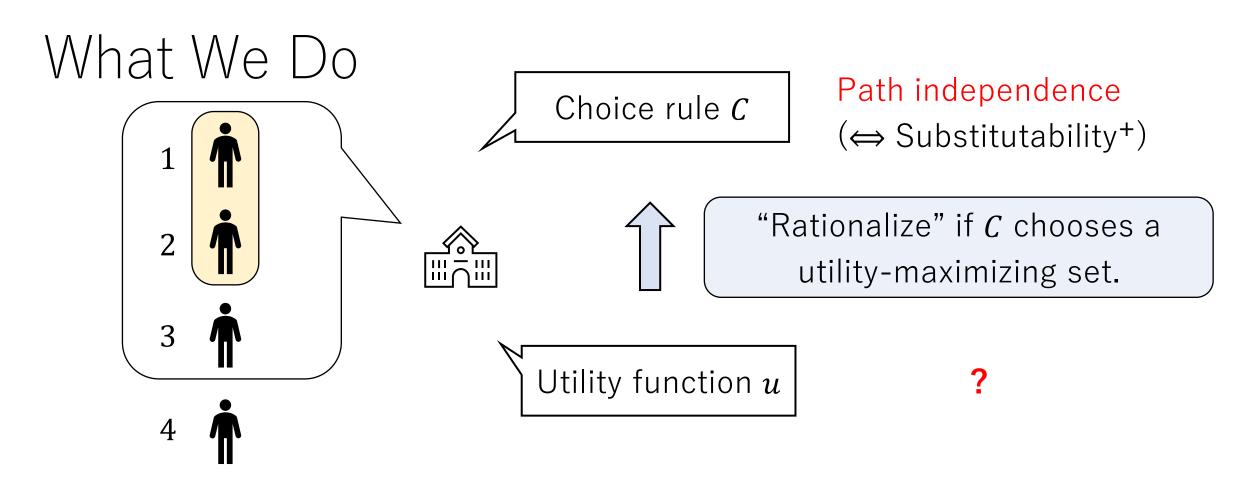
Ordinal concavity and representation theorems for path-independent choice rules

> Isa E. Hafalir (University of Technology Sydney) Fuhito Kojima (University of Tokyo) M. Bumin Yenmez (Boston College) <u>Koji Yokote</u> (University of Tokyo)

