induces the utility function U s

over outcomes. For every A ∈ A, in case As = ∅, U s(A) = us(os), and in case As = {c},
U s(A) = us(c).

6All our results hold even when the interest rate could be trade-dependent, i.e., for each trade ω ∈ Ω,

buyer b(ω) can borrow money against an interest rate rω ∈ [0,+∞]. To do so would require additional

notation, which complicates the exposition, while offering few new insights.
7The discontinuity of U b({(ω, ·)}; r) is illustrated via a numerical example in Appendix A.3.
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The primitives of the economy are summarized by E = (B, S,Ω, u,M, r).

Our model subsumes the following models as special cases:

• Matching models with no liquidity constraints, see, e.g., Crawford and Knoer (1981),
Demange and Gale (1985), and Alkan and Gale (1990): The set of trades Ω = B × S

corresponds to the possible matches between agents in B and S, the no-trade option

corresponds to being unmatched, and r = (0, . . . , 0).

• Matching models with hard liquidity constraints, see, e.g., Herings and Zhou (2022).
All other primitives are the same except for the profile of interest rates r, i.e., for each

b ∈ B, rb = 0 or +∞.
• Auction models with hard liquidity constraints, see, e.g., Talman and Yang (2015):

The set of trades is equal to Ω = B × S. For every b ∈ B, rb = 0 or +∞, ub(ob) = 0,

and for every ω ∈ Ωb, for every t ∈ R, ub(ω, t) = V b(ω) − t where V b(ω) ∈ R is the value
buyer b assigns to trade ω. For every seller s ∈ S, for every ω, ω′ ∈ Ωs, us(ω, ·) = us(ω′, ·),
tsω = tsω′ ≥ 0, and us(os) = 0.

•Auction models with soft liquidity constraints, see, e.g., Saitoh and Serizawa (Example
1, 2008): For every buyer b ∈ B, for every ω ∈ Ωb, for every t ∈ R, rb ∈ (0,+∞), ub(ob) = 0,

and ub(ω, t) = V b(ω)− t, and for every ω, ω′ ∈ Ωb, V b(ω) = V b(ω′) (identical trades). For

every seller s ∈ S, us(os) = 0 and for every ω ∈ Ωs, tsω = 0.

Varying the interest rates enables us to integrate matching models with soft liquidity

constraints and those with hard liquidity constraints. Appendix A.1 provides an illustrative

example.

3 Competitive Equilibrium

In the competitive analysis of matching models, each trade ω ∈ Ω is assigned a price

pω ∈ R, which results in a price vector p ∈ RΩ. Prices are allowed to be personalized.

For instance, a seller s ∈ S can sell an identical commodity at different prices to different
buyers. Personalized prices have been used before in competitive settings, see, e.g., Hatfield

et al. (2013) and Fleiner et al. (2019).

The budget set of agent i ∈ B ∪ S is given by

γi(p) = {Ai ∈ X i | ∀c ∈ Ai, t(c) = pω(c)}, p ∈ RΩ.

The budget set of agent i contains those contracts in the consumption set of agent i with

transfers equal to prices. The budget set always contains ∅ and is therefore non-empty.
In a competitive equilibrium, buyers take prices p ∈ RΩ as given and choose optimal

contracts. The demand set of buyer b ∈ B is given by

δb(p; r) = arg max
Ab∈γb(p)

U b(Ab; r), p ∈ RΩ.
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Sellers take prices p ∈ RΩ as given and choose optimal contracts. The demand set of seller

s ∈ S is given by

δs(p) = arg max
As∈γs(p)

U s(As), p ∈ RΩ.

We now define the notion of a competitive equilibrium.

Definition 3.1: An element (p,A) ∈ RΩ×A is a competitive equilibrium for the economy

E = (B, S,Ω, u,M, r) if:

(i) For every b ∈ B, Ab ∈ δb(p; r).
(ii) For every s ∈ S, As ∈ δs(p).

In a competitive equilibrium, agents receive their demanded contracts. The usual condition

that demand equals supply is implicitly incorporated in the definition of an outcome.

When buyers face no liquidity constraints, there is a competitive competitive, as shown

by, see, e.g., Herings (2018).8

Proposition 3.2: Let E = (B, S,Ω, u,M, r) be an economy such that, for every b ∈ B,
rb = 0. A competitive equilibrium exists.

We next generalize Proposition 3.2 by showing the existence of competitive equilibrium

in the presence of arbitrary soft liquidity constraints.

Proposition 3.3: Let E = (B, S,Ω, u,M, r) be an economy such that r ∈ [0,+∞)B. A

competitive equilibrium exists.

Proof : For every b ∈ B, we define ũb : (Ωb × R) ∪ {ob} → R by ũb(ob) = ub(ob) and, for

every c ∈ Ωb × R, ũb(c) = ub(ω(c), t+(c; rb)) = U b({c}; r). Since r ∈ [0,+∞)B, it is easy to

8Crawford and Knoer (1981) prove the existence of a strict core outcome for the case with quasi-linear

utility functions, a single trade for each buyer-seller pair, and no liquidity constraints. They also remark

that such a strict core outcome is equivalent to a competitive equilibrium when appropriately defined.

They argue that the proof of the existence of a strict core outcome does not depend on the assumption of

quasi-linearity so that this result can be extended to settings with general utility functions and to the case

with multiple trades between a given buyer-seller pair. A direct proof of existence of stable outcomes in the

extended model with general utility functions and a single trade for each buyer-seller pair as suggested by

Crawford and Knoer (1981) can be found in Alkan and Gale (1990). However, for the case with multiple

possible trades between a given buyer-seller pair, the equivalence between a stable outcome (or a strict

core outcome) and a competitive equilibrium is not straightforward as a stable outcome does not specify

the prices of trades that are not part of the stable outcome. To the best of our knowledge, the earliest

reference that contains a proof for the existence of a competitive equilibrium in the general specification

of our model without liquidity constraints is Herings (2018).
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see that ũb satisfies (b-i) and (b-ii). Let ũ = ((ũb)b∈B, (u
s)s∈S).

Now consider the economy without liquidity constraints Ẽ = (B, S,Ω, ũ,M, r̃), where,

for every b ∈ B, r̃b = 0. The utility function ũb of buyer b ∈ B over contracts induces

the utility function Ũ b over outcomes. By construction of ũb, in case Ab = ∅, Ũ b(Ab; r̃) =

ũb(ob) = ub(ob) = U b(Ab; r), and in case Ab = {c}, Ũ b({c}; r̃) = ũb(c) = U b({c}; r). Thus,
for every b ∈ B, for every p ∈ RΩ, it holds that δ̃b(p; r̃) = δb(p; r).

We conclude from the above paragraph that the competitive equilibria of Ẽ coincide
with those of E . By Proposition 3.2, there is a competitive equilibrium of Ẽ and so E has
a competitive equilibrium as well. Q.E.D.

In the proof of Proposition 3.3 an economy with soft liquidity constraints is transformed

into an economy without liquidity constraints in such a way that for each contract, the

involved buyer is indifferent between signing it but possibly paying the borrowing cost in

the economy with soft liquidity constraints and signing it but without paying any borrow-

ing cost in the economy without liquidity constraints. Therefore, at each price, buyers’

demand sets remain the same in both the original economy and the transformed economy.

