Connection Between Discrete Convex Analysis and Auction Theory

Akiyoshi Shioura Tokyo Institute of Technology

2023-March-16 International Workshop on Discrete Convex Analysis and Economics

Auctions with Multiple Indivisible Items

bidders report their valuation for item sets

 auctioneer determines item price & allocation in which all bidders maximize their payoff
 ← Walrasian equilibrium

Question

- When equilibrium exist? Sufficient condition?
- How to compute equilibrium?

Discrete Convex Analysis (Murota 1998)

- Theory of discrete convex functions on \mathbb{Z}^n
- Two discrete convexity concepts
 - La-convex / Ma-convex
- Various properties
 - Conjugacy between La-convexity / Ma-convexity
 - Algorithms for La-convex/Ma-convex optimization

Murota (2003) Discrete Convex Analysis, SIAMMurota (2016) J. Mechanism & Institution Design"Discrete convex analysis: A tool for economics and game theory"

Connection of Auction & DCA

Discrete Convexity/Concavity in Multi-Item Auctions

- Gross(Strong)-substitutes valuation = M¹-concave fn
- Indirect Utility = La-convex fn

Equilibrium Computation

and Discrete Convex Optimization

• equilibrium allocation

= constrained M⁴-concave maximization

• equilibrium price = La-convex minimization

Discrete Convexity/Concavity in Multi-Item Auctions

- Gross(Strong)-substitutes valuation = Ma-concave fn
- Indirect Utility = La-convex fn

Auction Setting: Items & Bidders

items $N = \{1, 2, ..., n\}$, u(j) units available for item $j \in N$

bidders $M = \{1, 2, ..., m\}$ valuation fn $f_i: [0, u]_{\mathbb{Z}} \to \mathbb{Z}$ of bidder $i \in M$ $f_i(x) =$ "value" of item set $x \in [0, u]_{\mathbb{Z}}$

Walrasian Equilibrium

given price $p = (p_1, p_2, ..., p_n)$,

bidder wants to maximize payoff $f_i(x) - p^T x$ demand set $D_i(p) = \arg \max\{f_i(x) - p^T x \mid x \in [0, u]_{\mathbb{Z}}\}$ allocation $(x_1, x_2, ..., x_m)$: $x_i \in \mathbb{Z}_+^n$, $x_1 + x_2 + \cdots + x_m = u$

Def: Walrasian equilibrium: pair of allocation $(x_1^*, x_2^*, ..., x_m^*)$ & price p^* s.t. $x_i^* \in D_i(p^*)$

Models of Multi-Item Auctions

- # of items demanded by each bidder: only one (single-demand) / more than one (multi-demand)
- # of units available for each item: only one (single-unit) / more than one (multi-unit)

multi-demand/ multi-demand/ single-demand/ multi-unit single-unit single-unit $f: [0, u]_{\mathbb{Z}} \to \mathbb{Z}$ $f: N \to \mathbb{Z}$ $f: \{0,1\}^n \to \mathbb{Z}$ assignment model

Walrasian Equilibrium

given price $p = (p_1, p_2, ..., p_n)$,

bidder wants to maximize payoff $f_i(x) - p^T x$ demand set $D_i(p) = \arg \max\{f_i(x) - p^T x \mid x \in [0, u]_{\mathbb{Z}}\}$ allocation $(x_1, x_2, ..., x_m)$: $x_i \in \mathbb{Z}^n_+, x_1 + x_2 + \cdots + x_m = u$

Def: Walrasian equilibrium: pair of allocation $(x_1^*, x_2^*, ..., x_m^*)$ & price p^* s.t. $x_i^* \in D_i(p^*)$

XNot always: ∃ Walrasian equilibrium

Question

- When equilibrium exist? Sufficient condition?
- How to compute equilibrium?