> > March 2023

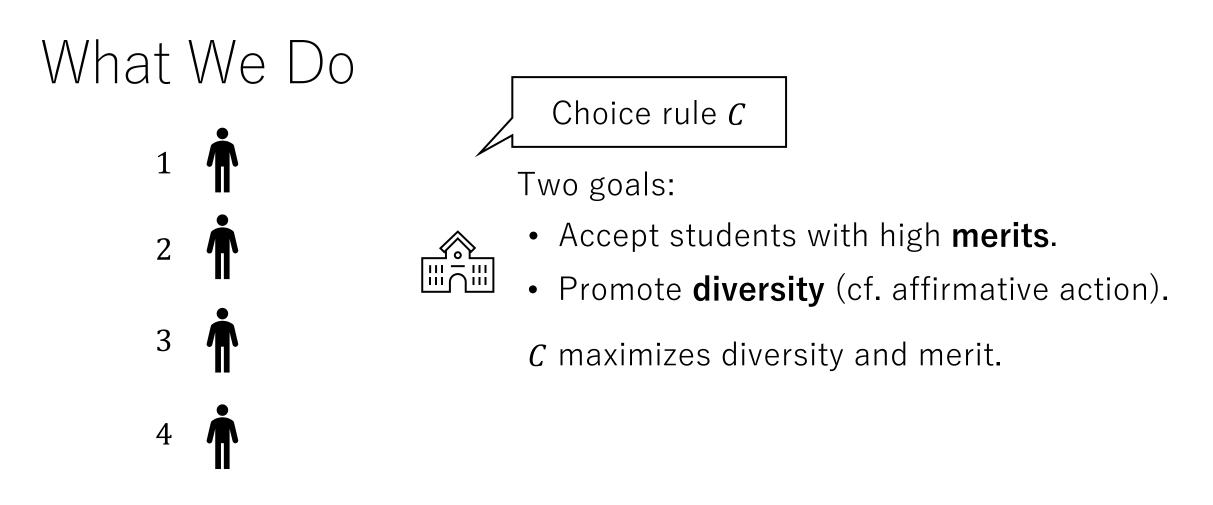
Motivation

- Market Design deals with markets with **indivisibilities**.
- Essential assumption: utility functions satisfy **M⁴-concavity**.
 - Guarantee existence and efficient computation of equilibrium outcomes.
- It is a <u>cardinal</u> property, not an <u>ordinal</u> one.
- t is a <u>cardinal</u> property, not an <u>ordinal</u> one. Not preserved under *monotonic transformation*. $\langle \Rightarrow g(u(\cdot))$ is M^{\natural} -concave.
- In economics, utilities/preferences are ordinal concepts.
- Ordinal versions were introduced, but not yet applied to economics.
 - cf. Murota and Shioura (2003), Chen and Li (2021).
- This study: apply *ordinal concavity* to the analysis of matching markets.



- Representation theorem:
 - *C* is path-independent

 \Leftrightarrow C is rationalizable by an ordinally concave utility function u.



• If preferences for diversity are represented by an ordinally concave function, *C* is **path-independent** and **computed in polynomial time**.

Structure of the Talk

- 1. Introduction
- 2. Representation theorem
- 3. Choice rule with diversity goals
- 4. Conclusion

Choice rule

• \mathcal{X} : set of **contracts**.

Choose a *unique* subset.

- A choice rule is a function $C: 2^{\mathcal{X}} \to 2^{\mathcal{X}}$ s.t. for any $X \subseteq 2^{\mathcal{X}}$, $C(X) \subseteq X$.
- C satisfies **path independence** if, for any $X, X' \subseteq \mathcal{X}$,

 $C(X \cup X') = C(C(X) \cup X').$

Substitutability

• *C* satisfies the **substitutes condition** if, for any $X \subseteq X$ and any distinct $x, y \in X$, $X \setminus \{y\}$

• C satisfies the irrelevance of rejected contracts (IRC) if, for any $X \subseteq \mathcal{X}$ and $x \in X$,

 $C(X \setminus \{y\})$

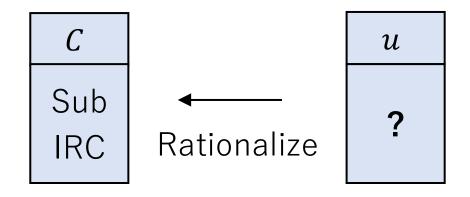
$$x \notin C(X) \Longrightarrow C(X \setminus \{x\}) = C(X).$$

 $x \in C(X) \Longrightarrow x \in C(X \setminus \{y\}).$

- Path independence \Leftrightarrow Substitutes condition + IRC.
 - Aizerman and Malishevski (1981).
- Guarantee existence of a stable matching.

Utility function

- A utility function is $u: 2^{\mathcal{X}} \to \mathbb{R}$.
- C is **rationalizable** by u if, for any $X \subseteq \mathcal{X}$,



- $u(C(X)) > u(Y) \quad \forall Y \subseteq X \text{ with } Y \neq C(X).$
- C is rationalizable by some $u \Rightarrow C$ satisfies IRC.
- Eguchi, Fujishige and Tamura (2003):
 C is rationalizable by *u* satisfying M[#]-concavity
 ⇒ *C* satisfies the substitutes condition.

M[¶]-concavity

- Notation:
 - For $X \subseteq \mathcal{X}$ and $x \in \mathcal{X}$, let $X + x = X \cup \{x\}$, $X x = X \setminus \{x\}$.
 - $X + \phi = X$, $X \phi = X$.
- Introduce an ordinal version.

cf. Murota and Shioura (2003), Chen and Li (2021).

