Recurring Themes in Auction Theory and Mechanism Design

Part II: Pre-Auction Choices and Externalities

Dan Quint U of Wisconsin Visitor, UTokyo and UTMD

> February 14, 2023 University of Tokyo

Overview

- Yesterday:
 - Expected revenue is EV of winner's virtual value
 - We took the set of bidders, their valuations, and their information as given
 - Fixed set of *n* bidders, private values drawn from known distributions *F_i*
- Today: pre-auction decisions
 - Bidder entry, information acquisition, investment
 - Focus on efficiency, rather than revenue
 - We'll use the lens of externalities

Externalities in auctions

Consider a second-price auction with private values

- n-1 other bidders will bid their valuations
- Let v_{max} be highest valuation among the other bidders, v_s seller's cost/valuation for object
- Consider payoffs of other players

	seller	v _{max} guy	other bidders	everyone but me
I bid $b > v_{max}$ and win	V _{max} – V _s	0	0	$v_{max} - v_s$
I bid $b < v_{max}$ and set price	$b - v_s$	v _{max} – b	0	$v_{max} - v_s$
I bid $b < b_2$ and don't matter	$b_2 - v_s$	$v_{max} - b_2$	0	V _{max} - V _s
I oversleep and don't show	$b_2 - v_s$	$v_{max} - b_2$	0	V _{max} - V _s

Consider a second-price auction with private values

- A bidder's decision of whether and how to bid imposes *no net externality* on the rest of the game
- So decisions that affect any of these are likely to be made efficiently!

	seller	v _{max} guy	other bidders	everyone but me
I bid $b > v_{max}$ and win	V _{max} – V _s	0	0	V _{max} - V _s
I bid $b < v_{max}$ and set price	$b - V_s$	v _{max} – b	0	V _{max} - V _s
I bid $b < b_2$ and don't matter	$b_2 - v_s$	$v_{max} - b_2$	0	V _{max} - V _s
I oversleep and don't show	$b_2 - v_s$	$v_{max} - b_2$	0	V _{max} - V _s

Consider a second-price auction with private values

- This is *not* true for first-price auctions my entry or value distribution may change sum of others' payoffs...
- ...and we can use sign of this net externality to see how choices are distorted away from efficient

	seller	v _{max} guy	other bidders	everyone but me
I bid $b > v_{max}$ and win	V _{max} – V _s	0	0	$v_{max} - v_s$
I bid <i>b</i> < <i>v_{max}</i> and set price	$b - v_s$	v _{max} – b	0	$v_{max} - v_s$
I bid $b < b_2$ and don't matter	$b_2 - v_s$	$v_{max} - b_2$	0	$v_{max} - v_s$
I oversleep and don't show	$b_2 - v_s$	$v_{max} - b_2$	0	$v_{max} - v_s$

Example: entry

Auction with endogenous entry

- *n* potential bidders
- Costs a bidder *c* to "enter" and learn valuation
- Potential bidders decide simultaneously whether to enter
- Symmetric mixed strategy equilibrium where entrants earn expected surplus of exactly *c* from entering
- What reserve price induces efficient level of entry?

D Levin and J Smith (1994), Equilibrium in Auctions with Entry, American Economic Review 84(3)

We can think about the symmetric mixed-strategy equilibrium

- Let π(m, r) be a bidder's expected surplus in m-bidder auction with reserve r
- If each bidder enters with probability q, then $c = \sum_{j=0}^{n-1} {n-1 \choose j} q^j (1-q)^{n-1-j} \pi(j+1,r)$
- This looks messy is there an easier way?

Think about externality caused by a bidder's decision to enter a SP auction

- If at least one other entrant, 0 net externality
- If no other entrant, then...
 - by entering, he'll win and pay r
 - seller will get surplus of $r v_s$ instead of 0
- Net externality from a bidder's decision to enter is

Pr(no other entrants) $(r - v_s)$

- If $r > v_s$, entry has positive externality so "not enough entry"
- If $r < v_s$, entry has negative externality so "too much entry"
- If $r = v_s$, externality is 0 so "efficient entry"
- And $r = v_s$ is also efficient post-entry
- So reserve of $r = v_s$ maximizes social surplus

D Levin and J Smith (1994), Equilibrium in Auctions with Entry, American Economic Review 84(3)

Is there a tradeoff between revenue and efficiency?

