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Overview

 Last three lectures: theory

 Today: empirics

 (But from a theory point of view)
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Identification
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The usual question in empirical auctions

 Lots of questions we might like to answer:
 What’s the optimal reserve price, and how much does it matter?
 What if we switched to a different auction format?
 How much is each incremental bidder worth?
 What if we increased the information available to bidders?
 What if we charged an entry fee?
 What if we gave bid preferences to small firms/minority-owned 

businesses?

 To answer, we need to know the details of the 
environment
 For private values models, this is distribution of bidder valuations
 Can we learn it from observed bid data?



 When is a model identified?

 A model is a mapping from primitives to probability 
distributions over observable outcomes

 A model is identified if this mapping is invertible
 With enough data to learn exact distribution of outcomes, 

we can uniquely pin down unspecified parts of the model 4

Identification

Model

Maintained Assumptions
• IPV
• Symmetry
• Equilibrium play

Unobserved
primitives

Parts of model we don’t 
know ex ante
• Preferences
• Parameter values
• Here: distribution F

Observables

Joint distribution of 
observable outcomes
• Purchase decisions
• Prices, demand
• Here: bids
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Example:
first price auctions
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Symmetric IPV model is identified from 
bid data in first price auctions
 n bidders, symmetric independent private values vi ~ F
 Bidder i solves max

𝑏𝑏
𝑣𝑣𝑖𝑖 − 𝑏𝑏 Pr(𝑤𝑤𝑤𝑤𝑤𝑤|𝑏𝑏)

 In symmetric equilibrium, this is
max
𝑏𝑏

𝑣𝑣𝑖𝑖 − 𝑏𝑏 𝐺𝐺 𝑏𝑏 𝑛𝑛−1

where 𝐺𝐺 𝑏𝑏 is CDF of an opponent’s bids 𝛽𝛽(𝑣𝑣𝑗𝑗)
 First-order condition is

− 𝐺𝐺 𝑏𝑏 𝑛𝑛−1 + 𝑣𝑣𝑖𝑖 − 𝑏𝑏 𝑛𝑛 − 1 𝐺𝐺 𝑏𝑏 𝑛𝑛−2𝑔𝑔 𝑏𝑏 = 0
 In symmetric equilibrium, this must hold at 𝑏𝑏 = 𝛽𝛽(𝑣𝑣𝑖𝑖)
 Plugging in 𝑣𝑣𝑖𝑖 = 𝛽𝛽−1(𝑏𝑏) and simplifying,

𝛽𝛽−1(𝑏𝑏) = 𝑏𝑏 +
1

𝑛𝑛 − 1
𝐺𝐺(𝑏𝑏)
𝑔𝑔(𝑏𝑏)
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Symmetric IPV model is identified from 
bid data in first price auctions
 So with n bidders and symmetric IPV, equilibrium implies

𝛽𝛽−1(𝑏𝑏) = 𝑏𝑏 +
1

𝑛𝑛 − 1
𝐺𝐺(𝑏𝑏)
𝑔𝑔(𝑏𝑏)

 Good news: right-hand side is “data”!
 Observe n and the distribution of bids
 Plug in on RHS and impute 𝑣𝑣𝑖𝑖 = 𝛽𝛽−1(𝑏𝑏) for each observed bid
 Distribution of imputed valuations is F

 Same idea generalizes…
 Observable covariates
 Risk-averse bidders
 Correlated values

E Guerre, I Perrigne and Q Vuong (2000), Optimal Nonparametric Estimation of First-Price 
Auctions, Econometrica 68 (3)
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What about
ascending auctions?
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What about ascending auctions?

