# The Super-Stable Common Independent Set Problem

### Naoyuki Kamiyama

Institute of Mathematics for Industry, Kyushu University





Fundamental model in Economics and Game Theory

#### Matroid

 $\blacksquare Matroid is a pair M = (U, \mathcal{I}) consisting of$ 

- a finite set  $\boldsymbol{U}$
- a family  $\mathcal{I}$  of subsets of U (i.e.,  $\mathcal{I} \subseteq 2^U$ )

satisfying the following three conditions

#### **Definition of Matroid**

(10)  $\emptyset \in \mathcal{I}$ (11)  $\forall I, J \subseteq U : I \in \mathcal{I}, J \subseteq I \implies J \in \mathcal{I}$ (12)  $\forall I, J \in \mathcal{I} : |I| < |J| \implies [\exists u \in J \setminus I : I + u \in \mathcal{I}]$ 

#### **Example of Matroid: Partition Matroid**

For a partition 
$$U_1, U_2, \dots, U_k$$
 of  $U$ ,  
$$\mathcal{I} := \{I \subseteq U \mid \forall i \in \{1, 2, \dots, k\} \colon |I \cap U_i| \le 1\}$$

#### **Proof:**

(10)  $|\emptyset \cap U_i| = 0 \le 1$ (11)  $J \subseteq I \in \mathcal{I} \implies |J \cap U_i| \le |I \cap U_i| \le 1$ (12)  $\forall I, J \in \mathcal{I}, |I| < |J|$   $\implies \exists i \in \{1, 2, \dots, k\} \colon |I \cap U_i| = 0, |J \cap U_i| = 1$  $\implies$  we can add the element in  $J \cap U_i$  to I

#### **Remarks on Matroids**

- Matroid is a generalization of the family of forests in a graph
- When we consider a computational problem on matroids...
  - we are given the ground set U
  - we are not explicitly given the family  ${\cal I}$
  - we assume an **oracle** that can determine  $I \in \mathcal{I}$
  - we care about the number of calls of the oracle
- For two matroids  $\mathbf{M}_1 = (U, \mathcal{I}_1)$ ,  $\mathbf{M}_2 = (U, \mathcal{I}_2)$ 
  - $I \in \mathcal{I}_1 \cap \mathcal{I}_2$  is a common independent set of  $\mathbf{M}_1, \mathbf{M}_2$





Common independent sets with orders



- Stable matching
- 2 Super-stable matching
- 3 Stable common independent set
- Super-stable common independent set (Main Result)

Section 4 is based on

Naoyuki Kamiyama, A Matroid Generalization of the Super-Stable Matching Problem, SIAM Journal on Discrete Mathematics, 36(2):1467-1482, 2022.

## **Outline of This Talk**

## Stable matching

- 2 Super-stable matching
- 3 Stable common independent set
- 4 Super-stable common independent set

• We are given a simple bipartite graph  $G = (P \cup Q; E)$ 

- P, Q =disjoint vertex sets (Define  $V := P \cup Q$ )
- E = a set of edges between P and Q
- For  $v \in V$  and  $F \subseteq E$ ,

F(v) := the set of edges  $e \in F$  incident to v

Each  $v \in V$  has a strict preference  $\succ_v$  on E(v)



$$p_2: (p_2, q_1) \succ_{p_2} (p_2, q_3) \succ_{p_2} (p_2, q_2)$$

• We are given a simple bipartite graph  $G = (P \cup Q; E)$ 

- P, Q =disjoint vertex sets (Define  $V := P \cup Q$ )
- E = a set of edges between P and Q
- For  $v \in V$  and  $F \subseteq E$ ,

F(v) := the set of edges  $e \in F$  incident to v

- Each  $v \in V$  has a strict preference  $\succ_v$  on E(v)
- $\blacksquare M \subseteq E \text{ is a matching } \stackrel{\text{def}}{\iff}$

For every  $v \in V$ , we have  $|M(v)| \leq 1$ 





For each matching M and  $v \in V$  such that  $M(v) \neq \emptyset$ , we do not distinguish between M(v) and the edge in M(v)  $\blacksquare$  Let M be a matching

• 
$$e = (p,q) \in E \setminus M$$
 blocks  $M \iff$ 

For every  $v \in \{p,q\}$ ,  $M(v) = \emptyset$  or  $e \succ_v M(v)$ 

 $\blacksquare M \text{ is said to be stable } \stackrel{\text{def}}{\Longleftrightarrow}$ 