Condition for Equilibrium Existence in Multi-Demand/Single-Unit Model

Thm f: valuations on $\{0,1\}^n$ [Kelso-Crawford1982, et al.]gross-substitutes \rightarrow \exists Walrasian equilibrium

 $D(p) = \arg\max_{x} \{f(x) - p^{\mathrm{T}}x\}$

Def: gross-substitutes (GS) condition for valuations on $\{0,1\}^n$: $\forall p \in \mathbb{R}^n, \forall j \in N, q = p + \lambda e_j, \forall x \in D(p), \exists y \in D(q)$: $y(k) \ge x(k) (\forall k \in N \setminus \{j\})$

higher price for some item, more demand for other items

Thm	for valuations on $\{0,1\}^n$	[Fujishige-Yang2003]
	gross-substitutes	M ^h -concavity

Definition of M⁴-concave Function

[Murota-Shioura 99]

Def:
$$f: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$$
 is M⁴-concave $\bigstar \Rightarrow$
 $\forall x, y \in \mathbb{Z}^n, \forall i: x(i) > y(i):$
(i) $f(x) + f(y) \le f(x - \chi_i) + f(y + \chi_i)$, or
(ii) $\exists j: x(j) < y(j)$ s.t. $f(x) + f(y) \le f(x - \chi_i + \chi_j) + f(y + \chi_i - \chi_j)$

variant of M-concave fn [Murota 96]

valuated matroid [Dress-Wenzel90]

 \Rightarrow M⁴-concave fn on $\{0,1\}^n$

Examples of M⁴-concave Fns on {0,1}ⁿ

- additive (linear) valuation: with values v = (v(1), ..., v(n)), $f(x) = v^{T}x \quad (x \in \{0,1\}^{n})$
- symmetric concave valuation: with concave fn $\varphi: \mathbb{Z} \to \mathbb{R}$, $f(x) = \varphi(\sum_j x(j)) \quad (x \in \{0,1\}^n)$
- unit-demand valuation: with values v = (v(1), ..., v(n)), $f(x) = \max_{j:x(j)=1} v(j) \quad (x \in \{0,1\}^n)$

Assignment Valuation

valuation $f: \{0,1\}^n \to \mathbb{Z}$ defined by max-weight one-to-one matching $w_{jh} \ (j \in N, h \in V)$: edge weight $f(x) = \max\left\{\sum_{(j,h)\in M} w_{jh} \middle| M$: matching covering $\{j \in N \mid x(j) = 1\}\right\}$

Maconcave Fns from Matroids

- matroid rank: f(X) = r(X) $(X \subseteq N)$
- weighted matroid rank:

 $f(X) = \max\{\sum_{j \in Y} w(j) | Y \subseteq X, \text{ matroid indep. set} \} (X \subseteq N)$ [Shioura2012]

- matroid rank sum: $f(X) = \alpha_1 r_1(X) + \dots + \alpha_k r_k(X)$ $(X \subseteq N)$ $r_i \& r_{i+1}$ are strong quotient, $\alpha_i \ge 0$ [Shioura2012]
- valuated matroid = M4-concave fn on {0,1}ⁿ

if function on {0,1}ⁿ ←→ fn on subsets of $N = \{1, ..., n\}$

Equilibrium Existence in Multi-Demand/Multi-Unit Model

Def: gross-substitutes (GS) condition for valuation on $\{0,1\}^n$: $\forall p \in \mathbb{R}^n, q = p + \lambda e_j, \forall x \in D(p), \exists y \in D(q):$ $y(k) \ge x(k) (\forall k \in N \setminus \{j\})$

GS naturally extends to valuations on $[0, u]_{\mathbb{Z}}$,

but not sufficient for equilibrium existence

Example:

 $f_1, f_2: [0, u]_{\mathbb{Z}} \to \mathbb{Z}, u = (2, 1)$ satisfy (GS), but no equilibrium

 $\max\{f_1(x) + f_2(u - x)\} = f_1(1,1) + f_2(1,0) = 5 + 4$

$f_1(x)$	x(1) = 0	1	2
x(2) = 0	0	3	6
x(2) = 1	4	5	6
$f_2(x)$	x(1) = 0	1	2
x(2) = 0	0	4	4
x(2) = 1	1	5	5