 Again, n bidders, symmetric independent private values, 
want to learn F from bid data

 Two commonly-used abstractions for ascending auction:
 Second-price sealed bid auction
 “Button” auction
 In both: dominant strategy to bid (or drop out at) your valuation
  allocation is efficient, transaction price = second-highest value

 Theorem: in second-price sealed bid or button auction, 
with fixed (known) number of bidders, F is identified from 
transaction prices

S Athey and P Haile (2002), Identification in Standard Auction Models, Econometrica 70 (6)
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Symmetric IPV model is identified from n and 
transaction price in SPA or button auction

 Let FT be distribution of transaction prices
 Transaction price = second-highest valuation
 Probability second-highest valuation is below v is

(𝐹𝐹 𝑣𝑣 )𝑛𝑛 + 𝑛𝑛 𝐹𝐹 𝑣𝑣 𝑛𝑛−1(1 − 𝐹𝐹 𝑣𝑣 )
= 𝑛𝑛(𝐹𝐹 𝑣𝑣 )𝑛𝑛−1 − (𝑛𝑛 − 1)(𝐹𝐹 𝑣𝑣 )𝑛𝑛

 Define 𝜑𝜑 𝑥𝑥 = 𝑛𝑛𝑥𝑥𝑛𝑛−1 − 𝑛𝑛 − 1 𝑥𝑥𝑛𝑛, then
𝐹𝐹𝑇𝑇 𝑣𝑣 = 𝜑𝜑 𝐹𝐹(𝑣𝑣)

 And 𝜑𝜑 is strictly increasing, so invertible, so
𝐹𝐹 𝑣𝑣 = 𝜑𝜑−1(𝐹𝐹𝑇𝑇(𝑣𝑣))

 (Additional bids reveal additional order statistics of 
valuations, so model is over-identified from bid data)

S Athey and P Haile (2002), Identification in Standard Auction Models, Econometrica 70 (6)

Data!What we want to know!

Prob all n valuations 
are below v

Prob exactly one 
valuation is above v
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So that’s the good news

 In either sealed-bid second-price or button auction, 
transaction price identifies symmetric IPV model
 Again, extend to deal with observable covariates…
 …or asymmetric bidders

 But…
 Real-world ascending auctions aren’t actually second-price 

sealed-bid or button auctions
 And, the mapping between F and distribution of order statistics 

only holds for independent values
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How to model
open-outcry auctions?
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Bidding in open-outcry ascending 
auctions
 Suppose you attended an art auction and the bidding 

looked like this:

 Not exactly clear what any of our valuations are!
 What would you infer?

 If you believe private values and rational behavior…
 Probably 𝑣𝑣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 38, 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷≥ 26 , and 𝑣𝑣𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ≥ 50
 And perhaps 𝑣𝑣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, 𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 51

 Is that enough to work with?

Dan 15 21 26
Fuhito 20 25 29 35 50
Kenzo 30 38
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Simple “behavioral” assumptions lead to 
upper and lower bounds on F
 Let

 𝑣𝑣(𝑘𝑘) be kth highest valuation out of n bidders, so 𝑣𝑣(1) ≥ 𝑣𝑣(2) ≥ ⋯
 𝐹𝐹𝑘𝑘 be distribution of 𝑣𝑣(𝑘𝑘)

 𝑏𝑏(𝑘𝑘) be highest bid from kth highest bidder
 𝐺𝐺𝑘𝑘 be distribution of 𝑏𝑏(𝑘𝑘), and 𝐺𝐺1𝛿𝛿 the distribution of 𝑏𝑏(1) + 𝛿𝛿
 𝜑𝜑𝑘𝑘 be mapping from F to distribution of kth highest of n independent 

draws from F

 If we assume 𝑏𝑏(𝑘𝑘) ≤ 𝑣𝑣(𝑘𝑘), this implies

 And for k > 1, if we assume 𝑣𝑣(𝑘𝑘) ≤ 𝑏𝑏 1 + 𝛿𝛿, then

 So we get upper and lower bounds on F from data!
P Haile and E Tamer (2003), Inference with an Incomplete Model of English Auctions, Journal of 
Political Economy 111 (1)