Any edge in  $E \setminus M$  does not block M

#### Theorem (Gale & Shapley 1962)

A stable matching always exists, and we can find it in poly-time

## **Outline of This Talk**

### 1 Stable matching

### 2 Super-stable matching

- 3 Stable common independent set
- 4 Super-stable common independent set

• We are given a simple bipartite graph  $G = (P \cup Q; E)$ 

- P, Q =disjoint vertex sets (Define  $V := P \cup Q$ )
- E = a set of edges between P and Q
- For  $v \in V$  and  $F \subseteq E$ ,

F(v) := the set of edges  $e \in F$  incident to v

- **Each**  $v \in V$  has a preference  $\succeq_v$  on E(v) with ties
- $\blacksquare \ M \subseteq E \text{ is a matching } \stackrel{\text{def}}{\longleftrightarrow}$

For every  $v \in V$ , we have  $|M(v)| \leq 1$ 



$$p_2: (p_2, q_1) \sim_{p_2} (p_2, q_3) \succ_{p_2} (p_2, q_2)$$

 $\blacksquare$  Let M be a matching

•  $e = (p,q) \in E \setminus M$  strongly blocks  $M \Leftrightarrow$ For every  $v \in \{p,q\}$ ,  $M(v) = \emptyset$  or  $e \succ_v M(v)$ • M is said to be weakly stable  $\Leftrightarrow$ 

Any edge in  $E \setminus M$  does not strongly block M

### Theorem (Gale & Shapley 1962, Irving 1994)

A stable matching always exists, and we can find it in poly-time

 $\blacksquare$  Let M be a matching

•  $e = (p,q) \in E \setminus M$  weakly blocks  $M \Leftrightarrow^{\text{def}}$ For every  $v \in \{p,q\}$ ,  $M(v) = \emptyset$  or  $e \succeq_v M(v)$ • M is said to be super-stable  $\Leftrightarrow^{\text{def}}$ 

Any edge in  $E \setminus M$  does not weakly block M

#### Theorem (Irving 1994, Manlove 1999)

We can check the existence of a super-stable matching in polytime, and find it if exists

## **Outline of This Talk**

### 1 Stable matching

- 2 Super-stable matching
- **3** Stable common independent set
- 4 Super-stable common independent set

#### Matroid

• A pair  $\mathbf{M} = (U, \mathcal{I})$  of a finite set U and  $\mathcal{I} \subseteq 2^U$  is a matroid  $\stackrel{\text{def}}{\iff}$  (I0), (I1), and (I2) are satisfied (I0)  $\emptyset \in \mathcal{I}$ (11)  $\forall I, J \subseteq U : I \in \mathcal{I}, J \subseteq I \implies J \in \mathcal{I}$ (12)  $\forall I, J \in \mathcal{I} : |I| < |J| \implies [\exists u \in J \setminus I : I + u \in \mathcal{I}]$ Example of a matroid (partition matroid):

For a partition  $U_1, U_2, \dots, U_k$  of U,  $\mathcal{I} = \{I \subseteq U \mid \forall i \in \{1, 2, \dots, k\} \colon |I \cap U_i| \le 1\}$ 

#### Matroid

- $\blacksquare$  Let I be a member of  $\mathcal I$ 
  - (*I* is called an **independent set**)
- $\blacksquare$  Let u be an element in  $U \setminus I$  such that  $I + u \notin \mathcal{I}$
- The fundamental circuit  $C_{\mathbf{M}}(u, I)$  is defined by

$$\mathsf{C}_{\mathbf{M}}(u,I) := \{ w \in I + u \mid I + u - w \in \mathcal{I} \}$$

 $\blacksquare$  For a partition matroid defined above,  $\mathsf{C}_{\mathbf{M}}(u,I)$  is

$$\{w \in I + u \mid w = u \text{ or } w \in I \cap U_i\}$$
, where  $u \in U_i$ 

• Define  $\mathsf{D}_{\mathbf{M}}(u, I) := \mathsf{C}_{\mathbf{M}}(u, I) - u$ 

### Stable Common Independent Set

- Let  $\mathbf{M} = (U, \mathcal{I})$  be a matroid
- $\blacksquare$  Let  $\succ$  be a strict preference U
- $\mathbf{M} = (U, \mathcal{I}, \succ)$  is called an ordered matroid
  - (An ordered matroid is also considered as a matroid)
- For each  $I \in \mathcal{I}$ ,

 $\operatorname{dom}_{\mathbf{M}}(I):=$  the set of elements  $u\in U\setminus I$  such that

- $I + u \notin \mathcal{I}$
- $w \succ u$  for every  $w \in \mathsf{D}_{\mathbf{M}}(u, I)$

#### Stable Common Independent Set

We are given ordered matroids

$$\mathbf{M}_P = (U, \mathcal{I}_P, \succ_P)$$
 and  $\mathbf{M}_Q = (U, \mathcal{I}_Q, \succ_Q)$ 