• With fixed *n*, *r* solving $r - \frac{1-F(r)}{f(r)} = 0$ maximizes revenue

• Or $r - \frac{1 - F(r)}{f(r)} = v_s$ maximizes seller profit

- But requires $r > v_s$, which is expost inefficient
- With endogenous entry, r = v_s maximizes total surplus, and also maximizes seller profits
 - Buyers decide to enter before learning valuations
 - Mixed-strategy equilibrium \rightarrow zero expected surplus
 - Seller captures all surplus, so maximizing surplus also maximizes profits
- Extends to first-price auctions via revenue equivalence (if buyers observe # of entrants before bidding)

D Levin and J Smith (1994), Equilibrium in Auctions with Entry, American Economic Review 84(3)

- Setting $r = v_s$ maximizes surplus and seller profit within class of auctions with *unrestricted entry*
- But randomness from mixed strategies is inefficient
 - Post-entry surplus is concave in number of bidders
- Seller can improve by rationing entry to be close to the expected number from the mixed equilibrium
 - Instead of 10 potential bidders all mixing 50-50...
 - ...better to have 5 bidders entering for sure

D Levin and J Smith (1994), Equilibrium in Auctions with Entry, *American Economic Review* 84(3) RP McAfee and J McMillan (1987), Auctions with Entry, *Economics Letters* 23¹¹

What if buyers know valuations when deciding whether to enter?

- Symmetric equilibrium with entry threshold
- "Marginal entrant" only wins if he's only entrant, pays *r*
- Externality is still $Pr(no other entrants)(r v_s)$
 - So $r = v_s$ still maximizes total surplus
- But seller no longer captures all the surplus
 - At r = v_s, increasing r slightly gives "second-order" reduction in total surplus...
 - ...but first-order reduction in bidder surplus...
 - ...so $r > v_s$ maximizes seller profits

Example: value-enhancing investments

Consider a pre-auction investment that affects a bidder's valuation

- Symmetric, IPV setting with fixed *n*
- Before auction, I can make costly investment that will increase my valuation (in FOSD sense)
- Will first- or second-price auction lead to more investment? Which is more efficient?

What externalities does my investment cause?

	Second price auction
Effect on other bidders	negative
Effect on seller	positive
Total net externality	zero
Investment level	efficient

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

What externalities does my investment cause?

	Second price auction
Effect on other bidders	negative
Effect on seller	positive
Total net externality	zero
Investment level	efficient

- (Revenue equivalence does *not* make this question moot
- Even if outcome is symmetric so revenue equivalence "should hold"...
- …"off-equilibrium-path" outcomes are asymmetric, determine when investment stops being worthwhile)

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

First price

auction

What externalities does my investment cause?

	Second price auction	First price auction
Effect on other bidders	negative	less negative than second-price
Effect on seller	positive	more positive than second-price
Total net externality	zero	positive
Investment level	efficient	less than efficient

- Investment makes me "strong bidder" in asymmetric auction
- Asymmetric FP auction can be higher- or lower-revenue...
- ...but under many conditions make it higher-revenue...

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

So under many (but not all) conditions...

- Under first-price auction, value-enhancing investments induce positive externality...
- ...so first-price auction induces less than efficient amount of investment
- In symmetric setting where all bidders can invest and equilibrium is symmetric...
 - first-price auction has lower than efficient investment...
 - second-price auction has efficient investment...
 - ...and by revenue equivalence, same level would be efficient for both, so first-price has lower investment

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

Arozamena and Cantillon explain it differently

- "We find that after the investment, the investor's opponents will collectively bid more aggressively.
- ...In the language of industrial organization, investment has a negative strategic effect in the FPA. This erodes its benefits.
- ...Under the same condition... the FPA will induce less investment than the SPA.
- ...The fact that the SPA generates the socially efficient investment incentives provides us with a clear normative interpretation of this underinvestment result."

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

Example: information acquisition

Suppose bidders must invest to learn their valuation more precisely

- Symmetric, IPV setting with fixed *n*
- Before auction, bidders simultaneously choose how precise a signal to get about their own valuation
- Will first-price or second-price auction lead to more information acquisition? Which is more efficient?