[cf. Milgrom-Strulovici (2019)]

Conditions for Equilibrium Existence in Multi-Demand/Multi-Unit Model

Thm	for valuations on [0,	[Danilov-Koshevoy-Murota 2001]
	M [↓] -concavity →	Halrasian equilibrium

stronger variants of GS equivalent to M⁴-concavity

e.g.: Murota-Tamura03, Danilov-Koshevoy-Lang03, et al.

Def: strong-substitutes (SS) condition:

[Milgrom-Strulovici2009]

(GS) holds when all units of items are regarded

as distinct items

Def: GS + Law of Aggregate Demand (LAD) condition: [Murota-Shioura -Yang2013] $\forall p \in \mathbb{R}^n, \quad q = p + \lambda e_j, \quad \forall x \in D_i(p), \quad \exists y \in D_i(q):$ $y(k) \ge x(k) \; (\forall k \in N \setminus \{j\}), \quad \sum_{k \in N} y(k) \le \sum_{k \in N} x(k)$

Thm (SS) $\leftarrow \rightarrow$ (GS+LAD) $\leftarrow \rightarrow$ M⁴-concavity

Examples of M⁴-concave Fns on [0,u]_Z

• additive (linear): with values v = (v(1), ..., v(n)),

$$f(x) = v^{\mathrm{T}}x \quad (x \in [0, u]_{\mathbb{Z}})$$

• symmetric concave: with concave fn $\varphi: \mathbb{Z} \to \mathbb{Z}$,

 $f(x) = \varphi(\sum_j x(j)) \quad (x \in [0, u]_{\mathbb{Z}})$

- separable concave: with concave fns $\varphi_j : \mathbb{Z} \to \mathbb{Z} \ (j \in N)$, $f(x) = \sum_j \varphi_j(x(j)) \quad (x \in [0, u]_{\mathbb{Z}})$
- **laminar concave**: with laminar family $\{A_1, A_2, \dots, A_k\}$

and concave fns $\varphi_i : \mathbb{Z} \to \mathbb{Z} \ (i = 1, ..., k),$

 $f(x) = \sum_{i} \varphi_i \left(\sum_{j \in A_i} x(j) \right)$ [Danilov-Koshevoy-Murota98,01]

Multi-Unit Assignment Valuation

defined by max-weight many-to-many matching $w_{jh} (j \in N, h \in V)$: edge weight $d(h) \in \mathbb{Z}_+ (h \in V)$: degree upper-bound $f(x) = \max\{\sum_{(j,h)} w_{jh} y_{jh} \mid \sum_h y_{jh} = x(j) (j \in N),$ $\sum_j y_{jh} \leq d(h) (h \in V), y_{jh} \in \mathbb{Z}_+ (j \in N, h \in V)\}$

Indirect Utility Function

valuation fn $f: [0, u]_{\mathbb{Z}} \to \mathbb{Z}$ demand set $D(p) = \arg \max_{x} \{f(x) - p^{T}x\}$

indirect utility fn $V(p) = \max_{x} \{f(x) - p^T x\}$

- used in design & analysis of auctions
- given explicitly as bidding language

(e.g., Product-Mix auction [Klemperer2010])

Prop

- indirect utility *V* is convex
- valuation f is SS \rightarrow indirect utility V is submodular
- V can be regarded as function on \mathbb{Z}^n [cf. Ausubel 2006]

