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We introduce and study a large family of rules for many-to-one matching problems, 
the Preference Rank Partitioned (PRP) rules. PRP rules are student-proposing Deferred 
Acceptance rules, where the schools select among applicants in each round taking into 
account both the students’ preferences and the schools’ priorities. In a PRP rule each school 
first seeks to select students based on priority rank classes, and subsequently based on 
preference rank classes. PRP rules include many well-known matching rules, such as the 
classic Deferred Acceptance rule, the Boston rule, the Chinese Application-Rejection rules 
of Chen and Kesten (2017), and the French Priority rules of Bonkoungou (2020), in addition 
to matching rules that have not been studied yet. We analyze the stability, efficiency and 
incentive properties of PRP rules in this unified framework.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We study a family of matching rules, which includes many already well-known rules, for many-to-one matching prob-
lems that match heterogeneous objects to agents, where objects have strict priorities over agents. Since this model is known 
as the school choice model due to Abdulkadiroǧlu and Sönmez (2003), we call the objects schools and refer to the agents as 
students. However, our theoretical approach and results pertain to a broad range of applications, not just to school choice, 
such as centralized university admissions and refugee resettlement, among others. Balinski and Sönmez (1999) introduced 
this model first, which only differs from the college admissions model of Gale and Shapley (1962) in that school priorities 
are mandated by policies or by the law and thus school seats can be viewed as objects to be allocated, while in college 
admissions schools have preferences and are considered to be strategic agents. In the school choice model only the students’ 
welfare and incentives are considered, and stability translates into fairness in this model, since the exogenously given school 
priorities are taken into account from the students’ perspective.

We call the family of rules that we introduce and study Preference Rank Partitioned (PRP) rules, since these matching 
rules are student-proposing Deferred Acceptance (DA) rules in which schools use a choice function to select among ap-
plicants, which relies not only on the school priorities, but also on a partitioning of student preferences. Choice-based DA 
mechanisms are studied and characterized by Kojima and Manea (2010) and Ehlers and Klaus (2016). Choice functions are 
employed in matching with diversity constraints (e.g., Ehlers et al., 2014) or with distributional constraints (e.g., Kamada 
and Kojima, 2018), among others, which typically do not consider choice functions that depend on preferences.
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PRP rules are determined by a partition of each school’s priority ranks of students and by a partition of each stu-
dent’s preference ranks of schools, which lead to priority and preference rank classes respectively. Students who are in a 
higher priority rank class are selected by the school’s choice function first, followed by a comparison of the preference rank 
classes in which applying students place the school in question, in order to make further selections. If ties remain then the 
school-specific strict priorities over students are used for tie-breaking. Since the given priorities are assumed to be strict, 
a PRP rule specifies, as the first selection criterion, priority rank classes which lead to coarse (i.e., weak) priorities that are 
consistent with the given strict priorities. As the second selection criterion, a PRP rule bases the selection of students on 
their preference rank classes in the instances where some students applying to the school are in the same priority rank 
class and selecting all of them would result in exceeding the school’s capacity. The strict priorities within the priority rank 
classes specified by the PRP rule are used only for tie-breaking, as a last resort, when neither the priority rank classes nor 
the preference rank classes can determine the selection of students by a school in a particular round of the iterated DA 
procedure.

When the given priorities are coarse, the DA and most other prominent matching rules are not well-defined, and the 
ties need to be resolved. The most straightforward way is to simply use lotteries; for example, Abdulkadiroǧlu et al. (2009)
propose to use a single tie-breaking procedure in the DA, which is a tie-breaking lottery that applies to each school. Further 
interesting papers on tie-breaking in conjunction with efficiency and strategyproofness are Ehlers and Erdil (2010) and 
Ehlers and Westkamp (2018). PRP rules can also be interpreted and used as matching rules that break the ties in coarse 
priorities by relying on the submitted preferences.

1.1. PRP rules in theory and practice

The class of PRP rules includes many well-known matching rules, such as the classic Deferred Acceptance (Gale and 
Shapley, 1962) and Boston rules (Abdulkadiroǧlu and Sönmez, 2003), as well as the family of Application-Rejection mecha-
nisms of Chen and Kesten (2017), the French Priority mechanisms of Bonkoungou (2020), and the Secure Boston mechanism 
proposed by Dur et al. (2019) to replace the Boston mechanism, among others. We analyze the entire family of PRP rules 
and a subfamily, the Equitable PRP rules, which treat students symmetrically due to their homogeneous preference rank 
classes across students. All previously studied rules and families of rules that are PRP rules are Equitable PRP rules. We 
also study new PRP rules which are not Equitable PRP rules, for example, the class of Favored Students rules, which treat 
students in one of two ways: each student has either the coarsest or the finest preference rank partition. We also identify 
some further classes of PRP rules which are Equitable PRP rules and include the DA and Boston rules, but are distinct from 
families of rules already studied in the literature, such as the Application-Rejection rules and the generalized class of Secure 
Boston rules, proposed by Dur et al. (2019). One such class is what we call the Deferred Boston rules, which are PRP rules 
that have homogeneous priority rank partitions combined with the finest preference rank partitions. We also identify the 
class of Homogeneous PRP rules, characterized by having both homogeneous priority and preference rank partitions, which 
makes Homogeneous PRP rules a superset of almost all previously studied PRP rules (except for some French Priority rules 
such as First Preference First and Secure Boston rules) and a subset of Equitable PRP rules.

Several PRP rules have been used worldwide in school choice, university admissions, and hospital-intern matching, apart 
from the widely used and celebrated Deferred Acceptance rule. Thus, PRP rules and their properties are not just of theo-
retical interest, but also have practical relevance. The Boston rule was in use in Boston for school choice until 2005 and 
is still a popular procedure for student placement. The Boston rule is a special case of the priority matching mechanisms 
of Roth (1991), which were used in several UK cities starting in the 1960s for allocating hospital positions to graduating 
medical students, and it is the only PRP rule which is also a priority matching mechanism. The First Preference First rule 
used in England for school choice was banned in 2007 (Pathak and Sönmez, 2013). The French Priority rules are employed 
in centralized university admissions in France (Bonkoungou, 2020). The Parallel Mechanisms (more generally, Application-
Rejection mechanisms) are in use for college admissions in most provinces of China and are also widely used in China for 
school choice (Chen and Kesten, 2017, 2019).

1.2. Our contribution

We introduce the large class of PRP matching rules in a common setting and use this unified approach to establish 
stability, efficiency, and incentive properties of PRP rules. We first demonstrate that PRP rules choose the optimal stable 
matching that is consistent with the specific school choice functions at each preference profile (Proposition 1). We also 
characterize the subclass of PRP rules which treat students symmetrically, the Equitable PRP rules, by applying a natural 
weak stability property that relies on preference ranks in addition to the priorities to justify assignments (Proposition 2). 
This characterization generalizes to the larger class of rules which are not necessarily optimal but share the choice-function-
specific stability properties of PRP rules (Theorem 1). We also show that the only Pareto-efficient PRP rules are what we 
call the Near-Boston rules (an implication of Theorem 2). Surprisingly, the set of Near-Boston rules includes some PRP rules 
other than the Boston rule, which is well-known to be efficient (Abdulkadiroǧlu and Sönmez, 2003; Kojima and Ünver, 
2014). However, the class of Pareto-efficient PRP rules is still quite restricted, since for these matching rules only one 
student’s preference rank partition may differ from that of the Boston rule, which itself calls for the finest preference rank 
partition for each student.
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However, the Boston rule is well-known to be highly manipulable, and these concerns carry over to other Near-Boston 
rules as well. If many students misrepresent their true preferences, the matching outcome is unlikely to be Pareto-efficient, 
and in fact the welfare loss can be significant (Ergin and Sönmez, 2006; Pathak and Sönmez, 2008). We prove that the only 
strategyproof PRP rule is the Deferred Acceptance rule (an implication of Theorem 3). While PRP rules are not strategyproof, 
except for the DA, they can be shown to be less manipulable than their non-optimal counterparts, based on the criteria and 
general results of Pathak and Sönmez (2013) and Chen et al. (2016). Our main result on incentives (Theorem 4) sheds new 
light on the incentive properties of well-known PRP rules and offers insight into their manipulability properties in general. It 
shows that students cannot manipulate PRP rules to obtain a school that was unattainable when reporting their preferences 
truthfully by placing this school in the same or in a lower preference rank class. This implies that manipulation is only 
possible by placing a desired but unattainable school in a higher preference rank class in the reported preferences than 
where it is truthfully. Although intuitive, this is a general result with significant and not necessarily obvious implications. 
It clarifies the different extents of possible manipulation for different PRP rules, specifically whether and how a school can 
potentially be obtained by manipulation, depending on the preference rank classes. It also helps us understand the scope of 
manipulation better, which may differ widely among students, even for Equitable PRP rules.

Overall, we find that the priority and preference rank partitions in PRP rules indicate trade-offs. Our results imply that 
there is a trade-off between respecting priorities and ensuring student welfare: fine priority rank partitions lead to fewer 
priority violations but allow less room for efficiency, while efficiency improvements require coarser priority rank partitions 
and finer preference rank partitions. The incentives also change along these trade-offs, since efficiency improvements in PRP 
rules increase the opportunity for manipulation, and thus strategic considerations may lead the market designer to choose 
finer priority rank partitions and coarser preference rank partitions, both of which lead to fewer priority violations.1

The closest papers to ours are Chen and Kesten (2017), which introduces and examines the by now well-known class of 
PRP rules known as Chinese Parallel Mechanisms, and Bonkoungou (2020), which studies another important subclass of PRP 
rules, the French Priority mechanisms, which are distinct from the Parallel Mechanisms. Chen and Kesten (2017) study the 
subclass of PRP rules for which the preference rank classes are homogeneous while the priority rank classes are the coarsest. 
We generalize the findings of Chen and Kesten (2017) about the extreme members of the class of Application-Rejection 
rules (Theorem 2 and Theorem 3), while their results on manipulability comparisons of different matching rules are only 
intuitively related to our main theorem on incentives (Theorem 4). Bonkoungou (2020) has coarse priorities as primitives of 
his model, and thus the French Priority rules, which always have the finest preference rank partition for students (just like 
the Boston rule does), collapse to one single rule in his approach. He explores the incentive properties of the French Priority 
rule from both an ex-ante and an ex-post perspective and introduces a notion called strategic accessibility, which serves as 
a basis for further manipulability comparisons (see also Bonkoungou and Nesterov, 2021). Specifically, Bonkoungou (2020)
makes comparisons based on how fine the given coarse priorities are, while our main theorem on incentives pertains to the 
preference rank classes and complements the ex-post perspective results of Bonkoungou (2020).

2. Model

Let S be the set of n students and C the set of m schools. Each school c ∈ C has capacity qc ≥ 1, that is, qc is the 
number of seats available at school c. In order to simplify the exposition, we assume that m ≥ 3 and that there exist schools 
a, b, c ∈ C such that qa + qb + qc < n, which implies that n ≥ 4. This assumption ensures that there is scarcity for at least 
the three schools with the least capacity, so we don’t need to take care of special cases where this minimum condition 
doesn’t hold. Each school c ∈ C has a strict priority ordering �c of students in S . Let π be the set of all priority orderings 
(i.e., permutations) of the n students in S . Then for all c ∈ C, �c ∈ π . Let � = π × . . . × π be the set of priority profiles 
(the m-fold Cartesian product of π ). A priority profile is �= (�c1 , . . . , �cm ), where �∈ �. We also use the notation �−c to 
denote (�a)a∈C\{c} .

Each student s ∈ S has a preference relation P s , a strict ordering over C ∪ {0}, where assigning 0 to student s represents 
staying unmatched (or being matched to an outside option). If 0 P s c then school c is unacceptable to student s, and other-
wise the school is acceptable to s. For c, c′ ∈ C ∪ {0}, we write c P s c′ if student s strictly prefers c to c′ , and c Rs c′ if either 
c P s c′ or c = c′ . We also use the notation rs(c) for student s’s rank of school c ∈ C for each acceptable school c, where 
rs(c) = k indicates that c is ranked in the kth position by s. Note that if rs(c) < rŝ(c) then s ranks school c higher than ŝ
does, since a lower rank number indicates higher preference. Let P denote the set of all preference relations for a student, 
and let P = P × . . . × P denote the set of preference profiles (the n-fold Cartesian product of P). A preference profile is 
P = (P s1 , . . . , P sn ), where P ∈P . We also use the notation P−s to denote (P s′ )s′∈S\{s} .

A problem is given by (S, C, (qc)c∈C , (�, P )), consisting of the fixed set of students S , the fixed set of schools C , the 
fixed school capacities (qc)c∈C , and a priority and preference profile pair (�, P ) ∈ � × P (henceforth a profile, for short). 
Since only the profile is allowed to vary, a problem is specified by a profile. A matching is a function μ : S → C ∪ {0}, 
where μ(s) ∈ C is the school to which student s is assigned. If a student s is unmatched in matching μ, we write μ(s) = 0. 
For ease of notation, let μs denote μ(s). We will refer to μs as the assignment of student s in matching μ. Also, let μc

denote μ−1(c), the set of students assigned to c. For all c ∈ C, |μc| ≤ qc , that is, the school capacity qc cannot be exceeded. 

1 See also Abdulkadiroǧlu et al. (2011) for a related analysis on the trade-offs between the Boston and DA rules.
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Let the set of matchings be denoted by M . A matching rule ϕ assigns a matching to each profile (�, P ) ∈ � × P . Thus, 
ϕ : � ×P → M .

A matching μ is individually rational for student s ∈ S at profile (�, P ) if s weakly prefers μs to being unmatched, that 
is, μs Rs 0. A matching is individually rational at profile (�, P ) if it is individually rational for all students s ∈ S at (�, P ). 
A matching μ is non-wasteful at (�, P ) if no student s prefers a school to μs which has empty seats in matching μ, that 
is, for all s ∈ S and c ∈ C , if c P s μs then |μc| = qc .

Student s has justified envy in matching μ at profile (�, P ) if there exist school c ∈ C and student ŝ ∈ S such that 
c P s μs , s �c ŝ and μŝ = c. That is, student s’s envy is justified, given that ŝ is matched to c and s has higher priority for c
than ŝ. A matching μ is stable at (�, P ) if it is individually rational, non-wasteful, and there is no student who has justified 
envy in μ at (�, P ). A matching rule is stable if it assigns a stable matching to each profile (�, P ).

A matching η ∈ M Pareto-dominates μ ∈ M at profile (�, P ) if, for all s ∈ S, ηs Rs μs and, for some ŝ ∈ S , ηŝ P ŝ μŝ . A 
matching μ ∈ M is Pareto-efficient at (�, P ) if there is no matching in M which Pareto-dominates μ at (�, P ). A matching 
rule is Pareto-efficient if it assigns a Pareto-efficient matching at (�, P ) to each profile (�, P ) ∈ � × P . A matching is
optimal stable at (�, P ) if it is stable at (�, P ) and Pareto-dominates all other stable matchings at (�, P ). It is shown by 
Gale and Shapley (1962) that there is a unique optimal stable matching at each profile. A matching rule is optimal stable if 
it assigns the unique optimal stable matching at (�, P ) to each profile (�, P ) ∈ � ×P .

3. Preference Rank Partitioned rules

We now describe the family of matching rules that we study in this paper, called Preference Rank Partitioned (or PRP) 
rules. PRP rules are choice-based Deferred Acceptance rules, that is, each school uses a choice function to select among 
its applicants in each round of the DA procedure. For each school c ∈ C , we define a choice function Chc such that for all 
S ′ ⊆ S , Chc(S ′) ⊆ S ′ with the following properties. If |S ′| ≤ qc then Chc(S ′) = S ′ and if |S ′| > qc then |Chc(S ′)| = qc .2 For 
PRP rules the choice function for school c depends not only on the priority ordering �c but also on the preference profile, 
which is the main distinguishing feature of these matching rules.