Therefore, competitive equilibria in the transformed economy without liquidity constraints

coincide with competitive equilibria in the original economy. Equilibrium existence in the

original economy then follows from Proposition 3.2. The proposed transformation pro-

vides an intuition as to why a matching model with general utility functions can be used

to analyze matching models with soft liquidity constraints. We give an example that illus-

trates the notion of competitive equilibrium in the presence of soft liquidity constraints in

Appendix A.2.

Unfortunately, there is no analogue of Proposition 3.3 in the presence of hard liquidity

constraints. The literature has provided various examples of matching models with hard

liquidity constraints where a competitive equilibrium fails to exist (Talman and Yang, 2015;

Herings and Zhou, 2022; Jagadeesan and Teytelboym, 2023). For the sake of completeness,

we present such an example in Appendix A.3.

4 Alternative Solution Concepts

In this section, we study alternative notions of equilibrium and stability, which turn out

not to suffer from non-existence problems in economies with hard liquidity constraints.

We first consider two alternative competitive equilibrium notions, “quantity-constrained

competitive equilibrium,”and “expectational equilibrium.”

Herings and Zhou (2022) study models with hard liquidity constraints and propose the

notion of a quantity-constrained competitive equilibrium. Buyers form expectations about
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the availability of trades. A buyer may expect that a trade is not available or, equivalently,

a buyer may expect a binding quantity constraint, if the buyer faces a hard liquidity

constraint and the price of the trade is equal to or above the buyer’s monetary endowment.

The reason is that these are the only circumstances under which it is impossible for the

buyer to offer a higher transfer to the seller in case the seller makes another trade. For

every ω ∈ Ω, let qω ∈ {0, 1} be the quantity constraint of trade ω, where qω = 1 means

that buyer b(ω) expects trade ω to be available and qω = 0 means that buyer b(ω) expects

trade ω not to be available. We denote the vector of quantity constraints by q = (qω)ω∈Ω.

The constrained budget set of buyer b ∈ B is given by

γb(p, q) = {Ab ∈ Xb | ∀c ∈ Ab, t(c) = pω(c) and qω(c) = 1}, (p, q) ∈ RΩ × {0, 1}Ω.

The constrained budget set of buyer b contains those contracts that involve buyer b, i.e.,

{c} ∈ Xb, buyer b expects them to be supplied, i.e., qω(c) = 1, and the payment is equal to

the price, i.e., t(c) = pω(c). The set γb(p, q) always contains ∅ and is therefore non-empty.
The constrained demand set of buyer b ∈ B is given by

δb(p, q; r) = arg max
Ab∈γb(p,q)

U b(Ab; r), (p, q) ∈ RΩ × {0, 1}Ω.

The constrained demand set of buyer b equals the set of contracts which maximize buyer

b’s utility over the contracts in the constrained budget set.

Since a seller does not face liquidity constraints, the seller’s decision problem is the

same as before. A quantity-constrained competitive equilibrium is defined as follows.

Definition 4.1: An element (p, q, A) ∈ RΩ × {0, 1}Ω × A is a quantity-constrained com-
petitive equilibrium (QCCE) for the economy E = (B, S,Ω, u,M, r) if:

(i) For every b ∈ B, Ab ∈ δb(p, q; r).
(ii) For every s ∈ S, As ∈ δs(p).
(iii) For every ω ∈ Ω, if qω = 0, then rb(ω) = +∞ and pω ≥M b(ω).

The first two conditions of Definition 4.1 correspond to optimization by buyers that take

p and q as given and optimization by sellers that take p as given. These two conditions

also imply equality of demand and supply at a QCCE. The third condition reflects that

when buyer b(ω) expects trade ω not to be supplied, then buyer b(ω) faces a hard liquidity

constraint, i.e., rb(ω) = +∞, and the price is larger than or equal to the buyer’s monetary
endowment, i.e., pω ≥ M b(ω). Since this condition only applies in case of a hard liquidity

constraint, a QCCE coincides with a competitive equilibrium for models with soft liquidity

constraints. Both p and q are endogenously determined in a QCCE. A numerical illustration

of the concept of a QCCE is given in Appendix A.4.

10



QCCE is an equilibrium concept that is rooted in general equilibrium theory. Buyers

take prices and quantity constraints as given and optimize accordingly. They do not need

to form expectations about the behavior of other buyers and sellers. Since sellers do not

face liquidity constraints, their decision problem is the usual one, coinciding with the one

used in the definition of a competitive equilibrium. Prices and quantity constraints are in

equilibrium if optimization by buyers and sellers leads to equality of supply and demand,

i.e., markets clear.

In Definition 4.1, if for every ω ∈ Ω, qω = 1, then a QCCE reduces to a competitive

equilibrium, also in the presence of hard liquidity constraints.

Herings (2020) proposes the notion of expectational equilibrium. An expectational equi-

librium does not explicitly depend on prices but rather on expectations related to tradable

contracts. The concept unifies all the existing approaches of competitive equilibrium that

have been proposed in the literature so far and, in particular, can be applied to both

settings with and settings without monetary transfers.

Let Y = Ω × R be the set of all possible contracts and 2Y be the power set of Y . Let

Q ⊆ Y denote a set of rationing constraints on the buyers side. For every b ∈ B, Qb

represents the set of contracts for which buyer b expects no supply from the sellers side.

Similarly, Let R ⊆ Y denote a set of rationing constraints on the sellers side. For every

s ∈ S, Rs is the set of contracts for which seller s expects no demand from the buyers

side. An expectational equilibrium corresponds to an endogenously determined profile of

rationing constraints (Q,R) together with an outcome A.

Given a set of rationing constraints Q, the rationed budget set of buyer b ∈ B is given

by

γb(Q) = {Ab ∈ Xb | Ab ∩Qb = ∅}

and the rationed demand set of buyer b ∈ B is given by

δb(Q; r) = arg max
Ab∈γb(Q)

U b(Ab; r).

The rationed budget set of buyer b consists of all contracts for which the buyer does not

expect rationing together with the no-trade option. The rationed demand set of buyer b

collects all choices that maximize buyer b’s utility over the rationed budget set.

Given a set of rationing constraints R, the rationed budget set of seller s ∈ S is given
by

γs(R) = {As ∈ Xs | As ∩Rs = ∅}

and the rationed demand set of seller s ∈ S is given by

δs(R) = arg max
As∈γs(R)

U s(As).
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The definition of an expectational equilibrium is as follows.

Definition 4.2: An element (A,Q,R) ∈ A × 2Y × 2Y is an expectational equilibrium for

the economy E = (B, S,Ω, u,M, r) if:

(i) For every b ∈ B, Ab ∈ δb(Q; r).

(ii) For every s ∈ S, As ∈ δs(R).

(iii) Q ∩R = ∅.

