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Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.

10 15 200

Cost=10 5 5

• How can we divide the cost ?  
Divide the cost of each segment equally 

Total cost ＝20
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Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.

10 15 200

5 5Cost=10

• How can we divide the cost ?  

Pay 5Pay 10/4 Pay 5/3 

Divide the cost of each segment equally 

Pay 10/4 

Pay 10/4+5/3 

Pay 10/4+5/3+5 

Total cost ＝20



Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.
• How can we divide the cost ?  

Divide the cost of each segment equally 

This sequential equal division = The Shapley value 

10 15 200 Time

Other applications

Sharing a facility over time for agents 
with different demands. 

Total cost ＝20
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Our model
• A natural extension of airport game
• A single taxi  ⇒ Multiple taxis with capacities 

10 15 200

Cost=10 5 5

…

…
4 3

cap cap …
…

Creat groups

Payment: Shapley value of the group



Our model

10 15 200

Cost=10 5 5

…

…
Cap 4 Cap 3

• n agents with destinations 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛 ∈ 𝓡𝓡+
• k taxis with capacities 𝐪𝐪𝟏𝟏,𝐪𝐪𝟐𝟐, … ,𝐪𝐪𝐤𝐤 ∈ 𝓩𝓩+

• All taxies have identical cost functins c: 𝓡𝓡+→ 𝓡𝓡+

monotone c(𝐱𝐱) ≤ c(𝐱𝐱’) if 𝐱𝐱 ≤ 𝐱𝐱’
depends on the final destination

・ Agents in the same taxi use Shapley value 
Objective: Find a fair partition of agents 𝒯𝒯)

Basic 1. On a line
2. Idenitcal cost 

: river, highway, time

w.l.o.g. c(𝐱𝐱) ≡ 𝐱𝐱
Set of Agents 
who take taxi 1
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Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

All agents have the same 
destination

All taxies carry the same 
number of agents 



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 ≥ 3



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 ≥ 3

Pay 10 ⇒ 10/3

Not Nash stable 



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 = 2

×



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 = 2

Nash stable 

All agents have the same 
destination

All taxies except 1 are full



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi
• weakly swap-stable: no two agents envy each other

…
…
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Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi
• weakly swap-stable: no two agents envy each other
• strongly swap-stable: no two agents a and b s.t. a

envies b & b can replace a
(at least as good as the current situation)

・ Contractually individually stable: No agent can deviate   
without increasing the payment of some agent in her   
current taxi. 

…
…

only 1 agent in her taxi 



Solution Concepts
・ Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
・ Nash stable: no agent can reduce her cost by deviating 

to another taxi
・ weakly swap-stable: no two agents envy each other
・ strongly swap-stable: no two agents a and b s.t.

a envies b & b can replace a 
・ Contractually individually stable: No agent can deviate   

without increasing the payment of some agent in her   
current taxi. 

・ Socially optimal: minimize the total payment 
・ weakly Pareto optimal 𝒯𝒯: 

∄𝑆𝑆 s. t.𝜑𝜑𝑆𝑆(a) < 𝜑𝜑𝒯𝒯(a) for all a ∈ A
・ strongly Pareto optimal 𝒯𝒯: 

∄𝑆𝑆 s. t.𝜑𝜑𝑆𝑆(a) ≤ 𝜑𝜑𝒯𝒯(a) for all a ∈ A
𝜑𝜑𝑆𝑆(a) < 𝜑𝜑𝒯𝒯(a) for some a ∈ A

Payment of a under 𝒯𝒯
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No other implication exists

Relationships among concepts

Envy-free

strongly 
swap-stable

Nash stable

Contractually 
individually stable

weakly 
swap-stable

Socially optimal

weakly 
Pareto optimal

strongly 
Pareto optimal

×



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

5/25/3



Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2
10/25/3+5/2



Relationships among concepts

Envy-freeness⇒ Nash stability
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2Envy-freeness 



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

Not Nash stable 



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

Not Nash stable 

10/3



No other implication exists

Relationships among concepts

Envy-free

Weakly 
swap-stable

Nash stable

Contractually 
individually stable

Strongly 
swap-stable

Socially optimal

Weakly 
Pareto optimal

Strongly 
Pareto optimal

××



Relationships among concepts

Nash stability ⇒ Envy-freeness 

𝐪𝐪𝟏𝟏= 5 10/5 + 10/3

5 10 200

5 5 10

10/5

𝐪𝐪2= 4 10/4+10/310/4



Relationships among concepts

Nash stability ⇒ Envy-freeness 

𝐪𝐪𝟏𝟏= 5 10/5 + 10/3
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10/4+10/310/4



Relationships among concepts
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No other implication 
exists

Relationships among concepts

Envy-free

Weakly 
swap-stable

Nash stable

Contractually 
individually stable

Strongly 
swap-stable

Socially optimal

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Relationships among concepts