Choice-based Deferred Acceptance rules

The choice-based DA rules are iterative. We describe the first round and a general round k.

Round 1: Each student applies to her highest-ranked acceptable school. Each school tentatively assigns its seats to its 
applicants according to its choice function. Any remaining applicants are rejected.
Round k: Each student who was rejected in round k − 1 applies to her next highest-ranked acceptable school, if any 
remains. Each school considers the students who are tentatively assigned to the school, if any, together with its new ap-
plicants (henceforth the “applicant pool”), and tentatively assigns its seats according to its choice function. Any remaining 
applicants are rejected.

The algorithm terminates when each student is either tentatively assigned to some school or has been rejected by each 
school that is acceptable to the student. The last tentative assignments constitute the final matching, while students without 
a tentative assignment in the last round remain unmatched.

Each PRP rule is determined by a profile of “partitions” of both the priority ranks of schools and the preference ranks 
of students. Each school’s priority ranks are partitioned by specifying the number of consecutively ranked students in each 
member of the partition, starting from the top of the rankings.3 Each student’s preference ranks are also partitioned similarly 
by specifying the number of consecutively ranked schools in each member of the partition. The priority and preference rank 
partitions are used by the choice function Chc of each school c which selects among students in the applicant pool as a 
function of the priority and preference rank partitions specified by the PRP rule.

Given a partition of the priority ranks for school c, the priority rank classes, and given a partition of the preference ranks 
for each student, the preference rank classes, school c first selects students from its applicant pool in its highest priority 
rank class(es). If this does not determine which students are selected, where the maximum number of selected students is 
the capacity qc of the school, which is possible because priority rank classes may contain more than one student, the choice 
function then considers the partitioned preference ranks, and selects students who have school c in their highest possible 
preference rank class(es) relative to each other. If the preference rank partitions still do not determine the selected set of 
students for school c, then the choice is resolved according to the exogenously given strict priority ordering �c , which can 
be seen as a tie-breaking step. This defines a choice function for each school c ∈ C , as it determines the set of selected 
students unambiguously from any given applicant pool S ′ ⊆ S for each �c and preference profile P .

In sum, each school’s choice function selects students from the applicant pool lexicographically in the following order:

2 This property of choice functions is known as acceptant (Kojima and Manea, 2010).
3 A partition of priority ranks may arise naturally when priorities are coarse, as is often the case in school choice, but here we treat these partitions as 

part of the matching rule, while strict priorities are fixed exogenously for each school. We discuss how to start from coarse priorities in Section 9.
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1. based on the priority rank classes of the school;
2. based on the preference rank classes that this school is placed in;
3. based on tie-breaking according to the given strict priority ordering of the school.

A collection of choice functions (Chc)c∈C , which are determined by the priority and preference rank classes, identifies a 
PRP rule. Given their central role in the definition of PRP rules, we now define priority and preference rank classes formally. 
For all c ∈ C , let the cardinalities of the priority rank classes be denoted by v1

c , v2
c , . . . , starting with the top-ranked students, 

such that 
∑

t vt
c = n. Let vc = (v1

c , . . .) denote the list of these cardinalities for each school c ∈ C , which we refer to as the 
priority rank partition for school c, and let v = (vc)c∈C be the priority rank partition profile.

The coarsest priority rank partition is when vc = (n) and hence the partition has one member only. The finest priority 
rank partition is given by (v1

c , . . . , vn
c ) = (1, . . . , 1) with n members, where each priority rank class contains one student.4

We also define homogeneous priority rank partition profiles as follows: a priority rank partition profile v is homogeneous 
if for all c, c′ ∈ C, vc = vc′ , that is, if the priority rank partition is the same for each school.5

Given a priority profile �∈ �, for all c ∈ C , let V 1(�c) be the set of students whose rank in �c is between 1 and v1
c

and, for all t ≥ 2, let V t(�c) be the set of students whose rank in �c is between 
∑t−1

l=1 vl
c + 1 and 

∑t
l=1 vl

c . Note that for all 
t ≥ 1, |V t(�c)| = vt

c .
We define preference rank partitions similarly to priority rank partitions. For all s ∈ S , let the cardinalities of the pref-

erence rank classes be denoted by x1
s , x2

s , . . ., starting with the top-ranked schools, such that 
∑

t xt
s = m. Let xs = (x1

s , . . .)
denote the list of these cardinalities for each student s ∈ S , which we refer to as the preference rank partition for student s, 
and let x = (xs)s∈S be the preference rank partition profile.

The coarsest preference rank partition is when xs = (m) and hence the partition has one member only.6 The finest 
preference rank partition is given by (x1

s , . . . , xm
s ) = (1, . . . , 1) with m members, where each preference rank class contains 

one school. We also define homogeneous preference rank partition profiles as follows: a preference rank partition profile 
x is homogeneous if for all s, s′ ∈ S, xs = xs′ , that is, if the preference rank partition is the same for each student.

Given a preference profile P ∈P , for all s ∈ S , let X1(P s) be the set of acceptable schools whose rank in P s is between 1
and x1

s and, for all t ≥ 2, let Xt(P s) be the set of acceptable schools whose rank in P s is between 
∑t−1

l=1 xl
s + 1 and 

∑t
l=1 xl

s . 
Note that |Xt(P s)| = xt

s for all t ≥ 1 only if all schools are acceptable to student s (i.e., when assignment 0 is ranked last) 
and otherwise there exists t̂ ≥ 1 such that |Xt̂(P s)| < xt̂

s , and for all t < t̂ , if there are any, |Xt(P s)| = xt
s , while for all the 

remaining preference rank classes of s with t > t̂ , if there are any, Xt(P s) = ∅, where t̂ depends on the number of acceptable 
schools to student s. Note that assignment 0 is not a member of a preference rank class, so 

∑
t |Xt(P s)| ≤ m is the number 

of acceptable schools according to P s .
Each PRP rule is determined by a pair of a priority rank partition profile and a preference rank partition profile (v, x). 

This is not to be confused with the profile (�, P ), a pair of a strict priority profile and a strict preference profile. The latter 
determines a specific problem and is a primitive of our model, while (v, x) is part of the specification of the PRP rule. We 
will indicate explicitly the priority and preference rank partition profiles for a PRP rule and denote it by f v,x .

We can now define the choice function Chc for school c in a PRP rule f v,x . Fix c ∈ C and let S ′ ⊆ S . The set of students 
is selected from applicant pool S ′ based on �c, vc, (P s)s∈S ′ , and (xs)s∈S ′ , as follows. If |S ′| ≤ qc then Chc(S ′) = S ′ , and if 
|S ′| > qc then Chc(S ′) = T such that T ⊂ S ′, |T | = qc and the following selection rules are satisfied.

1. Selection based on the priority rank classes: there exists k ≥ 1 such that for all s ∈ T , s ∈ ∪k
t=1 V t(�c), and for all 

ŝ ∈ S ′ \ T such that ŝ ∈ ∪k
t=1 V t(�c), ŝ ∈ V k(�c);

2. Selection based on the preference rank classes: there exists k′ ≥ 1 such that for all s ∈ (T ∩ V k(�c)), c ∈ ∪k′
t=1 Xt(P s), 

and for all ŝ ∈ S ′ \ T such that ŝ ∈ V k(�c) and c ∈ ∪k′
t=1 Xt(P ŝ), c ∈ Xk′

(P ŝ);
3. Selection based on tie-breaking according to the given strict priority ordering: for all s ∈ T and ŝ ∈ S ′ \ T such that 

s, ̂s ∈ V k(�c), c ∈ Xk′
(P s), and c ∈ Xk′

(P ŝ), s �c ŝ.

Example 1 (PRP choice functions). Consider a matching problem with four students and four schools (n = m = 4). The pref-
erences are given in the table below, in which the bars indicate the preference rank classes for the PRP rule. That is, 
x1 = (1, 2, 1), x2 = (1, 3), x3 = (3, 1), x4 = (1, 3).

4 Technically, the priority rank partition is considered to be the finest whenever the resulting matching rule is outcome-equivalent with the above. Given 
that a school’s capacity may be greater than one, this implies that a priority rank partition for school c is still the finest if the students in priority ranks 
qc + 1, qc + 2, . . . , n are in their own singleton priority rank classes, and the priority rank classes of ranks 1 to qc are arbitrary. However, in the standard 
representation of a PRP rule presented in Appendix A, if school c has the finest priority rank partition then (v1

c , . . . , vn
c ) = (1, . . . , 1).

5 Since schools may have different capacities, a weaker notion of homogeneous priority rank partition profiles can also be defined as follows: for all 
c, c′ ∈ C such that qc = qc′ , vc = vc′ . In a simpler model where each school has unit capacity, the two notions of homogeneity are the same.

6 Technically, the preference rank partition is also the coarsest if having more than one preference rank class always leads to the same matching as 
having just one. For example, if n ≤ ∑

c∈C qc then no student is rejected by her mth-ranked school, and thus x1
i = m − 1 also yields a coarsest partition. 

However, in the standard representation of a PRP rule presented in Appendix A, if student s ∈ S has the coarsest priority rank partition then xs = (m).
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P1 P2 P3 P4

b b d b

c a b a
a d a d

d 0 c c

Let �a = (1, 2, 3, 4) indicate the strict priorities in descending order for school a, and let va = (3, 1). Assume that school 
a has capacity one (qa = 1). Let the applicant pool for school a be {1, 3, 4}. Student 4 is eliminated based on the priority 
rank classes of school a, since 1, 3 ∈ V 1(�a) and 4 ∈ V 2(�a). This leaves students 1 and 3. Student 3 is selected based 
on the preference rank classes, since 1 ranks a in the second highest preference rank class and 3 ranks a in the highest 
preference rank class: a ∈ X2(P1) and a ∈ X1(P3).

Now consider the same matching problem and a slightly different PRP rule, where student 3’s preference rank classes 
are given by x3 = (2, 1, 1). Given the same applicant pool {1, 3, 4} for school a, student 4 is eliminated based on the priority 
rank classes of school a, as before, and given the new preference rank classes for student 3, now the selection cannot be 
made between 1 and 3 based on the preference rank classes, since both rank a in their second highest preference rank 
class: a ∈ X2(P1) and a ∈ X2(P3). Thus, we break the tie according to the strict priority order �a and hence, since 1 �a 3, 
student 1 is selected. �

If both the priority rank partition for each school and the preference rank partition for each student are the coarsest, 
then the PRP rule relies only on the strict priorities as tie-breakers, and therefore this rule is the classic DA rule, which 
simply selects the highest-priority students from each applicant pool. Equivalently, we can let the priority rank partition 
be arbitrary. As long as the preference rank partition is the coarsest, the PRP rule is the DA. Hence, there may be multiple 
representations (v, x) of the same PRP rule, and thus we use the convention that the role of tie-breaking should be mini-
mized as much as possible, by making the priority rank partition finer. Given the finest possible priority rank partition, the 
preference rank partition should be left as coarse as possible, which clarifies the actual impact of the preferences. This is 
the most salient feature of PRP rules, namely, that the choice functions of the schools depend on the students’ preferences, 
and specifically on the students’ preference rank partitions, which is why we call these matching rules Preference Rank 
Partitioned rules. This specification of a PRP rule delineates which information is used by the choice function, whether it is 
the priority rank partition or the preference rank partition, and specifically which priority or preference rank classes play 
a role in the schools’ selections. In the case of the classic DA rule, this means that we let the priority rank partition be 
the finest for each school, so as to entirely eliminate tie-breaking. This also reveals immediately that the preference rank 
partitions don’t play any role in the choice function, as all selections can be made based on the priority rank partitions, and 
therefore we can let each student’s preference rank partition be the coarsest for the DA rule. This convention not only lets 
us have a specific unique representation of each PRP rule, but it also provides an informative representation. We show the 
details of the formal construction of the priority and preference rank classes that follow this convention in Appendix A, and 
refer to this unique specification (v∗, x∗) as the standard representation of a PRP rule. In the following we assume that PRP 
rules are specified using this standard representation.

4. Special subclasses of PRP rules

As already noted, the classic DA rule is a PRP rule, which is described by the finest priority rank partition profile and 
the coarsest preference rank partition profile. Another well-studied PRP rule besides the DA rule is the Boston (Immediate 
Acceptance) rule. The Boston rule is a PRP rule with the coarsest priority rank partition and the finest preference rank 
partition, hence tie-breaking is only necessary when students have the same rank for a school: if students s and ŝ are 
competing for school c then s is chosen over ŝ if s ranks c higher than ŝ (i.e., rs(c) < rŝ(c)) or if s and ŝ rank c equally (i.e., 
rs(c) = rŝ(c)) and s �c ŝ. Ergin and Sönmez (2006) pointed out first that the Boston rule can be viewed as a lexicographic 
rule which first considers the student preferences and then the strict school priorities.

Previously studied classes of matching rules that belong to the set of PRP rules include the First Preference First rules 
(Pathak and Sönmez, 2013), the Secure Boston rules and their generalizations (Dur et al., 2019), the French Priority rules 
studied by Bonkoungou (2020) which correspond to a broad class of PRP rules in our setting and includes all of the above 
rules, as well as the Application-Rejection rules of Chen and Kesten (2017) which are distinct from the French Priority 
rules (except for the classic DA and Boston rules, the two extreme members of all of the above classes of rules). We list 
these in Table 1, together with some further notable subfamilies of PRP rules which have not been studied before. The 
Deferred Boston rules include both the DA rule and the Boston rule and allow for any homogeneous priority rank partition 
profile, while the preference rank partitions are the finest. If both the preference and priority rank partition profiles are 
homogeneous then we have a Homogeneous PRP rule. All Deferred Boston rules are Homogeneous PRP rules, but the French 
Priority rules in general are not Homogeneous PRP rules, and specifically the First Preference First rule and the Secure 
Boston rule are not Homogeneous PRP rules,7 since they don’t have homogeneous priority rank partition profiles. On the 

7 However, the Secure Boston rule has a priority rank partition profile that satisfies the weaker notion of homogeneity defined in footnote 5.
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Table 1
Special members and subclasses of PRP rules.

PRP rules Priority rank partition Preference rank partition

Deferred Acceptance (DA) Finest Coarsest

Boston Coarsest Finest

Deferred Boston Homogeneous Finest

First Preference First Equal-preference schools: finest 
Preference-first schools: coarsest

Finest

Secure Boston For each school c: finest for the 
top qc ranks, then coarsest

Finest

French Priority Arbitrary Finest

Application-Rejection Coarsest Homogeneous

Homogeneous PRP Homogeneous Homogeneous

Equitable PRP Arbitrary Homogeneous

Favored Students Coarsest Favored students: coarsest 
Non-favored students: finest

other hand, the Application-Rejection rules are Homogeneous PRP rules. The class of Equitable PRP rules, characterized by 
a homogeneous preference rank partition profile, is even larger than the class of Homogeneous PRP rules, and contains all 
of the above mentioned matching rules. Lastly, to identify a specific class of PRP rules which does not belong to the class 
of Equitable PRP rules, we included in the table the family of Favored Students rules, which allow for different treatments 
of students. Specifically, Favored Students rules have the coarsest priority rank partition profile, and each student is either 
favored or not. Favored students have the coarsest preference rank partition, while all the other students have the finest. 
Favored Students and other PRP rules which distinguish among students may be desirable if one of the objectives of the 
matching is to prioritize certain classes of students, for example when affirmative action or equal opportunity policies are 
employed. These policies are often carried out by reserving seats for disadvantaged groups,8 and the Favored Students and 
similar but less extreme PRP rules that are not Equitable PRP rules provide a novel approach to implementing affirmative 
action and other priority policies.

