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Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.

10 15 200

Cost=10 5 5

• How can we divide the cost ?  
Divide the cost of each segment equally 

Total cost ＝20
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Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.

10 15 200

5 5Cost=10

• How can we divide the cost ?  

Pay 5Pay 10/4 Pay 5/3 

Divide the cost of each segment equally 

Pay 10/4 

Pay 10/4+5/3 

Pay 10/4+5/3+5 

Total cost ＝20



Airport game [Littlechild and Owen, 1973] 
• Imagine a group of agents sharing a taxi ride.
• How can we divide the cost ?  

Divide the cost of each segment equally 

This sequential equal division = The Shapley value 

10 15 200 Time

Other applications

Sharing a facility over time for agents 
with different demands. 

Total cost ＝20
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Our model
• A natural extension of airport game
• A single taxi  ⇒ Multiple taxis with capacities 

10 15 200

Cost=10 5 5

…

…
4 3

cap cap …
…

Creat groups

Payment: Shapley value of the group



Our model

10 15 200

Cost=10 5 5

…

…
Cap 4 Cap 3

• n agents with destinations 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛 ∈ 𝓡𝓡+
• k taxis with capacities 𝐪𝐪𝟏𝟏,𝐪𝐪𝟐𝟐, … ,𝐪𝐪𝐤𝐤 ∈ 𝓩𝓩+

• All taxies have identical cost functins c: 𝓡𝓡+→ 𝓡𝓡+

monotone c(𝐱𝐱) ≤ c(𝐱𝐱’) if 𝐱𝐱 ≤ 𝐱𝐱’
depends on the final destination

・ Agents in the same taxi use Shapley value 
Objective: Find a fair partition of agents 𝒯𝒯)

Basic 1. On a line
2. Idenitcal cost 

: river, highway, time

w.l.o.g. c(𝐱𝐱) ≡ 𝐱𝐱
Set of Agents 
who take taxi 1
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Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

All agents have the same 
destination

All taxies carry the same 
number of agents 



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 ≥ 3



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 ≥ 3

Pay 10 ⇒ 10/3

Not Nash stable 



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 = 2

×



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi

10 15 200
5 5Cost=10

Pay 10/2=5 

Pay 10

𝐪𝐪𝟏𝟏 = 2

Nash stable 

All agents have the same 
destination

All taxies except 1 are full



Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi
• weakly swap-stable: no two agents envy each other

…
…
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Solution Concepts
• Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
• Nash stable: no agent can reduce her cost by deviating 

to another taxi
• weakly swap-stable: no two agents envy each other
• strongly swap-stable: no two agents a and b s.t. a

envies b & b can replace a
(at least as good as the current situation)

・ Contractually individually stable: No agent can deviate   
without increasing the payment of some agent in her   
current taxi. 

…
…

only 1 agent in her taxi 



Solution Concepts
・ Envy-free: no agent can reduce her cost by replacing 

herself with another agent 
・ Nash stable: no agent can reduce her cost by deviating 

to another taxi
・ weakly swap-stable: no two agents envy each other
・ strongly swap-stable: no two agents a and b s.t.

a envies b & b can replace a 
・ Contractually individually stable: No agent can deviate   

without increasing the payment of some agent in her   
current taxi. 

・ Socially optimal: minimize the total payment 
・ weakly Pareto optimal 𝒯𝒯: 

∄𝑆𝑆 s. t.𝜑𝜑𝑆𝑆(a) < 𝜑𝜑𝒯𝒯(a) for all a ∈ A
・ strongly Pareto optimal 𝒯𝒯: 

∄𝑆𝑆 s. t.𝜑𝜑𝑆𝑆(a) ≤ 𝜑𝜑𝒯𝒯(a) for all a ∈ A
𝜑𝜑𝑆𝑆(a) < 𝜑𝜑𝒯𝒯(a) for some a ∈ A

Payment of a under 𝒯𝒯
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No other implication exists

Relationships among concepts

Envy-free

strongly 
swap-stable

Nash stable

Contractually 
individually stable

weakly 
swap-stable

Socially optimal

weakly 
Pareto optimal

strongly 
Pareto optimal

×



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

5/25/3



Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2
10/25/3+5/2



Relationships among concepts

Envy-freeness⇒ Nash stability
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10
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Relationships among concepts