Examples of Indirect Utility Fns

• additive (linear) $f(x) = \sum_{j} v(j)x(j)$

 $\Rightarrow V(p) = \sum_{j=1}^{n} \max\{0, v(j) - p(j)\}\$

- unit-demand $f(x) = \max_{\substack{j:x(j)=1 \\ 1 \le j \le n}} v(j)$ $\Rightarrow V(p) = \max_{\substack{1 \le j \le n \\ 1 \le j \le n}} \{v(j) - p(j)\}$ ("max-payoff" function)
- multi-unit assignment

$$f(x) = \max\{\sum_{(j,h)} w_{jh} y_{jh} | \sum_{h} y_{jh} = x(j) \ (j \in N), \\ \sum_{j} y_{jh} \leq d(h) \ (h \in V), \ y_{jh} \in \mathbb{Z}_{+} \ (j \in N, h \in V)\}$$

$$\Rightarrow V(p) = \sum_{h \in V} d(h) \max_{1 \leq j \leq n} \{w_{jh} - p(j)\}$$

$$\text{Product-mix auction} \\ \text{[Klemperer2010]}$$

Indirect Utility Fn of SS Valuation

Thm: indirect utility of SS valuations ⊆ difference of "max-payoff-sum" functions [Klemperer2010, Baldwin-Klemperer2021]

$$\max_{x} \{f(x) - p^{\mathrm{T}}x\} = \sum_{h} d(h) \max_{1 \le j \le n} \{w_{jh} - p(j)\} - \sum_{k} d'(k) \max_{1 \le j \le n} \{w'_{jk} - p(j)\}$$

Computation/checking validity of representation is "difficult"
 given *f*, computation of *w_{jh}*, *w'_{jk}*, *d*, *d'* has pseudo-poly. lower-bound [Goldberg-Lock-Marmolejo-Cossío2022]
 given *w_{jh}*, *w'_{jk}*, *d*, *d'*, checking SS of *f* is coNP-complete [Baldwin-Goldberg-Klemperer-Lock2021]

Indirect Utility and La-convexity

- convexity concepts in Discrete Convex Analysis
 - Mh-convexity and Lh-convexity
- conjugacy between La-convexity / Ma-convexity

M-L Conjugacy Thm: (Murota 1998) by Legendre transform, M\u00e4-convex fn $f(x) \leftarrow \mathbf{L}$ L\u00e4-convex fn g(p)

Legendre transform
$$g(p) = \max_{x} \{p^{T}x - f(x)\}$$

 Thm
 Mth-concave
 $\leftarrow \rightarrow$ Strong-Substitutes

 Image: Concernent of the second state of the second st

Definition of La-convex Fn

continuous fn
$$g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$$
 is convex
(Murota 1998]
[Fujishige-Murota 2000]
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is L^a-convex
 $f: g: \mathbb{R}^n \to \mathbb{R$

p

Original Definition of La-convexity by Submodularity

[Murota1998] [Fujishige-Murota2000]

Def: $g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is L^{\lapha}-convex $\bigstar \tilde{g}: \mathbb{Z} \times \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ is submodular $\tilde{g}(p_0, p) = g(p - p_0 \mathbf{1}) \quad ((p_0, p) \in \mathbb{Z} \times \mathbb{Z}^n)$ $\mathbf{1} = (1, 1, ..., 1)$

Prop: La-convex \rightarrow submodular on \mathbb{Z}^n La-convex fn on $\{0,1\}^n \leftarrow \rightarrow$ submodular set fn

Examples of La-convex Fn

• range: $g(p) = \max\{0, p_1, p_2, \dots, p_n\} - \min\{0, p_1, p_2, \dots, p_n\}$

min-cost tension problem

 $g(p) = \sum_{i=1}^{n} \varphi_i(p_i) + \sum_{i,j} \psi_{ij}(p_i - p_j) \quad (\varphi_i, \psi_{ij}: \text{univariate conv})$

- dual of min-cost flow
- "energy fn" in image processing

Representation of La-convex Fn

Thm: indirect utility of SS valuations

⊆ difference of "max-payoff-sum" functions

[Klemperer2010, Baldwin-Klemperer2021]

Thm indirect utility V on \mathbb{Z}^n is Laplaconvex

 $\leftarrow \rightarrow$ valuation *f* is SS

Cor: $\forall L \natural$ -conv fn g, $\exists g_1, g_2$: "simple" L \natural-conv fn s.t. $g = g_1 - g_2$