Although we defined PRP rules by using first the priority rank classes when selecting students, note that for the PRP 
rules that have the coarsest priority rank partitions the priority ranks do not play any role in the selection of students up 
front, and we understand intuitively that some PRP rules, such as the Boston rule and more generally Application-Rejection 
rules with small preference rank classes, make selections based on the preference rank classes primarily, and the strict 
priorities are used for tie-breaking only when needed. However, for PRP rules which don’t have the coarsest priority rank 
partition profile, such as the Deferred Boston rules or the First Preference First rules, the priority rank classes play a role in 
student selection.

5. Stability and optimality of PRP rules

The dependence of PRP choice functions on student preferences, the most notable general feature of PRP rules, accounts 
for violating typical stability conditions that are independent of the preferences. Given that when preference rank partitions 
are the coarsest the preferences play no role in choosing among applicants, and given that the only such PRP rule is the 
classic DA rule, this is the only rule which satisfies the standard stability axiom in the class of PRP rules.

Therefore, we introduce a stability concept inspired by PRP rules, which we call rank-partition stability. Given a profile of 
rank partitions (v, x), for each profile (�, P ) we construct a modified strict priority profile �̄((�, P ), (v, x)) (or simply �̄ to 
simplify notation) as follows. For each school c ∈ C the ordering of students across priority rank classes based on �c and vc

remain the same in �̄c , and within priority rank classes we order students according to the preference rank partitions of P
based on x. If ties remain due to students being in the same priority rank class and ranking c in the same preference rank 
class then we use the given strict priority ordering �c for tie-breaking.

More formally, for all c ∈ C , we construct �̄c ((�, P ), (v, x)) as follows. Let s, ̂s ∈ S and let k, k′ ≥ 1 such that s ∈ V k(�c)

and ŝ ∈ V k′
(�c). If k �= k′ then s and ŝ are in different priority rank classes and s �̄c ŝ if and only if s �c ŝ. If k = k′ then s

and ŝ are in the same priority rank class. By convention, students who find a school c unacceptable are ranked last within 
the priority rank class that they belong to in �̄c , although such students could be ranked anywhere in �̄c as long as the 
basic property of individual rationality is required of matching rules. If k = k′ and both c P s 0 and c P ŝ 0 then let t, t′ ≥ 1
such that c ∈ Xt(P s) and c ∈ Xt′ (P ŝ). Then t < t′ implies s �̄c ŝ and t > t′ implies ŝ �̄c s. Finally, if k = k′ and t = t′ then 

8 See, for example, Hafalir et al. (2013) and Doǧan (2016).
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s �̄c ŝ if and only if s �c ŝ. From now on we will refer to �̄ ((�, P ), (v, x)) as the modified priority profile. Very importantly, 
the modified priority profile is a function of the preference profile, in addition to the priority profile, and thus it changes as 
preferences vary.

A matching rule ϕ is rank-partition stable if there exists (v, x) such that

1. for all (�, P ) ∈ � ×P , ϕ(�, P ) is stable at (�̄((�, P ), (v, x)), P );
2. for all �, �′ ∈ � and for all P ∈P , if �̄((�, P ), (v, x)) = �̄((�′, P ), (v, x)) then ϕ(�, P ) = ϕ(�′, P ).

That is, given (v, x), if a matching rule assigns a matching to each profile (�, P ) that is stable with respect to the 
modified priority profile �̄((�, P ), (v, x)) at P and if the selection of a matching only depends on this modified priority 
profile at each preference profile, then the matching rule is rank-partition stable. We also say that a matching rule ϕ is 
rank-partition stable with respect to (v, x).

Example 2 (Construction of the modified priority profile). Consider a matching problem with five students and four schools 
(n = 5, m = 4). The priority and preference profiles are given below, with the profile of rank partitions (v, x) specified by 
the bars in the two profiles.

School priorities �
�a �b �c �d

4 3 4 4
1 1 1 5

2 5 5 3

3 2 2 1
5 4 3 2

Student preferences P
P1 P2 P3 P4 P5

b b b b d

c c a a a

a a d c 0

d d c d

Modified priority profile �̄ at P
�̄a �̄b �̄c �̄d

1 3 1 5
2 1 4 4
4 2 2 3
5 4 3 1
3 5 5 2

The modified priority profile �̄ shows how the priority profile � is modified for this PRP rule f v,x at the specified 
preference profile P . We will explain the construction of �̄a in detail. The priority rank partition of �a implies that students 
4, 1 and 2 are ranked above students 3 and 5 in the modified priority ordering �̄a for school a. Given the preference rank 
partitions of students 4, 1 and 2, a is in the first preference rank class for students 1 and 2, but only in the second preference 
rank class for student 4 at preference profile P . Therefore, �̄a ranks 1 and 2 above 4. In order to break the tie between 1 
and 2, we use the given strict priority ordering: since 1 �a 2, we get 1 �̄a 2. Therefore, 1 �̄a 2 �̄a 4. Moreover, considering 
the second priority rank class of �a , student 5 has a in her first preference rank class, whereas 3 has a in his second 
preference rank class, and hence 5 �̄a 3. �

The classic results of Gale and Shapley (1962) imply in our setting that for each profile (�, P ) and priority and preference 
rank partition profile pair (v, x) there exists a matching which is stable at profile (�̄((�, P ), (v, x)), P ), and each student 
weakly prefers this matching to any other matching which is stable at (�̄((�, P ), (v, x)), P ). We call this unique matching 
the (v,x)-optimal rank-partition stable matching at (�, P ) since it is optimal stable at profile (�̄((�, P ), (v, x)), P ). In 
light of the definition of the modified priority profile, a straightforward finding is stated below. Note that all the proofs are 
collected in Appendix B.

Proposition 1. Each PRP rule f v,x is rank-partition stable and assigns the unique (v, x)-optimal rank-partition stable matching at 
(�, P ) to each profile (�, P ) ∈ � ×P .

Rank-partition stability can be seen as a natural stability property of PRP rules, based on stability with respect to the 
appropriately modified priority profile at each preference profile. A similar property is used by Bonkoungou (2020) for 
French Priority rules. This representation of PRP rules and the underlying stability concept serve as a foundation for later 
results, since they highlight the parallel features between PRP rules and the classic DA rule, and allow us to see the PRP 
rules as optimal rules within the set of rank-partition stable rules, which are stable with respect to the modified priority 
profile at each preference profile, where the modifications of the priorities correspond to the selections made by PRP choice 
functions. The proposition also implies that PRP rules are individually rational and non-wasteful, although these properties 
can easily be verified directly as well.
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A choice function Chc for school c is called acceptant responsive if, for all S ′ ⊆ S , it selects the set of min(qc, |S ′|) top-
priority students in S ′ (Kojima and Manea, 2010). This property is satisfied by the choice functions of the standard DA 
rule. For the broad class of PRP rules, given a priority profile, the modified priority ordering of each school is allowed to 
depend on the preference profile, and thus PRP choice functions only satisfy a weak preference-profile-specific version of 
this property. Essentially, Proposition 1 tells us that a PRP rule f v,x can be seen as a DA rule with preference-profile-specific 
(v, x)-modified acceptant responsive priorities.

6. Equitable PRP rules

Not all PRP choice functions treat students the same way when considering their reported preferences. For example, if 
student s has a coarser preference rank partition than student ŝ then s gets a preferential treatment compared to ŝ. We call 
the subfamily of PRP rules specified with a homogeneous preference rank partition profile Equitable PRP rules, since these 
PRP rules treat students symmetrically in terms of their preference rank partitions. Given that the priority rank partition 
profile and the preference rank partition profile that describe a PRP rule are not always unique, we define Equitable PRP 
rules by having a homogeneous preference rank partition x∗ in the standard representation (v∗, x∗) of the PRP rule, which 
means all the PRP rules that have any representation with a homogeneous preference rank partition profile (see Appendix A
for details).

To aid our analysis, we propose a general stability property of matching rules, called PP-stability, which lets the matching 
to be based on either a comparison of students’ preference ranks of schools that they compete for or on the priority ordering 
of students by this school. Characterizations of the Boston rule given by Kojima and Ünver (2014) and Doǧan and Klaus 
(2018) rely on axioms that compare the preference ranks of alternatives, since the Boston rule makes matches primarily 
based on the preference ranks. Our concept says that envy is only justified if neither the priorities nor the preference ranks 
can explain the selection of one student over another at a school to which both students have applied, and thus ruling 
out only these demanding cases of justified envy relaxes the standard stability axiom which is based only on the priority 
ranking of students. Afacan (2013) introduces a related property that combines priority and preference rankings, but his 
axiom is not implied by standard stability and it makes explicit use of the school capacity.

Preference and Priority Rank Stability (PP-Stability): Student s has PP-justified envy in matching μ at (�, P ) if there exist 
school c ∈ C and student ŝ ∈ S such that c P s μs , s �c ŝ, rs(c) ≤ rŝ(c) at P , and μŝ = c. A matching μ is PP-stable at (�, P )

if it is individually rational, non-wasteful, and there is no student who has PP-justified envy in μ at (�, P ).

Student s has PP-justified envy if s prefers some school c to her assignment and some other student ŝ is matched to c
such that s has both higher priority for c than ŝ and ranks c the same or higher than ŝ. The sole difference between this 
definition and the standard definition of justified envy is that envy is only justified if rs(c) ≤ rŝ(c) also holds. Unlike rank-
partition stability, PP-stability is a property of matchings primarily (just like standard stability), and we define a matching 
rule to be PP-stable if it assigns a PP-stable matching to each profile (�, P ).

The next example illustrates that not all PRP rules are PP-stable.

Example 3 (A Favored Students PRP rule which is not PP-stable). Consider the following matching problem with five students 
and four schools (n = 5, m = 4). School capacities are given by qa = qb = qc = 1 and qd = 2. The priority and preference 
profiles are given below. The school priorities are the coarsest for each school, while the bars indicate the preference rank 
partitions in the preference profile.

School priorities �
�a �b �c �d

4 3 1 4
1 1 2 1
2 4 3 5
3 2 4 2
5 5 5 3

Student preferences P
P1 P2 P3 P4 P5

b b b b d

c c a a b

a a d c a

d d c d c

In this example students 1 and 2 are so-called favored students, since there is only one preference rank class for these 
students that includes all the schools (the coarsest preference rank partition), while the non-favored students, 3, 4, and 5, 
have the finest preference rank partition: x1 = x2 = (4) and x3 = x4 = x5 = (1, 1, 1, 1).

The rounds of the specified Favored Students rule at the given profile are summarized in the table below, with the 
selected students in each round underlined.

Round a b c d

1 1,2,3,4 5
2 4 3 1,2 5
3 2,4 3 1 5
4 2 3 1,4 5
5 2 3 1 4,5
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In this example r4(a) = 2 < 3 = r2(a) and 4 �a 2. Since a P4 d and 2 is assigned to a, student 4, a non-favored student, has 
PP-justified envy and therefore this rule is not PP-stable. Note that student 2, whose assignment to school a is the cause of 
PP-justified envy, is a favored student. �

We remark that both the DA and Boston rules are PP-stable. Given that stability implies PP-stability, the DA rule is PP-
stable. The Boston rule is also PP-stable, since if either rs(c) < rŝ(c) holds by itself or both rs(c) = rŝ(c) and s �c ŝ hold then 
ŝ cannot be assigned to c unless s is assigned to school c̃, where c̃ Rs c. Thus, the Boston rule is preference-rank stable in 
the sense that whenever rs(c) < rŝ(c), s does not envy ŝ when ŝ is assigned to c. PRP rules in general do not satisfy this 
stronger property, and it is easy to check that the Boston rule is the only such preference-rank stable rule within the class 
of PRP rules. On the other hand, the DA rule is the only priority-rank stable (i.e., stable) rule in the class of PRP rules.

While not all PRP rules satisfy PP-stability, as demonstrated by Example 3, the subfamily of PRP rules which satisfy 
PP-stability is much larger than just the DA and Boston rules, and we will show in the next proposition that it exactly 
corresponds to the Equitable PRP rules. We remark that all previously studied PRP rules in the literature are Equitable PRP 
rules. Proposition 2 below provides an explanation for this, since it demonstrates that all the studied rules are PP-stable, 
which is an intuitive feature of matching rules and an attractive attribute in school choice, assuming that we want to treat 
all students the same way.

Proposition 2. A PRP rule is PP-stable if and only if it is an Equitable PRP rule.

We say that a matching rule is equitable-rank-partition stable if it is rank-partition stable with respect to (v, x), where 
x is homogeneous. Clearly, equitable-rank-partition stability implies rank-partition stability of a matching rule. The next 
result further clarifies the relationship between rank-partition stability and equitable-rank-partition stability.

Theorem 1. A rank-partition stable matching rule is PP-stable if and only if it is equitable-rank-partition stable.

As in the case of PRP rules, we can easily verify that an Equitable PRP rule f v,x is equitable-rank-partition stable, and 
we know from Proposition 1 that f v,x selects the (v, x)-optimal rank-partition stable matching at each profile. Thus, we can 
state a similar result to Proposition 1 for Equitable PRP rules: each Equitable PRP rule f v,x is equitable-rank-partition stable 
and assigns the unique (v, x)-optimal equitable-rank-partition stable matching at (�, P ) to each profile (�, P ) ∈ � × P . 
Therefore, Theorem 1 can be seen as a generalization of Proposition 2.

Finally, let us mention that rank-partition stability and PP-stability are logically independent. Proposition 1 and Exam-
ple 3 together demonstrate that rank-partition stability does not imply PP-stability. Alternatively, this also follows from 
Theorem 1. The other direction can be inferred from the definition of rank-partition stability, as it requires that the same 
(v, x) is applied to all profiles. To see that PP-stability does not imply rank-partition stability we can specify, for example, 
a matching rule which picks the DA matching at some profiles and the Boston matching at others. Such a rule is PP-stable 
(since both the DA and Boston matchings are PP-stable), but we can easily construct examples where a combination of DA 
and Boston matchings leads to different priority and preference rank partitions at different profiles.

7. Efficiency of PRP rules

PRP rules select the optimal rank-partition stable matching at each profile, as shown in Section 5. This implies that if 
the matching selected by a PRP rule is not Pareto-efficient then it can only be Pareto-dominated by a matching that is not 
stable with respect to the modified priority profile at the preference profile in question. We know that the DA matching 
is not necessarily Pareto-efficient when considering students only (Balinski and Sönmez, 1999), so PRP rules, which choose 
the DA matching at the modified priority profile, are generally not Pareto-efficient. One notable exception is the Boston rule, 
which is Pareto-efficient due to the fact that it assigns school seats permanently at the time of the application based on the 
students’ preference rankings and uses the school priorities only for tie-breaking, and thus the selected matching cannot 
be Pareto-dominated. One may conjecture that the only Pareto-efficient PRP rule is the Boston rule, but it turns out that a 
somewhat larger set of PRP rules are Pareto-efficient. Namely, there may be one student whose preference rank partition is 
not necessarily the finest and may be chosen arbitrarily, but all other students’ preference rank partitions have to be the 
finest. We call this class of rules, including the Boston rule, Near-Boston rules.

Near-Boston rules are PRP rules such that:

i) each school has the coarsest priority rank partition;
ii) there exists j ∈ S such that each student s ∈ S \ { j} has the finest preference rank partition (while student j has an 

arbitrary preference rank partition).

Theorem 2. A rank-partition stable matching rule is Pareto-efficient if and only if it is a Near-Boston rule.

Given Proposition 1, Theorem 2 implies that the only Pareto-efficient PRP rules are the Near-Boston rules.
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Corollary to Theorem 2. An equitable-rank-partition stable matching rule is Pareto-efficient if and only if it is the Boston rule.