Ordinal concavity

• $u: 2^{\mathcal{X}} \to \mathbb{R}$ is **ordinally concave** if, for any $X, Y \subseteq \mathcal{X}$ and $x \in X \setminus Y$, there exists $y \in (Y \setminus X) \cup \{\phi\}$ such that

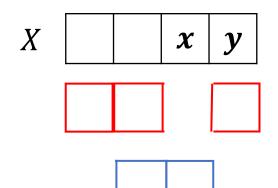
i. u(X) < u(X - x + y), or ii. u(Y) < u(Y + x - y), or iii. u(X) = u(X - x + y) and u(Y) = u(Y + x - y).

Representation theorem

Theorem 1

The following are equivalent:

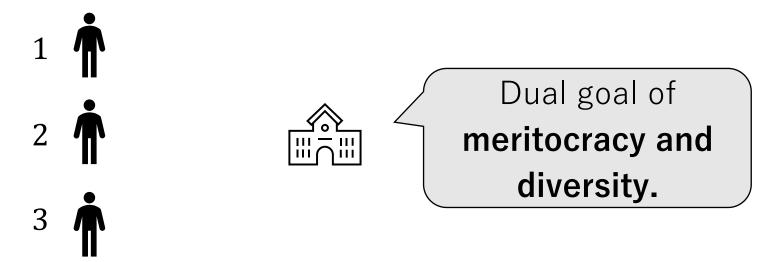
- i. C satisfies the substitutes condition and IRC.
- ii. C is rationalizable by an ordinally concave utility function.
- Proof sketch of $\mathbf{ii} \Rightarrow \mathbf{i}$.
- Main result is $\mathbf{i} \Rightarrow \mathbf{ii}$:
 - When we analyze substitutable *C*, it is w.l.o.g. to assume ordinally concave *u*.
 - Proof is constructive.



Remarks

- Another key property of *C* is the **law of aggregate demand**.
 - Guarantee *strategy-proofness* of the deferred acceptance algorithm. cf. Hatfield and Milgrom 2005.
- We can provide a representation theorem for *C* satisfying Sub and LAD.
 M^{\$\\$}-concavity satisfies "exchange property under cardinality constraint"
 → *C* rationalizable by M^{\$\\$}-concave *u* satisfies LAD (Murota and Yokoi 2015).
 → Ordinal version.
- Comparison with Fujishige and Yang (2003).
 - u satisfies *gross* substitutes $\Leftrightarrow u$ is M⁴-concave.
- Gross Sub \Leftrightarrow M^{\$}-concave, Sub \Leftrightarrow ordinal concavity (under |RC|FY Go to 3

Choice rule with diversity goals



- \mathcal{X} : set of **contracts**.
- \mathcal{T} : set of **types**.
 - e.g. $\mathcal{T} = \{Female, Male\}.$
- Each contract $x \in \mathcal{X}$ is associated with one type $t \in \mathcal{T}$.

Merit

- A merit ranking is a linear order \succ over \mathcal{X} .
 - x > y : x has a higher merit than y.
 - $x \ge y : x > y$ or x = y.
- Consider two sets $X, Y \subseteq \mathcal{X}$.

X

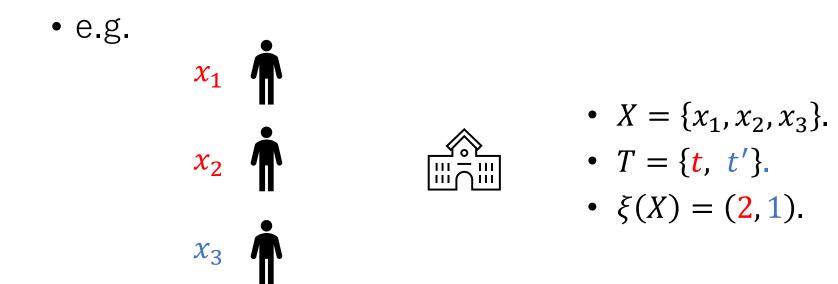
$$x_1$$
 x_2
 \cdots
 $x_{|X|}$
 $x_1 > x_2 > \cdots > x_{|X|}$

 N
 N
 y
 y_1
 $y_2 > \cdots > y_{|Y|}$
 $y_1 > y_2 > \cdots > y_{|Y|}$

• X merit dominates Y if $|X| \ge |Y|$ and $x_i \ge y_i$ for all $i \in \{1, ..., |Y|\}$.