D Bergemann and J Valimaki (2002), Information Acquisition and Efficient Mechanism Design, *Econometrica* 70(3) D Hausch and L Li (1993), Private Value Auctions with Endogenous Investment: Revenue Equivalence and Non-Equivalence, working paper N Persico (2000), Information Acquisition in Auctions, *Econometrica* 68(1)

21

With risk-neutral bidders, easy interpretation of "more information"

- To risk-neutral bidder, what matters is expected value of ex post valuation, conditional on information he has pre-auction
- More precise signal about unobserved truth corresponds to a mean-preserving spread of this expected value
 - Bidder with no info has point beliefs at expected value
 - Bidder with perfect info has distribution *F* on posterior expected value
- Think of "choosing more precise information" as "switching to a more disperse distribution of valuations"
 - Recall that in any mechanism, $U_i(v_i) = U_i(a_i) + \int_{a_i}^{v_i} E_{v_{-i}} p(s, v_{-i}) ds$
 - $U_i'(v_i) = E_{v_{-i}}p(v_i, v_{-i})$ is increasing in v_i
 - Expected surplus $U_i(v_i)$ is convex in v_i , so more info is always valuable!
 - (*if* no strategic response from other bidders)

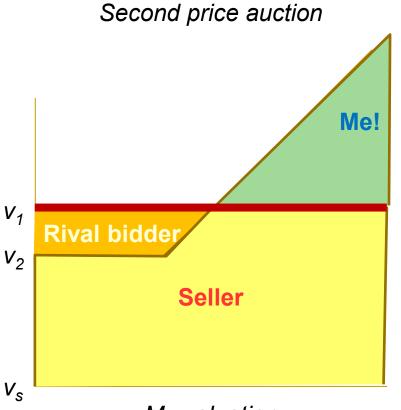
Second-price auction

- Bidder's bid imposes no net externality...
- ...so information acquisition imposes no net externality...
- ...so information acquisition should be efficient
- Doesn't matter whether bidders see much information their rivals acquire
- What about first-price auction?

- More complicated and depends on whether information acquisition is observable
- What externality does "overt information acquisition" impose?
 - Acquiring better information makes you "well informed" bidder in asymmetric first-price auction
 - Not much known about asymmetric FP auctions where one bidder is "higher-variance" than others
 - More information makes you "stronger when you're strong," but also "weaker when you're weak"
- A useful special case might be large *N*:
 - Winner will be high-value, so top of bidder's value distribution matters
 - More information makes a bidder stronger, so results from before apply
 - (Under certain conditions, FP auction leads to less info acquisition)

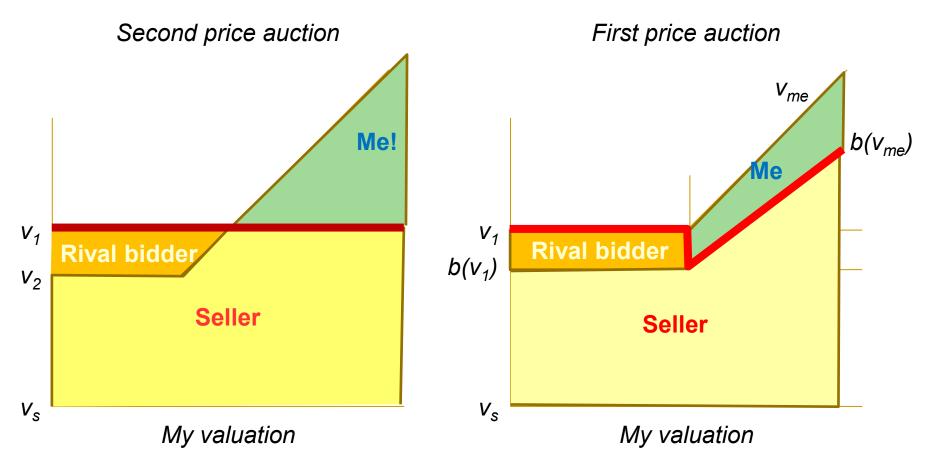
- What about covert information?
- If rivals don't see how much information you acquire, there's no strategic response
- So once you know the interim expected value of your valuation, you face same optimization problem regardless of how much information it's based on...
- ...so optimal bid, and expected payoff at that point, are same
- But what is effect of your valuation on other players' surplus?

What about covert information?

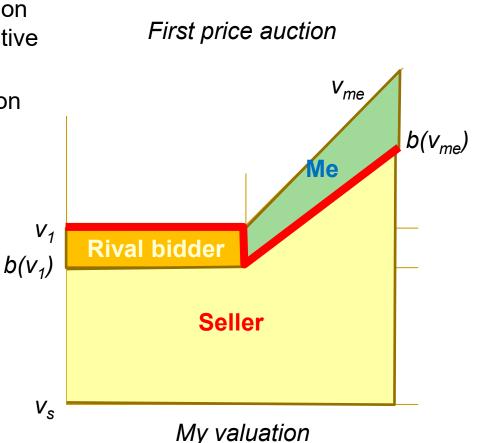


My valuation

What about covert information?