■  $I \in \mathcal{I}_P \cap \mathcal{I}_Q$  is a common independet set of  $\mathbf{M}_P, \mathbf{M}_Q$ ■  $I \in \mathcal{I}_P \cap \mathcal{I}_Q$  is stable  $\stackrel{\text{def}}{\iff}$ 

$$U \setminus I = \mathsf{dom}_{\mathbf{M}_P}(I) \cup \mathsf{dom}_{\mathbf{M}_Q}(I)$$

#### Theorem (Fleiner 2000, 2001, 2003)

A stable common independent set always exists, and we can find it in poly-time

#### **Stable Matching**

• Define U := E

• For each  $X \in \{P, Q\}$ ,

 $\mathcal{I}_X := \{ M \subseteq E \mid \forall v \in X \colon |M(v)| \le 1 \}$ 

• For each  $X \in \{P, Q\}$ ,  $\succ_X$  is defined as follows

- Assume that  $X = \{v_1, v_2, \dots, v_k\}$ 

- 
$$e \in v_i, f \in v_j, i < j \iff e \succ_X f$$

$$- e, f \in v_i \implies [e \succ_{v_i} f \implies e \succ_X f]$$

•  $M \subseteq E$  is a stable matching in  $G \iff$ M is a stable common independent set of  $\mathbf{M}_P, \mathbf{M}_Q$ 

## **Outline of This Talk**

- Stable matching
- 2 Super-stable matching
- 3 Stable common independent set
- Super-stable common independent set

This section is based on

Naoyuki Kamiyama, A Matroid Generalization of the Super-Stable Matching Problem, SIAM Journal on Discrete Mathematics, 36(2):1467-1482, 2022.

### Super-Stable Common Independent Set

• Let 
$$\mathbf{M} = (E, \mathcal{I})$$
 be a matroid

- $\blacksquare$  Let  $\succsim$  be a preference on E with ties
- $\blacksquare \ \mathbf{M} = (E, \mathcal{I}, \succ) \text{ is called an ordered matroid}$ 
  - (An ordered matroid is also considered as a matroid)

• For each 
$$M \in \mathcal{I}$$
,

 $\operatorname{dom}_{\mathbf{M}}(M) :=$  the set of elements  $e \in E \setminus M$  such that

- $M + e \notin \mathcal{I}$
- $f \succ e$  for every  $f \in \mathsf{D}_{\mathbf{M}}(e, M)$

#### Super-Stable Common Independent Set

We are given ordered matroids

$$\mathbf{M}_P = (E, \mathcal{I}_P, \succsim_P)$$
 and  $\mathbf{M}_Q = (E, \mathcal{I}_Q, \succsim_Q)$ 

•  $M \in \mathcal{I}_P \cap \mathcal{I}_Q$  is a common independet set of  $\mathbf{M}_P, \mathbf{M}_Q$ -  $M \in \mathcal{I}_P \cap \mathcal{I}_Q$  is a common stable  $\mathcal{A}^{\operatorname{def}}$ 

 $\blacksquare M \in \mathcal{I}_P \cap \mathcal{I}_Q \text{ is super-stable } \iff$ 

$$E \setminus M = \operatorname{\mathsf{dom}}_{\mathbf{M}_P}(M) \cup \operatorname{\mathsf{dom}}_{\mathbf{M}_Q}(M)$$

#### Main Result (Kamiyama 2022)

We can check the existence of a super-stable common independent set in poly-time, and find it if exists

#### The Student-Project Allocation Problem with Ties



#### The Student-Project Allocation Problem with Ties

- $\blacksquare$  A set S of students, a set P of projects, a set L of lecturers
- P is partitioned into  $\{P_{\ell} \mid \ell \in L\}$
- $\blacksquare$  The members of S and L have preferences with ties
- The members of P and L have capacities
- $\blacksquare \ M \subseteq S \times P \text{ is a matching } \stackrel{\text{def}}{\iff}$ 
  - At most one pair in  ${\boldsymbol{M}}$  is incident to a student
  - # of pairs in M incident to a project is at most its capacity
  - # of pairs in M incident to a lecturer is at most its capacity











#### A fixed point I is obtained



A fixed point I is obtained  $\implies I$  is a stable matching











A fixed point I is obtained



Check some condition

A fixed point I is obtained



Check some condition

#### A fixed point I is obtained

Yes: *I* is a super-stable matching No: there does not exist a super-stable matching











#### Removed elements remove some elements













#### Removed elements remove some elements





#### A fixed point I is obtained



Check some condition

A fixed point I is obtained



Check some condition

A fixed point I is obtained

Yes: *I* is a super-stable matching No: there does not exist a super-stable matching

#### Conclusion



#### Thank you for your attention!!