Connection Between
Discrete Convex Analysis
and Auction Theory

Akiyoshi Shioura
Tokyo Institute of Technology

2023-March-16
International Workshop on
Discrete Convex Analysis and Economics



Auctions with Multiple Indivisible ltems

- bidders report their valuation for item sets

- auctioneer determines item price & allocation
in which all bidders maximize their payoff
< Walrasian equilibrium

s : a
Question

* When equilibrium exist? Sufficient condition?
_* How to compute equilibrium? y




Discrete Convex Analysis (Murota 1998)

- Theory of discrete convex functions on Z"

- Two discrete convexity concepts
- Li-convex / Ma-convex

- Various properties
- Conjugacy between La-convexity / M&-convexity
- Algorithms for Li-convex/Ma-convex optimization

Murota (2003) Discrete Convex Analysis, SIAM

Murota (2016) J. Mechanism & Institution Design
“Discrete convex analysis: A tool for economics and game theory”



Connection of Auction & DCA

Discrete Convexity/Concavity in Multi-ltem Auctions

« (Gross(Strong)-substitutes valuation = Ma-concave fn
 Indirect Utility = Li-convex fn

Equilibrium Computation
and Discrete Convex Optimization
« equilibrium allocation

= constrained M&-concave maximization
« equilibrium price = Lg-convex minimization



Discrete Convexity/Concavity
In Multi-ltem Auctions

» Gross(Strong)-substitutes valuation = M&-concave fn
* Indirect Utility = L5-convex fn



Auction Setting: Items & Bidders

items N = {1, 2, ...,n}, u(j) units available foritem j € N

2 t 7 4

x € |0,u]; --- (multi-)set of items
x=(2, 0, 1, 0, 3)

1 ? HLQHH

bidders M = {1,2, ..., m}
valuation fn  f;:[0,u]; - Z of bidderi € M
fi(x) ="“value” ofitemset x € [0,uly



Walrasian Equilibrium

given price p = (p1, P2, -, Pn),
bidder wants to maximize  payoff f;(x) —p'x

demand set D;(p) = argmax{f;(x) — pTx | x € [0,u];}
allocation (x1,x5, ..., X;): X; EZY, X1+ x3+ -+ x,,=U

Def: Walrasian equilibrium:
pair of allocation (x7, x5, ...,x;,) & price p*
st. x; € D;(p")




Models of Multi-ltem Auctions

- # of items demanded by each bidder:

only one (single-demand) / more than one (multi-demand)
- # of units available for each item:

only one (single-unit) / more than one (multi-unit)
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Walrasian Equilibrium

given price p = (p1, P2, -, Pn),
bidder wants to maximize  payoff f;(x) —p'x

demand set D;(p) = argmax{f;(x) — pTx | x € [0,u];}
allocation (x1,x5, ..., X;): X; EZY, X1+ x3+ -+ x,,=U

Def: Walrasian equilibrium:
pair of allocation (x7, x5, ...,x;,) & price p*
st. x; € D;(p")

X:Not always: 3 Walrasian equilibrium

s ; N
Question

* When equilibrium exist? Sufficient condition?
_* How to compute equilibrium? P




Condition for Equilibrium EXxistence
in Multi-Demand/Single-Unit Model

Thm f: valuations on {0,1}" [Kelso-Crawford1982, et al. ]
gross-substitutes =» 3 Walrasian equilibrium

D(p) = argmax{f (x) — p'x}

Def: gross-substitutes (GS) condition for valuations on {0,1}":
VpER", VJEN, q=p+ Aej, Vx € D(p), Iy € D(q):
y(k) =z x(k) (Vk € N\ {j})

- higher price for some item, more demand for other items

Thm for valuations on {0,1}" [Fujishige-Yang2003]
gross-substitutes €=» Mi-concavity




Definition of Ma-concave Function

[Murota-Shioura 99]
Def: f:Z" - R U {4} is M*-concave €=>

Vx,y € Z™"Vi:x(i) > y(i):
Of)+fO)=fx—xD+f@+x), or

(iNFj:x() <yD st fQ+fO) S flx—xi +x;) + O+ x:i — x7)

variant of M-concave fn [Murota 96]
yg—%.. |
valuated matroid [Dress-Wenzel90]
A = Mst-concave fn on {0,1}"

iﬂ.x




Examples of Ms-concave Fns on {0,1}"

- additive (linear) valuation: with values v = (v(1), ..., v(n)),
fO)=vix (x€{0,1}")