The first two conditions correspond to optimization by buyers and sellers given the profile

of rationing constraints. A buyer b ∈ B demands the best contract outside Qb and a seller

s ∈ S chooses the best contract outside Rs. The third condition expresses that markets

are transparent. For a given contract, it cannot be the case that both sides expect to be

rationed at the same time. Moreover, the third condition also reflects that the expectations

of buyers and sellers are rational. As an example, consider a contract c that involves a

buyer b and a seller s. If buyer b expects no supply of such a contract, i.e., c ∈ Qb, then

c 6∈ Rs, so seller s is able to supply c, but chooses not to do so, since c does not belong to

outcome A. Therefore, buyer b holds rational expectations regarding the absence of supply

of c. A similar argument shows that expectations of sellers are rational. A numerical

illustration of the concept of an expectational equilibrium is given in Appendix A.5.

Next, we consider solution concepts that come from cooperative game theory, “stable

outcome”and “core outcome.”They are widely used in matching theory, see, e.g., Crawford

and Knoer (1981), Demange and Gale (1985), Hatfield and Milgrom (2005), Hatfield et al.

(2013), and Fleiner et al. (2019).

For every Y ⊆ Ω×R, the sets of optimal choices of buyer b ∈ B and seller s ∈ S within
the set of contracts Y are defined as

Cb(Y ) = arg max
{Ab∈Xb|Ab⊆Y b}

U b(Ab; r),

Cs(Y ) = arg max
{As∈Xs|As⊆Y s}

U s(As).

Notice that for agent i ∈ B ∪ S, Ci(Y ) = {∅} means that the no-trade option is strictly
preferred to any choice in Y.

The definition of stable outcome is as follows.

Definition 4.3: An outcome A ∈ A is stable for the economy E = (B, S,Ω, u,M, r) if:

(i) For every i ∈ B ∪ S, Ai ∈ Ci(A).

(ii) There is no c = (ω, t) ∈ Y such that U b(ω)({c}; r) > U b(ω)(A; r) and U s(ω)({c}) >
U s(ω)(A).
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A stable outcome is a set of contracts that contains at most one contract for each agent.

The first condition says that every agent involved in a contract prefers this contract weakly

to the no-trade option. The second condition says that there are no two agents who can

sign a contract that makes both of them strictly better off.

Next, we define a core outcome.

Definition 4.4: An outcomeA ∈ A is a core outcome for the economy E = (B, S,Ω, u,M, r)

if there is no outcome A′ ∈ A and a set of agents N ⊆ B ∪ S such that:
(i) For every i ∈ (B ∪ S)\N, (A′)i = ∅.
(ii) For every b ∈ N ∩B, U b(A′; r) > U b(A; r).

(iii) For every s ∈ N ∩ S, U s(A′) > U s(A).

An outcome is a core outcome if no coalition of agents can propose a better outcome

satisfying the following two conditions: Agents outside the coalition obtain the no-trade

option, as shown in the first condition, and each agent in the coalition is strictly better off,

as shown in the second and third condition.

In what comes next, we show the equivalence between the four concepts defined in this

section and show their existence for both types of liquidity constraints.

Theorem 4.5: Let E = (B, S,Ω, u,M, r) be an economy such that r ∈ [0,+∞]B. The

sets of QCCE outcomes, expectational equilibrium outcomes, stable outcomes, and core

outcomes coincide and are non-empty.

Proof : We first prove the equivalence part and then the existence part.

Equivalence: We first show that the sets of QCCE outcomes and expectational equilib-
rium outcomes coincide. The proof consists of the following two steps.

Step 1: If (p, q, A) is a QCCE of E , there is (Q,R) ∈ 2Y × 2Y such that (A,Q,R) is an

expectational equilibrium.

For every b ∈ B, we define

Qb = {(ω, t) ∈ Ωb×R | ω ∈ ω(A) & t < pω}∪{(ω, t) ∈ Ωb×R | ω ∈ Ω\ω(A) & t ≤ pω}.

For every s ∈ S, we define

Rs = {(ω, t) ∈ Ωs × R | t > pω}.

By construction, we have thatQ∩R = ∅ and so Condition (iii) of Definition 4.2 holds for
(A,Q,R). We show below that Conditions (i) and (ii) of Definition 4.2 hold for (A,Q,R).

Let b ∈ B. By construction of Qb, we have

γb(Q) = {{(ω, t)} ∈ Xb | ω ∈ ω(A) & t ≥ pω}∪{{(ω, t)} ∈ Xb | ω ∈ Ω\ω(A) & t > pω}∪{∅}.
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By Condition (i) of Definition 4.1, we have that U b(Ab; r) ≥ U b(∅). Let {c} ∈ γb(Q) be

such that ω(c) ∈ Ω\ω(A). In case qω(c) = 1, by Condition (i) of Definition 4.1, it holds

that U b(Ab; r) ≥ U b({(ω, pω)}; r) ≥ U b({c}; r). In case qω(c) = 0, by Condition (iii) of

Definition 4.1, it holds that rb = +∞ and t(c) > pω(c) ≥M b. Thus U b(Ab; r) > U b({c}; r).
If Ab = ∅, we are done. If Ab = {(ω′, pω′)}, it holds that U b(A; r) ≥ U b({(ω′, t′)}; r) for
every t′ ≥ pω′ . Consequently, Condition (i) of Definition 4.2 holds.

Let s ∈ S. By the construction of Rs, γs(R) = {{(ω, t)} ∈ Xs | t ≤ pω} ∪ {∅}. Since
(p, q, A) is a QCCE, by Condition (ii) of Definition 4.1, we have that U s(A) ≥ U s(∅), and
for every {(ω, t)} ∈ γs(R), it holds that U s(A) ≥ us(ω, pω) ≥ us(ω, t). Thus Condition (ii)

of Definition 4.2 holds.

Step 2: If (A,Q,R) is an expectational equilibrium of E , there is (p, q) ∈ RΩ × {0, 1}Ω

such that (p, q, A) is a QCCE of E .
For every s ∈ S, for every ω ∈ Ωs, there is pω ∈ R such that us(A) = us(ω, pω). Let

pω ∈ R be the price of trade ω. For every ω ∈ Ω, if rb(ω) = +∞ and pω ≥ M b(ω), qω = 0,

and if rb(ω) < +∞ or pω < M b(ω), qω = 1. By the construction of (p, q) ∈ RΩ × {0, 1}Ω,

it is easily seen that Conditions (ii) and (iii) of Definition 4.1 hold for (p, q, A). We show

next that Condition (i) of Definition 4.1 holds for (p, q, A).

By contradiction, suppose Condition (i) of Definition 4.1 fails to hold. Then there

is b ∈ B such that Ab /∈ δb(p, q; r). Since (A,Q,R) is an expectational equilibrium, by

Condition (i) of Definition 4.2, U b(Ab; r) ≥ U b(∅) and so there is {(ω, pω)} ∈ δb(p, q; r) such
that U b(Ab; r) < U b({(ω, pω)}; r) and qω = 1. By the construction of q, either rb(ω) < +∞
or pω < M b(ω) holds. In either case, there is t > pω such that U b(Ab; r) < U b({(ω, t)}; r)
and U s(ω)(A) = U s(ω)({(ω, pω)}) < U s(ω)({(ω, t)}). Since (A,Q,R) is an expectational

equilibrium, by Conditions (i) and (ii) of Definition 4.2, we have that {(ω, t)} ∈ Qb and

{(ω, t)} ∈ Rs(ω)
, contradicting Condition (iii) of Definition 4.2.