This is an immediate corollary to Theorem 2, since if the rule is equitable-rank-partition stable then it uses a homo-
geneous preference rank partition profile, and thus Theorem 2 implies that all students have the finest preference rank 
partition. Given Proposition 1, it follows from the corollary that the only Pareto-efficient Equitable PRP rule is the Boston 
rule. Therefore, this corollary generalizes the result of Chen and Kesten (2017) which shows that only the Boston rule is 
Pareto-efficient in the class of Application-Rejection rules.

8. Incentive properties of PRP rules

Since PRP rules are generally not strategyproof, we need to analyze their incentive properties. We start with some 
relevant definitions. Given a profile (�, P ) ∈ � ×P , if there is a student s ∈ S and an alternative preference ordering P ′

s ∈P
such that ϕs(�, (P ′

s, P−s)) P s ϕs(�, P ) then s can manipulate rule ϕ at (�, P ) via P ′
s and ϕ is manipulable (at (�, P )). We 

also say that student s can manipulate ϕ at (�, P ) to obtain a seat at school ϕs(�, (P ′
s, P−s)). If a rule is not manipulable 

(at any profile) then the rule is strategyproof.
The classic DA rule is well-known to be strategyproof when only the students’ incentives are taken into account (Dubins 

and Freedman, 1981; Roth, 1982). However, we can find examples of preference profiles at which a PRP rule (other than the 
DA) is manipulable, and we get a negative result for all PRP rules excluding the DA rule. We prove this result not only for the 
class of PRP rules but also, more generally, for all rank-partition stable rules. Chen et al. (2016) shows that if a stable rule 
ϕ weakly Pareto-dominates another stable rule ϕ′ then ϕ is less manipulable than ϕ′ , using a criterion proposed by Pathak 
and Sönmez (2013). This result is related to ours, given the optimality of PRP rules among all rank-partition stable rules, 
but does not have any immediate implication since rank-partition stability is weaker than standard stability. The findings of 
Alva and Manjunath (2019) are also related, as they show that in many settings there is at most one strategyproof rule that 
weakly Pareto-dominates an individually rational and Pareto-constrained participation-maximal benchmark rule.

Theorem 3. A rank-partition stable matching rule is strategyproof if and only if it is the Deferred Acceptance rule.

Given Proposition 1, this theorem implies that the DA rule is the only strategyproof rule in the class of PRP rules, which 
in turn implies a similar result by Chen and Kesten (2017) for Application-Rejection rules. This makes intuitive sense, as 
the DA rule is the only PRP rule for which the schools’ choice functions are independent of the preferences. Moreover, 
the characterization of the DA rule by stability and strategyproofness, first implied by Alcalde and Barberà (1994) and also 
established by Alva and Manjunath (2019), is another corollary of Theorem 3, given that standard stability implies rank-
partition stability for a matching rule.

The next result is our main theorem on the incentive properties of PRP rules. The theorem says that a student cannot 
manipulate a PRP rule to obtain a seat at school c by placing c in the same or a lower preference rank class than the 
preference rank class where c belongs truthfully. Remarkably, this holds regardless of the rest of the preference ordering 
reported by the student who attempts to manipulate. This theorem has interesting and wide-ranging implications for the 
strategic manipulability of PRP rules, as we will explain below.

Theorem 4. Let f v,x be a PRP rule and let (�, P ) ∈ � ×P . Let s ∈ S and c ∈ C such that c P s f v,x
s (�, P ). Let P̌ s ∈P such that c is in 

the same or a lower preference rank class in P̌ s than in P s, given x. Then f v,x
s (�, ( P̌ s, P−s)) �= c.

Based on this theorem, a seat at a school may only be obtained by manipulation when the school is reported to be in 
a higher preference rank class than it truthfully is, regardless of what the reported preference ordering is otherwise, and 
leaving the envied school in the same preference rank class would be futile. This gives a good idea about how the PRP rules 
are manipulable in general. The theorem also offers an intuitive explanation for two well-known results: why the DA rule is 
not manipulable, and why the Boston rule is markedly manipulable (see, for example, Troyan and Morrill (2020)). Notably, 
given that the classic DA rule is the PRP rule with the coarsest preference rank partition for each student, this theorem 
implies that the DA rule is strategyproof, since there is only one preference rank class for each student, and thus no school 
seat can be obtained by manipulation at any profile. At the other extreme, the Boston rule is the PRP rule with not only 
the finest preference rank partition for each student, but also with the coarsest priority rank partition for each school, 
which means that the priorities are only used to break ties, and thus the theorem sheds light on why the Boston rule is so 
manipulable: each change in the reported preferences results in placing at least one school in a higher preference rank class, 
and the top-ranked school is the only one which can never be obtained by manipulation when the Boston rule is used.

PRP rules between the DA and Boston rules are more or less manipulable, and the extent of manipulability depends on 
how coarse their priority rank partitions and how fine their preference rank partitions are. For example, the Application-
Rejection rules have the coarsest priority rank partition for each school and homogeneous preference rank partitions for 
students, and our theorem suggests that larger preference rank classes would imply that there is generally less room for 
manipulation. Indeed, it is shown by Chen and Kesten (2017) that larger equal-sized homogeneous preference rank classes 
for Application-Rejection rules lead to less manipulability, but this comparison result is not a direct implication of Theo-
rem 4. When the preference rank partition profile is not homogeneous, that is, when the PRP rule is not an Equitable PRP 
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rule, the extent to which the PRP rule is vulnerable to manipulation varies with the student. In the extreme case of Favored 
Students rules, where each student has either the coarsest or the finest preference rank partition, combined with the coars-
est priority rank partitions for schools, it follows from the theorem that the favored students (students with the coarsest 
preference rank partition) cannot manipulate at all. However, the non-favored students have lots of room to manipulate due 
to having the finest preference rank partition.

The following corollary displays some useful direct implications of Theorem 4.

Corollary to Theorem 4. Let f v,x be a PRP rule. Let (�, P ) ∈ � ×P and let s ∈ S.

1. If xs = (n) then student s cannot manipulate f v,x at (�, P ).
2. If school c ∈ C is ranked in s’s top preference rank class at P , given x, then student s cannot manipulate f v,x at (�, P ) to obtain a 

seat at school c.
3. Let P ′

s ∈P such that, for all t, Xt(P s) = Xt(P ′
s). Then s cannot manipulate f v,x at (�, P ) via P ′

s .

The first statement in the corollary points out that if a student has the coarsest preference rank partition then this 
student can never manipulate. This follows from Theorem 4 since such a student cannot report any school in a higher 
preference rank class. This is the case for all students in the classic DA rule and this also holds, for instance, for all favored 
students in Favored Students rules. The second statement in the corollary states that a school which is ranked in the top 
preference rank class of a student cannot be obtained as a result of manipulation by this student. This also follows from 
Theorem 4 since it is not possible to place such a school in a higher preference rank class. This implies that a student cannot 
get into his first-ranked school by manipulating any French Priority rule, and specifically the Boston rule. Our corollary is 
more general, since PRP rules allow for coarse preference rank partitions and thus multiple schools may be in the top 
preference rank class, and hence none of these schools can be profitably obtained by misrepresenting the preferences. In 
fact, this statement implies the first statement, since a student with the coarsest preference rank partition has every school 
in her top preference rank class. The third statement in the corollary says that if a student misrepresents her preferences by 
reporting a preference ordering that is a reshuffle of the schools within each of her preference rank classes then this student 
cannot obtain a more preferred school. Note that if xs = (n) then all different preference orderings are such reshuffles, so 
this statement also implies the first statement.

9. PRP rules with coarse priorities

PRP rules can be interpreted as rules that first coarsen the given strict priorities and then refine them using preference 
rank classes. An alternative interpretation is that they start from given coarse (i.e., weak) priorities and use the preference 
rank classes to refine the priorities. Thus, PRP rules can accommodate coarse priorities which are typical in school choice, 
such as for New York City high schools (Abdulkadiroǧlu et al., 2009) or for Boston’s public schools (Abdulkadiroǧlu et 
al., 2005). In international refugee assignment countries may have mandated priorities based on the level of emergency, 
or specific training or skills may be prioritized by different countries, which would lead to coarse priorities (Jones and 
Teytelboym, 2017; Sayedahmed, 2022). If coarse priorities are given exogenously instead of strict priorities, we can modify 
the PRP rules by adopting the equivalence classes of the given coarse priorities as the priority rank classes of the PRP rule. 
This would determine the priority rank partition profile v , which therefore would no longer be part of the specification 
of the PRP rule. However, since strict priorities have a tie-breaking role in PRP choice functions, strict priority orderings 
for schools would need to be specified by the PRP rule. Therefore, in this setup the given coarse priorities for schools are 
primitives of the model, instead of being part of the specification of the matching rule, and each member of the family 
of PRP rules is given by (x, �), where x is a preference rank partition profile and � is a fixed strict priority profile to be 
used for tie-breaking within the equivalence classes of the given coarse priorities, whenever the selection cannot be done 
based on the preference rank classes. Thus, each school’s choice function would select first based on the exogenously given 
coarse priorities of the school, then based on the preference rank classes determined by the preference profile as well as 
the preference rank partition profile x specified by the matching rule and, finally, if ties still remain, based on �, also 
specified by the matching rule. This corresponds to and extends the setup of Bonkoungou (2020) due to the use of arbitrary 
preference rank classes, since the French Priority rules only allow for the finest preference rank partition.

This extension lends additional applicability to PRP rules and makes the current study relevant to situations where coarse 
priorities arise naturally instead of strict priorities. We could further enhance the applicability of PRP rules by combining 
the two different interpretations of PRP rules (i.e., strict versus weak priorities as primitives) in a natural manner, which 
would allow for coarse exogenous priorities but let the matching rule further partition the priority ranks within the priority 
rank classes that are determined by the given coarse priorities based on the priority rank partition profile v , while breaking 
the ties over the remaining weak priorities based on the preference rank partition profile x and the strict priority profile �
specified by the matching rule.
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10. DA rules with preference-based priorities: extensions

An extension of PRP rules is given by using preference-profile-based modified priority profiles for the DA rule which 
don’t necessarily rely only on priority and preference rank partitions. We can specify such a matching rule formally by a 
function ψ : � ×P → � that assigns a priority profile to each profile, which would define a DAψ rule by assigning to each 
profile (�, P ) the DA matching at profile (ψ(�, P ), P ). PRP rules are a subclass of this more general class of rules, and so 
are the Taiwan Deduction rules of Dur et al. (2022), which can be represented as DA rules with modified priority profiles 
that are a function of the preferences.9 It would be interesting to study this general class of DAψ rules with preference-
based priorities. Some of our results on PRP rules may generalize to this class; for instance, one may conjecture that D Aψ

is only strategyproof if ψ is independent of the preference profile, generalizing Theorem 3.
A further extension of PRP rules would result if we allowed for a wider class of choice functions than the acceptant 

responsive choice functions used by PRP rules. By Proposition 1, PRP choice functions are responsive with respect to the 
modified preference-profile-specific priority orderings at each preference profile, and it may be of interest to expand the 
set of choice functions to include, for example, arbitrary substitutable choice functions with respect to the modified priority 
profile. This would allow for having reserved seats set aside for groups of students to be prioritized, among other things. 
These generalizations that lead to very broad classes of matching rules may be best described by directly specifying the set 
of modified priority profiles together with the properties of the choice functions applied to the modified priority profiles. 
We leave the exploration of these matching rules to future research.

11. Conclusion

In this study we introduce and examine PRP rules, which are generalized Deferred Acceptance rules that allow students’ 
preference rankings to play a role in the schools’ choice functions which make the selections among applicants. We unify a 
large class of matching rules that, in addition to many previously known real-world mechanisms, includes interesting new 
matching rules that are studied here for the first time, and we use this unified approach to establish results that apply to 
all of them. We identify an important subclass of PRP rules which had not been studied previously, namely, PRP rules which 
treat students asymmetrically, allowing for a new way of applying preferential treatment. Overall, our results underline the 
difficulty of obtaining matching rules with both good efficiency and incentive properties, since the efficiency improvements 
compared to the DA rule are due to allowing the preferences of students to directly affect their chances of being accepted 
by the schools they are applying to, which however makes these matching rules more vulnerable to manipulation.

There is typically a trade-off among the stability, efficiency, and incentive properties of matching rules, which has been 
studied by a vast array of papers in various matching models and settings. Our main contribution to this literature is to 
show the specifics of this tension within the class of PRP rules, for which the selection of applicants by the schools takes 
into account the preference rankings. When the school priorities have a small impact (mainly used for tie-breaking), we 
get more efficiency, since the matching rule relies primarily on the preference rankings, as in the Boston rule and other 
PRP rules that significantly coarsen the exogenously given fine priority rank classes. When the school priorities have a large 
impact, preference rankings play only a small role in the schools’ selection, and stability improves due to fewer justified 
envy instances. Incentive properties are also improved in this case, but only in the extreme case of the DA rule, when the 
preferences have no impact on the schools’ choice functions, can strategyproofness be achieved. Thus, the main trade-off 
is between efficiency and incentives, and within the class of PRP rules better incentives also come with respecting the 
priorities more. Corresponding to this trade-off, the Boston rule and the DA rule can be seen as the two extreme members 
of the family of PRP rules. Intuitively, as we place more emphasis on the preferences, we attain more efficiency and get 
closer to the Boston rule, and as we place more emphasis on the priorities, we get better incentives and get closer to the 
DA rule. This gives a general idea to the market designer about how to select among PRP rules, depending on the relative 
importance of the objectives: is efficiency more desirable or correct incentives and stability? If efficiency comes first, choose 
coarser priority rank partitions and finer preference rank partitions, and if incentives and respecting the priorities are more 
important then choose finer priority rank partitions and coarser preference rank partitions.

One may argue that incentives should always come first, since if preferences are reported inaccurately then efficiency 
cannot be measured accurately and thus ensured, given that the fulfillment of any normative criterion can only be based on 
the reported preferences. However, this argument also has its limitation, since opting for strong incentive properties would 
also imply automatically the favoring of stability over efficiency in the case of PRP rules. In light of the substantial trade-
offs, in order to understand the cost of improved efficiency the extent and specifics of manipulability are of considerable 
interest to the market designer. Our main result on incentives provides guidance on this, as it sheds light on how students 
can manipulate PRP rules, and contributes to a more sophisticated understanding of PRP rules than afforded by the rough 
comparison of the Boston and DA rules only. Several different ways of compromising may be considered when searching for 
an appropriate matching rule between these two extreme mechanisms, as evidenced by the fact that the family of PRP rules 
encompasses multiple subfamilies that bridge these two matching rules, such as the First Preference First rules, the Deferred 

9 Taiwan Deduction rules generalize the Application-Rejection rules of Chen and Kesten (2017), but they are not a subset of the class of PRP rules, since 
there are score deductions that cannot be captured by partitioning the priority and preference ranks.
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Boston rules, the Application-Rejection rules or the Favored Students rules. Since quite a few members of the class of PRP 
rules are already used in real-life school choice and student placement systems, and potentially more may be considered 
for use if theoretically well understood, our theoretical analysis provides practically relevant insight, and thus our findings 
should be useful for the design of matching mechanisms that rely on the preference rankings directly when choosing among 
competing applicants.
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Appendix A. Standard representation of PRP rules

Constructing the standard representation (v∗,x∗)

We use the following convention to specify a unique representation of a PRP rule in terms of its priority and preference 
rank classes: choose the finest priority rank partitions possible and the coarsest preference rank partitions possible. We 
refer to this as the standard representation of a PRP rule.

