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Auctions with Multiple Indivisible Items
• bidders report their valuation for item sets

• auctioneer determines item price & allocation
in which all bidders maximize their payoff   

Walrasian equilibrium
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Question
• When equilibrium exist? Sufficient condition?
• How to compute equilibrium?



Discrete Convex Analysis (Murota 1998)

• Theory of discrete convex functions on ௡

• Two discrete convexity concepts
• L♮-convex / M♮-convex 

• Various properties
• Conjugacy between L♮-convexity / M♮-convexity
• Algorithms for L♮-convex/M♮-convex optimization
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Murota (2003)    Discrete Convex Analysis, SIAM
Murota (2016)    J. Mechanism & Institution Design 

“Discrete convex analysis: A tool for economics and game theory”



Connection of Auction & DCA

Discrete Convexity/Concavity in Multi-Item Auctions 
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• Gross(Strong)-substitutes valuation = M♮-concave fn
• Indirect Utility = L♮-convex fn

Equilibrium Computation 
and Discrete Convex Optimization

• equilibrium allocation 
= constrained M♮-concave maximization

• equilibrium price = L♮-convex minimization



Discrete Convexity/Concavity
in Multi-Item Auctions 
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• Gross(Strong)-substitutes valuation = M♮-concave fn
• Indirect Utility = L♮-convex fn



Auction Setting: Items & Bidders
items ,   units available for item 

ℤ --- (multi-)set of items
x= (2,      0,     1,     0,     3)
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bidders 
valuation fn ௜ ℤ of bidder 
௜ “value” of item set   ℤ



Walrasian Equilibrium
given price ଵ ଶ ௡ ,  

bidder wants to maximize     payoff    ௜
୘

demand set    ௜ ௜
்

ℤ

allocation ଵ ଶ ௠ :   ௜ ା
௡

ଵ ଶ ௠
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Def:   Walrasian equilibrium: 
pair of    allocation ଵ

∗
ଶ
∗

௠
∗ &    price ∗

s.t. ௜
∗

௜
∗



Models of Multi-Item Auctions
• # of items demanded by each bidder:

only one (single-demand) / more than one (multi-demand)
• # of units available for each item:

only one (single-unit)  / more than one (multi-unit)
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multi-demand/
multi-unit

ℤ

multi-demand/
single-unit

௡

single-demand/
single-unit
𝑓:𝑁 → ℤ

assignment 
model



Walrasian Equilibrium
given price ଵ ଶ ௡ ,  

bidder wants to maximize     payoff    ௜
୘

demand set    ௜ ௜
்

ℤ

allocation ଵ ଶ ௠ :   ௜ ା
௡

ଵ ଶ ௠
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Question
• When equilibrium exist? Sufficient condition?
• How to compute equilibrium?

※Not always:  Walrasian equilibrium

Def:   Walrasian equilibrium: 
pair of    allocation ଵ

∗
ଶ
∗

௠
∗ &    price ∗

s.t. ௜
∗

௜
∗



Condition for Equilibrium Existence 
in Multi-Demand/Single-Unit Model

• higher price for some item,  more demand for other items

Def: gross-substitutes (GS) condition for valuations on ௡:
௡

௝ ,  

Thm   valuations on ௡ [Kelso-Crawford1982, et al.] 

gross-substitutes   Walrasian equilibrium
𝐷 𝑝 ൌ arg max

௫
ሼ𝑓 𝑥 െ 𝑝୘𝑥ሽ
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Thm for valuations on ௡ [Fujishige-Yang2003]    

gross-substitutes    M♮-concavity



Definition of M♮-concave Function 

Def： ௡ is M♮-concave 
௡ :

(i) ௜ ௜ ,       or
(ii) ௜ ௝ ௜ ௝

[Murota 96]variant of M-concave fn

[Murota-Shioura 99]
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valuated matroid   [Dress-Wenzel90]

≒ M♮-concave fn on ௡



Examples of M♮-concave Fns on {0,1}n

• additive (linear) valuation:   with values ,
୘ ௡

• symmetric concave valuation: with concave fn ,
௝

௡

• unit-demand valuation:   with values ,             

௝:௫ ௝ ୀଵ
௡
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valuation ௡ defined by 
max-weight one-to-one matching