∃ 𝒯𝒯 s. t. swap-stable, 

No other implication 
exists

Envy-free

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Relationships among concepts

∃ 𝒯𝒯 s. t. swap-stable, 

𝒯𝒯 does not always exist

No other implication 
exists

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Algorithmic results
∃ 𝒯𝒯 s. t. swap-stable, 

strongly swap-stable: ∄ no two agents a and b 
s.t. a envies b & b can replace a 

Socially optimal: minimize the total payment
Nash stable: no agent can reduce her cost 

by deviating to another taxi

Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤

𝐪𝐪𝟏𝟏= 5
5 10 200

5 5 10

𝐪𝐪2= 4
𝐪𝐪3= 3



Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤
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≥
≥

≥

𝐪𝐪2 …
…

…
…

…

…
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Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
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≥
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𝐪𝐪𝑘𝑘

≥
≥

≥

𝐪𝐪2 …
…

…
…

…

Full

Nash stable: no agent can reduce her cost by deviating to 
another taxi

×
…

For i < j,  
𝑇𝑇𝑖𝑖 is better than 𝑇𝑇𝑗𝑗

Intutively



Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
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≥
≥

≥
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…

…
…

…

Full

𝑇𝑇𝑖𝑖 𝑇𝑇𝑗𝑗 :  i < j

∋ ∋
strongly swap-stable: ∄ no two agents a and b

s.t. a envies b & b can replace a 

1. never envies
…

2. If        envies      , 
then       becomes worse
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Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤
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≥
≥

≥

𝐪𝐪2 …
…

…
…

…

Full

Socially optimal: minimize the total payment

… Cost of each taxi
= furthest destination



Algorithmic results
Th. Backward greedy efficiently computes an allocation which is 
Nash stable, strongly swap-stable, and socially optimal.

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness 



Envy-free allocations may not exist

𝐪𝐪𝟏𝟏= 2

5 10 200

5 5 10

10/2

𝐪𝐪2= 2 10
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5 10 200
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10/2
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Envy-free allocations may not exist



Properties for envy-freeness:
Monotonicity

|S|
0

10

min
𝐚𝐚∈𝑆𝑆
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𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚
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𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 |T|

≤
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Properties for envy-freeness:
Monotonicity

Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off. 

0

20

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Suppose not 
12

envy
Same payment 

After exchanging



Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
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Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
Locality 𝜑𝜑(S,𝑥𝑥𝑎𝑎) ≤ 𝜑𝜑(T,𝑥𝑥𝑎𝑎) for all a ∈ S and T (≠S)

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Payment of 𝑥𝑥𝑎𝑎 under T

Pay 10/4 
10 15 200

Cost=10 5 5
T={     ,     ,    ,    }



Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
Locality 𝜑𝜑(S,𝑥𝑥𝑎𝑎) ≤ 𝜑𝜑(T,𝑥𝑥𝑎𝑎) for all a ∈ S and T (≠S)

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Payment of 𝑥𝑥𝑎𝑎 under T

Pay 5Pay 10/4 Pay 5/3 
𝒙𝒙𝒂𝒂= 12

𝜑𝜑(T,𝑥𝑥𝑎𝑎)= 10/4 + 2/3 

10 15 200

Cost=10 5 5
T={     ,     ,    ,    }
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Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness 



If the following 3 parameters are known              
Envy-free allocation can be computed efficiently. 

For each taxi i
1. the number |Ti| of agents 
2. the first drop-off point
3.  the number of agents who first drop off 

min𝑎𝑎∈𝑇𝑇𝑖𝑖𝑥𝑥𝑎𝑎

Algorithm for envy-freeness:

|T1|=3

|T2|=2

|T3|=2

2

1

1 By locality



Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness



Hardness for Envy-freeness:

Th 2. It is NP-complete to decide whether there
exists an envy-free allocation in a given S. 

Th 1. It is NP-complete to decide whether there
exists an allocation with split property.

Let S={S1,𝑆𝑆2, … , 𝑆𝑆𝑙𝑙} be a partition of agent set A, 
an allocation is envy-free in S

if for each S ∈ S, the agents in S do not envy each other 



Conclusion and future work

Th. Backward greedy efficiently computes an allocation which is 
Nash stable, strongly swap-stable, and socially optimal.

Th. An envy-free allocation can be computed efficiently when 
(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

Th. It is NP-complete to decide whether there exists an envy-free 
allocation in a given S. 

Th. It is NP-complete to decide whether there exists an allocation 
with split property.

Introduce our model as a generalization of the airport problem 



Open problem 
・Complexity of computing an envy-free allocation. 

Conclusion and future work

Extensions of our model
・ Heterogeneous facilities

e.g., costs
some taxis are more comfortable than others

・ More general metric space beyond line structure
・ Agents may have different starting points. 

・ People arrive online. 
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