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Aim of This Talk

Matroid

Fundamental object in Discrete Math. and Optimization

Stable matching

Fundamental model in Economics and Game Theory

[This talk] Example of nice interaction
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Matroid

Matroid is a pair M = (U, I) consisting of

- a finite set U

- a family I of subsets of U (i.e., I ⊆ 2U)

satisfying the following three conditions

Definition of Matroid

(I0) ∅ ∈ I
(I1) ∀I, J ⊆ U : I ∈ I, J ⊆ I =⇒ J ∈ I
(I2) ∀I, J ∈ I : |I| < |J | =⇒ [∃u ∈ J \ I : I + u ∈ I ]
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Example of Matroid: Partition Matroid

For a partition U1, U2, . . . , Uk of U ,

I := {I ⊆ U | ∀i ∈ {1, 2, . . . , k} : |I ∩ Ui| ≤ 1}

Proof:

(I0) |∅ ∩ Ui| = 0 ≤ 1

(I1) J ⊆ I ∈ I =⇒ |J ∩ Ui| ≤ |I ∩ Ui| ≤ 1

(I2) ∀I, J ∈ I, |I| < |J |
=⇒ ∃i ∈ {1, 2, . . . , k} : |I ∩ Ui| = 0, |J ∩ Ui| = 1

=⇒ we can add the element in J ∩ Ui to I
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Remarks on Matroids

Matroid is a generalization of the family of forests in a graph

When we consider a computational problem on matroids...

- we are given the ground set U

- we are not explicitly given the family I
- we assume an oracle that can determine I ∈ I
- we care about the number of calls of the oracle

For two matroids M1 = (U, I1), M2 = (U, I2)
- I ∈ I1 ∩ I2 is a common independent set of M1,M2
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Matroid Intersection

Matroid optimization

Common independent sets with a weight function

Matching under preferences

Common independent sets with orders

[This talk] Modification
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Outline of This Talk

Stable matching Super-stable matching

Stable common independent set Super-stable common independent set

Gale & Shapley (1962)

Fleiner (2000, 2001, 2003)

[Matroid Generalization]

Irving (1994), Manlove (1999)

[Preferences with Ties]

This talk
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Outline of This Talk

1 Stable matching

2 Super-stable matching

3 Stable common independent set

4 Super-stable common independent set (Main Result)

Section 4 is based on

Naoyuki Kamiyama, A Matroid Generalization of the Super-Stable Matching

Problem, SIAM Journal on Discrete Mathematics, 36(2):1467-1482, 2022.
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Outline of This Talk

1 Stable matching

2 Super-stable matching

3 Stable common independent set

4 Super-stable common independent set
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Setting

We are given a simple bipartite graph G = (P ∪Q;E)

- P,Q = disjoint vertex sets (Define V := P ∪Q)

- E = a set of edges between P and Q

For v ∈ V and F ⊆ E,

F (v) := the set of edges e ∈ F incident to v

Each v ∈ V has a strict preference ≻v on E(v)
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Setting

p2 : (p2, q1) ≻p2 (p2, q3) ≻p2 (p2, q2)
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Setting

We are given a simple bipartite graph G = (P ∪Q;E)

- P,Q = disjoint vertex sets (Define V := P ∪Q)

- E = a set of edges between P and Q

For v ∈ V and F ⊆ E,

F (v) := the set of edges e ∈ F incident to v

Each v ∈ V has a strict preference ≻v on E(v)

M ⊆ E is a matching
def⇐⇒

For every v ∈ V , we have |M(v)| ≤ 1
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Setting

For each matching M and v ∈ V such that M(v) ̸= ∅,
we do not distinguish between M(v) and the edge in M(v)
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Stable Matching

Let M be a matching

e = (p, q) ∈ E \M blocks M
def⇐⇒

For every v ∈ {p, q}, M(v) = ∅ or e ≻v M(v)