௝௛ : edge weight

௝௛
௝,௛ ∈ெ

matching covering

Assignment Valuation
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M♮-concave Fns from Matroids

• matroid rank:   

• weighted matroid rank:   

௝∈௒ matroid indep. set
[Shioura2012]

• matroid rank sum:  ଵ ଵ ௞ ௞

௜ & ௜ାଵ are strong quotient, ௜ [Shioura2012]

• valuated matroid = M♮-concave fn on {0,1}n

※ function on {0,1}n  fn on subsets of 
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Equilibrium Existence 
in Multi-Demand/Multi-Unit Model

GS naturally extends to valuations on ℤ,
but not sufficient for equilibrium existence
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[cf. Milgrom-Strulovici (2019)]

Def: gross-substitutes (GS) condition for valuation on 0,1 ௡:
∀𝑝 ∈ ℝ௡,  𝑞 ൌ 𝑝 ൅  𝜆𝑒௝ , ∀𝑥 ∈ 𝐷ሺ𝑝ሻ,  ∃𝑦 ∈ 𝐷 𝑞 :

  𝑦 𝑘 ൒ 𝑥 𝑘   ሺ∀𝑘 ∈ 𝑁 ∖ 𝑗 ሻ

𝑓ଵሺ𝑥ሻ 𝑥 1 ൌ0 1 2
𝑥 2 ൌ 0 0 3 6
𝑥 2 ൌ 1 4 5 6

𝑓ଶሺ𝑥ሻ 𝑥 1 ൌ0 1 2
𝑥 2 ൌ 0 0 4 4
𝑥 2 ൌ 1 1 5 5

Example:
ଵ ଶ ℤ

satisfy (GS), 
but no equilibrium

ଵ ଶ
ଵ ଶ



Conditions for Equilibrium Existence
in Multi-Demand/Multi-Unit Model
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Thm for valuations on ℤ
M♮-concavity    Walrasian equilibrium

[Danilov-Koshevoy-Murota 2001]

stronger variants of GS equivalent to M♮-concavity
e.g.: Murota-Tamura03, Danilov-Koshevoy-Lang03, et al.

Def: strong-substitutes (SS) condition:
(GS) holds when all units of items are regarded 

as distinct items

Def: GS + Law of Aggregate Demand (LAD) condition: 
௡

௝ ௜ , ௜

௞∈ே ௞∈ே

Thm (SS)    (GS+LAD)    M♮-concavity

[Milgrom-Strulovici2009]

[Murota-Shioura
-Yang2013]



Examples of M♮-concave Fns on [0,u]Z
• additive (linear):   with values ,

୘
ℤ

• symmetric concave: with concave fn ,
௝ ℤ

• separable concave:   with concave fns ௝ ,

௝௝ ℤ

• laminar concave:  with laminar family ଵ ଶ ௞

and concave fns ௜ ,

௜ ௝∈஺೔௜
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[Danilov-Koshevoy-Murota98,01]



defined by max-weight many-to-many matching
௝௛ : edge weight

ା : degree upper-bound
௝௛ ௝௛௝,௛ ௝௛௛

௝௛௝ ௝௛ ା

Multi-Unit Assignment Valuation
18

1

2

3

4

a

b

c

1

2

1

0

1

2

3

4

a

b

c

1

2

3

4

a

b

c

≦2

≦1

≦2

1

2

1

0

≦2

≦1

≦2

≦2

≦1

≦2



Indirect Utility Function
valuation fn 𝑓: 0,𝑢 ℤ → ℤ
demand set        𝐷 𝑝 ൌ arg max

௫
 

ሼ𝑓 𝑥 െ 𝑝்𝑥ሽ

indirect utility fn
௫

்

• used in design & analysis of auctions
• given explicitly as bidding language 

(e.g., Product-Mix auction [Klemperer2010])
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Prop 
• indirect utility is convex
• valuation is SS  indirect utility is submodular
• can be regarded as function on ௡ [cf. Ausubel 2006]



Examples of Indirect Utility Fns

• multi-unit assignment
𝑓 𝑥 ൌ max൛∑ 𝑤௝௛𝑦௝௛௝,௛  |∑ 𝑦௝௛௛ ൌ 𝑥 𝑗  𝑗 ∈ 𝑁 ,

∑ 𝑦௝௛௝ ൑ 𝑑 ℎ  ℎ ∈ 𝑉 , 𝑦௝௛ ∈ ℤା ሺ𝑗 ∈ 𝑁, ℎ ∈ 𝑉ሻሽ 
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
ଵஸ௝ஸ௡ ௝௛௛∈௏