- symmetric concave valuation: with concave fn ¢:Z — R,

f)=e@;x()) (x€0,1}%)

- unit-demand valuation: with values v = (v(1), ..., v(n)),

f(x) = max v(j) (x€10,1}")

Jx(j)=1



Assignment Valuation

valuation f:{0,1}" — Z defined by
max-weight one-to-one matching
win (j € N, h € V). edge weight

M: matching covering {j € N| x(j) = 1}




M&-concave Fns from Matroids
matroid rank: f(X) =r(X) (X €N)

- weighted matroid rank:
f() = max{Y ey w(j)| Y € X, matroid indep. set} (X S N)

[Shioura2012]
matroid rank sum: f(X) = a;r;(X) + -+ a1, (X) (X € N)
r; & 1;,.1 are strong quotient, a; = 0 [Shioura2012]

- valuated matroid = M&-concave fn on {0,1}"

> function on {0,1}" <-> fn on subsets of N = {1, ..., n}



Equilibrium Existence
iIn Multi-Demand/Multi-Unit Model

Def: gross-substitutes (GS) condition for valuation on {0,1}":
VpERY, q=p+ de;, Vx €D(p), Iy € D(q):

y(k) = x(k) (Vk e N\ {j})
GS naturally extends to valuations on |0, 1],
but not sufficient for equilibrium existence

Example:

fi f2:10,ulz = Z,u = (2,1) fi) |[x()=0| 1 2

satisfy (GS), x(2)=0| 0 3 6

but no equilibrium x(2) =1 4 5 6
fa(x) |x(1)=0] 1 2

max{fi(x) + fo(u — x)} ) =0 0 " y

=111 +,(1,0) =5+4 o1 1 T s s

[cf. Milgrom-Strulovici (2019)]



Conditions for Equilibrium Existence
in Multi-Demand/Multi-Unit Model

[Danilov-Koshevoy-Murota 2001]

Thm  for valuations on [0, u];
Ma-concavity =» 3 Walrasian equilibrium

stronger variants of GS equivalent to M&-concavity
e.g.: Murota-Tamura03, Danilov-Koshevoy-Lang03, et al.

Def: strong-substitutes (SS) condition: [Milgrom-Strulovici2009]
(GS) holds when all units of items are regarded
as distinct items

Def. GS + Law of Aggregate Demand (LAD) condition: [Murofi-asnf;gg%]
VpER", gq=p+ Ae;, Vx€D;(p), Iy € D;(q):

y(k) = x(k) (Vk € N\ U}, XkenV(k) < Lgen x(k)

Thm (SS) €= (GS+LAD) €=>» Msi-concavity




Examples of Ma-concave Fns on [O,u],

- additive (linear): with values v = (v(1), ..., v(n)),

fx)=vix (x €[0,uly)
- symmetric concave: with concave fn ¢:Z — Z,

f) =eix()) (x€[0,ulz)
- separable concave: with concave fns ¢;:Z - Z (j € N),
fO) =20;(x(j)) (x€[0,ulz)
- laminar concave: with laminar family {4, A,, ..., Ay}
and concavefns ¢;:Z - Z (i =1, ..., k),

fx) =% 9i(T)e A x(j))  IDanilov-Koshevoy-Murota98,01]

[[.....][.....]J




Multi-Unit Assignment Valuation

defined by max-weight many-to-many matching
win (j € N,h € V): edge weight
d(h) € Z, (h € V): degree upper-bound
f(x) = max{z(j,h) WinYjn | 2n Yin = x(j) (j € N),
2.jyin<=dh)(heV), yj, €Z, (JEN,heV)}




Indirect Utility Function

valuation fn f:10,ul; - Z
demand set D(p) = argmax{f(x) — p'x}
X

indirect utility fn V(p) = max{f(x) — p'x}
X

- used in design & analysis of auctions
- given explicitly as bidding language
(e.g., Product-Mix auction [Klemperer2010])

Prop

- Indirect utility V is convex

- valuation f is SS = indirect utility VV is submodular

- V can be regarded as function on Z" [cf. Ausubel 2006]




Examples of Indirect Utility Fns

- additive (linear)  f(x) = X;v(j)x({)
> V(p) = X1 max{0,v(j) — p(j)}

 unit-demand f(x) = ,rr(1a)x1v(i)
Jjx(j)=
= V(p) = 1111];13% v(j)—p()} (“max-payoff’ function)