𝐺𝐺𝑘𝑘 𝑣𝑣 ≥ 𝐹𝐹𝑘𝑘 𝑣𝑣 = 𝜑𝜑𝑘𝑘(𝐹𝐹 𝑣𝑣 ) 𝐹𝐹(𝑣𝑣) ≤ 𝜑𝜑𝑘𝑘−1 𝐺𝐺𝑘𝑘 𝑣𝑣

𝐹𝐹𝑘𝑘 𝑣𝑣 ≥ 𝐺𝐺1𝛿𝛿 𝑣𝑣 𝐹𝐹(𝑣𝑣) ≥ 𝜑𝜑𝑘𝑘−1 𝐺𝐺1𝛿𝛿 𝑣𝑣
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Simple “behavioral” assumptions lead to 
upper and lower bounds on F
 So for auctions of a given size n, we get…

 n separate pointwise upper bounds for F(v)
 one pointwise lower bound for F(v)

 If we have auctions with (exogenously) different numbers 
of bidders, we get additional bounds on F

 And bounds on F lead to bounds on optimal reserve price

 Bidding assumptions are pretty easy to swallow

 But, this still requires bidder valuations be independent 
(after controlling for observables)

P Haile and E Tamer (2003), Inference with an Incomplete Model of English Auctions, Journal of 
Political Economy 111 (1)
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Ascending auctions with 
correlated values
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What to do if bidder values are not 
independent?
 Without independence, no unique mapping between 

marginal and order statistic distributions

 Assume private values, just potentially correlated
 Bidders themselves might perceive valuations as correlated…
 …or as independent, conditional on observables they see but 

seller doesn’t
 For first-price auctions, these are different models…
 …but for ascending auctions, observationally equivalent

 Unobserved primitive is no longer a marginal distribution, 
but entire joint distribution of bidders’ valuations…

 …although only some parts matter for some purposes
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Preliminaries

 Change notation: let 𝑣𝑣𝑘𝑘:𝑛𝑛 be kth lowest valuation, so 𝑣𝑣𝑛𝑛:𝑛𝑛 is 
highest, 𝑣𝑣𝑛𝑛−1:𝑛𝑛 second-highest, etc.

 Let 𝐹𝐹𝑘𝑘:𝑛𝑛 be CDF of 𝑣𝑣𝑘𝑘:𝑛𝑛

 For simplicity, let’s assume transaction price is exactly second-
highest valuation
 Could work with behavioral assumptions of Haile and Tamer

 Revenue is 𝑣𝑣𝑛𝑛−1:𝑛𝑛, or 𝑟𝑟 if 𝑣𝑣𝑛𝑛:𝑛𝑛 > 𝑟𝑟 > 𝑣𝑣𝑛𝑛−1:𝑛𝑛, so

𝜋𝜋 𝑟𝑟,𝑛𝑛 = 𝑟𝑟 − 𝑣𝑣0 𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑟𝑟 − 𝐹𝐹𝑛𝑛:𝑛𝑛(𝑟𝑟) + �
𝑟𝑟

∞
𝑣𝑣 − 𝑣𝑣0 𝑑𝑑𝐹𝐹𝑛𝑛−1:𝑛𝑛(𝑣𝑣)

 Depends only on two marginal distributions 𝐹𝐹𝑛𝑛−1:𝑛𝑛 and 𝐹𝐹𝑛𝑛:𝑛𝑛

 𝐹𝐹𝑛𝑛−1:𝑛𝑛 is “data” – so if we can put bounds on 𝐹𝐹𝑛𝑛:𝑛𝑛, that suffices 
for reserve price counterfactuals
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What can bid data tell us about 𝐹𝐹𝑛𝑛:𝑛𝑛?

 With independent values, 𝐹𝐹𝑛𝑛−1:𝑛𝑛 → 𝐹𝐹 → 𝐹𝐹𝑛𝑛:𝑛𝑛

 Specifically,
𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 = (𝐹𝐹 𝑣𝑣 )𝑛𝑛= 𝜑𝜑1 𝜑𝜑2−1(𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣 )

where 𝜑𝜑1 𝑥𝑥 = 𝑥𝑥𝑛𝑛 and 𝜑𝜑2 𝑥𝑥 = 𝑛𝑛𝑥𝑥𝑛𝑛−1 − (𝑛𝑛 − 1)𝑥𝑥𝑛𝑛

 With standard formulations of symmetric, correlated values, 
this gives the lower bound (“best case scenario”) for 𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣
 For intuition, suppose vi ~ i.i.d. 𝐹𝐹(� |𝜃𝜃)
 Then 𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 = 𝐸𝐸𝜃𝜃(𝐹𝐹 𝑣𝑣 𝜃𝜃 )𝑛𝑛= 𝐸𝐸𝜃𝜃𝜑𝜑1(𝜑𝜑2−1(𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣|𝜃𝜃 ))
 The function 𝜑𝜑1°𝜑𝜑2−1 is convex
 So by Jensen’s Inequality, 
𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 = 𝐸𝐸𝜃𝜃𝜑𝜑1°𝜑𝜑2−1(𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣|𝜃𝜃 ) ≥ 𝜑𝜑1°𝜑𝜑2−1(𝐸𝐸𝜃𝜃𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣|𝜃𝜃 )
= 𝜑𝜑2−1 𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣

𝑛𝑛

D Quint (2008), Unobserved Correlation in Private-Value Ascending Auctions, Economics Letters 
100 (3)
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What can bid data tell us about 𝐹𝐹𝑛𝑛:𝑛𝑛?

 With independent values, 𝐹𝐹𝑛𝑛−1:𝑛𝑛 → 𝐹𝐹 → 𝐹𝐹𝑛𝑛:𝑛𝑛

 Specifically,
𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 = (𝐹𝐹 𝑣𝑣 )𝑛𝑛= 𝜑𝜑1 𝜑𝜑2−1(𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣 )

where 𝜑𝜑1 𝑥𝑥 = 𝑥𝑥𝑛𝑛 and 𝜑𝜑2 𝑥𝑥 = 𝑛𝑛𝑥𝑥𝑛𝑛−1 − (𝑛𝑛 − 1)𝑥𝑥𝑛𝑛

 With standard formulations of symmetric, correlated values, 
this gives the lower bound (“best case scenario”) for 𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣

 Upper bound (“worst case”) is 𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 = 𝐹𝐹𝑛𝑛−1:𝑛𝑛 𝑣𝑣 (perfect corr)
 This gives upper and lower bounds for 𝜋𝜋(𝑟𝑟,𝑛𝑛) and optimal 

reserve price – but may be too wide to be useful
 Optimal reserve ranges from 𝑟𝑟∗ = 𝑣𝑣0 to 𝑟𝑟∗ = 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼∗

 Losing bids can tighten upper bound on 𝜋𝜋(𝑟𝑟,𝑛𝑛), but not the lower
 Can’t falsify “all bidders had same valuation in each auction”

D Quint (2008), Unobserved Correlation in Private-Value Ascending Auctions, Economics Letters 
100 (3)
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What can we do to get point identification 
or tighter bounds?
 Three approaches for correlated values/unobserved 

heterogeneity in ascending auctions

1. Assume losing bids reveal more than one valuation
 Suppose we’re willing to assume the two highest losing bidders both bid 

all the way up to their valuations… or three… or more…
 Very reasonable in button auction (where we’d observe all but highest 

order statistic), second-price auction
 Several recent working papers give positive identification results
 (Some for 𝑣𝑣𝑖𝑖 = 𝜃𝜃 + 𝜀𝜀𝑖𝑖, some for general correlation)

E Mbakop, Identification of Auctions with Incomplete Bid Data in the Presence of UH
Y Luo and R Xiao, Identification of Auction Models Using Order Statistics
Y Luo, P Sang and R Xiao, Order Statistics Approaches to Unobserved Heterogeneity in Auctions
JH Cho, Y Luo and R Xiao, Deconvolution from Two Order Statistics
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What can we do to get point identification 
or tighter bounds?
 Three approaches for correlated values/unobserved 

heterogeneity in ascending auctions

1. Assume losing bids reveal more than one valuation

2. Use variation in reserve price
 Suppose 𝑣𝑣𝑖𝑖 = 𝜃𝜃 + 𝜀𝜀𝑖𝑖…
 …and suppose seller knows 𝜃𝜃, and reserve price is increasing in 𝜃𝜃