By Steps 1 and 2, we have the equivalence between QCCE outcomes and expectational

equilibrium outcomes.

We then show that there is an equivalence between QCCE outcomes, stable outcomes,

and core outcomes. Herings and Zhou (2022) show the equivalence between these notions

in an economy with hard liquidity constraints, i.e., E = (B, S,Ω, u,M, r) such that for

each b ∈ B, rb = 0 or +∞. We claim that such an equivalence result, with the same

transformation as used in the proof of Proposition 3.3, carries over to economies with

r ∈ [0,+∞]B. More precisely, we only transform utility functions of buyers who face soft

liquidity constraints. An economy with both types of liquidity constraints is transformed

into an economy with hard liquidity constraints in such a way that for each buyer b ∈ B
with soft liquidity constraints in the original economy, ũb is constructed in the same way as

in the proof of Proposition 3.3. It is easy to see that the set of QCCEs, stable outcomes and
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core outcomes in the original economy coincides with the set of QCCEs, stable outcomes

and core outcomes in the transformed economy, respectively. Thus, the claim holds.

Existence: Following the same reasoning before, the existence of QCCEs in the economies
as studied by Herings and Zhou (2022) implies the existence of QCCEs in the economy of

Theorem 4.5.9 By the equivalence result, we have the existence for all notions defined in

this section. Q.E.D.

Theorem 4.5 presents a novel equivalence result between QCCE outcomes and expecta-

tional equilibrium outcomes. Moreover, it also provides additional insights of how we can

use Proposition 3.3 to carry over results for economies with only hard liquidity constraints

to economies with both types of liquidity constraints.

In an economy with soft liquidity constraints, using Theorem 4.5, it is easy to verify that

the sets of “strongly stable outcomes,”10 “strict core outcomes,”11 stable outcomes, core

outcomes, and competitive equilibria coincide.12 By Proposition 3.3, they are non-empty.

Thus, we have equivalence and existence results between all equilibrium and stability no-

tions in an economy with soft liquidity constraints. However, in an economy with hard

liquidity constraints, a stable outcome may not be strongly stable, a core outcome may not

be strict, and the sets of strongly stable outcomes and strict core outcomes can be empty

(Herings and Zhou, 2022). Thus, the notions of equilibrium and stability as stated in

Theorem 4.5 are more appealing when we study economies with different types of liquidity

constraints.
9An alternative way to show existence is as follows. Both the model with soft and the model with

hard liquidity constraints satisfy the assumptions of Theorem 5.5 of Herings (2020), so the existence of

expectational equilibrium follows from that result. By the equivalence result, we obtain the existence result

of the other three concepts.
10An outcome is strongly stable if (i) no agent involved in a contract prefers the no-trade option and

(ii) there are no two agents who can sign a contract making both agents weakly better off and at least one

agent strictly better off.
11An outcome is a strict core outcome if there is no outcome and a coalition of agents such that (i)

agents outside the coalition obtain ∅, and (ii) each agent in the coalition is weakly better off, with at least
one agent being strictly better off.
12In an economy with soft liquidity constraints, we only need to show that (1) a QCCE is a competitive

equilibrium with quantity constraints (1, . . . , 1), (2) a stable outcome is strongly stable, and (3) a core

outcome is a strict core outcome. All these three statements can be easily verified. Then by Theorem 4.5,

the conclusion follows.
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5 Convergence Results

In this section, we show a novel structural property, continuity, for the notions studied in

the previous section. More precisely, we consider a sequence of economies with increasingly

stringent soft liquidity constraints and a corresponding sequence of equilibria, and study

whether the limit of the sequence of equilibria is an equilibrium for the limit economy with

hard liquidity constraints.

It follows from Theorem 4.5 that if we show the limit result in terms of outcomes for

one of the notions of the previous section, then we obtain the corresponding limit result

for any of the other notions for free. Rather than focusing on outcomes only, we start with

a limit result for QCCEs in terms of both prices and outcomes in Theorem 5.1. It will

bring us additional economic insights as discussed after Theorem 5.1 and in Corollary 5.3

and Example 5.4.

The sequence of economies (En)n∈N = (B, S,Ω, u,M, rn)n∈N is said to converge to an

economy E = (B, S,Ω, u,M, r) if r = limn→∞ r
n. A sequence of outcomes (An)n∈N in

A is said to converge to an outcome A ∈ A if there is n′ ∈ N such that, for every

n ≥ n′, ω(An) = ω(A) and, for every (ω, t) ∈ A, for every cn ∈ An with ω(cn) = ω,

limn→∞ t(c
n) = t. A sequence of competitive equilibria (pn, An)n∈N in RΩ × A is said to

converge to the competitive equilibrium (p,A) ∈ RΩ × A if limn→∞ p
n = p and (An)n∈N

converges to A. A sequence of QCCEs (pn, qn, An)n∈N in RΩ×{0, 1}Ω×A is said to converge
to the QCCE (p, q, A) ∈ RΩ×{0, 1}Ω×A if limn→∞ p

n = p, and there is n′ ∈ N such that,
for every n ≥ n′, qn = q, and (An)n∈N converges to A.

We next show a limit result for QCCEs.

Theorem 5.1: Let (En)n∈N be a sequence of economies that converges to an economy E .
For every n ∈ N, let (pn, qn, An) be a QCCE of the economy En.
(i) The sequence (pn, An)n∈N has a convergent subsequence.

(ii) Let (p,A) be the limit of a convergent subsequence of (pn, An)n∈N. Then there is q ∈
{0, 1}Ω such that (p, q, A) is a QCCE of E .
Proof :
Part (i): Since the set of trades is finite, there is a subsequence (Anm)m∈N of (An)n∈N such

that the set of trades ω(Anm) does not depend on nm. Define Ω = ω(Anm).

Step 1: For every ω ∈ Ω, the sequence (pnmω )m∈N is bounded.

Fix some m ∈ N. Let ω ∈ Ω, b = b(ω), and s = s(ω). Since (pnm , qnm , Anm) is a QCCE

of Enm , it holds that U s(Anm) = us(ω, pnmω ) ≥ us(os) = us(ω, tsω). It follows that tsω ≤ pnmω .

There is tnmω ≥ pnmω such that ub(ω, tnmω ) = U b({(ω, pnmω )}; rnm). Since (pnm , qnm , Anm)

is a QCCE of Enm , it holds that ub(ω, tnmω ) = U b({(ω, pnmω )}; rnm) ≥ ub(ob) = ub(ω, tbω). It

follows that pnmω ≤ tnmω ≤ tbω.
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We conclude that, for every m ∈ N, tsω ≤ pnmω ≤ tbω.

Step 2: For every ω ∈ Ω\Ω, the sequence (pnmω )m∈N is bounded.

Fix some m ∈ N. Let ω ∈ Ω\Ω, b = b(ω), and s = s(ω).