(“max-payoff-sum” function)
Product-mix auction 

[Klemperer2010]

• additive (linear) ௝

 ௡
௝ୀଵ

• unit-demand
௝:௫ ௝ ୀଵ


ଵஸ௝ஸ௡

(“max-payoff” function)



Indirect Utility Fn of SS Valuation
21

Thm:  indirect utility of SS valuations
⊆ difference of “max-payoff-sum” functions

[Klemperer2010, Baldwin-Klemperer2021]

௫
୘

ଵஸ௝ஸ௡ ௝௛
௛

ଵஸ௝ஸ௡ ௝௞
௞

※ computation/checking validity of representation is “difficult”
• given 𝑓, computation of 𝑤௝௛ ,𝑤′௝௞ ,𝑑,𝑑′ has pseudo-poly. lower-bound

[Goldberg-Lock-Marmolejo-Cossío2022]
• given 𝑤௝௛ ,𝑤′௝௞ ,𝑑,𝑑′, checking SS of 𝑓 is coNP-complete

[Baldwin-Goldberg-Klemperer-Lock2021]



Indirect Utility and L♮-convexity
• convexity concepts in Discrete Convex Analysis

• M♮-convexity and L♮-convexity 
• conjugacy between L♮-convexity / M♮-convexity
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M-L Conjugacy Thm: (Murota 1998)    by Legendre transform,    
M♮-convex fn  L♮-convex fn 

Thm M♮-concave  Strong-Substitutes

Thm  indirect utility on ௡ is L♮-convex
 valuation is SS (cf. Murota-Shioura-Yang 2013)

Legendre transform 
௫

୘



Definition of L♮-convex Fn

Def： ௡ is L♮‐convex
 discrete mid‐point convex： ௡
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continuous fn ௡ is convex
mid‐point convex： ௡

𝑝 ൅ 𝑞
2

𝑝 ൅ 𝑞
2

※ original definition 
in terms of submodularity

[Murota1998]
[Fujishige-Murota2000]



Original Definition of L♮-convexity 
by Submodularity

Def： ௡ is L♮-convex
 ௡  is submodular

଴ ଴ ଴
௡
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Prop： L♮-convex  submodular on ௡

L♮-convex fn on ௡ submodular set fn

[Murota1998]
[Fujishige-Murota2000]



Examples of L♮-convex Fn
• quadratic fn ் is L♮-convex
 ௜௝ ௜௝௝

• range: ଵ ଶ ௡ ଵ ଶ ௡

• min-cost tension problem
௜

௡
௜ୀଵ ௜ ௜௝ ௜ ௝௜,௝ ௜ ௜௝: univariate conv)

• dual of min-cost flow 
• “energy fn” in image processing
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4 െ1
3 െ2
െ2 3 െ1

െ1 െ1 5



Representation of L♮-convex Fn
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Thm  indirect utility on ௡ is L♮-convex
 valuation is SS

Thm:  indirect utility of SS valuations
⊆ difference of “max-payoff-sum” functions

Cor:  ∀L♮-conv fn , ∃ ଵ ଶ: “simple” L♮-conv fn
s.t. ଵ ଶ

[Klemperer2010, Baldwin-Klemperer2021]



Summary of 1st Half

Discrete Convexity/Concavity in Multi-Item Auctions 
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• Gross(Strong)-substitutes valuation = M♮-concave fn
• Indirect Utility = L♮-convex fn

• Shioura, Tamura (2015)   J. Operations Research Society Japan 
“Gross substitutes condition and discrete concavity for multi-unit valuations”

• Murota (2016)            J. Mechanism & Institution Design 
“Discrete convex analysis: A tool for economics and game theory”
Murota (2003) Discrete Convex Analysis, SIAM



Equilibrium Computation
and Discrete Convex Optimization
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computation of
• equilibrium allocation 

= constrained M♮-concave maximization
• equilibrium price = L♮-convex minimization



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn ௜ are available

Case 2: bidder’s valuation fn ௜ is given implicitly
2-1: values of indirect utility ௜ are available 
2-2: demand sets ௜ are available