Distribution

- A **distribution** is a vector ξ in $\mathbb{Z}_+^{\mathcal{T}}$.
- For $X \subseteq \mathcal{X}, \xi(X) \in \mathbb{Z}_+^{\mathcal{T}}$ denotes the **distribution induced from** *X*.
 - $\xi_t(X)$ is the number of type *t*-contracts in *X*.



Diversity index

- $\Xi \subseteq \mathbb{Z}_{+}^{\mathcal{T}}$: set of **feasible distributions** (assume $0 \in \Xi$).
 - e.g. $\Xi = \{ \xi \in \mathbb{Z}_+^T \mid \sum_{t \in \mathcal{T}} \xi_t \le q \}$ for some $q \in \mathbb{Z}_+$.
- The **diversity index** $f: \Xi \to \mathbb{R}_+$ measures desirability of $\xi \in \Xi$.
- e.g. Saturated diversity.
 - For each $t \in \mathcal{T}$, there is a **reserve** $r_t \in \mathbb{Z}_+$.

 $f(\xi) = \sum_{t \in \mathcal{T}} \min\{\xi_t, r_t\} \text{ for all } \xi \in \Xi.$

- cf. Hafalir, Yenmez, Yildirim (2013).
- Used in real-life school choice programs.
 e.g. Chile (Dogan, Imamura, Yenmez 2022), India (Sönmez and Yenmez 2022).

Objective

- Lexicographic maximization of diversity and merit.
- Given a set of contracts, choose a subset that

(i) maximizes the diversity index among feasible distributions, and(ii) merit dominates other subsets that attain the highest diversity.

• Develop the **diversity choice rule**.

Diversity choice rule: example

- **Step 1** Find the set of maximizers of $f(\xi)$ s.t. $\xi \in \Xi$ and $\xi \leq \xi(\{x_1, x_2, x_3\})$.
- **Step 2** Start from Ø.

Add a contract with the highest merit if the resulting distribution becomes closer to some maximizer.

Diversity choice rule: formal definition

Input A set of contracts *X*.

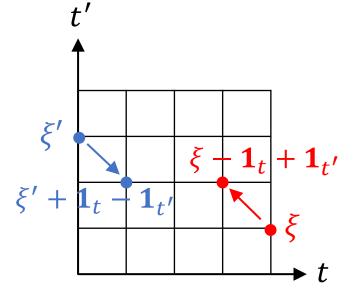
- **Step 1** max $f(\xi)$ subject to $\xi \in \Xi$ and $\xi \leq \xi(X)$. Let $\Xi^*(X)$ be the set of distributions that solve this maximization problem. Set $X_0 = \emptyset$ and k = 0.
- **Step 2** If there exist $x \in X \setminus X_k$ and $\xi \in \Xi^*(X)$ such that $\xi(X_k + x) \leq \xi$, then choose such a contract x_{k+1} of maximum merit, let $X_{k+1} = X_k + x_{k+1}$, and go to Step 3. Otherwise, go to Step 4.
- **Step 3** Add 1 to *k* and go to Step 2.

Step 4 Return **X**_k and stop.

- Denoted $C^{d}(X)$.
- **Q:** When is this choice rule well behaved?

Ordinal concavity

- For $t \in \mathcal{T}$, let $\mathbf{1}_t \in \{0,1\}^{\mathcal{T}}$ denote the *t*-th unit vector.
 - $\mathbf{1}_{\phi}$: zero vector.
- $f: \Xi \to \mathbb{R}_+$ is ordinally concave if, for any $\xi, \xi' \in \mathbb{Z}_+^T$ and $t \in \mathcal{T}$ with $\xi_t > \xi'_t$, there exists $t' \in \mathcal{T} \cup \{\phi\} \ (\xi'_{t'} > \xi_{t'} \text{ if } t' \neq \phi)$ s.t.
 - i. $f(\xi) < f(\xi \mathbf{1}_t + \mathbf{1}_{t'})$, or
 - ii. $f(\xi') < f(\xi' + \mathbf{1}_t \mathbf{1}_{t'})$, or



- iii. $f(\xi) = f(\xi \mathbf{1}_t + \mathbf{1}_{t'})$ and $f(\xi') = f(\xi' + \mathbf{1}_t \mathbf{1}_{t'})$.
- Saturated diversity satisfies ordinal concavity under capacity constraint.