Summary of 1st Half

Discrete Convexity/Concavity in Multi-Item Auctions

- Gross(Strong)-substitutes valuation = M⁴-concave fn
- Indirect Utility = La-convex fn

- Shioura, Tamura (2015) J. Operations Research Society Japan
 "Gross substitutes condition and discrete concavity for multi-unit valuations"
- Murota (2016) J. Mechanism & Institution Design "Discrete convex analysis: A tool for economics and game theory" Murota (2003) Discrete Convex Analysis, SIAM

Equilibrium Computation and Discrete Convex Optimization

computation of

- equilibrium allocation
 - = constrained M4-concave maximization
- equilibrium price = L4-convex minimization

Setting of Auction: Bidder's Information

Case 1: values of valuation fn f_i are available

Case 2: bidder's valuation fn f_i is given implicitly 2-1: values of indirect utility $V_i(p)$ are available 2-2: demand sets $D_i(p)$ are available

demand set
$$D(p) = \arg \max_{x} \{f(x) - p^{T}x\}$$

indirect utility fn $V(p) = \max_{x} \{f(x) - p^{T}x\}$

Setting of Auction: Bidder's Information

Case 1: values of valuation fn f_i are available

Case 2: bidder's valuation fn f_i is given implicitly 2-1: values of indirect utility $V_i(p)$ are available 2-2: demand sets $D_i(p)$ are available

demand set
$$D(p) = \arg \max_{x} \{f(x) - p^{T}x\}$$

indirect utility fn $V(p) = \max_{x} \{f(x) - p^{T}x\}$

Equilibrium Computation from Valuations

Case 1: values of valuation fn f_i are available

Thm: Suppose equilibrium exists. equilibrium allocation $\leftarrow \rightarrow$ optimal allocation of max. $f_1(x_1) + \dots + f_m(x_m)$ sub. to $x_1 + \dots + x_m = u, \ x_i \in \mathbb{Z}_+^n$

- optimal allocation \rightarrow equilibrium allocation
- use duality & properties of SS (M^{\\[\]}-concavity)
 → equilibrium price

Equilibrium Computation from Valuations

Case 1: values of valuation fn f_i are available

single-demand model

optimal allocation = max-weight matching

multi-demand model with SS/GS valuations

- optimal allocation
 - = maximization of Ma-concave fn

over M⁴-convex set ~

efficient algorithms available

Setting of Auction: Bidder's Information

Case 1: values of valuation fn f_i are available

Case 2: bidder's valuation fn f_i is given implicitly 2-1: values of indirect utility $V_i(p)$ are available 2-2: demand sets $D_i(p)$ are available

demand set
$$D(p) = \arg \max_{x} \{f(x) - p^{T}x\}$$

indirect utility fn $V(p) = \max_{x} \{f(x) - p^{T}x\}$

Equilibrium Computation from Indirect Utility

Case 2-1: values of indirect utility $V_i(p)$ are available

Lyapunov fn: $L(p) = p^{T}u + \sum_{i} V_{i}(p)$ [Ausubel 2006]

Thm: Assume SS for f_i .

- (i) V_i and L are submodular
- (ii) p: minimizer of $L \leftarrow \rightarrow p$: equilibrium price

 $V(p) = \max_{x} \{f(x) - p^T x\}$

(iii) \exists integral minimizer of L

equilibrium price computation = Minimization of Lyapunov function

Lyapunov Fn and L^h-convexity

Case 2-1: values of indirect utility $V_i(p)$ are available

Thm: indirect utility V_i is La-convex $\leftarrow \rightarrow$ valuation f_i is SS (cf

(cf. Murota-Shioura-Yang 2013)

Thm: Assume SS for f_i . Lyapunov fn = La-convex fn

(cf. Murota-Shioura-Yang 2013)

equilibrium price computation = Minimization of La-convex function

Minimization of La-convex Fn

 $g: \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\} \text{---} L
arrow Convex}$