Formally, the unique standard representation of a PRP rule f can be found as follows. We say that (t, u) is a priority 
reversal for two priority ranks t, u ≤ n, where t < u, for school c ∈ C (i.e., for ranks t and u, respectively, in the priority 
ordering of school c) if there exists a profile (�, P ) ∈ � ×P at which the following holds. Let s, ̂s ∈ S such that the rank of 
s is t and the rank of ŝ is u in �c . Then c P s fs(�, P ) and f ŝ(�, P ) = c. Since f is a PRP rule, it follows that if (t, u) is a 
priority reversal for some school c then ranks t and u are in the same priority rank class for c.

We now prove that for any PRP rule f if (t, u) is a priority reversal for school c and u′ satisfies t < u′ < u then (t, u′) and 
(u′, u) are also priority reversals for c. Fix school c ∈ C and let (t, u) be a priority reversal for c. Fix u′ such that t < u′ < u. 
Let the rank of student s be t , the rank of student ŝ be u, and the rank of student s′ be u′ in �c . Let (�, P ) be such that 
c P s fs(�, P ) and f ŝ(�, P ) = c.

We show first that (t, u′) is a priority reversal for c. Let �̃c be the same as �c , except for the position of ŝ: ŝ is moved 
up in the priority ordering of school c and is ranked directly above s′ in �̃c , while all other orderings remain the same. 
Since ranks t and u are in the same priority rank class of c, where t < u, and ŝ and s′ have ranks u′ and u′ + 1 respectively 
in �̃c , where t < u′ < u, ŝ and s′ are still in the same priority rank class in �̃c , and therefore each student is in the same 
priority rank class of c in �̃c as in �c . Moreover, the relative priority ranks only differ for a student at most when compared 
to ŝ, and otherwise they are the same.

Let �̃ ≡ (�̃c, �−c). Given that all students who are in the same priority rank class of c as ŝ in �c are also in the same 
priority rank class of c as ŝ in �̃c , and since the preference profile is unchanged between (�, P ) and (�̃, P ), the only 
possibility for a different matching at (�̃, P ) compared to the matching at (�, P ) is if ŝ is accepted by school c instead of 
some other student due to the tie-breaking according to the strict priorities of c, since only the relative position of ŝ has 
changed. However, this is not the case, since ŝ was already accepted by c at (�, P ), given that f ŝ(�, P ) = c. Therefore, the 
matching at (�̃, P ) is determined by PRP rule f exactly the same way as at (�, P ) and f (�̃, P ) = f (�, P ), which implies 
that (t, u′) is a priority reversal for c.

We can show that (u′, u) is a priority reversal for c in a similar fashion, by letting �̄c be the same as �c , except for the 
position of s: s is moved down in the priority ordering of school c and is ranked directly below s′ in �̄c . Then, using the fact 
that c P s fs(�, P ), we can show that moving s down in �c will not change the outcome, and therefore f (�̄, P ) = f (�, P ), 
where �̄ ≡ (�̄c, �−c).

Now fix t′, t′′ such that t ≤ t′ < t′′ ≤ u. Then, by the above arguments, if (t, u) is a priority reversal for some school 
c ∈ C then (t′, u) is also a priority reversal for c, and thus, applying the above arguments again, (t′, t′′) is also a priority 
reversal for c. Therefore, we can define the priority rank classes for each school c ∈ C as follows: for all t, u ≤ n such that 
t < u, let rank t and rank u be in the same priority rank class in vc if and only if (t, u) is a priority reversal for school c. 
This unambiguously determines a unique priority rank partition profile v , as we have just shown. Moreover, since, for any 
priority reversal (t, u) for a school c, ranks t and u must be in the same priority rank class of a PRP rule, and given that 
according to the above definition for each school two priority ranks belong to different priority rank classes unless a priority 
reversal requires otherwise, this definition satisfies the convention that vc is as fine as possible for each school c ∈ C .

We identify next the unique preference rank partition profile x that is as coarse as possible for each student. If the PRP 
rule f is the DA then there is no priority reversal for any school, and hence for each school c ∈ C the constructed priority
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rank partition is vc = (1, . . . , 1). Thus, we can let xs be the coarsest for all students s ∈ S , since the preference rank partition 
does not affect f in this case. Otherwise, if f is not the DA, let c ∈ C such that there is at least one priority rank class in 
vc that contains at least two ranks, as constructed above. For PRP rule f with such a priority rank partition vc for c ∈ C , fix 
�∈ � and let two students i, j ∈ S with i �c j be in the same priority rank class of school c according to �c . We construct 
x in the standard representation of f as follows.

Find the lowest rank t1
i > 1 for which there exists a preference profile P ∈P such that f j(�, P ) = c, c Pi f i(�, P ), and c

has rank t1
i in Pi and rank 1 in P j . That is, for any t < t1

i if c has rank t in Pi while P j ranks c first then, regardless of the 
rest of the preference profile, there is no priority reversal for c involving i and j. Then 1, . . . , t1

i − 1 are the ranks in student 
i’s first preference rank class in xi (i.e., x1

i = t1
i − 1). Now reverse the roles of i and j to find the first preference rank class 

for j similarly, say ranks 1, . . . , t1
j − 1 (i.e., x1

j = t1
j − 1). Next, find the lowest rank t2

i > t1
i (if it exists) for which there exists 

a preference profile P ∈P such that f j(�, P ) = c, c Pi f i(�, P ), and c has rank t2
i in Pi and rank t1

j in P j . Since i and j are 
in the same priority rank class for c according to vc with i �c j, this determines student i’s second preference rank class 
comprised of ranks t1

i , . . . , t2
i − 1 (i.e., x2

i = t2
i − t1

i ). Now reverse the roles of i and j to find the second preference rank class 
for j similarly, say ranks t1

j , . . . , t
2
j − 1 (i.e., x2

j = t2
j − t1

j ).
And so on, by iterating the same procedure we can determine all preference rank classes in xi and x j , and we can 

find all preference rank classes for all students similarly, leading to the preference rank partition profile x in the standard 
representation of f . Note that since f is a PRP rule, we get consistent results for the preference rank classes of all students 
using this method. Moreover, the unique preference rank partition profile x which is found this way satisfies the convention 
that it is as coarse as possible, since for each student two preference ranks belong to the same preference rank class unless 
a priority reversal requires otherwise.

In sum, we have identified the unique standard representation of each PRP rule f which satisfies the convention that v
is as fine as possible and x is as coarse as possible. We denote the standard representation of a PRP rule by (v∗, x∗).

Homogeneous preference rank partition profile x∗

Now we show that if a PRP rule with standard representation (v∗, x∗) can be specified with a homogeneous preference 
rank partition profile then x∗ is homogeneous.10 Suppose by way of contradiction that there exists a PRP rule for which 
f v∗,x∗ = f v̂,x̂ , where (v∗, x∗) is the standard representation of f , x∗ is not homogeneous, and x̂ is homogeneous. Since 
x∗ is not homogeneous, there exist s, s′ ∈ S and t ≥ 1 such that ranks t and t + 1 belong to different preference rank 
classes in x∗

s and the same preference rank class in x∗
s′ . Since x∗ consists of the unique coarsest possible specification of the 

preference rank classes for each student, ranks t and t + 1 belong to different preference rank classes in x̂s and thus, since x̂
is homogeneous, ranks t and t + 1 belong to different preference rank classes in x̂s′ . Given that x∗

s′ and x̂s′ can both be used 
in the specification of the same PRP rule, there is no priority reversal due to t + 1 being in a lower preference rank class 
than t in the preference rank partition of s′ . However, this can only depend on t and it must be the same for all students. 
Thus, there is no priority reversal due to t + 1 being in a lower preference rank class than t for s either. Therefore, letting 
ranks t and t + 1 be in the same preference rank class for s also works for the specification of the PRP rule. This implies, 
however, that x∗

s is not the coarsest preference rank partition, which contradicts the construction of x∗ . Therefore, if there 
is any representation (v̂, ̂x) of a PRP rule such that x̂ is homogeneous, then in the standard representation (v∗, x∗) of this 
PRP rule the preference rank partition profile x∗ is homogeneous.

Appendix B. Proofs

Proof of Proposition 1.
One can readily verify from the definition of modified priority profiles that at each profile (�, P ) ∈ � ×P the PRP rule f v,x

selects the DA matching at (�̄((�, P ), (v, x)), P ). This also implies that for all �, �′ ∈ � and P ∈ P , if �̄((�, P ), (v, x)) =
�̄((�′, P ), (v, x)) then f v,x(�, P ) = f v,x(�′, P ). Thus, by the stability of the DA matching (Gale and Shapley, 1962), PRP rules 
are rank-partition stable. Moreover, each PRP rule f v,x assigns the unique (v, x)-optimal rank-partition stable matching at 
(�, P ) to each profile (�, P ) ∈ � ×P due to the classic optimality result of Gale and Shapley (1962). �
Proof of Theorem 1.
An equitable-rank-partition stable matching rule is PP-stable.

Let ϕ be an equitable-rank-partition stable matching rule with respect to (v, x). Then x is homogeneous. Suppose by way 
of contradiction that there exists a profile (�, P ) ∈ � ×P such that ϕ(�, P ) is not PP-stable at (�, P ). Then, since all rank-
partition stable matching rules are individually rational and non-wasteful, there is a student s ∈ S who has PP-justified envy 
in ϕ(�, P ) at profile (�, P ). That is, there exist school c ∈ C and student ŝ ∈ S such that c P s ϕs(�, P ), s �c ŝ, rs(c) ≤ rŝ(c)
at P , and ϕŝ(�, P ) = c.

10 We cannot show the same for homogeneous priority rank partition profiles, but an analogous argument to the one presented here for preference rank 
partition profiles implies such a result for the weaker notion of homogeneity for priority rank partition profiles defined in footnote 5.
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Let k, k′ ≥ 1 such that s ∈ V k(�c) and ŝ ∈ V k′
(�c). Then s �c ŝ implies that k ≤ k′ . Let t, t′ ≥ 1 such that c ∈ Xt(P s) and 

c ∈ Xt′ (P ŝ). Then, given that rs(c) ≤ rŝ(c) at P and x is homogeneous, t ≤ t′ . Let �̄ ≡ �̄((�, P ), (v, x)) denote the modified 
priority profile. Note that k < k′ would imply that s �̄c ŝ. Thus, given that c P s ϕs(�, P ) and ϕŝ(�, P ) = c, k < k′ would 
imply that s has justified envy in ϕ(�̄, P ) at (�, P ), which is a contradiction since ϕ is a rank-partition stable matching 
rule with respect to (v, x). Therefore, k ≤ k′ implies that k = k′ . Then t ≤ t′ implies similarly that t = t′ . Hence, the strict 
priority ordering �c determines the relevant ordering of s and ŝ in �̄c at school c, and s �c ŝ implies that s �̄c ŝ. However, 
this means that s has justified envy in ϕ(�̄, P ) at (�, P ), which is a contradiction. Therefore, ϕ(�, P ) is PP-stable at (�, P ), 
and since this holds for all (�, P ) ∈ � ×P , ϕ is PP-stable.

If a rank-partition stable matching rule is PP-stable then it is equitable-rank-partition stable.
Let ϕ be a rank-partition stable matching rule which is PP-stable. Let ϕ be rank-partition stable with respect to (v, x). 

Suppose by way of contradiction that ϕ is not equitable-rank-partition stable. Then x is not homogeneous and thus there 
exist (�, P ) ∈ � × P , c ∈ C and s, ̂s ∈ S such that ŝ �̄c s, where �̄ ≡ �̄((�, P ), (v, x)) denotes the modified priority profile 
at profile (�, P ), and s envies ŝ for being assigned c at (�, P ), which is due to the preference rank classes of s and ŝ that 
contain c, even though s ranks c at least as high as ŝ at P . That is,

1. ϕŝ(�, P ) = c and c P s ϕs(�, P );
2. s and ŝ are in the same priority rank class of c, given �c and vc : s, ̂s ∈ V k(�c) for some k ≥ 1;
3. c ∈ Xt(P s) and c ∈ Xt̂(P ŝ), where t > t̂ ≥ 1;
4. rs(c) ≤ rŝ(c) at P .

Since ϕ is PP-stable, 1. and 4. imply that ŝ �c s. Let T = {s′ ∈ S : s′ ∈ V k(�c) and c ∈ Xt(P s′ )} be the set of students who 
are in the same priority rank class as both s and ŝ and rank c in preference rank class t at P , given x. Let �′

c be the same 
as �c except that all members of T are moved directly above ŝ in �′

c , while preserving the relative priority ordering within 
T and also for any pair of students who are not in T . Note that s ∈ T and thus s �′

c ŝ.
Let �′≡ (�′

c, �−c), and let �̄′ ≡ �̄((�′, P ), (v, x)) denote the modified priority profile at (�′, P ). We will show that 
�̄ = �̄′ . Given that � and �′ only differ in the priority ordering of c, �̄−c = �̄′−c . Thus, we only need to show that �̄c = �̄′

c . 
Note that since ŝ ∈ V k(�c) and T ⊂ V k(�c), the set of students in this priority rank class of c has not changed, and 
thus ŝ and the members of T are still in the same priority rank class at �′

c . Thus, V k(�c) = V k(�′
c), and for all k′ ≥ 1, 

V k′
(�c) = V k′

(�′
c). Then, since the preference profile P is unchanged and hence the preference rank classes remain the 

same, the only possible reason for �̄c to differ from �̄′
c is the strict priorities �c and �′

c , respectively. However, the strict 
priorities only determine the priority ordering within priority rank classes and within the sets of students who rank c in 
the same preference rank class at P , given x, and the ordering of students within T , as well as within all other relevant sets 
of students, have been preserved. Therefore, �̄c = �̄′

c and thus �̄ = �̄′ .
Hence, given that ϕ is rank-partition stable, ϕ(�, P ) = ϕ(�′, P ). Thus, ϕŝ(�′, P ) = ϕŝ(�, P ) = c and c P s ϕs(�′, P ). How-

ever, since s �′
c ŝ and rs(c) ≤ rŝ(c) at P , s has PP-justified envy in ϕ(�′, P ) at (�′, P ). This is a contradiction, since ϕ is 

PP-stable. Therefore, ϕ is equitable-rank-partition stable. �
Proof of Proposition 2.
An Equitable PRP rule is PP-stable.

This follows from the first part of the proof of Theorem 1, since an Equitable PRP rule is equitable-rank-partition stable.

A PP-stable PRP rule is an Equitable PRP rule.
A PRP rule f v,x is rank-partition stable by Proposition 1. Thus, if f v,x is PP-stable then the second part of the proof 

of Theorem 1 applies and hence f v,x is equitable-rank-partition stable. Then x is homogeneous and therefore f v,x is an 
Equitable PRP rule. �
Proof of Theorem 2.
A Near-Boston rule is rank-partition stable and Pareto-efficient.

Near-Boston rules are PRP rules and thus they are rank-partition stable by Proposition 1. We need to show that Near-
Boston rules are Pareto-efficient. Let f v,x be a Near-Boston rule. Fix a profile (�, P ) ∈ � × P and let μ ≡ f v,x(�, P ). We 
will prove that μ is Pareto-efficient. Since f v,x is a Near-Boston rule, all priority rank partitions are the coarsest in v , and 
there exists j1 ∈ S such that for all s ∈ S \ { j1}, s’s preference rank partition is the finest in x.