- What about covert information?
 - Covertly increasing my valuation can impose a positive *or* negative externality!
 - Acquiring *a lot* more information probably imposes a positive externality...
 - ...but we care about the incentive on the margin
 - If n is high, b(v)-v will be small, so "dip" will be small...
 - ...but strongest rival will be near the top of value distribution
 - Tricky to sign externality this way!



- What about covert information?
- Persico (2000) is the classic
 - Focuses on two-bidder case
 - Different model, with valuations correlated and interdependent
- He finds FPA "more risk-sensitive" than SPA
 - payoff falls off more quickly when you bid sub-optimally
 - so better information is more valuable in FPA on the margin
 - partly because more precise information about your own valuation tells you more about opponent's valuation as well, and therefore you know more about his likely bid

Beyond single-item auctions

Auctions for multiple goods

- Multiple items, buyers may have different private value for each (and for combinations)
- Vickrey Clarke Groves mechanism generalizes the second-price auction
 - Bidders report their valuations
 - Allocation is set to maximize total surplus
 - Bidder j pays difference in other bidders' surplus between efficient allocation with j and without j
- Famously, ex post efficient and strategy-proof
 - Reporting true preferences is a dominant strategy...
 - ...and VCG selects efficient allocation given reported prefs

Auctions for multiple goods

- VCG is designed to eliminate externalities
 - Payment rule gives each bidder payoff equal to their contribution to total surplus
 - So a bidder's report doesn't change combined surplus of other players (other bidders plus seller)
- No externalities \rightarrow efficient investment
 - Rogerson (1992): "...Groves mechanisms provide not only a first-best solution to the simple collective choice problem (as has been established in the existing literature) but also a solution to the collective choice problem when ex ante investments must be made."

So that's the good news... but...

- VCG is computationally "hard"
 - Requires finding efficient allocation
 - \rightarrow computational demand is exponential in number of objects
- "True" VCG isn't feasible in "large" settings
 - (Example: 2017 FCC "incentive auction" to repurpose TV broadcast rights for 5G mobile
 - 705 "sellers," 62 "buyers," 2912 licenses, and millions of pairwise feasibility constraints due to interference between stations)

Approximation-based VCG

- One option in large settings: use faster (polynomial-time) algorithm to find *approximately* optimal allocation
- Example of what such an algorithm might look like:
 - Let *m* be number of objects
 - Pick a "small" number c
 - Calculate the most efficient allocation with only *c* winners
 - Ignore bids for more than sqrt(*m*/*c*) objects, and run a greedy algorithm on the remaining bids
 - Take the better of these two allocations
- How do approximation-based VCG mechanisms perform when buyers face investment opportunities?

D Lehmann, R Müller and T Sandholm, The Winner Determination Problem, in P Cramton, Y Shoham and R Steinberg (2006), *Combinatorial Auctions*, MIT Press

How do approximation-based mechanisms perform?

- Suppose we use "fast" algorithm to find approximately optimal allocation, apply VCG payment rule
- Turns out: any "reasonable" VCG-based mechanism like this is not strategy-proof
 - "Reasonable": if only one buyer wants an object, they get it
 - "VCG-based" rule is only strategy-proof if it chooses exactly efficient allocation out of a restricted set of possible ones
 - Rules out "reasonable" VCG approximations besides exact VCG
- So this strategy won't yield mechanisms that are actually strategy-proof
- What about incentives for investment?

How do approximation-based mechanisms perform?

- For ex post efficient mechanisms: efficient investment incentives ↔ strategy-proof
- What about mechanisms that are not exactly efficient or exactly strategy-proof?
- Turns out, "almost" ex post efficient + "almost" strategy-proof implies "almost" efficient investment incentives
 - If mechanism always yields surplus within η of optimal,
 - and each bidder's gain from misreporting is bounded above by ϵ ,

36

- then maximum gain from investing an amount other than the social optimum is bounded above by $(\varepsilon + \eta)k$,
- where *k* is number of relevant outcomes per player

JW Hatfield, F Kojima, and SD Kominers (2019), Strategy-Proofness, Investment Efficiency, and Marginal Returns: An Equivalence, working paper