Assume (Anm)b = ∅. Consider the case where pnmω < M b, so qnmω = 1. Since min{0, tbω} ≤
M b and (pnm , qnm , Anm) is a QCCE of Enm , it holds that

U b({ω,min{0, tbω}}; rnm) = ub(ω,min{0, tbω}) ≥ ub(ω, t
b
ω) = ub(ob) = U b(Anm ; rnm)

≥ U b({ω, pnmω }; rnm),

and so pnmω ≥ min{0, tbω}. In case pnmω ≥M b ≥ 0, it also holds that pnmω ≥ min{0, tbω}.
Assume (Anm)b 6= ∅. Consider the case where pnmω < M b, so qnmω = 1. Let (Anm)b =

{(ω′, pnmω′ )} and s(ω′) = s′. Since ω′ ∈ Ω, by Step 1, it holds that ts
′
ω′ ≤ pnmω′ ≤ tbω′ . Let t

b
ω ∈ R

be such that ub(ω′, ts
′
ω′) = ub(ω, tbω). Since ts

′
ω′ ≤ pnmω′ , min{0, tbω} ≤M b, and (pnm , qnm , Anm)

is a QCCE of Enm , it holds that

U b({ω,min{0, tbω}}; rnm) = ub(ω,min{0, tbω}) ≥ ub(ω′, ts
′
ω′) ≥ ub(ω′, pnmω′ )

≥ U b(Anm ; rnm) ≥ U b({ω, pnmω }; rnm),

and so pnmω ≥ min{0, tbω}. In case pnmω ≥M b ≥ 0, it also holds that pnmω ≥ min{0, tbω}.
Assume (Anm)s = ∅. Since (pnm , qnm , Anm) is a QCCE of Enm , it holds that U s(Anm) =

us(os) = us(ω, tsω) ≥ us(ω, pnmω ). It follows that pnmω ≤ tsω.

Assume (Anm)s 6= ∅. Let (Anm)s = {(ω′, pnmω′ )} and b(ω′) = b′. Since ω′ ∈ Ω, by Step 1,

it holds that tsω′ ≤ pnmω′ ≤ tb
′
ω′ . By (s-ii), there is t

s
ω ∈ R such that us(ω′, tb

′
ω′) = us(ω, tsω).

Since (pnm , qnm , Anm) is a QCCE of Enm , it holds that

U s({ω, tsω}) = U s({ω′, tb
′

ω′}) ≥ U s({ω′, pnmω′ }) = U s(Anm) ≥ U s({ω, pnmω }),

and so pnmω ≤ tsω. Consequently, Step 2 holds.

By Steps 1 and 2, it follows that the sequence (pn, An)n∈N has a convergent subsequence.

Part (ii): Without loss of generality, assume the sequence (pn, An)n∈N is convergent and

has limit (p,A). Define Ω = ω(A).

Let q ∈ {0, 1}Ω be such that (i) for every ω ∈ Ω, qω = 1, and (ii), for every ω ∈ Ω\Ω,
if rb(ω) = +∞ and pω ≥M b(ω), qω = 0, and if rb(ω) < +∞ or pω < M b(ω), qω = 1. Since for

every n ∈ N, An is a QCCE outcome and the sequence (An)n∈N converges to A, it is easily

seen that A is an outcome. We show next that (p, q, A) is a QCCE of the limit economy E .
Step 1: Condition (i) of Definition 4.1 holds.
By contradiction, suppose that there is a buyer b ∈ B such that Ab /∈ δb(p, q; r).

Case 1: Ab = ∅.
Since Ab = ∅ /∈ δb(p, q; r), there is ω′ ∈ Ωb such that {(ω′, pω′)} ∈ δb(p, q; r), U b(∅; r) <

U b({(ω′, pω′)}; r), and qω′ = 1. If rb = +∞, it holds by the construction of q that
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pω′ < M b. For suffi ciently large n, we have that pnω′ < M b, qnω′ = 1, and U b(∅; rn) =

ub(ob) < ub(ω′, pnω′) = U b({(ω′, pnω′)}; rn), contradicting that (pn, qn, An) is a QCCE of En.
If rb < +∞, we have for suffi ciently large n that U b(∅; rn) = ub(ob) < U b({(ω′, pnω′)}; rn),

contradicting that (pn, qn, An) is a QCCE of En.
Case 2: Ab 6= ∅.
Let ω be the unique element of ω(Ab). First, we show that if rb = +∞, then pω ≤M b.

By contradiction, suppose that pω > M b. There is ε > 0 such that pω > M b + ε. For

suffi ciently large n, we have that pnω ≥M b + ε and rnε > tbω. This implies that

U b(An; rn) = ub(ω, rn(pnω −M b) + pnω) ≤ ub(ω, rnε) < ub(ω, tbω) = ub(ob) = U b(∅; rn),

contradicting that (pn, qn, An) is a QCCE of En. Consequently, we have that pω ≤M b.

Since Ab /∈ δb(p, q; r), there is Ãb ∈ δb(p, q; r) such that U b(Ab; r) < U b(Ãb; r).

Case 2-1: rb = +∞.
By the analysis above, it holds that pω ≤M b. For every n ∈ N, we have that

U b({(ω, pnω)}; rn) = ub(ω, pnω + rn,b max{0, pnω −M b}) ≤ ub(ω, pnω).

Assume Ãb = ∅. Since limn→∞ u
b(ω, pnω) = ub(ω, pω) = U b(Ab; r), for suffi ciently large n, we

have that U b({(ω, pnω)}; rn) < U b(∅; rn), contradicting that (pn, qn, An) is a QCCE of En.
Assume Ãb 6= ∅. Let ω̃ be the unique element of ω(Ãb). It holds that qω̃ = 1. Since

rb = +∞, by the construction of q, it holds that pω̃ < M b. Since limn→∞ u
b(ω, pnω) =

ub(ω, pω) = U b(Ab; r), it follows that U b({(ω, pnω)}; rn) < U b({(ω̃, pnω̃)}; rn) for suffi ciently

large n, contradicting that (pn, qn, An) is a QCCE of En.
Case 2-2: rb < +∞.
If Ãb = ∅, we have for n suffi ciently large that U b({(ω, pnω)}; rn) < U b(∅; rn), con-

tradicting that (pn, qn, An) is a QCCE of En. If Ãb 6= ∅, let ω̃ be the unique element

of ω(Ãb). Since rb < +∞, it holds that qω̃ = 1. For n suffi ciently large, we have that

U b({(ω, pnω)}; rn) < U b({(ω̃, pnω̃)}; rn), contradicting that (pn, qn, An) is a QCCE of En.
Thus the statement of Step 1 holds.

Step 2: Condition (ii) of Definition 4.1 holds.
By contradiction, suppose that there is s ∈ S such that As /∈ δs(p).
In case As = ∅, there is ω′ ∈ Ωs such that U s(As) < U s({(ω′, pω′)}). For n suffi ciently

large, we have that U s(∅) = U s(An) < U s({(ω′, pnω′)}), contradicting that (pn, qn, An) is a

QCCE of En.
In case As 6= ∅, let ω be the unique element of ω(A

s
). Then there is Ãs ∈ δs(p) such

that U s(As) < U s(Ãs). If Ãs = ∅, we have for n suffi ciently large that U s({ω, pnω}) =

U s(An) < U s(∅), contradicting that (pn, qn, An) is a QCCE of En. If Ãs 6= ∅, let ω̃ be the
unique element of ω(Ãs). For n suffi ciently large, we have that U s({ω, pnω}) = U s(An) <

U s({(ω̃, pnω̃)}), contradicting that (pn, qn, An) is a QCCE of En.
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Step 3: Condition (iii) of Definition 4.1 holds.
This follows immediately from the construction of q.