For all s ∈ S such that μs �= 0, let ts denote the round in the iterative f v,x procedure at (�, P ) in which s is accepted by 
school μs ∈ C for the first time. Let z > 0 be the total number of rounds of f v,x at (�, P ). For all s ∈ S such that μs = 0, let 
ts = z+1. We will say that student s replaces student s′ at school c in round t if, due to s’s application to school c, student s′ , 
who was tentatively assigned to school c for at least one round prior to t , is rejected from c in round t . In the following we 
will call such tentative assignments that don’t become final temporary assignments. Now we show that at most one student 
replaces a student in any round for f v,x , so this is an unambiguous definition for Near-Boston rules even with arbitrary 
school capacities. If there is any student who replaces another student in the Near-Boston procedure f v,x at (�, P ), then 
the first one in any round must be student j1, since all students other than j1 have the finest preference rank partition and 
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thus cannot replace another student, given that the finest preference rank partitions ensure that all acceptances are final 
(just like in the Boston rule). Furthermore, j1’s acceptance is final in step t j1 by μ j1 , since all other students have the finest 
preference rank partition and thus any potential applicant i ∈ S \ { j1} for μ j1 in any round after round t j1 would have μ j1

in the preference rank class of student i that corresponds to the number of the rounds in the iterative procedure up to that 
point, while j1 has μ j1 in a higher (i.e., lower-indexed) preference rank class, given that j1 replaced another student in 
round t j1 , and hence j1 would be selected by μ j1 in each round over any new applicant.

The second student (if any) who may replace another student is the student who was replaced at μ j1 by j1 in round 
t j1 , since this is the only student who may have a school, when the student applies to it, in a lower-indexed preference 
rank class than other students who are tentatively assigned to it or are applying to it (given that j1 has a final assignment 
in a previous round), since this student, say j2, has the school she is applying to in a preference rank class which is at 
least one class higher (i.e., lower-indexed), due to being temporarily assigned to μ j1 for at least one round, compared to 
other students who are applying to this school and have been rejected in each previous round by a school. Furthermore, for 
the same reasons j1’s acceptance was final in round t j1 , the acceptance of j2 is final when she replaces another student in 
round t j2 .

In general, there is at most one student in any round whose application to a school causes the replacement of a student, 
and this student is either j1 or a student further along the replacement chain initiated by j1. We will call this chain 
consisting of students who replace another student when they get matched the replacement list and denote it by ( j1, . . . , jk̄), 
indicating the order in which they appear in the iterative rounds. The replacement list depends on the profile and may have 
no members at all, which would imply that no student is replaced during the entire f v,x procedure at (�, P ) and hence 
the matching selected by f v,x is the same as the matching selected by the Boston rule at (�, P ). Once a student who was 
replaced by the previous student in the replacement list does not replace another student the chain ends, as there won’t be 
any more students who are “out of sync” with the preference rank classes of other students who are not yet accepted by 
a school, and the rest of the rounds will be just like in the Boston rule. For student jk̄ , the last student in the replacement 
list, there exists student i ∈ S who is replaced by jk̄ in round t jk̄

such that i was temporarily assigned to μ jk̄
in a previous 

round, but i does not replace any student in a later round. Although student i is not a member of the replacement list, for 
notational convenience let jk̄+1 denote this student. Note that each student in the replacement list has a final assignment 
in a round prior to the round when the final assignment was made for subsequent students in the replacement list, that is, 
t j1 < . . . < t jk̄

.

For all k ∈ {1, . . . , ̄k}, let t̂ jk denote the round in which jk+1 was first assigned to μ jk . Then, for all k ∈ {1, . . . , ̄k}, jk+1

applies to μ jk in round t̂ jk , where t̂ jk < t jk , and thus, since jk+1 has the finest preference rank partition, μ jk+1 ∈ Xt(P jk+1 )

such that t > t̂ jk . Also, for all k ∈ {1, . . . , ̄k − 1}, jk+2 applies to μ jk+1 in round t̂ jk+1 and therefore, since jk+2 has the finest 

preference rank partition, μ jk+1 ∈ Xt̂ jk+1 (P jk+2 ). Thus, since jk+1 replaces jk+2 at μ jk+1 , t ≤ t̂ jk+1 . Then t̂ jk < t ≤ t̂ jk+1 , and 
therefore t̂ j1 < . . . < t̂ jk̄

.
It is clear that for any permutation σ of S if students are assigned at (�, P ) their favorite school with at least one 

remaining seat according to the order of students specified by σ , that is, if matching μ corresponds to such a sequential 
matching that is found exactly as in a serial dictatorship (Satterthwaite and Sonnenschein, 1981), then μ is Pareto-efficient. 
We will demonstrate that it is possible to specify a permutation σ depending on the profile (�, P ) ∈ � × P such that 
f v,x(�, P ) corresponds to the sequential matching based on σ .

Fix a permutation σ of the set of students S for (�, P ) with the following requirements11:

a. Let σ follow the order in which the final assignments are made by the iterative procedure of f v,x at (�, P ). That is, let 
σ be such that for all s, s′ ∈ S , if σ(s) < σ(s′) then ts ≤ ts′ , where σ(s) is the rank number of student s in σ .

b. Make the following exceptions to the requirement in a. above: for all k ∈ {1, . . . , ̄k}, treat student jk in the replacement 
list at (�, P ) as if jk was matched in the round where jk+1 was first assigned (temporarily) to μ jk , namely in round 
t̂ jk . That is, for all k ∈ {1, . . . , ̄k}, let σ( jk) < σ(s) for all students s who were accepted by school μs for the first time 
after round t̂ jk in the f v,x procedure at (�, P ). Moreover, for all k ∈ {1, . . . , ̄k}, let σ( jk) > σ(s) for all students s who 
were accepted by school μs for the first time in round t̂ jk or prior to this round in the f v,x procedure at (�, P ).

Let f σ (�, P ) denote the sequential matching at (�, P ) in which first student s1 with σ(s1) = 1 is assigned to her first-
ranked school, then student s2 with σ(s2) = 2 is assigned to her first-ranked school among the schools with remaining 
vacant seats, and so on.

If f v,x is the Boston rule, that is, if j1 has the finest preference rank partition along with all other students then, for 
all (�, P ) ∈ � × P , there exists σ , as a function of (�, P ), such that f σ (�, P ) = μ and σ satisfies requirement a. above. 
In this case there are no temporary assignments in the procedure and the replacement list is empty. Thus, in each round 
each student who is still unmatched applies to her highest-ranked acceptable school that hasn’t rejected her yet, and once a 

11 Since permutation σ is a function of the profile (�, P ), we would need to write σ(�, P ) formally, but we suppress the argument for the sake of 
notational convenience.
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school accepts a student the assignment is final. This means that the exceptions specified by requirement b. are not relevant 
if f v,x is the Boston rule, and thus μ is a sequential matching and hence Pareto-efficient.

Observe that, given requirements a. and b. for σ at (�, P ), the only possibility for a Near-Boston rule that may cause 
f σ (�, P ) �= μ is if there exist c ∈ C and k ∈ {1, . . . , ̄k} such that jk was rejected by school c in round t , where t̂ jk < t < t jk . 
In this case, when it is jk ’s turn to be assigned to a school in the sequential matching according to σ , if there is a vacant 
seat at c then jk would be assigned to c or to a higher-ranked school by jk in f σ (�, P ), given that c P jk μ jk .

Suppose by way of contradiction that there exist such c, k and t . Since jk replaces jk+1 in round t jk at μ jk , and since 
jk+1 is temporarily assigned to μ jk in round t̂ jk < t jk , jk has μ jk in preference rank class t̂ jk or a lower-indexed preference 
rank class, that is, μ jk ∈ Xt′ (P jk ) such that t′ ≤ t̂ jk , otherwise jk would not replace jk+1 in round t jk at μ jk . Then, since 
c P jk μ jk , c ∈ Xt′′ (P jk ), where t′′ ≤ t′ ≤ t̂ jk .

Let h ∈ S such that h is tentatively assigned to c in round t . We will consider two cases depending on whether h is 
in the replacement list at (�, P ). If h is in the replacement list ( j1, . . . , jk̄) at (�, P ), let h = jk′ . First note that k′ �= k. If 
k′ = k + 1 then t̂ jk < t < t jk implies that h is temporarily assigned to μ jk in round t , which is a contradiction, since μ jk �= c. 

If k′ > k + 1 then t < t jk < t jk′−1
and h is only temporarily assigned to c in round t . Thus, c ∈ X

t̂ jk′−1 (P jk′ ). Moreover, given 
that t′′ ≤ t̂ jk , where c ∈ Xt′′ (P jk ), and given t̂ jk < t̂ jk′−1

, we have t′′ < t̂ jk′−1
. This means that jk cannot be rejected by c in 

round t , since jk has school c in a lower-indexed preference rank class than jk′ does. Thus, k′ < k. Note that requirement 
b. implies that h = jk′ precedes all students in σ who were assigned after round t̂ jk′ . Therefore, since k′ < k implies that 
t̂ jk′ < t̂ jk , σ(h) = σ( jk′ ) < σ( jk), and we have a contradiction.

Thus, for all h ∈ S such that h is tentatively assigned to c in round t , h is not in the replacement list at (�, P ), and 
hence h is permanently assigned to c in round t . Then, without loss of generality, we can let h ∈ μc such that for all 
h′ ∈ μc, th ≥ th′ . Since jk is rejected by c in round t and h is not in the replacement list at (�, P ), c has to be in at least as 
low-indexed a preference rank class for h as for jk . Thus, c ∈ Xth (Ph), where th ≤ t′′ ≤ t̂ jk and c ∈ Xt′′ (P jk ). Therefore, given 
that for all h′ ∈ μc, th ≥ th′ , for all h′ ∈ μc , σ(h′) < σ( jk) due to requirement b.

In sum, given the exceptions made by requirement b. in requirement a. for σ , there are no vacant seats remaining at 
school c immediately after round t̂ jk , when it is jk ’s turn to receive an assignment in the sequential matching according to 
permutation σ . Since a similar argument holds for all c ∈ C and k ∈ {1, . . . , ̄k} such that jk was rejected by school c in round 
t , where t̂ jk < t < t jk , jk ’s favorite school with remaining vacant seats is μk when jk receives her assignment, after all the 
students who were assigned to a school in round t̂ jk . Thus, if σ satisfies requirements a. and b. at (�, P ), f σ (�, P ) = μ, 
and since for all s, s′ ∈ S , σ(s) < σ(s′) implies that either μs P s μs′ or μs = μs′ , this means that the sequential matching μ
is Pareto-efficient.

A rank-partition stable and Pareto-efficient matching rule is a Near-Boston rule.
We will show that a Pareto-efficient PRP rule f v,x is a Near-Boston rule. Note that this is sufficient to prove the claim 

since, by Proposition 1, f v,x assigns the unique (v, x)-optimal rank-partition stable matching at (�, P ) to each profile, which 
Pareto-dominates all other matchings that are stable with respect to (�̄((�, P ), (v, x)), P ).

Step 1: Coarsest priority rank partition profile

We show first that if f v,x is a Pareto-efficient PRP rule then each school has the coarsest priority rank partition. Let 
f v,x be a Pareto-efficient PRP rule. Suppose that there exists a ∈ C such that va is not the coarsest. Assume without loss 
of generality that x1

i ≤ x1
l ≤ x1

j . For now we assume that qa = qb = qc = 1 and generalize the arguments at the end of 
Step 1.

Specify (�, P ) ∈ � ×P as follows. Let i, j, l, h ∈ S and assume that

• i has the top priority and j has the lowest priority in �a .
• j has the top priority and i has the lowest priority in �b .
• h has the top priority in �c .

All other priorities in � are arbitrary. Let P be given as shown in the table below.

Pi P j Pl Ph

c a c c
b b b
a 0

Assume that further preferences for students i, j, l, h are arbitrary at P , and for all students h′ ∈ S \ {i, j, l, h}, there is no 
acceptable school according to Ph′ . The rounds of the f v,x procedure at (�, P ) are displayed below, with the selections 
underlined in each round.
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Round a b c

1 j i, l,h
2 j i, l h
3 i, j l h
4 i j, l h

Round 1: Student h is selected over i and l by c, since either h is in a higher priority rank class than i and l for c, or h wins 
on the tie-breaker, given that ri(c) = rl(c) = rh(c) = 1 and h �c i, h �c l.
Round 2: Student l is selected over i by b, since either l is in a higher priority rank class than i for b, or l is 
selected based on preference rank classes, given that x1

i ≤ x1
l and ri(b) = rl(b) = 2, or if neither the priority rank 

classes nor the preference rank classes provide a basis for selecting l over i, then l wins on the tie-breaker due to 
l �b i.
Round 3: Given the assumption that va is not the coarsest, i ∈ V 1(�a) and j /∈ V 1(�a). Thus, in Round 3 student i is 
selected over j by school a based on the priority rank classes.
Round 4: Student j is selected over l by b, since either j is in a higher priority rank class than l for b, or j is se-
lected based on the preference rank classes, given that x1

l ≤ x1
j and r j(b) = rl(b) = 2, and if neither the priority rank 

classes nor the preference rank classes provide a basis for selecting j over l, then j wins on the tie-breaker due to 
j �b l.

Given that only schools c and b are acceptable according to Pl , student l remains unmatched and the final matching is 
as indicated for Round 4. Since i is assigned a and j is assigned b, i and j would prefer to trade their assignments and thus 
we have a contradiction to Pareto-efficiency.

In order to relax the assumption that qa = qb = qc = 1 and generalize the previous arguments, since there exist a, b, c ∈ C
such that qa + qb + qc < n, we can introduce additional students with the top priorities for the relevant schools such that 
each student with a top priority for a school (i.e., among the top qc highest-priority students for school c) ranks the school 
first. Since it can easily be verified that PRP rules satisfy mutual best,12 that is, students among the qc highest-priority stu-
dents for c who rank school c first are matched to c by any PRP rule, the addition of these students would allow for getting 
the same contradiction as above. In order to include the remaining schools and students, if there are any, we can simply 
assume that these schools are not acceptable to any student, and these students don’t find any school acceptable. Since this 
is a straightforward extension, we omit the details. Therefore, if f v,x is a Pareto-efficient PRP rule then each school has the 
coarsest priority rank partition.

Step 2: Near-Boston preference rank partition profile

Given Step 1, we will show that if f v,x is a Pareto-efficient PRP rule then it is a Near-Boston rule. Suppose that f v,x is 
Pareto-efficient and vc is the coarsest for each school c ∈ C , but it is not a Near-Boston rule. Then there exist j, l ∈ S with 
at least one preference rank class each which are minimally size 2. Since the preference rank classes which are larger than 
size 1 have to be relevant, that is, there must exist a profile where these preference rank classes matter, this means that 
there are enough students who can have top priorities at relevant schools, and since we can assume that these students 
rank their top-priority schools first, to reduce the tedious details we will assume that the minimally size 2 preference rank 
classes are the top preference rank classes for students j and l, and that qa = qb = qc = 1 for schools a, b, c ∈ C .

We specify (�, P ) ∈ � ×P as follows. Let the preferences for i, j, l ∈ S be given as shown in the table below. Student j
has both a and b in the first preference rank class, and so does student l: a, b ∈ X1(P j) and a, b ∈ X1(Pl).

Pi P j Pl

a a b
0 b a

Let l �a i �a j and j �b l. The rounds of the f v,x procedure at (�, P ) are displayed below, with the selections underlined 
in each round.

Round a b

1 i, j l
2 i j, l
3 i, l j

Note that all priority rank partitions are the coarsest, as shown in Step 1. Therefore, the strict priorities determine the 
selection in each round (i.e., the tie-breaker), as each application is for a school which is in the first preference rank class of 
the applying student. Given that only a is acceptable according to Pi , student i remains unmatched and the final matching 

12 See Morrill (2013) for the one-to-one (qc = 1) version of mutual best.
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is as indicated for Round 3. Since l is assigned a and j is assigned b, l and j would prefer to trade their assignments and 
thus we have a contradiction to Pareto-efficiency. This implies that a Pareto-efficient PRP rule is a Near-Boston rule. �
Proof of Theorem 3.