J Roberts (2013), Unobserved Heterogeneity and Reserve Prices in Auctions, RAND Journal of 
Economics 44 (4)
J Freyberger and B Larsen (2022), Identification in Ascending Auctions, with an Application to 
Digital Rights Management, Quantitative Economics 13 (2)
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What can we do to get point identification 
or tighter bounds?
 Three approaches for correlated values/unobserved 

heterogeneity in ascending auctions

1. Assume losing bids reveal more than one valuation

2. Use variation in reserve price

3. Use variation in number of bidders

A Aradillas-López, A Gandhi and D Quint (2013), Identification and Inference in Ascending Auctions 
with Correlated Private Values, Econometrica 81 (2)
D Coey, B Larsen, K Sweeney and C Waisman (2017), Ascending Auctions with Bidder 
Asymmetries, Quantitative Economics 8 (1)
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Using variation in n
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Goal: use knowledge of Fn-1:n for 
various n to bound Fn:n

 Why should this work?

 As we add bidders, distribution of transaction prices 
shifts to the right

 If valuations are highly correlated, adding another bidder 
doesn’t change transaction price much; if valuations are 
close to independent, it does

 “How fast” Fn-1:n shifts with n tells how correlated values 
are, so how close Fn:n is to Fn-1:n
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Goal: use knowledge of Fn-1:n for 
various n to bound Fn:n

 Thought experiment:
 Start with auction with 6 bidders, possibly correlated values
 Pick 5 of them at random, look at highest value among those 5
 With probability 1/6, you dropped the one with the highest value, 

so highest remaining is second-highest of the original 6
 With probability 5/6, you didn’t drop the highest one, so highest 

remaining is highest of original 6
 Turns out that

𝐹𝐹5:5 𝑣𝑣 =
1
6
𝐹𝐹5:6 𝑣𝑣 +

5
6
𝐹𝐹6:6(𝑣𝑣)

 Or more generally,

𝐹𝐹𝑛𝑛:𝑛𝑛 𝑣𝑣 =
1

𝑛𝑛 + 1
𝐹𝐹𝑛𝑛:𝑛𝑛+1 𝑣𝑣 +

𝑛𝑛
𝑛𝑛 + 1

𝐹𝐹𝑛𝑛+1:𝑛𝑛+1(𝑣𝑣)
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So, for example…

)(3:3 vF = )(
4
3)(

4
1

4:44:3 vFvF +

= )(
5
3)(

20
3)(

4
1

5:55:44:3 vFvFvF ++

)(
6
3)(

10
1)(

20
3)(

4
1

6:66:55:44:3 vFvFvFvF +++

)(
7
3)(

14
1)(

10
1)(

20
3)(

4
1

7:77:66:55:44:3 vFvFvFvFvF ++++

)(
8
3)(

56
3)(

14
1)(

10
1)(

20
3)(

4
1

8:88:77:66:55:44:3 vFvFvFvFvFvF +++++

“data” Vanishing!

What 
we 

want =

=

=

Something 
we can 
bound
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How well does it work?

A Aradillas-López, A Gandhi and D Quint (2013), Identification and Inference in Ascending Auctions 
with Correlated Private Values, Econometrica 81 (2)

 Data from US Forest Service timber auctions
 Auctions for logging rights
 “Scaled sales” (bids are per unit harvested)
 Region 6 (Oregon), where bidders don’t conduct their own 

“cruises”
 Short-term contracts, so little worry about resale

 1,113 observations
 Control for appraisal value and other key covariates
 Number of bidders ranges from 2 to 11 (average 5.3)
 Top two bids typically very close together
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How well does it work?

A Aradillas-López, A Gandhi and D Quint (2013), Identification and Inference in Ascending Auctions 
with Correlated Private Values, Econometrica 81 (2)
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How well does it work?

A Aradillas-López, A Gandhi and D Quint (2013), Identification and Inference in Ascending Auctions 
with Correlated Private Values, Econometrica 81 (2)
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What if you worry n isn’t exogenous?