Consequently, (p, q, A) is a QCCE of E . Q.E.D.

Theorem 5.1 considers sequences (pn, An)n∈N of prices and outcomes and leaves out

the quantity constraints qn. Indeed, the limit of any convergent sequence of QCCEs of

En may not be a QCCE of the limit economy. For instance, we can take a sequence of
competitive equilibria of a sequence of economies with soft liquidity constraints, whereas the

limit economy with hard liquidity constraints does not have a competitive equilibrium. In

addition, QCCE trades in the limit economymay not be equal to the trades compatible with

the limit of competitive equilibrium allocations in economies with increasingly stringent

liquidity constraints. In the last paragraph in Appendix A.4, we illustrate these points via

numerical examples.

Combining Theorem 4.5 and Theorem 5.1, we obtain the following limit result.

Proposition 5.2: Let (En)n∈N be a sequence of economies that converges to an economy

E . For every n ∈ N, let An be an expectational equilibrium outcome (respectively stable

outcome or core outcome) of En.
(i) The sequence (An)n∈N has a convergent subsequence.

(ii) Let A be the limit of a convergent subsequence of (An)n∈N. Then A is an expectational

equilibrium outcome (respectively stable outcome or core outcome) of E .

Since the sets of strongly stable outcomes and strict core outcomes can be empty

in economies with hard liquidity constraints, we conclude that a convergent sequence of

strongly stable outcomes or strict core outcomes in economies with increasingly stringent

soft liquidity constraints may not be a strongly stable outcome or strict core outcome at

the limit economy with hard liquidity constraints.

A particularly interesting special case of Theorem 5.1 connects competitive equilibria

in economies with increasingly stringent soft liquidity constraints to a QCCE at the limit

economy with hard liquidity constraints. The formal statement is as follows.13

Corollary 5.3: Let (En)n∈N be a sequence of economies with soft liquidity constraints

that converges to an economy E where at least one buyer is subject to a hard liquidity
constraint. For every n ∈ N, let (pn, An)n∈N be a competitive equilibrium of the economy

En. Then (pn, An)n∈N contains a convergent subsequence whose limit (p,A) is compatible

with QCCE prices and outcome in the limit economy E .
13We illustrate this statement numerically in the last paragraph in Appendix A.4.
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Finally, we remark that even if a competitive equilibrium exists in an economy with

hard liquidity constraints and (pn, An)n∈N is a convergent sequence of competitive equilib-

ria in this economy, then its limit (p,A) may not be a competitive equilibrium in the same

economy. Example 5.4 illustrates this point.

Example 5.4: Take B = {b1, b2}, S = {s}, and Ω = {ω1, ω2}, where buyer b1 can trade

ω1 with s, and buyer b2 can trade ω2 with s. For seller s, for every t ∈ R, us(ω1, t) =

us(ω2, t) = t and us(os) = 0. For buyer bi, ubi(obi) = 0 and, for every (ωi, t) ∈ Ωbi × R,
ubi(ωi, t) = V bi(ωi) − t.14 Let M b1 = 2, M b2 = 10, V b1(ω1) = 5, V b2(ω2) = 4, rb1 = +∞,
and rb2 = 0.

For every n ∈ N, let (pn, An) ∈ RΩ ×A be such that ω(An) = {ω2} and

pnω1 = pnω2 = 4− 2n

1 + n
.

It is easily seen that, for every n ∈ N, (pn, An) is a competitive equilibrium in this economy.

At the limit when n → +∞, we have that p = (pω1 , pω2) = (2, 2) and A = {(ω2, pω2)}.
However, (p,A) is not a competitive equilibrium in the limit economy as the no-trade op-

tion does not belong to the demand set of agent 1 when prices are equal to p. 4

In contrast, in an economy with soft liquidity constraints, the limit of a convergent

sequence of competitive equilibria is a competitive equilibrium as well.

6 Discussion

In this section, we consider the case where liquidity constraints correspond to more general

forms of borrowing costs and show the robustness of our results.

For every buyer b ∈ B, let gb : [0,+∞)→ [0,+∞] be a general borrowing cost function

that takes one of the following three forms:

• (No borrowing constraints) For every t ∈ [0,+∞), gb(t) = 0.

• (Hard borrowing constraints) (i) gb(0) = 0 and (ii) for every t ∈ (0,+∞), gb(t) = +∞,
• (General soft borrowing constraints) (i) gb(0) = 0, (ii) gb is continuous and strictly

increasing on [0,+∞), and (iii) the range of gb is [0,+∞).

The explanation of the first two cases is straightforward. In the third case of general

soft borrowing constraints, Condition (i) says that the cost of borrowing an amount of zero

is equal to zero. Condition (ii) requires that the borrowing cost is strictly increasing in the

14The derivation of the induced utility functions over outcomes can be found in Appendix A.1.
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amount of borrowed money. Condition (iii) states that borrowing costs increase without

limit. Let g = (gb)b∈B be the profile of general borrowing cost functions.

In the previous sections, the soft liquidity constraint is represented by a constant interest

rate. It corresponds to the special case of a general borrowing cost function where, for

every t ≥ 0, gb(t) = rb · t. On the other hand, the general borrowing cost function allows
interest rates to vary with respect to the amount of borrowed money. Consider the general

borrowing cost function defined by, for every t ∈ [0,+∞), gb(t) = rbet · t where rb > 0.

Here rbet is the interest rate that has to be paid when the borrowed amount equals t. It is

strictly increasing with respect to the amount of borrowed money t.

For every b ∈ B, for every contract c ∈ Ωb × R, the transfer plus borrowing cost for
contract c is now given by

t+(c; gb) =

{
t(c),

t(c) + gb(t(c)−M b),

if t(c) ≤M b,

if t(c) > M b.

The primitives of an economy with general borrowing constraints are summarized by

E∗ = (B, S,Ω, u,M, g). In such an economy, the profile of interest rates r is replaced by

the profile of general borrowing cost functions g.

Now we discuss how our results extend to an economy with general borrowing con-

straints. We argue that such an economy can be transformed to an economy where buyers

face either no or hard liquidity constraints. Let some economy with general borrowing

constraints E∗ = (B, S,Ω, u,M, g) be given. For every buyer b ∈ B with no borrowing

constraint, set r̃b = 0 and ũb = ub. For every buyer b ∈ B facing a general soft borrowing

constraint, set r̃b = 0 and construct ũb by following the construction in the proof of Propo-

sition 3.3.15 For every buyer b ∈ B subject to a hard borrowing constraint, set r̃b = +∞
and ũb = ub. Since there is no change on the sellers side, we get a transformed economy

Ẽ = (B, S,Ω, ((ũb)b∈B, (u
s)s∈S),M, r̃). Using the construction of Ẽ , it is easily verified that

the sets of equilibria in E∗ and Ẽ coincide. Since all the results obtained in the previous
sections hold for economies without liquidity constraints or with hard liquidity constraints,

they can be extended to economies with general borrowing constraints.