29

demand set        
௫
 

்

indirect utility fn
௫

்



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn ௜ are available

Case 2: bidder’s valuation fn ௜ is given implicitly
2-1: values of indirect utility ௜ are available 
2-2: demand sets ௜ are available

30

demand set        
௫
 

்

indirect utility fn
௫

்



Equilibrium Computation from Valuations

Case 1: values of valuation fn ௜ are available
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• optimal allocation           equilibrium allocation
• use duality & properties of SS (M♮-concavity) 

 equilibrium price

Thm:  Suppose equilibrium exists.  
equilibrium allocation  optimal allocation of

max.    ଵ ଵ ௠ ௠
sub. to ଵ ௠ ௜ ା

௡



Equilibrium Computation from Valuations
32

single-demand model
• optimal allocation = max-weight matching

multi-demand model with SS/GS valuations
• optimal allocation 

= maximization of M♮-concave fn
over M♮-convex set  efficient algorithms 

available

Case 1: values of valuation fn ௜ are available



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn ௜ are available

Case 2: bidder’s valuation fn ௜ is given implicitly
2-1: values of indirect utility ௜ are available 
2-2: demand sets ௜ are available
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demand set        
௫
 

்

indirect utility fn
௫

்



Equilibrium Computation from Indirect Utility

Case 2-1: values of indirect utility ௜ are available 
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௫
்

Lyapunov fn:   ୘
௜௜

Thm:  Assume SS for ௜.
(i)   ௜ and are submodular 
(ii) : minimizer of  equilibrium price 
(iii)  integral minimizer of 

equilibrium price computation 
= Minimization of Lyapunov function 

[Ausubel 2006]



Lyapunov Fn and L♮-convexity
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Thm: indirect utility ௜ is L♮-convex 
 valuation ௜ is SS (cf. Murota-Shioura-Yang 2013)

Thm: Assume SS for ௜.
Lyapunov fn = L♮-convex fn (cf. Murota-Shioura-Yang 2013)

equilibrium price computation 
= Minimization of L♮-convex function 

Case 2-1: values of indirect utility ௜ are available 



Minimization of L♮-convex Fn
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Thm (optimality condition)： (Murota 1998)
: global min
 : local min

௑

௑
௡ : characteristic vector       ௑

௡ --- L♮-convex 

Problem： Minimize for ௡



Algorithms for L♮-convex Minimization

଴

Steepest Descent (Up&Down)
Step 0: ଴ initial pt)
Step 1: Take &

to minimize ௑
Step 2: ௑  finish

(current is opt sol)
Step 3: ௑，Go to Step 1

Steepest Descent (Up)
Step 0: ଴ (sufficiently small)
Step 1: Take 

to minimize ௑
Step 2: ௑  finish

(current is opt sol)
Step 3: ௑，Go to Step 1

37

଴

∗

∗



Speed-Up of Algorithms
steepest-descent algorithms are simple but slow

• each iteration moves the vector by one step only
• # of iterations = “distance” between initial sol. & opt. sol.
• computation of steepest-descent direction is time-consuming    
 submodular fn minimization

computational techniques for improvement
• use of long step
• scaling technique
• DC (Difference of Convex) approach

• some experimental results 
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[Baldwin-Bichler-Fichtl-Klemperer2022]



Techniques for Improvement: Long Step
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଴

∗

use longest possible step length

Steepest Descent Long Step (Up)

Step 3: Take maximum with
௑

௑

Step 4: ௑，Go to Step 1

[Shioura2017, 
Baldwin-Goldberg-Klemperer-Lock2021]



Techniques for Improvement: Scaling
40

଴

∗

• long step length  short step length
• neighborhood of approx. minimizer contains exact minimizer

step length 

∗

଴
∗

step length 

[Murota2003]



(Discrete) DC Approach
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ଵஸ௝ஸ௡ ௝௛
௛

ଵஸ௝ஸ௡ ௝௞
௞

• “minimize ௑ ” is time-consuming 
for general L♮-conv. fn

• simpler L♮-conv. fn (e.g., max-payoff-sum) is easier to handle

• use representation ଵ ଶ with “simple” L♮-conv ଵ ଶ
• apply (discrete) DC algorithm for minimizing ଵ ଶ