Problem: Minimize g(p) for $p \in \mathbb{Z}^n$

Thm (optimality condition): (Murota 1998) p: global min $\bigstar p$: local min $g(p) \le g(p \pm e_X)$ ($\forall X \subseteq N$)

 $e_X \in \{0,1\}^n$: characteristic vector

Algorithms for La-convex Minimization

Steepest Descent (Up&Down) Step 0: $p \coloneqq p_0$ (initial pt) Step 1: Take $\delta \in \{+1, -1\} \& X \subseteq N$ to minimize $g(p + \delta e_X)$ Step 2: $g(p + \delta e_X) \ge g(p) \Rightarrow$ finish (current p is opt sol) Step 3: $p \coloneqq p + \delta e_X$, Go to Step 1

Steepest Descent (Up) Step 0: $p \coloneqq p_0$ (sufficiently small) Step 1: Take $X \subseteq N$ to minimize $g(p + e_X)$ Step 2: $g(p + e_X) \ge g(p) \Rightarrow$ finish (current p is opt sol) Step 3: $p \coloneqq p + e_X$, Go to Step 1

Speed-Up of Algorithms

steepest-descent algorithms are simple but slow

- each iteration moves the vector by one step only
- # of iterations = "distance" between initial sol. & opt. sol.
- computation of steepest-descent direction is time-consuming
 submodular fn minimization

computational techniques for improvement

- use of long step
- scaling technique
- DC (Difference of Convex) approach

• some experimental results [Baldwin-Bichler-Fichtl-Klemperer2022]

Techniques for Improvement: Long Step

use longest possible step length

[Shioura2017, Baldwin-Goldberg-Klemperer-Lock2021]

Steepest Descent Long Step (Up) Step 3: Take maximum λ with $\frac{g(p + \lambda e_X) - g(p)}{\lambda} = g(p + e_X) - g(p)$ Step 4: $p \coloneqq p + \lambda e_X$, Go to Step 1

Techniques for Improvement: Scaling

- long step length \rightarrow short step length
- neighborhood of approx. minimizer contains exact minimizer

[Murota2003]

(Discrete) DC Approach

[Maehara-Murota2015,

Baldwin-Bichler-Fichtl-Klemperer2022]

• "minimize $g(p + \delta e_X)$ " is time-consuming

for general L⁴-conv. fn

• simpler La-conv. fn (e.g., max-payoff-sum) is easier to handle

- use representation $g = g_1 g_2$ with "simple" La-conv g_1, g_2
- apply (discrete) DC algorithm for minimizing $g_1 g_2$

[Pham Dinh-Souad1986][Maehara-Murota2015]

$$g(p) = \sum_{h} d(h) \max_{1 \le j \le n} \{ w_{jh} - p(j) \} - \sum_{k} d'(k) \max_{1 \le j \le n} \{ w'_{jk} - p(j) \}$$

Setting of Auction: Bidder's Information

Case 1: values of valuation fn f_i are available

Case 2: bidder's valuation fn f_i is given implicitly 2-1: values of indirect utility $V_i(p)$ are available 2-2: demand sets $D_i(p)$ are available

- discussed most extensively in the literature
- equilibrium price is computed by Iterative Auction

Iterative Auction

• iterative auction: protocol (algorithm)

for finding equilibrium price

repeatedly update price using bidders' demand sets

Step 0. set initial price $p = (p_1, ..., p_n)$ Step 1. bidders report demand sets $D_i(p)$ Step 2. If \exists allocation $(x_1^*, x_2^*, ..., x_m^*)$ s.t. $x_i^* \in D_i(p)$ (or alternative condition is satisfied) \Rightarrow stop (p is equilibrium price) Step 3. update p appropriately. Go to Step 1.