7 Concluding remarks

We study a matching with contracts model where buyers may face soft or hard liquidity

constraints or both. The economy with hard constraints can also be obtained as the

limit of a sequence of economies with increasingly stringent soft constraints. Competitive

15To be precise, define ũb : (Ωb × R) ∪ {ob} → R by ũb(ob) = ub(ob) and, for every c ∈ Ωb × R,
ũb(c) = ub(ω(c), t+(c; gb)). It follows from the properties of gb that ũb satisfies (b-i) and (b-ii).
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equilibrium always exists with soft liquidity constraints, but may fail to exist with hard

liquidity constraints. In particular, the limit of a sequence of competitive equilibria for

economies with increasingly stringent soft liquidity constraints may fail to be a competitive

equilibrium of the limit economy with hard liquidity constraints.

We argue that two alternative notions of competitive equilibrium, quantity constrained

competitive equilibrium (QCCE) and expectational equilibrium, as well as solution con-

cepts like stable outcomes and core outcomes, do not suffer from such deficiencies. We

show the equivalence, existence, and limit results of all these notions. Our results provide

new insights for the continuity properties of equilibria in matching models with different

types of liquidity constraints.

Appendix

In this appendix, we provide several numerical examples that illustrate ideas and equilib-

rium notions in the main text.

A.1 Integration of matching models with soft and hard liquidity constraints

There is a finite set of buyers B and a finite set of sellers S. Each seller owns one item

and is only willing to sell if the price is above a reserve price. Buyers want to acquire one

item at most. We take the set of trades equal to Ω = B × S. For every seller s ∈ S, for
every ω, ω′ ∈ Ωs, for every t ∈ R, us(ω, t) = us(ω′, t) = t and us(os) ≥ 0 denotes the reserve

price for the item in the possession of seller s.

For every buyer b ∈ B, ub(ob) = 0 and, for every (ω, t) ∈ Ωb × R, ub(ω, t) = V b(ω)− t.
Buyer b ∈ B is endowed with an amount of money M b ∈ R+. If the payment exceeds M b,

then buyer b can borrow money against a market interest rate ρ ∈ [0,+∞], which is the

same for all buyers.

For every A ∈ A, for every b ∈ B, in case Ab = ∅, U b(A; r) = ub(ob) = 0 and in case

Ab = {(ω, t)}, if buyer b faces a soft liquidity constraint, i.e., ρ ∈ [0,+∞),

U b(A; r) =

{
V b(ω)− t,
V b(ω)− t− ρ(t−M b),

if t ≤M b,

if t > M b,

and if buyer b faces a hard liquidity constraint, i.e., ρ = +∞,

U b(A; r) =

{
V b(ω)− t,
−∞,

if t ≤M b,

if t > M b.

A.2 Competitive equilibria in the case of soft liquidity constraints
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Consider the economy in Appendix A.1 in the presence of soft liquidity constraints with

common interest rate ρ ∈ [0,+∞).

Take B = {b1, b2, b3}, S = {s1, s2}, and Ω = {ω11, ω22, ω31, ω32}, where buyer b1 trades

ω11 with s1, buyer b2 trades ω22 with s2, and buyer b3 trades ω31 with seller s1 and ω32

with seller s2. For every agent i ∈ B ∪ S, ui(oi) = 0. Otherwise, utility functions are

as described in Appendix A.1. Buyers’monetary endowments are as follows: M b1 = 2,

M b2 = 3, and M b3 = 10. Let V b1(ω11) = 5, V b2(ω22) = 4, V b3(ω31) = 6, and V b3(ω32) = 7.

We define (p(ρ), A) ∈ RΩ ×A by

pω11(ρ) = pω31(ρ) = 3+2ρ
1+ρ

,

pω22(ρ) = pω32(ρ) = 4+3ρ
1+ρ

,

A = {(ω11, pω11(ρ)), (ω32, pω32(ρ))}.

We show that (p(ρ), A) satisfies Conditions (i) and (ii) of Definition 3.1 and conclude that

it is a competitive equilibrium.

First, (p(ρ), A) satisfies Condition (i). For buyer b1 it holds that pω11(ρ) > 2 = M b1 .

Since

t+((ω11, pω11(ρ)); ρ) = pω11(ρ) + ρ(pω11(ρ)−M b1) = 3+2ρ
1+ρ

+ ρ(3+2ρ
1+ρ
− 2) = 3 < 5 = V b1(ω11),

buyer b1 strictly prefers buying ω11 at price pω11(ρ) over the no-trade option. Thus Ab1 =

{(ω11, pω11(ρ))} ∈ δb1(p(ρ); ρ) = {{(ω11, pω11(ρ))}}.
For buyer b2 it holds that pω22 > 3 = M b2 . Since

t+((ω32, pω32(ρ)); ρ) = pω22(ρ) + ρ(pω22(ρ)−M b2) = 4+3ρ
1+ρ

+ ρ(4+3ρ
1+ρ
− 3) = 4 = V b2(ω22),

buyer b2 is indifferent between acquiring ω22 against price pω22(ρ) and not trading. Thus

Ab2 = ∅ ∈ δb2(p(ρ); ρ) = {∅, {(ω22, pω22(ρ))}}.
For buyer b3 it holds that pω31(ρ), pω32(ρ) < 10 = M b3 . Since 6−pω31(ρ) = 7−pω32(ρ) > 0,

at prices pω31(ρ) and pω32(ρ), buyer b3 is indifferent between ω31 and ω32 and strictly prefers

both trades to the no-trade option. We find that Ab3 = {(ω32, pω32(ρ))} ∈ δb3(p(ρ); ρ) =

{{(ω31, pω31(ρ))}, {(ω32, pω32(ρ))}}.
Second, (p(ρ), A) satisfies Condition (ii). Since pω11(ρ) = pω31(ρ) > 0 and pω22(ρ) =

pω32(ρ) > 0, seller s1 is willing to supply either ω11 or ω31 and seller s2 is willing to supply

either ω22 or ω32. We conclude that

As1 = {(ω11, pω11(ρ))} ∈ δs1(p(ρ)) = {{(ω11, pω11(ρ))}, {(ω31, pω31(ρ))}},
As2 = {(ω32, pω32(ρ))} ∈ δs2(p(ρ)) = {{(ω22, pω22(ρ))}, {(ω32, pω32(ρ))}}.
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A.3 Non-existence of competitive equilibria

We consider the economy of Appendix A.2 in the presence of hard liquidity constraints,

which can be modeled by setting ρ = +∞. In such a case, p(+∞) is simply written as p.

The utility function of buyer b1 over outcomes exhibits a discontinuity at a price equal to

the monetary endowment M b1 = 2. For every t ≤ 2 it holds that

U b1({(ω11, t)}; ρ) = V b1(ω11)− t = 5− t ≥ 3

and for every t > 2 we have U b1({(ω11, t)}; ρ) = −∞. The utility functions of buyers b2

and b3 display similar discontinuities at prices equal to their monetary endowments.

We argue that there is no competitive equilibrium. By contradiction, suppose there is

a competitive equilibrium (p,A). Since each buyer can trade with at most one seller, there

is at least one buyer who does not trade. In case this is buyer b1, it holds that pω11 > 2.