[Pham Dinh-Souad1986][Maehara-Murota2015]

[Maehara-Murota2015,
Baldwin-Bichler-Fichtl-Klemperer2022]



Setting of Auction: Bidder’s Information

Case 1: values of valuation fn ௜ are available

Case 2: bidder’s valuation fn ௜ is given implicitly
2-1: values of indirect utility ௜ are available 
2-2: demand sets ௜ are available
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• discussed most extensively in the literature
• equilibrium price is computed by Iterative Auction



Iterative Auction 
• iterative auction: protocol (algorithm) 

for finding equilibrium price
• repeatedly update price using bidders’ demand sets

--------------------------------------------------------------------------
Step 0.  set initial price ଵ ௡

Step 1.  bidders report demand sets ௜
Step 2.  If allocation ଵ

∗
ଶ
∗

௠
∗ s.t.   ௜

∗
௜

(or alternative condition is satisfied)
 stop   ( is equilibrium price)

Step 3.  update appropriately.   Go to Step 1.
------------------------------------------------------------------------

• ascending auction:  increases monotonically
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Ascending Auction Using Lyapunov Fn

Step 0: sufficiently small integral vector (e.g., 0)
Step 1: find minimizing ௑
Step 2: ௑

 stop ( is equilibrium price)
Step 3: ௑， Go to Step 1

𝑒௑ ൌ

1
1
0
1
0

Ascending Auction

44

[Ausubel 2006]

௜ ௫ ௜
்Lyapunov fn:   ୘

௜௜

Idea: ௒ can be obtained from demand sets

௒
௝∈௒ ௝∈௒

௜
௜



Analysis of  Ascending Auction by DCA

Cor: ∗
଴ ஶ

∗ ∗
଴

Obs: Ascending Auction 
= Steepest Descent (Up) for Lyapunov fn

exact bound for Steepest Descent (Up)   (MSY2013)
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Thm: Assume SS for ௜.
Lyapunov fn = L♮-convex fn (cf. Murota-Shioura-Yang 2013)

equilibrium price computation = Minimization of L♮-convex fn



Iterative Auctions from DCA
• Ascending  Auction (Ausubel 2006) = Steepest Descent (Up)
• Descending  Auction (Ausubel 2006) = Steepest Descent (Down)

• merit: prices move monotonically
• demerit: sufficiently small/large initial prices

• Greedy Auction (Murota-Shioura-Yang2013)

= Steepest Descent (Up&Down)
• merit: initial prices can be chosen arbitrarily

# of iterations is small 
• demerit: prices move up & down

• Two-Phase Auction (Murota-Shioura-Yang2013)

• Ascending  Descending
• merit: initial prices can be chosen arbitrarily

prices move almost monotonically
• demerit: larger # of iterations
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Two-Phase Auction
Step 0: any integral vector 
Step A1: find minimizing ௑
Step A2: ௑  go to Step D1
Step A3: ௑，Go to Step A1
Step D1: find minimizing ௒
Step D2: ௒ stop ( is equilibrium)
Step D3: ௒，Go to Step D1

Thm: # iters ≦ 3 ✕ (# iters of Greedy)

Ascending 
+ Descending

• merit
• any initial vector can be used
• almost monotone w.r.t. prices

• demerit
• more iterations than Greedy
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Summary

Discrete Convexity/Concavity in Multi-Item Auctions 
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• Gross(Strong)-substitutes valuation = M♮-concave fn
• Indirect Utility = L♮-convex fn

Equilibrium Computation 
and Discrete Convex Optimization

• equilibrium allocation 
= constrained M♮-concave maximization

• equilibrium price = L♮-convex minimization



Surveys & Books 
• Shioura, Tamura (2015)   J. Operations Research Society Japan 

“Gross substitutes condition and discrete concavity for multi-unit valuations”
• Shioura (2017)           J. Operations Research Society Japan 

“Algorithms for L-convex function minimization”
• Murota (2016)            J. Mechanism & Institution Design 

“Discrete convex analysis: A tool for economics and game theory”

• Murota (2003) Discrete Convex Analysis, SIAM
• two Japanese books

• 室田, 塩浦 (2013) 離散凸解析と最適化アルゴリズム

• 田村 (2009) 離散凸解析とゲーム理論
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