 If auctions vary and bidders endogenously choose which 
to enter, valuations will not be independent of n

 Plausible case: more bidders when object is more 
valuable
 Choose k bidders at random out of an n-bidder auction
 If (probability at least one of the k has valuation ≥ v) is increasing 

in n, we say “valuations stochastically increasing in n”
 In that case, upper bound on π(r,n) is still valid

A Aradillas-López, A Gandhi and D Quint (2013), Identification and Inference in Ascending Auctions 
with Correlated Private Values, Econometrica 81 (2)
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What if you want point estimates rather 
than bounds?
 Suppose you’re willing to assume…

 𝑣𝑣𝑖𝑖 = 𝜃𝜃 + 𝜀𝜀𝑖𝑖, with 𝜃𝜃, {𝜀𝜀𝑖𝑖} independent of each other and n
 transaction price = second-highest valuation

 We show…
 If you observe FT|n for two values of n, the model is identified
 If you don’t observe n but you have an instrument x,

know distribution of n|x,
and observe FT|x for two values of x, the model is identified

 If you observe “filtered n,”
have the correct model of how real n maps to observed n,
and have an instrument, then the model is identified

C Hernández, D Quint and C Turansick (2020), Estimation in English Auctions with Unobserved 
Heterogeneity, RAND Journal of Economics 51 (3)
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What if you want point estimates rather 
than bounds?
 We use data from 15,000 eBay Motors sales
 Use “prime time” ending times as participation shifter
 Propose a model for how number of “potential bidders” leads to 

number of observed bids
 Semi-nonparametrically estimate distributions of θ and εi

 We decompose variation in log transaction prices into…
 83% variation in observables
 11% unobserved heterogeneity
 6% variation in idiosyncratic valuations

 We find consumer surplus estimate would be 260% too high if 
we assumed IPV (conditional on observables)

C Hernández, D Quint and C Turansick (2020), Estimation in English Auctions with Unobserved 
Heterogeneity, RAND Journal of Economics 51 (3)
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“Why not just control for observables 
better?”
 In both papers just cited, we controlled for observable 

variation in a fairly basic way
 Would apparent correlation vanish with better controls?
 eBay listings in 14 product categories

 OLS analysis of “standard” dataset explained 0-15% of price 
dispersion

 Machine learning model on full eBay listing (literally all the 
information buyers had) explains 48% of price dispersion

 But most people aren’t doing this
 Allowing for unobserved heterogeneity (or correlation) 

“lowers the stakes” of controlling for observables

A Bodoh-Creed, J Boehnke and B Hickman (2020), Using Machine Learning to Explain Violations 
of the “Law of One Price,” working paper
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Early empirical puzzle: why are real-
world reserve prices so low?
 Empirical takeaway from these papers: correlation or 

unobserved heterogeneity favor lower reserve prices
 So do…

 Uncertainty in estimates of primitives
 Endogenous entry
 Competition between sellers
 Common values

 Lots of deviations from “baseline” IPV model suggest 
lower optimal reserve prices

DJ Kim (2013), Optimal Choice of a Reserve Price under Uncertainty, IJIO 31 (5)
D Levin and J Smith (1994), Equilibrium in Auctions with Entry, AER 84 (3)
M Peters and S Severinov (1997), Competition among Sellers Who Offer Auctions Instead of 
Prices, JET 75
D Quint (2017), Common Values and Low Reserve Prices, JINDEC 65 (2)
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Takeaways

 Today’s question: when is an auction model identified?
 what combinations of modeling assumptions and observables

allow you to uniquely recover unobserved primitives of model?
 (separate from: how to estimate on finite samples)

 Focus on ascending auctions
 Under IPV assumption, button/second-price auctions identified 

from transaction prices and n
 Under IPV and realistic bidding assumptions, ascending auction 

is set-identified, with useful bounds for many counterfactuals
 Without IPV, things are harder

 identification or useful bounds from multiple losing bids, endogenously-
varying reserve price, or variation in number of bidders

 Empirical work suggests correlation matters!
 Correlation, among other things, favors lower reserve prices
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