We first show in Step 1 that a PRP rule cannot be strategyproof unless it is the DA rule, and subsequently this fact is 
used in Step 2 to prove the theorem.

Step 1: The only strategyproof PRP rule is the DA rule.
It is well known that the DA rule is strategyproof (Dubins and Freedman, 1981; Roth, 1982). Let f v,x be a PRP rule which 

is not the DA rule. We need to show that f v,x is not strategyproof. Since f v,x is not the DA rule, there exists c ∈ C such that 
vc is not the finest, and there exists s ∈ S such that xs is not the coarsest. Specifically, there is a priority reversal (t, u) for 
school c, where priority ranks t and u satisfy t < u ≤ n, as defined in Appendix A. Thus, there exist a profile (�, P ) ∈ � ×P
and student ŝ ∈ S such that the rank of s is t and the rank of ŝ is u in �c , c P s fs(�, P ) and f ŝ(�, P ) = c. Note that ranks 
t and u are in the same priority rank class for vc , and xs is not the coarsest since the priority reversal occurs when the 
choice function of school c favors ŝ over s, and s is not selected due to the preference rank classes. This can only happen 
when s reports c in a preference rank class that is not the top preference rank class for s, that is, c ∈ Xt(P s) such that t ≥ 2. 
However, it is easy to see that one can construct examples of P̃ s such that c ∈ X1( P̃ s) and f v,x

s (�, ( P̃ s, P−s)) = c (we omit 
the laborious details). This means that s can manipulate at P via P̃ s and implies that f v,x is not strategyproof.

Step 2: The only strategyproof rank-partition stable matching rule is the DA rule.
Suppose by way of contradiction that ϕ is a rank-partition stable matching rule which is strategyproof, but ϕ is not 

the DA rule. Let ϕ be rank-partition stable with respect to (v, x). By Step 1, ϕ is not the PRP rule f v,x . Thus, there exists 
(�, P ) ∈ � ×P such that ϕ(�, P ) �= f v,x(�, P ). Then Proposition 1 implies that f v,x(�, P ) Pareto-dominates ϕ(�, P ), and 
hence there exists s ∈ S such that f v,x

s (�, P ) P s ϕs(�, P ). Since ϕ is rank-partition stable it is also individually rational, 
and thus it follows that f v,x

s (�, P ) P s 0. Let P̃ s ∈ P be the truncation of P s directly below f v,x
s (�, P ), so that the ordering 

in P̃ s is the same as in P s from the first-ranked school to f v,x
s (�, P ), and the schools ranked below f v,x

s (�, P ) in P s

are unacceptable to s at P̃ s . Let P̃ ≡ ( P̃ s, P−s). Note that f v,x(�, P̃ ) = f v,x(�, P ).13 Moreover, as ϕ is strategyproof and 
individually rational, ϕs(�, P̃ ) = 0. Let �̄ ≡ �̄((�, P̃ ), (v, x)). Since ϕ is rank-partition stable with respect to (v, x) and f v,x

is a PRP rule, both ϕ(�, P̃ ) and f v,x(�, P̃ ) are stable at (�̄, P̃ ). Then, since f v,x(�, P̃ ) = f v,x(�, P ), f v,x(�, P ) is also stable 
at (�̄, P̃ ). However, ϕs(�, P̃ ) = 0 and f v,x

s (�, P ) �= 0. Since both ϕ(�, P̃ ) and f v,x(�, P ) are stable at (�̄, P̃ ), this contradicts 
the rural hospital theorem (Roth, 1986). �
Proof of Theorem 4.
Summary of the proof:
Given a PRP rule f v,x and a fixed profile (�, P ), we need to compare the assignment of a student s in f v,x(�, P ) and in 
f v,x(�, ( P̌ s, P−s)), where P̌ s is an arbitrary alternative preference ordering to P s for student s. The heart of the proof is 
the Manipulation Lemma, in which we consider two simple kinds of transformations of some preference ordering P s into 
another preference ordering P ′

s , which we refer to as T1 and T2 transformations, assuming that according to both P s and 
P ′

s all schools are acceptable. In a T1 transformation P ′
s preserves the partition of schools into preference rank classes and 

only a reshuffling of schools within the preference rank classes is allowed compared to P s . In a T2 transformation only the 
positions of two schools, a and b, satisfying a P s b, are switched between the two preference orderings such that these two 
schools are in different preference rank classes in P s , and thus their respective preference rank classes are also switched 
in P ′

s . T2 transformations are divided into several cases, depending on the position of school d with respect to a and b, 
where d is the school that is assigned to s when she reports P s . For each kind of transformation and for each case one or 
more scenarios are proved about f v,x

s (�, (P ′
s, P−s)). Namely, we show in the Manipulation Lemma that the new assignment 

for s at (�, (P ′
s, P−s)) is either b (the school that is moved to a higher preference rank class), or d (the school that is 

assigned to s at (�, P )), or a less preferred school than d according to P s . Then we define a specific sequence of T1 and T2 
transformation steps that transforms an arbitrary preference ordering P s into another arbitrary preference ordering P̌ s (but 
still assuming that all schools are acceptable), which we call a T-procedure. We provide the proof of the theorem based on a 
T-procedure by showing that narrowing down the assignment of s to the three types of outcomes that are identified in the 
Manipulation Lemma in each step of the transformation of P s into P̌ s implies that s cannot be assigned to school c when 
she reports P̌ s instead of P s , such that c is preferred to f v,x

s (�, P ) according to P s , if c is not ranked in a higher preference 
rank class in P̌ s than in P s . Finally, we relax the assumption that all schools are acceptable, which completes the proof of 
the theorem for general preference orderings of s.

We begin with a lemma that will be used repeatedly in the following arguments. It establishes an invariance property of 
PRP rules which is satisfied by most known matching rules. Let f D A denote the DA rule.

13 For details, see Lemma 1 in the proof of Theorem 4.
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Lemma 1. Let f v,x be a PRP rule and fix a profile (�, P ) ∈ � ×P . Let preferences P ′
s ∈ P for student s ∈ S be such that there exists 

a ∈ C with a P s 0, and the preference orderings of all the schools from the first-ranked school to a are identical for P s and P ′
s , while 

the preference orderings of schools ranked below a in P s and assignment 0 may differ between P s and P ′
s . Let C̃ ≡ {c ∈ C : c Rs a}

denote the set of schools that are weakly preferred to school a according to P s. Then, for all c ∈ C̃ , f v,x
s (�, P ) = c if and only if 

f v,x
s (�, (P ′

s, P−s)) = c. Moreover, if f v,x
s (�, P ) = c for some c ∈ C̃ then each round of the f v,x procedure at (�, P ) is the same as at 

(�, (P ′
s, P−s)), implying that f v,x(�, P ) = f v,x(�, (P ′

s, P−s)).

Proof. For all S ′ ⊆ S and c ∈ C̃ the choice functions associated with f v,x lead to the same selection at the two relevant 
profiles: Chc(S ′, (�, P )) = Chc(S ′, (�, (P ′

s, P−s))), and the only possible difference is in the selections made by schools in 
C \ C̃ and for the selection of s only. Since in the f v,x procedure students apply to schools in the order of their preferences, if 
f v,x

s (�, P ) = c such that c ∈ C̃ then s does not apply to any school in C \ C̃ at (�, P ) and thus, given the above observations 
about the selections made by the schools’ choice functions, each round of the f v,x procedure at (�, P ) is the same as at 
(�, (P ′

s, P−s)), and s does not apply to any school in C \ C̃ at (�, (P ′
s, P−s)) either. This implies that for all c ∈ C̃ , f v,x

s (�, P )

= c if and only if f v,x
s (�, (P ′

s, P−s)) = c, and if f v,x
s (�, P ) = c for some c ∈ C̃ then f v,x(�, P ) = f v,x(�, (P ′

s, P−s)). �
The Manipulation Lemma will be established for the special case where student s, whose alternative preferences are 

compared, finds all schools acceptable. Let P̄ ⊂P denote the set of strict preferences over C ∪ {0} that rank 0 last.

Manipulation Lemma. Let f v,x be a PRP rule and fix a profile (�, P ) ∈ � ×P . Let s ∈ S and d ∈ C ∪ {0} such that f v,x
s (�, P ) = d. 

Assume that P s ∈ P̄ and let P ′
s ∈ P̄ such that P ′

s differs from P s in one of the following two ways, which we refer to as T1 and T2 
transformations, respectively.

T1: P s and P ′
s have the same preference rank partition of schools: for all t ≥ 1, Xt(P s) = Xt(P ′

s).
T2: Only the positions of two schools, a, b ∈ C , are switched between the two preference orderings such that, letting a P s b, a is the 

bottom-ranked school in its preference rank class in P s, and b is the top-ranked school in its preference rank class in P s. Thus, by 
switching the positions of a and b the two schools also switch preference rank classes in P ′

s compared to P s, and hence there exist 
t, ̄t ≥ 1 with t < t̄ such that a ∈ Xt(P s), b ∈ Xt̄(P s), a ∈ Xt̄(P ′

s), and b ∈ Xt(P ′
s).

Then one of three different types of outcomes is reached by f v,x
s (�, (P ′

s, P−s)):

O1: f v,x
s (�, (P ′

s, P−s)) = b (the new assignment is the school which is moved to a higher preference rank class in a T2 transformation 
step)

O2: f v,x
s (�, (P ′

s, P−s)) = d (the assignment remains the same)
O3: d P s f v,x

s (�, (P ′
s, P−s)) (the new assignment is less preferred according to P s than the original assignment)

Proof. Let the relevant modified priority profiles be denoted as �̄ ≡ �̄((�, P ), (v, x)) and �̄′ ≡ �̄((�, (P ′
s, P−s)), (v, x)). By 

Proposition 1, f v,x(�, P ) = f D A(�̄, P ) and f v,x(�, (P ′
s, P−s)) = f D A(�̄′, (P ′

s, P−s)).

T1: We will show that one of the following two scenarios holds:
scenario (i): f v,x

s (�, (P ′
s, P−s)) = d (O2)

scenario (ii): d P s f v,x
s (�, (P ′

s, P−s)) and f v,x
s (�, (P ′

s, P−s)) P ′
s d (O3)

Only the set of schools in each preference rank class is relevant for constructing a modified priority profile, while the order-
ing of the schools within a preference rank class is irrelevant. Hence, for T1 transformations, �̄ = �̄′ and f v,x(�, (P ′

s, P−s))

= f D A(�̄, (P ′
s, P−s)). Therefore, the strategyproofness of the DA rule implies that either f v,x

s (�, (P ′
s, P−s)) = d, correspond-

ing to scenario (i), or d P s f v,x
s (�, (P ′

s, P−s)) and f v,x
s (�, (P ′

s, P−s)) P ′
s d, corresponding to scenario (ii).

T2: Apart from the swapped positions of a and b, for a T2 transformation P ′
s is the same as P s . We will denote the set of 

schools ranked by both P s and P ′
s between a and b by E ⊂ C . Then e ∈ E if and only if a P s e P s b, as well as b P ′

s e P ′
s a. 

The proof below is presented for the general case where E �= ∅, but it is easy to verify that the proof can be carried out in 
a simplified and very similar manner if E = ∅. In the following we consider different cases that depend on the position of 
school d in P s with respect to schools a and b.

Case T2-A: d P s a
By Lemma 1, f v,x

s (�, (P ′
s, P−s)) = f v,x

s (�, P ) = d. (O2)

Case T2-B: d = a
Lemma 1 implies one of the following scenarios:

scenario (i) : f v,x
s (�, (P ′

s, P−s)) = b (O1 and O3)
scenario (ii): f v,x

s (�, (P ′
s, P−s)) = d = a (O2)

scenario (iii): d P s f v,x
s (�, (P ′

s, P−s)) such that f v,x
s (�, (P ′

s, P−s)) �= b (O3)

Case T2-C: a P s d P s b (i.e., d ∈ E)
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We will show that one of the following scenarios holds:
scenario (i) : f v,x

s (�, (P ′
s, P−s)) = b (O1 and O3)

scenario (ii): f v,x
s (�, (P ′

s, P−s)) = d (O2)
Consider the following modification of the preferences for s: let P̂ s ∈ P̄ rank a last (directly above 0), while the preference 
ordering of all other schools remains the same as in P s . Then, since the DA rule is strategyproof, f D A

s (�̄, P ) = d implies that 
f D A

s (�̄, ( P̂ s, P−s)) = d. Furthermore, since only the priority of student s may change, and only for schools a and b, when 
comparing �̄′ to �̄, it must be the case that f D A

s (�̄′, ( P̂ s, P−s)) = d, since student s does not apply to either school a or 
to school b in the DA procedure at profile (�̄, ( P̂ s, P−s)), and thus each round of the DA procedure is the same at profiles 
(�̄, ( P̂ s, P−s)) and (�̄′, ( P̂ s, P−s)). Then it follows from the strategyproofness of the DA rule that f D A

s (�̄′, (P ′
s, P−s)) ∈ {b, d}. 

This means that either f v,x
s (�, (P ′

s, P−s)) = b, corresponding to scenario (i), or f v,x
s (�, (P ′

s, P−s)) = d, corresponding to 
scenario (ii).

Case T2-D: d = b
We will show that f v,x

s (�, (P ′
s, P−s)) = d = b (O1 and O2). Since the DA rule is strategyproof, f D A

s (�̄, P ) = d = b implies that 
f D A

s (�̄, (P ′
s, P−s)) = b. Furthermore, since only the priority of student s may change, and only for schools a and b, when 

comparing �̄′ to �̄, the application of s to school b in the DA procedure at profile (�̄, (P ′
s, P−s)) is the first possibility for a 

difference from the DA procedure at profile (�̄′, (P ′
s, P−s)). Given that s has the same or a higher rank in �̄′

b compared to 
�̄b , while all relative rankings of the other students are the same in the two priority rankings of school b, since s is accepted 
at (�̄, (P ′

s, P−s)) by b, the same is true at (�̄′, (P ′
s, P−s)) in the same round of the DA procedure. Moreover, since only the 

relative ranking of s may differ between �̄′ and �̄, and given that s is not ranked lower by �̄′
b than by �̄b , the rounds of 

the DA procedure are the same at (�̄, (P ′
s, P−s)) and at (�̄′, (P ′

s, P−s)), and s is not rejected by b in a later round in the 
DA procedure at profile (�̄′, (P ′

s, P−s)). Hence, the ranking of s in �̄′
a versus �̄a is irrelevant, and f D A

s (�̄′, (P ′, P−s)) = b. 
Therefore, f v,x

s (�, (P ′
s, P−s)) = d = b.