- multi-unit assignment

f(x) = max{Z¢n WinVjn | Xnyjn = x() ( € N),
2iVin<dh) (h€V), yj, €EZy (jEN,h€V)}

> V(®) = Tpey d(W) max {w, — p()}

« L=j=n : Product-mix auction
(“‘max-payoff-sum” function) [Klemperer2010]

|




Indirect Utility Fn of SS Valuation

Thm: indirect utility of SS valuations

C difference of "max-payoff-sum” functions
[Klemperer2010, Baldwin-Klemperer2021]

maxif (x) — pix}
z d(h) max {wj, — p()} - z d'(k) max{w' — p()}
k

1<j<n 1<j<n

>& computation/checking validity of representation is “difficult”

- given f, computation of w;,, w'jx, d, d’” has pseudo-poly. lower-bound
[Goldberg-Lock-Marmolejo-Cossio2022]

* given wj,, W', d, d’, checking SS of f is coNP-complete
[Baldwin-Goldberg-Klemperer-Lock2021]



Indirect Utility and Ls-convexity

- convexity concepts in Discrete Convex Analysis
- Mi-convexity and La-convexity
- conjugacy between Li-convexity / Ma-convexity

M-L Conjugacy Thm: (Murota 1998) by Legendre transform,
Ma-convex fn f(x) €=» Lb-convex fn g(p)

Legendre transform g(p) = max{p'x — f(x)}
X

Thm Mb&-concave €= Strong-Substitutes

~

Thm indirect utility V on Z™ is L8-convex
€= valuation f is SS (cf. Murota-Shioura-Yang 2013)




Definition of La-convex Fn

continuous fn g: R™ — R U {400} is convex {g&}[g;}f&iﬁmtazoom
€ > mid-point convex:Vp,q € R",
p+q
g(p) +9(q) = 2g (T)
Def: g: Z™ —» R U {+0} is LE-convex q.\ ‘
€= discrete mid-point convex: Vp,q € Z", X [mw T
p+q p+q N
g(p) +9(q) = g([T ) +9QTD \
) G
% original definition {M‘ \
in terms of submodularity | 2‘ \
|




Original Definition of Lb-convexity
by Submodularity

[Murota1998]
[Fujishige-Murota2000]

Def: g:Z™ - R U {4} is LE-convex
€= §:Z X7I" - RU {+} is submodular

Id@o,0) =g —pol) ((po,p) EZXZ")
1=(11,..,1)

Prop: La-convex = submodular on Z"
L-convex fn on {0,1}" €=» submodular set fn




Examples of Lb-convex Fn

- quadratic fn g(p) = p’ Ap is Li-convex 4 . —1]
<> ClUSO(l-'F]), Z]ClUZO -2 3 -1
1 1 5|

- range: g(p) = max{0, py, P, .., Pn} — Min{0, p1, Py, ..., Pn}

- min-cost tension problem
9g) =Xic10i () + 2 ;¥ij(pi —p;) (@i, ;- univariate conv)
- dual of min-cost flow
- “energy fn” in image processing



Representation of Ls-convex Fn

Thm: indirect utility of SS valuations

C difference of “max-payoff-sum” functions
[Klemperer2010, Baldwin-Klemperer2021]

Thm indirect utility V on Z™ is La-convex
€=> valuation f is SS

N

Cor: VL&-convifn g, 3g,,9,: “simple” L5-conv fn
s.t. g=01—9:




Summary of 1st Half

Discrete Convexity/Concavity in Multi-ltem Auctions

« (Gross(Strong)-substitutes valuation = Ma-concave fn
 Indirect Utility = Li-convex fn

- Shioura, Tamura (2015) J. Operations Research Society Japan
“Gross substitutes condition and discrete concavity for multi-unit valuations”

- Murota (2016) J. Mechanism & Institution Design
“Discrete convex analysis: A tool for economics and game theory”

Murota (2003) Discrete Convex Analysis, SIAM



Equilibrium Computation
and Discrete Convex Optimization

computation of
* equilibrium allocation

= constrained Ma-concave maximization
* equilibrium price = Ls-convex minimization