M is said to be stable
def⇐⇒

Any edge in E \M does not block M

Theorem (Gale & Shapley 1962)

A stable matching always exists, and we can find it in poly-time
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Outline of This Talk

1 Stable matching

2 Super-stable matching

3 Stable common independent set

4 Super-stable common independent set
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Setting

We are given a simple bipartite graph G = (P ∪Q;E)

- P,Q = disjoint vertex sets (Define V := P ∪Q)

- E = a set of edges between P and Q

For v ∈ V and F ⊆ E,

F (v) := the set of edges e ∈ F incident to v

Each v ∈ V has a preference ≿v on E(v) with ties

M ⊆ E is a matching
def⇐⇒

For every v ∈ V , we have |M(v)| ≤ 1
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Setting

p2 : (p2, q1) ∼p2 (p2, q3) ≻p2 (p2, q2)
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Weakly Stable Matching

Let M be a matching

e = (p, q) ∈ E \M strongly blocks M
def⇐⇒

For every v ∈ {p, q}, M(v) = ∅ or e ≻v M(v)

M is said to be weakly stable
def⇐⇒

Any edge in E \M does not strongly block M

Theorem (Gale & Shapley 1962, Irving 1994)

A stable matching always exists, and we can find it in poly-time
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Super-Stable Matching

Let M be a matching

e = (p, q) ∈ E \M weakly blocks M
def⇐⇒

For every v ∈ {p, q}, M(v) = ∅ or e ≿v M(v)

M is said to be super-stable
def⇐⇒

Any edge in E \M does not weakly block M

Theorem (Irving 1994, Manlove 1999)

We can check the existence of a super-stable matching in poly-
time, and find it if exists
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Outline of This Talk

1 Stable matching

2 Super-stable matching

3 Stable common independent set

4 Super-stable common independent set

20 / 59



Matroid

A pair M = (U, I) of a finite set U and I ⊆ 2U is a matroid
def⇐⇒ (I0), (I1), and (I2) are satisfied

(I0) ∅ ∈ I
(I1) ∀I, J ⊆ U : I ∈ I, J ⊆ I =⇒ J ∈ I
(I2) ∀I, J ∈ I : |I| < |J | =⇒ [∃u ∈ J \ I : I + u ∈ I ]

Example of a matroid (partition matroid) :

For a partition U1, U2, . . . , Uk of U ,

I = {I ⊆ U | ∀i ∈ {1, 2, . . . , k} : |I ∩ Ui| ≤ 1}
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Matroid

Let I be a member of I
(I is called an independent set)

Let u be an element in U \ I such that I + u /∈ I
The fundamental circuit CM(u, I) is defined by

CM(u, I) := {w ∈ I + u | I + u− w ∈ I}
For a partition matroid defined above, CM(u, I) is

{w ∈ I + u | w = u or w ∈ I ∩ Ui}, where u ∈ Ui

Define DM(u, I) := CM(u, I)− u
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Stable Common Independent Set

Let M = (U, I) be a matroid

Let ≻ be a strict preference U

M = (U, I,≻) is called an ordered matroid

(An ordered matroid is also considered as a matroid)

For each I ∈ I,
domM(I) := the set of elements u ∈ U \ I such that

- I + u /∈ I
- w ≻ u for every w ∈ DM(u, I)
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Stable Common Independent Set

We are given ordered matroids

MP = (U, IP ,≻P ) and MQ = (U, IQ,≻Q)

I ∈ IP ∩ IQ is a common independet set of MP ,MQ

I ∈ IP ∩ IQ is stable
def⇐⇒

U \ I = domMP
(I) ∪ domMQ

(I)

Theorem (Fleiner 2000, 2001, 2003)

A stable common independent set always exists, and we can
find it in poly-time
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Stable Matching