Case T2-E: b P s d.
We will show that one of the following scenarios holds:

scenario (i): f v,x
s (�, (P ′

s, P−s)) = b (O1)
scenario (ii): f v,x

s (�, (P ′
s, P−s)) = d (O2)

We show first that f D A
s (�̄′, P ) �= a. Given a P s d, s is rejected by school a in the DA procedure at profile (�̄, P ). Since only 

the priority of student s may change, and only for schools a and b, when comparing �̄′ to �̄, the application of s to school 
a in the DA procedure at profile (�̄, P ) is the first possibility for a difference from the DA procedure at profile (�̄′, P ). 
Given that s is ranked the same or lower by �̄′

a than by �̄a , while all relative rankings of the other students are the same 
in the two priority rankings of school a, since s is rejected at (�̄, P ) by a, s is also rejected at (�̄′, P ) by a. Student s may 
be temporarily accepted at (�̄, P ) by school a before being rejected, and s may also be temporarily accepted at (�̄′, P ) by 
school a before being rejected, or possibly rejected immediately or in fewer rounds, but in the end s is rejected by school 
a at both profiles, since any possible difference in the rounds of the DA procedure between the two profiles that affects 
the assignment of s to a can only occur if s is rejected by school a sooner at (�̄′, P ) than at (�̄, P ), whereas if there is no 
difference then a would reject s anyway at (�̄′, P ). Therefore, f D A

s (�̄′, P ) �= a.
Consider the following modification of the preferences for s: let P̃ s ∈ P̄ rank schools a and b last (directly above 0), 

while the relative preference ordering of all other schools remains the same as in P s and P ′
s . Since f D A

s (�̄, P ) = d, the 
strategyproofness of the DA rule implies that f D A

s (�̄, ( P̃ s, P−s)) = d. Then, since only the priority of student s may change 
when comparing �̄ and �̄′ , and only for schools a and b, while all other students have the same relative ranking in the two 
priority profiles, it must be the case that f D A

s (�̄′, ( P̃ s, P−s)) = d, since the DA procedure has the same rounds at profiles 
(�̄, ( P̃ s, P−s)) and (�̄′, ( P̃ s, P−s)), and student s does not apply to either school a or b at (�̄′, ( P̃ s, P−s)). Then, by the 
strategyproofness of the DA rule, f D A

s (�̄′, P ) ∈ {a, b, d}. As shown above, f D A
s (�̄′, P ) �= a, and therefore f D A

s (�̄′, P ) ∈ {b, d}. 
Since the DA rule is strategyproof, if f D A

s (�̄′, P ) = b then f D A
s (�̄′, (P ′

s, P−s)) = f v,x
s (�, (P ′

s, P−s)) = b, corresponding to 
scenario (i), and if f D A

s (�̄′, P ) = d then f D A
s (�̄′, (P ′

s, P−s)) = f v,x
s (�, (P ′

s, P−s)) = d, corresponding to scenario (ii).

Conclusion: We have analyzed all possible cases depending on the position of school d in P s with respect to schools a and 
b, and can conclude that one of the following three outcomes is reached in each case:

O1: f v,x
s (�, (P ′

s, P−s)) = b in Case T2-B scenario (i), Case T2-C scenario (i), Case T2-D, and Case T2-E scenario (i).
O2: f v,x

s (�, (P ′
s, P−s)) = d in T1 scenario (i), Case T2-A, Case T2-B scenario (ii), Case T2-C scenario (ii), Case T2-D, and 

Case T2-E scenario (ii).
O3: d P s f v,x

s (�, (P ′
s, P−s)) in T1 scenario (ii), Case T2-B scenarios (i) and (iii), and Case T2-C scenario (i). �

The proof of Theorem 4 below relies not only on the statement of the Manipulation Lemma but also on some details of 
the proof of the lemma; we presented the Manipulation Lemma separately for the sake of clarity. Observe that outcomes 
O2 and O3 in the statement of the lemma are the only possibilities for a strategyproof rule, whereas O1 is a feature of PRP 
rules. As it is possible that b P s f v,x

s (�, P ), O1 is indicative of how PRP rules may be manipulated. Specifically, Case T2-E 
scenario (i) is the only case where manipulation occurs.
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Completion of the proof of Theorem 4.
Let f v,x be a PRP rule and fix a profile (�, P ) ∈ � ×P . Let s ∈ S and d̄ ∈ C ∪ {0} such that f v,x

s (�, P ) = d̄. For now we 
assume that P s ∈ P̄ and let P̌ s ∈ P̄; we will relax these assumptions at the end of the proof. Let c ∈ C such that c P s d̄ and 
c is in the same or a lower preference rank class in P̌ s than in P s , given x.

Based on the preference rank class that a school is ranked in by P s compared to P̌ s , we classify each school in C as an 
“up,” “down” or “stay” school. A school is an up school if it is in a higher preference rank class in P̌ s than in P s , and it is a 
down school if it is in a lower preference rank class in P̌ s than in P s , given x. The rest of the schools are stay schools. Note 
that school c is either a down school or a stay school, by assumption.

By repeatedly applying the two kinds of transformations, T1 and T2, that are analyzed in the Manipulation Lemma, we 
can transform P s into P̌ s using a finite number of transformation steps (i.e., intermediate preference orderings). Let P̃ s ∈ P
denote an intermediate preference ordering, including P̃ s = P s , and let P̃ ′

s denote the preference ordering immediately 
following P̃ s that results from the T1 or T2 transformation of P̃ s , including P̃ ′

s = P̌ s . We call a school up-bound in an 
intermediate preference ordering P̃ s if it is in a higher preference rank class in P̌ s than in P̃ s , and we call it down-bound 
in P̃ s if it is in a lower preference rank class in P̌ s than in P̃ s , given x. The remaining schools, which are in the same 
preference rank class in P̃ s and P̌ s , are stay-bound in P̃ s . Note that if there is any up-bound school in an intermediate 
preference ordering P̃ s then there is also a down-bound school in P̃ s , and vice versa. If there is no up-bound (or down-
bound) school in P̃ s , then all schools are stay-bound and thus each school is in the same preference rank class in P̃ s as 
in P̌ s .

Let this transformation of P s into P̌ s proceed according to the following specifications, which we refer to as a T-procedure.

T-procedure

Given P s , start with a T1 step and alternate T1 and T2 steps until P̌ s is reached. If there is any up-bound (or down-bound) 
school in P s , start with a (non-final) T1 step. Otherwise, carry out the final T1 step.

T1 step (non-final): In each T1 step arrange the schools within each preference rank class of P̃ s such that all up-bound 
schools in P̃ s are at the top of the preference rank class and all down-bound schools in P̃ s are at the bottom of the 
preference rank class, leaving all other relative orderings of schools within each preference rank class unchanged. That is, 
P̃ ′

s satisfies the following within each preference rank class of P̃ s (and P̃ ′
s):

(i) all up-bound schools in P̃ s are ranked above all stay-bound schools in P̃ s;
(ii) all stay-bound schools in P̃ s are ranked above all down-bound schools in P̃ s;

(iii) all up-bound schools in P̃ s are in the same relative order in P̃ ′
s as in P̃ s;

(iv) all stay-bound schools in P̃ s are in the same relative order in P̃ ′
s as in P̃ s;

(v) all down-bound schools in P̃ s are in the same relative order in P̃ ′
s as in P̃ s .

Carry out a T2 step next.

T2 step: In each T2 step choose one pair of schools (a, b) such that a P̃ s b, a is down-bound in P̃ s , b is up-bound in P̃ s , and 
a is positioned in the lowest rank of its preference rank class, while b is positioned in the highest rank of its preference 
rank class such that all schools ranked between a and b, if there are any, are stay-bound in P̃ s . Switch the positions of 
schools a and b in this T2 transformation step, so that b P̃ ′

s a, and let all other schools have the same rank in P̃ ′
s as in P̃ s .

If P̃ ′
s = P̌ s then the procedure is over.

If P̃ ′
s �= P̌ s but each school is in the same preference rank class in P̃ ′

s as in P̌ s , that is, if all schools are stay-bound in P̃ ′
s , 

then carry out the final T1 step.
If there is at least one up-bound (or down-bound) school in P̃ ′

s , carry out a (non-final) T1 step next.

Final T1 step: In the final T1 step, once each school is in the same preference rank class as in P̌ s , arrange the schools within 
each preference rank class in the same order as they are in P̌ s . Then P̃ ′

s = P̌ s and the procedure is over.

A T-procedure reaches P̌ s from P s in a finite number of steps, alternating T1 and T2 transformation steps, regardless of 
the order in which (a, b) pairs are picked in T2 steps. Notice that an up school is up-bound in each transformation step until 
it reaches the preference rank class that it belongs to in P̌ s , and then it is stay-bound in each subsequent transformation 
step in a T-procedure. Similarly, a down school is down-bound in each transformation step until it reaches the preference 
rank class that it belongs to in P̌ s , and then it is stay-bound in each subsequent transformation step. Moreover, a stay 
school is stay-bound in each transformation step. Since c is either a down school or a stay school, this also implies that c is 
either down-bound or stay-bound in each transformation step. Observe, furthermore, that if the positions of two schools are 
switched in any step, they are not switched back to their previous relative positions again in any later step of a T-procedure.

Now we are ready to show that there is no transformation step (i.e., an intermediate preference ordering P̃ s) in a T-
procedure that transforms P s into P̌ s in which student s is assigned to c. Due to the Manipulation Lemma, we only need to 
consider three different types of outcomes for each step of a T-procedure that transforms P s into P̌ s: O1, O2, and O3. Let 
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P̃ s be an intermediate preference ordering followed immediately by P̃ ′
s in a T-procedure, including P̃ s = P s and P̃ ′

s = P̌ s . 
Assume that f v,x

s (�, ( P̃ s, P−s)) �= c. We will show that then f v,x
s (�, ( P̃ ′

s, P−s)) �= c. Since f v,x
s (�, P ) �= c, it will follow by 

induction that f v,x
s (�, ( P̌ s, P−s)) �= c.

O1: f v,x
s (�, ( P̃ ′

s, P−s)) = b, where b is in a higher preference rank class in P̃ ′
s than in P̃ s .

Note that b is an up-bound school in P̃ s , and since c is either down-bound or stay-bound in P̃ s , it follows that 
f v,x

s (�, ( P̃ ′
s, P−s)) �= c in a transformation step with O1.

O2: f v,x
s (�, ( P̃ ′

s, P−s)) = f v,x
s (�, ( P̃ s, P−s))

A transformation step with O2 cannot yield c, since if f v,x
s (�, ( P̃ s, P−s)) �= c then f v,x

s (�, ( P̃ ′
s, P−s)) �= c.

O3: f v,x
s (�, ( P̃ s, P−s)) P̃ s f v,x

s (�, ( P̃ ′
s, P−s))

The Manipulation Lemma shows that a transformation step with O3 can only occur in a T1 step scenario (ii), or in a 
T2 step under Case T2-B scenarios (i) and (iii), or Case T2-C scenario (i). Case T2-B scenario (i) and Case T2-C scenario 
(i) have already been analyzed under O1, since these cases fall under both the O1 and O3 outcome types, which leaves 
T1 scenario (ii) and Case T2-B scenario (iii). We will look at these two kinds of transformation steps in turn. Let 
f v,x

s (�, ( P̃ s, P−s)) = d such that d �= c. Suppose by way of contradiction that f v,x
s (�, ( P̃ ′

s, P−s)) = c. Then d P̃ s c.
T1 step: If this is a T1 step scenario (ii) then c P̃ ′

s d holds, as shown in the proof of the Manipulation Lemma, where 
this T1 step transforms P̃ s into P̃ ′

s and d and c are in the same preference rank class in P̃ s . Given that if the positions 
of two schools are switched in any step they are not switched back to their original relative positions again in any 
later step of a T-procedure, d P̃ s c and c P̃ ′

s d imply that d P s c. Then, by transitivity, c P s d̄ implies that d P s d̄ and 
hence, since f v,x

s (�, ( P̃ s, P−s)) = d, according to the Manipulation Lemma there is a previous T2 transformation step 
corresponding to Case T2-E scenario (i) with outcome O1 in which s is assigned to school d. This means that d is an 
up school. Now note that d P s c implies that d is in the same or a higher preference rank class than c in P s , and since 
d is an up school while c is either a down school or a stay school, and d and c are in the same preference rank class in 
P̃ s , it follows that both d and c are in the same preference rank class in P s as in P̃ s , implying that d is not in a higher 
preference rank class in P̃ s compared to P s . Therefore, since d is an up school, d is up-bound in P̃ s , which implies that 
the T1 step that transforms P̃ s into P̃ ′

s is non-final. Then, however, since c is either down-bound or stay-bound in P̃ s

and d is up-bound in P̃ s , d P̃ ′
s c holds, which is a contradiction.

T2 step: If this is a T2 step, specifically Case T2-B scenario (iii), then d is moved from its preference rank class in P̃ s

to a lower preference rank class in P̃ ′
s and thus d is a down school and it is down-bound in P̃ s . We show next for all 

possible cases of the relationship of d to d̄ in P s that this leads to a contradiction.
(a) If d P s d̄, then the Manipulation Lemma implies that one of the previous steps correspond to Case T2-E scenario (i)

with outcome O1 and hence d is an up school. This is a contradiction, since d is a down school, as noted above.
(b) If d = d̄ or d̄ P s d, then c P s d̄ implies that c P s d. Then, given that d is down-bound in P̃ s , c P s d implies that c P̃ ′

s d
according to the specifications of a T-procedure. However, given that if the positions of two schools are switched 
in any step they are not switched back to their original relative positions again in any later step of a T-procedure, 
c P s d and d P̃ s c imply that d P̃ ′

s c, which is a contradiction.
We reached a contradiction for both T1 and T2 transformation steps with O3, and hence f v,x

s (�, ( P̃ ′
s, P−s)) �= c in any 

transformation step with O3.

We have checked all three different types of outcomes for the steps in a T-procedure, and thus it follows from the 
Manipulation Lemma that there is no step in a T-procedure that transforms P s into P̌ s in which any intermediate preference 
ordering P̃ ′

s yields f v,x
s (�, ( P̃ ′

s, P−s)) = c. Therefore, we can conclude by induction that f v,x
s (�, ( P̌ s, P−s)) �= c. In sum, this 

proves that for any P s and P̌ s for which all schools are acceptable to s, if c is preferred to f v,x
s (�, P ) by s and c is in the 

same or a lower preference rank class in P̌ s than in P s , then f v,x
s (�, ( P̌ s, P−s)) �= c. Therefore, the theorem is proved for 

the special case where P s, P̌ s ∈ P̄ .

Finally, we need to show that the above arguments generalize to arbitrary P s and P̌ s , without assuming that all schools 
are acceptable to s. Fix arbitrary preference orderings P s, P̌ s ∈ P . Let P ′′

s ∈ P̄ be the same as P s , except for adding all the 
schools that are unacceptable to s in P s to the bottom of the preference ordering of P ′′

s as acceptable schools. Similarly, let 
P̌ ′′

s ∈ P̄ be the same as P̌ s , except for adding all the schools that are unacceptable to s in P̌ s to the bottom of the preference 
ordering of P̌ ′′

s as acceptable schools.
Let c ∈ C such that c P s f v,x

s (�, P ) and c is in the same or a lower preference rank class in P̌ s than in P s , given x. We 
will show that f v,x

s (�, ( P̌ s, P−s)) �= c. Let d ∈ C ∪ {0} such that f v,x
s (�, P ) = d. By individual rationality, d = 0 or d P s 0. 

If d = 0 then either f v,x
s (�, (P ′′

s , P−s)) = 0 or 0 P s f v,x
s (�, (P ′′

s , P−s)), by Lemma 1, and if d P s 0 then Lemma 1 implies 
that f v,x

s (�, P ) = f v,x
s (�, (P ′′

s , P−s)) = d. Thus, it follows from c P s f v,x
s (�, P ) that c P ′′

s f v,x
s (�, (P ′′

s , P−s)). If 0 P̌ s c then, 
since f v,x is individually rational, f v,x

s (�, ( P̌ s, P−s)) �= c. Then, since c �= 0, we can assume that c P̌ s 0. Also, by individual 
rationality, c P s 0. Then c is in the same or a lower preference rank class in P̌ ′′

s than in P ′′
s . As P ′′

s , P̌ ′′
s ∈ P̄ , we can apply 

the above proof of the theorem to P ′′
s and P̌ ′′

s . Therefore, since c P ′′
s f v,x

s (�, (P ′′
s , P−s) and c is in the same or a lower 
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preference rank class in P̌ ′′
s than in P ′′

s , it follows that f v,x
s (�, ( P̌ ′′

s , P−s)) �= c. Then, since c P̌ s 0, Lemma 1 implies that 
f v,x

s (�, ( P̌ s, P−s)) �= c. This proves the theorem for the general case where P s, P̌ s ∈P . �
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