Envy-freeness⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2Envy-freeness 



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

Not Nash stable 



Relationships among concepts

Envy-freeness ⇒ Nash stability

𝐪𝐪𝟏𝟏 =3 10/3 < 5/3 + 5/2 < 10/2

5 10 200

5 5 10

𝐪𝐪2=3

5/3

20/2

Not Nash stable 

10/3



No other implication exists

Relationships among concepts

Envy-free

Weakly 
swap-stable

Nash stable

Contractually 
individually stable

Strongly 
swap-stable

Socially optimal

Weakly 
Pareto optimal

Strongly 
Pareto optimal

××



Relationships among concepts

Nash stability ⇒ Envy-freeness 

𝐪𝐪𝟏𝟏= 5 10/5 + 10/3

5 10 200

5 5 10

10/5

𝐪𝐪2= 4 10/4+10/310/4



Relationships among concepts

Nash stability ⇒ Envy-freeness 
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10/4+10/310/4



Relationships among concepts

Nash stability ⇒ Envy-freeness 

𝐪𝐪𝟏𝟏= 5 10/5 + 10/3

5 10 200

5 5 10

10/5

NOT Envy-freeness 

𝐪𝐪2= 4 10/4+10/310/4



Relationships among concepts

Nash stability ⇒ Envy-freeness 

𝐪𝐪𝟏𝟏= 5 10/5 + 10/3

5 10 200

5 5 10

10/5

NOT Envy-freeness 

𝐪𝐪2= 4 10/4+10/310/4



No other implication exists

Relationships among concepts

Envy-free

Weakly 
swap-stable

Nash stable

Contractually 
individually stable

Strongly 
swap-stable

Socially optimal

Weakly 
Pareto optimal

strongly 
Pareto optimal

××



Outline of my talk

1. Airport game
2. Our Model
3. Solution Concepts 
4. Relationships among concepts
5. Algorithmic results
6. Hardness results
7. Conclusion



No other implication 
exists

Relationships among concepts

Envy-free

Weakly 
swap-stable

Nash stable

Contractually 
individually stable

Strongly 
swap-stable

Socially optimal

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Relationships among concepts

∃ 𝒯𝒯 s. t. swap-stable, 

No other implication 
exists

Envy-free

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Relationships among concepts

∃ 𝒯𝒯 s. t. swap-stable, 

𝒯𝒯 does not always exist

No other implication 
exists

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Algorithmic results
∃ 𝒯𝒯 s. t. swap-stable, 

strongly swap-stable: ∄ no two agents a and b 
s.t. a envies b & b can replace a 

Socially optimal: minimize the total payment
Nash stable: no agent can reduce her cost 

by deviating to another taxi

Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤

𝐪𝐪𝟏𝟏= 5
5 10 200

5 5 10

𝐪𝐪2= 4
𝐪𝐪3= 3



Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤
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≥
≥

≥

𝐪𝐪2 …
…

…
…

…

…
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Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
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≥
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𝐪𝐪𝑘𝑘

≥
≥

≥

𝐪𝐪2 …
…

…
…

…

Full

Nash stable: no agent can reduce her cost by deviating to 
another taxi

×
…

For i < j,  
𝑇𝑇𝑖𝑖 is better than 𝑇𝑇𝑗𝑗

Intutively



Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
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≥
≥

≥
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…

…
…

…

Full

𝑇𝑇𝑖𝑖 𝑇𝑇𝑗𝑗 :  i < j

∋ ∋
strongly swap-stable: ∄ no two agents a and b

s.t. a envies b & b can replace a 

1. never envies
…

2. If        envies      , 
then       becomes worse
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Algorithmic results
Backward greedy: greedily add agents a from the furthest 𝐱𝐱𝑎𝑎
to taxi 𝑇𝑇𝑖𝑖 with smallest available i,  where 𝐪𝐪𝟏𝟏≥ 𝐪𝐪𝟐𝟐 ≥ ⋯ ≥ 𝐪𝐪𝐤𝐤
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≥
≥
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…

…
…

…

Full

Socially optimal: minimize the total payment

… Cost of each taxi
= furthest destination



Algorithmic results
Th. Backward greedy efficiently computes an allocation which is 
Nash stable, strongly swap-stable, and socially optimal.