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn f; are available

Case 2: bidder’s valuation fn f; is given implicitly
2-1: values of indirect utility V;(p) are available
2-2: demand sets D;(p) are available

demand set D(p) = argmax{f(x) —p'x}
X

indirect utility fn V(p) = max{f(x) — p’x}
X



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn f; are available

Case 2: bidder’s valuation fn f; is given implicitly
2-1: values of indirect utility V;(p) are available
2-2: demand sets D;(p) are available

demand set D(p) = argmax{f(x) —p'x}
X

indirect utility fn V(p) = max{f(x) — p’x}
X



Equilibrium Computation from Valuations

Case 1: values of valuation fn f; are available

Thm: Suppose equilibrium exists.
equilibrium allocation €=>» optimal allocation of

max. fi(xq) + -+ frn (o)
sub.tox; + -+ x,, =u, x; EZY

« optimal allocation -> equilibrium allocation
« use duality & properties of SS (M&-concavity)
-> equilibrium price



Equilibrium Computation from Valuations

Case 1: values of valuation fn f; are available

4 - \\
multi-demand/ _ -
multi-unit multi-demand/ smg_le-::iemgnd/
: single-unit single-unit
\ Y
\ %)

single-demand model
 optimal allocation = max-weight matching

multi-demand model with SS/GS valuations
« optimal allocation
= maximization of M&-concave fn

over Ms-convex set <(efficient algorithms]

available




Setting of Auction: Bidder’s Information

Case 1: values of valuation fn f; are available

Case 2: bidder’s valuation fn f; is given implicitly
2-1: values of indirect utility V;(p) are available
2-2: demand sets D;(p) are available

demand set D(p) = argmax{f(x) —p'x}
X

indirect utility fn V(p) = max{f(x) — p’x}
X



Equilibrium Computation from Indirect Utility

Case 2-1: values of indirect utility V;(p) are available
V(p) = max{f (x) — p'x}
Lyapunov fn:  L(p) = pTu + X, Vi(p) iausuvel 2006
Thm: Assume SS for f;.
(i) V; and L are submodular

(i) p:minimizerof L €=» p:equilibrium price
(iif) 3 integral minimizer of L

equilibrium price computation
= Minimization of Lyapunov function



Lyapunov Fn and La-convexity

Case 2-1: values of indirect utility V;(p) are available

Thm: indirect utility V; is Ls-convex
€= valuation f; is SS (cf. Murota-Shioura-Yang 2013)

Thm: Assume SS for f;.
Lyapunov fn = L8-convex fn (cf. Murota-Shioura-Yang 2013)

equilibrium price computation
= Minimization of La-convex function



Minimization of LB-convex Fn

g:Z" - R U {+} --- Li-convex
... o ©
“ Problem: Minimize g(p) for p € Z" H p
o 0O
Thm (optimality condition):  (Murota 1998) oo
p: global min
€= p:local min
gp) <glpxex) (VXEN)
L. 1 eEX
ex € {0,1}" : characteristic vector  ex(v) = { 0 (V(Z N \)X)



Algorithms for La-convex Minimization

Steepest Descent (Up&Down)

Step 0: p := py(initial pt)

Step1: Take § € {+1,-1} & X EN
to minimize g(p + Sey) | A

Step 2: g(p + dex) = g(p)=> finish
(current p is opt sol) Po

Step 3: p :=p + Sey, Go to Step 1 ®

Steepest Descent (Up) /p*
Step 0: p == p, (sufficiently small)

Step 1: Take X S N 1‘
to minimize g(p + ey)
Step 2: g(p + ex) = g(p)=> finish
(current p is opt sol) Do
Step 3:p =p + ey, Go to Step 1




Speed-Up of Algorithms

steepest-descent algorithms are simple but slow
- each iteration moves the vector by one step only
- # of iterations = “distance” between initial sol. & opt. sol.

- computation of steepest-descent direction is time-consuming
< submodular fn minimization

computational techniques for improvement
- use of long step
- scaling technique
- DC (Difference of Convex) approach

- some experimenta| results [Baldwin-Bichler-Fichtl-Klemperer2022]



Techniques for Improvement: Long Step

: [Shioura2017,
use Iongest pOSS|b|e Step Iength Baldwin-Goldberg-Klemperer-Lock2021]

Steepest Descent Long Step (Up) P’

Step 3: Take maximum A with

g(p + dex) — g(p)

p =g(p+ex) —g(p)
Step 4:p :=p + Aey, Go to Step 1

Po




Techniques for Improvement: Scaling

* long step length = short step length [Murota2003]
* neighborhood of approx. minimizer contains exact minimizer

Po

step length 1 = 2 steplength A =1



(Discrete) DC Approach

[Maehara-Murota2015,
Baldwin-Bichler-Fichtl-Klemperer2022]

* "minimize g(p + dey)” Is time-consuming
for general L5-conv. fn
« simpler La-conv. fn (e.g., max-payoff-sum) is easier to handle