That's the good news

- If a mechanism is close to efficient and close to strategyproof, gain from investing other than socially optimal amount is also "small"
 - Though with a multiplier based on number of alternatives
- But, even if gains from non-socially-optimal investment are small, impact on surplus could still be large
- Alternative approach
 - instead of asking how close to optimal efficient strategies are...
 - ...ask how far from efficient outcome is if players follow exactly optimal strategies

Approximation-based mechanisms can still be made exactly strategy-proof

- Any algorithm that chooses approximately efficient allocation...
- ... is a mapping from reported preferences to allocations
- As long as mapping is monotone, the right payment rule makes it strategy-proof
- If a given algorithm for choosing allocation performs "pretty well" for fixed preferences...
- ...does it still perform "pretty well" when buyers have an opportunity to invest?

Is a "pretty efficient" mechanism still "pretty efficient" with investment?

• Focus on mechanism's *surplus guarantee*

inf <u>Surplus achieved by algorithm</u> First-best surplus Instances of environment

- A mechanism is β -efficient if for every possible instance of the environment, total surplus $\geq \beta x$ first-best surplus
- Question: if a mechanism is β-efficient for fixed preferences, how efficient is it with investment?

We already know...

- ...if my report doesn't impose an externality on other players...
- ...then my valuation doesn't impose an externality...
- ...and I'll make efficient investment decisions
- But in richer environment, I have lots of ways to change my report and potentially cause an externality
- Big advance: figuring out which externalities matter

Which externalities matter?

- Focus on buyer *j*, who has a vector v_j of preferences over a finite set of outcomes O
- Suppose given reported preferences v = (v_j, v_{-j}), the algorithm gives buyer j outcome o
- A change in j's preferences from v_j to v_j' confirms outcome o if it increases j's valuation for outcome o more than for any other outcome o'
 - Change reinforces efficiency of giving outcome *o* to buyer *j*
- Paper shows if a mechanism is β -efficient without investment...
 - In general: could have arbitrarily low surplus guarantee with investment
 - But, if the allocation rule is such that confirming changes do not impose negative externalities, then it remains β -efficient with investment
 - To get an approximately efficient mechanism to still perform well with investment, design it to not have any negative externalities from confirming preference changes

Wrapping up

Takeaway from today?

- With single-good auctions...
 - Second-price auction eliminates externalities, first-price does not
 - Second-price auction leads to efficient entry (when $r = v_s$), efficient investment, efficient information acquisition
 - Signing externalities gives an elegant way to sign distortion from first-price auction
- With multiple-good auctions...
 - VCG eliminates externalities \rightarrow efficient investment
 - When VCG is infeasible, approximation-based mechanisms that mimic it don't create large perverse incentives...
 - ...and can be designed to give good performance when investment incentives are taken into account

Big picture

- So far...
 - Seller's problem with fixed set of bidders, info, valuations
 - Bidders' pre-auction decisions, and effect on efficiency
- Next Monday:
 - Different ways to think about "robustness" in auctions
 - "Robustness" ≈ "auctions that still do OK even when some of your modeling assumptions are wrong"...
 - ...but can mean many different things
- Next Tuesday:
 - How a theorist thinks about empirical research in auctions
 - Including some of my own work on making it more "robust"

Thank you!

References

D Levin and J Smith (1994), Equilibrium in Auctions with Entry, *Amer. Econ. Review* 84(3)

RP McAfee and J McMillan (1987), Auctions with Entry, *Economics Letters* 23

WF Samuelson (1985), Competitive Bidding with Entry Costs, *Economics Letters* 17

L Arozamena and E Cantillon (2004), Investment Incentives in Procurement Auctions, *Review of Economic Studies* 71(1)

D Bergemann and J Valimaki (2002), Information Acquisition and Efficient Mechanism Design, *Econometrica* 70(3)

N Persico (2000), Information Acquisition in Auctions, *Econometrica* 68(1)

D Hausch and L Li (1993), Private Value Auctions with Endogenous Investment: Revenue Equivalence and Non-Equivalence, working paper

W Rogerson (1992), Contractual Solutions to the Hold-Up Problem, *Review of Economic Studies* 59(4)

P Cramton, Y Shoham and R Steinberg (2006), Combinatorial Auctions, MIT Press

N Nisan and A Ronen (2007), Computationally Feasible VCG Mechanisms, *Journal of Artificial Intelligence Research* 29

JW Hatfield, F Kojima, and SD Kominers (2019), Strategy-Proofness, Investment Efficiency, and Marginal Returns: An Equivalence, working paper