Weakly 
swap-stable

Contractually 
individually stable

Weakly 
Pareto optimal

Strongly 
Pareto optimal



Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness 



Envy-free allocations may not exist

𝐪𝐪𝟏𝟏= 2

5 10 200

5 5 10

10/2

𝐪𝐪2= 2 10
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5 10 200
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Envy-free allocations may not exist



Properties for envy-freeness:
Monotonicity

|S|
0

10

min
𝐚𝐚∈𝑆𝑆
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𝐚𝐚∈𝑆𝑆
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≤
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Properties for envy-freeness:
Monotonicity

Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off. 

0

20

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Suppose not 
12

envy
Same payment 

After exchanging



Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
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Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
Locality 𝜑𝜑(S,𝑥𝑥𝑎𝑎) ≤ 𝜑𝜑(T,𝑥𝑥𝑎𝑎) for all a ∈ S and T (≠S)

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Payment of 𝑥𝑥𝑎𝑎 under T

Pay 10/4 
10 15 200

Cost=10 5 5
T={     ,     ,    ,    }



Properties for envy-freeness:
Monotonicity
Split property  If agents of the same destination ride 
different taxis, they are the first passengers to drop off.
Locality 𝜑𝜑(S,𝑥𝑥𝑎𝑎) ≤ 𝜑𝜑(T,𝑥𝑥𝑎𝑎) for all a ∈ S and T (≠S)

min
𝐚𝐚∈𝑆𝑆

𝐱𝐱𝐚𝐚≤ min
𝐚𝐚∈𝑇𝑇

𝐱𝐱𝐚𝐚 ⇒ |𝑆𝑆| ≥ |𝑇𝑇|

Payment of 𝑥𝑥𝑎𝑎 under T

Pay 5Pay 10/4 Pay 5/3 
𝒙𝒙𝒂𝒂= 12

𝜑𝜑(T,𝑥𝑥𝑎𝑎)= 10/4 + 2/3 

10 15 200

Cost=10 5 5
T={     ,     ,    ,    }
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Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness 



If the following 3 parameters are known              
Envy-free allocation can be computed efficiently. 

For each taxi i
1. the number |Ti| of agents 
2. the first drop-off point
3.  the number of agents who first drop off 

min𝑎𝑎∈𝑇𝑇𝑖𝑖𝑥𝑥𝑎𝑎

Algorithm for envy-freeness:

|T1|=3

|T2|=2

|T3|=2

2

1

1 By locality



Envy-free:

• Envy-free allocations may not exist.
• Three structural properties: 

monotonicity, split property, and locality
• Efficient algorithms for envy-freeness when 

(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

• NP-hardness for two relaxations of envy-freeness



Hardness for Envy-freeness:

Th 2. It is NP-complete to decide whether there
exists an envy-free allocation in a given S. 

Th 1. It is NP-complete to decide whether there
exists an allocation with split property.

Let S={S1,𝑆𝑆2, … , 𝑆𝑆𝑙𝑙} be a partition of agent set A, 
an allocation is envy-free in S

if for each S ∈ S, the agents in S do not envy each other 



Conclusion and future work

Th. Backward greedy efficiently computes an allocation which is 
Nash stable, strongly swap-stable, and socially optimal.

Th. An envy-free allocation can be computed efficiently when 
(1) the number of taxis is a constant,  
(2) the capacity of each taxi is at most four, or 
(3) the number of destination types is small. 

Th. It is NP-complete to decide whether there exists an envy-free 
allocation in a given S. 

Th. It is NP-complete to decide whether there exists an allocation 
with split property.

Introduce our model as a generalization of the airport problem 



Open problem 
・Complexity of computing an envy-free allocation. 

Conclusion and future work

Extensions of our model
・ Heterogeneous facilities

e.g., costs
some taxis are more comfortable than others

・ More general metric space beyond line structure
・ Agents may have different starting points. 

・ People arrive online. 
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