• ascending auction: p increases monotonically

Ascending Auction Using Lyapunov Fn

[Ausubel 2006]

Lyapunov fn:
$$L(p) = p^{T}u + \sum_{i} V_{i}(p)$$
 $V_{i}(p) = \max_{x} \{f_{i}(x) - p^{T}x\}$

Idea: $L(p + e_Y) - L(p)$ can be obtained from demand sets $L(p + e_Y) - L(p) = \sum_{j \in Y} u(j) - \sum_i \min \left\{ \sum_{j \in Y} x(j) \middle| x \in D_i(p) \right\}$

Ascending Auction

Step 0: $p \coloneqq$ sufficiently small integral vector (e.g., 0) Step 1: find $X \subseteq N$ minimizing $L(p + e_X)$ Step 2: $L(p + e_X) \ge L(p)$ \Rightarrow stop (p is equilibrium price) Step 3: $p \coloneqq p + e_X$, Go to Step 1

$$e_X = \begin{bmatrix} 1\\1\\0\\1\\0\end{bmatrix}$$

Analysis of Ascending Auction by DCA

Thm: Assume SS for f_i . Lyapunov fn = La-convex fn (cf. Murota-Shioura-Yang 2013)

equilibrium price computation = Minimization of La-convex fn

Obs: Ascending Auction = Steepest Descent (Up) for Lyapunov fn

exact bound for Steepest Descent (Up) (MSY2013)

Cor: $\min\{||p^* - p_0||_{\infty} | p^*: \text{ integer equil., } p^* \ge p_0\}$

Iterative Auctions from DCA

- Ascending Auction (Ausubel 2006) = Steepest Descent (Up)
- Descending Auction (Ausubel 2006) = Steepest Descent (Down)
 - merit: prices move monotonically
 - demerit: sufficiently small/large initial prices
- Greedy Auction (Murota-Shioura-Yang2013)

= Steepest Descent (Up&Down)

• merit: initial prices can be chosen arbitrarily

of iterations is small

- demerit: prices move up & down
- Two-Phase Auction (Murota-Shioura-Yang2013)
 - Ascending

 Descending
 - merit: initial prices can be chosen arbitrarily prices move almost monotonically
 - demerit: larger # of iterations

Two-Phase Auction

Ascending + Descending

Step 0: $p \coloneqq$ any integral vector Step A1: find $X \subseteq N$ minimizing $L(p + e_X)$ Step A2: $L(p + e_X) \ge L(p) \Rightarrow$ go to Step D1 Step A3: $p \coloneqq p + e_X$, Go to Step A1 Step D1: find $Y \subseteq N$ minimizing $L(p - e_Y)$ Step D2: $L(p - e_Y) \ge L(p) \Rightarrow$ stop (p is equilibrium) Step D3: $p \coloneqq p - e_Y$, Go to Step D1

merit

- any initial vector can be used
- almost monotone w.r.t. prices

demerit

more iterations than Greedy

Thm: # iters $\leq 3 \times$ (# iters of Greedy)

Summary

Discrete Convexity/Concavity in Multi-Item Auctions

- Gross(Strong)-substitutes valuation = M⁴-concave fn
- Indirect Utility = La-convex fn

Equilibrium Computation

and Discrete Convex Optimization

• equilibrium allocation

= constrained M⁴-concave maximization

• equilibrium price = L4-convex minimization

Surveys & Books

- Shioura, Tamura (2015) J. Operations Research Society Japan "Gross substitutes condition and discrete concavity for multi-unit valuations"
- Shioura (2017) J. Operations Research Society Japan "Algorithms for L-convex function minimization"
- Murota (2016) J. Mechanism & Institution Design "Discrete convex analysis: A tool for economics and game theory"
- Murota (2003) Discrete Convex Analysis, SIAM
- two Japanese books
 - ・ 室田, 塩浦 (2013) 離散凸解析と最適化アルゴリズム
 - •田村 (2009) 離散凸解析とゲーム理論

DISCRETE CONVEX ANALYSIS