Define U := E

For each X ∈ {P,Q},
IX := {M ⊆ E | ∀v ∈ X : |M(v)| ≤ 1}

For each X ∈ {P,Q}, ≻X is defined as follows

- Assume that X = {v1, v2, . . . , vk}
- e ∈ vi, f ∈ vj, i < j ⇐⇒ e ≻X f

- e, f ∈ vi =⇒ [ e ≻vi f =⇒ e ≻X f ]

M ⊆ E is a stable matching in G ⇐⇒
M is a stable common independent set of MP ,MQ
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Outline of This Talk

1 Stable matching

2 Super-stable matching

3 Stable common independent set

4 Super-stable common independent set

This section is based on

Naoyuki Kamiyama, A Matroid Generalization of the Super-Stable Matching

Problem, SIAM Journal on Discrete Mathematics, 36(2):1467-1482, 2022.
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Super-Stable Common Independent Set

Let M = (E, I) be a matroid

Let ≿ be a preference on E with ties

M = (E, I,≻) is called an ordered matroid

(An ordered matroid is also considered as a matroid)

For each M ∈ I,
domM(M) := the set of elements e ∈ E \M such that

- M + e /∈ I
- f ≻ e for every f ∈ DM(e,M)
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Super-Stable Common Independent Set

We are given ordered matroids

MP = (E, IP ,≿P ) and MQ = (E, IQ,≿Q)

M ∈ IP ∩ IQ is a common independet set of MP ,MQ

M ∈ IP ∩ IQ is super-stable
def⇐⇒

E \M = domMP
(M) ∪ domMQ

(M)

Main Result (Kamiyama 2022)

We can check the existence of a super-stable common indepen-
dent set in poly-time, and find it if exists
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The Student-Project Allocation Problem with Ties

Super-stable matching Irving (1994), Manlove (1999)

Super-stable common independent set This talk

Super-stable student-project allocation Olaosebikan & Manlove (2020)
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The Student-Project Allocation Problem with Ties

A set S of students, a set P of projects, a set L of lecturers

P is partitioned into {Pℓ | ℓ ∈ L}
The members of S and L have preferences with ties

The members of P and L have capacities

M ⊆ S × P is a matching
def⇐⇒

- At most one pair in M is incident to a student

- # of pairs in M incident to a project is at most its capacity

- # of pairs in M incident to a lecturer is at most its capacity
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Gale-Shapley (Stable Matching with Strict Preferences)

MP MQ

Propose

A fixed point is obtained

=⇒ It is a stable matching
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Gale-Shapley (Stable Matching with Strict Preferences)

MP MQ

Reject

A fixed point is obtained

=⇒ It is a stable matching
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Gale-Shapley (Stable Matching with Strict Preferences)

MP MQ

I ⊆ U

A fixed point I is obtained

=⇒ I is a stable matching
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Gale-Shapley (Stable Matching with Strict Preferences)
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=⇒ I is a stable matching
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Irving (Stable Matching with Ties)

MP MQ

Propose

A fixed point I is obtained

Yes: I is a stable matching
No: there does not exist a super-stable matching
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Irving (Stable Matching with Ties)
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Irving (Stable Matching with Ties)
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Irving (Stable Matching with Ties)
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Irving (Stable Matching with Ties)
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Irving (Stable Matching with Ties)
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Irving (Stable Matching with Ties)

MP MQ

I ⊆ U

A fixed point I is obtained

Yes: I is a super-stable matching
No: there does not exist a super-stable matching

Check some condition
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Olaosebikan-Manlove and This paper

MP MQ

Propose

A fixed point I is obtained

Yes: I is a stable matching
No: there does not exist a super-stable matching

Deleted elements remove some elements
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Olaosebikan-Manlove and This paper
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Olaosebikan-Manlove and This paper
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Olaosebikan-Manlove and This paper
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Conclusion

Stable matching Super-stable matching

Stable common independent set Super-stable common independent set

Gale & Shapley (1962)

Fleiner (2000, 2001, 2003)

[Matroid Generalization]

Irving (1994), Manlove (1999)

[Preferences with Ties]

This talk

Thank you for your attention!!
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