Therefore, instead of choosing the no-trade option, seller s1 prefers to trade. Since b1

chooses the no-trade option, s1 must trade with buyer b3 at a price pω31 ≥ pω11 > 2. This

implies that pω32 ≥ pω31 + 1 > 3, since otherwise buyer b3 is not willing to trade with s1.

Therefore, rather than choosing the no-trade option, seller s2 prefers to trade and can trade

with buyers b2 and b3. Since b3 trades with s1, seller s2 must trade with buyer b2 at a price

pω22 ≥ pω32 > 3. Since pω22 exceeds the monetary endowment of buyer b2 and ρ = +∞, this
leads to a contradiction.

In case buyer b2 does not trade or buyer b3 does not trade, similar contradictions can

be derived. Thus, there is no competitive equilibrium.

A.4 Illustration of QCCEs

Consider the economy with hard liquidity constraints in Appendix A.3. As argued

before, it has no competitive equilibrium. We illustrate that it has QCCEs.

Let (p, q, A) ∈ RΩ × {0, 1}Ω ×A be defined by

p = (pω11 , pω22 , pω31 , pω32) = (2, 3, 2, 3),

q = (qω11 , qω22 , qω31 , qω32) = (1, 0, 1, 1),

A = {(ω11, 2), (ω32, 3)}.

We show that (p, q, A) is a QCCE by verifying that it satisfies Conditions (i), (ii), and (iii)

of Definition 4.1.

First, (p, q, A) satisfies Condition (i). For buyer b1, it holds that γb1(p, q) = {∅, {(ω11, 2)}}
and Ab1 = {(ω11, 2)} ∈ δb1(p, q; ρ) = {{(ω11, 2)}}. For buyer b2, we have γb2(p, q) = {∅} and
soAb2 = ∅ ∈ δb2(p, q; ρ) = {∅}. For buyer b3, it holds that γb3(p, q) = {∅, {(ω31, 2)}, {(ω32, 3)}}
and so Ab3 = {(ω32, 3)} ∈ δb3(p, q; ρ) = {{(ω31, 2)}, {(ω32, 3)}}.
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Second, (p, q, A) satisfies Condition (ii). Since all trades involving seller s1 have the

same price, it is easy to see that As1 = {(ω11, 2)} ∈ δs1(p) = {{(ω11, 2)}, {(ω31, 2)}}. The
same argument applies to seller s2, so As2 = {(ω32, 3)} ∈ δs2(p) = {{(ω22, 3)}, {(ω32, 3)}}.
A quantity constraint is expected for trade ω22 by b2, who is subject to a hard financial

constraint and has a monetary endowment equal to pω22 . It follows that (p, q, A) satisfies

Condition (iii).

A similar argument shows that (p, q′, A′) such that q′ = (q′ω11 , q
′
ω22
, q′ω31 , q

′
ω32

) = (0, 1, 1, 1)

and A′ = {(ω22, 3), (ω31, 2)} is a QCCE.
Note that the limit of any convergent sequence of QCCEs may not be a QCCE of the

limit economy. A sequence of competitive equilibria (pn(ρn), An) in Appendix A.2 corre-

sponds to a sequence of QCCEs (pn(ρn), qn, An) with qn = (1, . . . , 1). However, as shown

in Appendix A.3, at the limit economy there is no competitive equilibrium so there is no

QCCE that is compatible with quantity constraints q = (1, . . . , 1). That said, the limit of

a sequence of competitive equilibria (pn(ρn), An) in Appendix A.2 for increasing interest

rates ρn yields prices p and outcome A corresponding to the QCCE (p, q, A) of the limit

economy. Note also that not every set of QCCE trades at the limit economy corresponds to

trades compatible with the limit of competitive equilibrium allocations in economies with

increasingly stringent soft liquidity constraints. For example, (p, q′, A′) is a QCCE with set

of equilibrium trades equal to {ω31, ω22}. However, {ω31, ω22} is not compatible with any
competitive equilibrium in an economy with soft liquidity constraints, see Appendix A.2.

A.5 Illustration of expectational equilibria

Consider the economy with soft liquidity constraints of Appendix A.2. Let (A,Q,R) ∈
A× 2Y × 2Y be defined by

A = {(ω11,
3+2ρ
1+ρ

), (ω32,
4+3ρ
1+ρ

)},
Q = {(ω, t) ∈ Y | ω ∈ {ω11, ω31}, t < 3+2ρ

1+ρ
} ∪ {(ω, t) ∈ Y | ω ∈ {ω22, ω32}, t < 4+3ρ

1+ρ
},

R = {(ω, t) ∈ Y | ω ∈ {ω11, ω31}, t > 3+2ρ
1+ρ
} ∪ {(ω, t) ∈ Y | ω ∈ {ω22, ω32}, t > 4+3ρ

1+ρ
}.

We show that (A,Q,R) is an expectational equilibrium by verifying Conditions (i), (ii),

and (iii) of Definition 4.2.

First, (A,Q,R) satisfies Condition (i). For buyer b1 we have

γb1(Q) = {{(ω11, t)} ∈ Xb1 | t ≥ 3+2ρ
1+ρ
} ∪ {∅},

Ab1 = {(ω11,
3+2ρ
1+ρ

)} ∈ δb1(Q; ρ) = {{(ω11,
3+2ρ
1+ρ

)}}.

For buyer b2 it holds that

γb2(Q) = {{(ω22, t)} ∈ Xb2 | t ≥ 4+3ρ
1+ρ
} ∪ {∅},

Ab2 = ∅ ∈ δb2(Q; ρ) = {{(ω22,
4+3ρ
1+ρ

)}, ∅}.
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For buyer b3 it holds that

γb3(Q) = {{(ω31, t)} ∈ Xb3 | t ≥ 3+2ρ
1+ρ
} ∪ {{(ω32, t)} ∈ Xb3 | t ≥ 4+3ρ

1+ρ
} ∪ {∅},

Ab3 = {(ω32,
4+3ρ
1+ρ

)} ∈ δb3(Q; ρ) = {{(ω31,
3+2ρ
1+ρ

)}, {(ω32,
4+3ρ
1+ρ

)}}.

Second, (A,Q,R) satisfies Condition (ii). For seller s1 we have

γs1(R) = {{(ω, t)} ∈ Xs1 | ω ∈ {ω11, ω31}, t ≤ 3+2ρ
1+ρ
} ∪ {∅},

As1 = {(ω11,
3+2ρ
1+ρ

)} ∈ δs1(R) = {{(ω11,
3+2ρ
1+ρ

)}, {(ω31,
3+2ρ
1+ρ

)}}.

For seller s2 it holds that

γs2(R) = {{(ω, t)} ∈ Xs2 | ω ∈ {ω22, ω32}, t ≤ 4+3ρ
1+ρ
} ∪ {∅},

As2 = {(ω32,
4+3ρ
1+ρ

)} ∈ δs2(R) = {{(ω22,
4+3ρ
1+ρ

)}, {(ω32,
4+3ρ
1+ρ

)}}.

It is easily verified that Condition (iii) holds as well.
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