Properties of C^d $f\left(\xi\left(C^{d}(X)\right)\right) \ge f\left(\xi(X')\right) \ \forall X' \subseteq X \text{ with } \xi(X') \in \Xi.$ **Theorem 2** Suppose f is ordinally concave. Then, for of contracts $X \subseteq \mathcal{X}$, i. $C^{d}(X)$ maximizes f among subsets of X. **ii.** $C^{d}(X)$ merit dominates any subset of X that maximizes f. **iii.** $C^{d}(X)$ can be calculated in $O(|T| \times |X|^2)$, (assuming $f(\xi)$ can be calculated in constant time for any $\xi \in \Xi$).

• Proof idea:

ii. f is ordinally concave $\Rightarrow \Xi^*(X)$ has a matroidal structure (M^{\$}-convex).

 $\Rightarrow C^{d}(X)$ is a greedy algorithm on a matroid (cf. Gale 1968).

iii. Generalize the **domain reduction algorithm** for M⁴-concave function. cf. Ch.10 in Murota (2003).

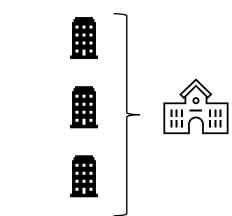
Properties of C^d

Theorem 3

Suppose f is ordinally concave. Then, C^d satisfies the **substitutes condition** and **IRC**.

Extensions:

• School has multiple departments.



Go to 4

• Constrained maximization of the diversity index: Find ξ that achieves $f(\xi) \ge \lambda$ for $\lambda \in \mathbb{R}_+$.

Conclusion

- M^{\natural} -concavity \rightarrow Ordinal concavity.
- A choice rule is **substitutable**⁺ \Leftrightarrow rationalized by an **ordinally concave** u.
- The key for designing a stable matching algorithm: each agent maximizes an ordinally concave function.
 - Application to choice rules with diversity goals.
- Concavity is crucial in markets with indivisibilities and without transfers.

References I

- Aizerman, M., & Malishevski, A. (1981). General theory of best variants choice: Some aspects. IEEE Transactions on Automatic Control, 26(5), 1030-1040.
- Chen, X., & Li, M. (2021). M⁴-Convexity and its applications in operations. Operations Research, 69(5), 1396-1408.
- Doğan, B., Imamura, K., & Yenmez, M. B. (2022). Market Design with Deferred Acceptance: A Recipe for Policymaking. Working Paper
- Eguchi, A., Fujishige, S., & Tamura, A. (2003, January). A generalized Gale-Shapley algorithm for a discrete-concave stable-marriage model. In ISAAC (pp. 495-504).
- Fujishige, S., & Yang, Z. (2003). A note on Kelso and Crawford's gross substitutes condition. Mathematics of Operations Research, 28(3), 463-469.
- Hafalir, I. E., Yenmez, M. B., & Yildirim, M. A. (2013). Effective affirmative action in school choice. Theoretical Economics, 8(2), 325-363.

References II

- Hafalir, I. E., Yenmez, M. B., & Yildirim, M. A. (2013). Effective affirmative action in school choice. Theoretical Economics, 8(2), 325-363.
- Hatfield, J. W., & Milgrom, P. R. (2005). Matching with contracts. American Economic Review, 95(4), 913-935.
- Murota, K. (2003). Discrete Convex Analysis, Society for Industrial and Applied Mathematics.
- Murota, K., & Shioura, A. (2003). Quasi M-convex and L-convex functions quasiconvexity in discrete optimization. Discrete Applied Mathematics, 131(2), 467-494.
- Murota, K., & Yokoi, Y. (2015). On the lattice structure of stable allocations in a two-sided discrete-concave market. Mathematics of Operations Research, 40(2), 460-473.
- Sönmez, T., & Yenmez, M. B. (2022). Affirmative action in India via vertical, horizontal, and overlapping reservations. Econometrica, 90(3), 1143-1176.