~

* use representation g = g; — g, with “simple” La-conv g4, g,
« apply (discrete) DC algorithm for minimizing g; — g-
[Pham Dinh-Souad1986][Maehara-Murota2015]

1<jsn 1<j<n

g(p) — z d(h) max {W]h p(])} 2 d (k) max {W jk p(])}



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn f; are available

Case 2: bidder’s valuation fn f; is given implicitly
2-1: values of indirect utility V;(p) are available
2-2: demand sets D;(p) are available

» discussed most extensively in the literature
* equilibrium price is computed by lterative Auction



lterative Auction

- iterative auction: protocol (algorithm)

for finding equilibrium price
- repeatedly update price using bidders’ demand sets
Step 0. set initial price p = (pq, ..., py)
Step 1. bidders report demand sets D;(p)
Step 2. If 3 allocation (x7, x5, ..., x;,) s.t. x; € D;(p)

(or alternative condition is satisfied)
=>» stop (p Is equilibrium price)

Step 3. update p appropriately. Go to Step 1.

- ascending auction: p increases monotonically



Ascending Auction Using Lyapunov Fn

[Ausubel 2006]
Lyapunov fn: - L(p) =p'u+3%;Vi(p)  Vi(p) = max{fi(x) —p"x}

ldea: L(p + ey) — L(p) can be obtained from demand sets

L(p+e) = L(p) = ) u() — ) min {2 X()| x & Di<p>}

jey i jeYy

Ascending Auction

Step 0: p = sufficiently small integral vector (e.g., 0)
Step 1: find X € N minimizing L(p + ey)

Step 2: L(p + ex) = L(p)
=>» stop (p is equilibrium price)
Step3:p=p+ey, GotoStep1

SR ORr PR




Analysis of Ascending Auction by DCA

Thm: Assume SS for f;.
Lyapunov fn = L5-convex fn (cf. Murota-Shioura-Yang 2013)

equilibrium price computation = Minimization of La-convex fn

Obs: Ascending Auction
= Steepest Descent (Up) for Lyapunov fn

exact bound for Steepest Descent (Up) (msy2013)

N

Cor: min{||p* — pylle | p*:integer equil.,, p* = py}



lterative Auctions from DCA

- Ascending Auction (ausubel 2006) = Steepest Descent (Up)
- Descending Auction (ausubel 2006) = Steepest Descent (Down)
- merit: prices move monotonically
- demerit: sufficiently small/large initial prices
. Greedy Auction (Murota-Shioura-Yang2013)
= Steepest Descent (Up&Down)
- merit: initial prices can be chosen arbitrarily
# of iterations is small
- demerit: prices move up & down
- Two-Phase Auction (Murota-Shioura-Yang2013)
- Ascending = Descending
- merit: initial prices can be chosen arbitrarily
prices move almost monotonically
- demerit: larger # of iterations



Two-Phase Auction

Ascending Step 0: p := any integral vector

+ Descending | step A1: find X < N minimizing L(p + ey)
Step A2: L(p + ex) = L(p)=> go to Step D1
Step A3: v :==p + ey, Go to Step A1

Step D1: find Y € N minimizing L(p — ey)
Step D2: L(p — ey) = L(p)=>stop (p is equilibrium)
Step D3: p :=p — ey, Go to Step D1

- merit
- any Initial vector can be used
- almost monotone w.r.t. prices
- demerit
- more iterations than Greedy

Thm: # iters = 3 X (# iters of Greedy)



Summary

Discrete Convexity/Concavity in Multi-ltem Auctions

« (Gross(Strong)-substitutes valuation = Ma-concave fn
 Indirect Utility = Li-convex fn

Equilibrium Computation
and Discrete Convex Optimization
« equilibrium allocation

= constrained M&-concave maximization
« equilibrium price = Lg-convex minimization



Surveys & Books

- Shioura, Tamura (2015) J. Operations Research Society Japan
“Gross substitutes condition and discrete concavity for multi-unit valuations”

- Shioura (2017) J. Operations Research Society Japan
“Algorithms for L-convex function minimization”
- Murota (2016) J. Mechanism & Institution Design

“Discrete convex analysis: A tool for economics and game theory”

- Murota (2003) Discrete Convex Analysis, SIAM

- two Japanese books f‘:"':________
- @, 5 (2013) BUOBFERBLTLTURL
- B (2009) Bt BRI AR &5 — LI -
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