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B Supplementary Results

B.1 Supplementary Results for Section 4.2

Consider the synchronous model and suppose that a public randomization device is

not available. We call such a model the synchronous model without a public ran-

domization device. Note that the strategy σ
(T,1)
i is well defined in such a model as

well.

First, we show that a public randomization device is not necessary to obtain

multiple equilibria when xi ≤ 1 for each i = 1, 2.

Proposition 5. Suppose xi ≤ 1 for each i = 1, 2. For any p1, p2 ∈ (0, 1], there exist

δ′ ∈ (0, 1) and T ′ < ∞ such that if δi ∈ (δ′, 1) for each i = 1, 2 and T > T ′, then

σ(T,1) is a PBE in the synchronous model without a public randomization device.

The proof of this result as well as the next are relegated to Appendix B.4.1.

Second, we consider the case when xi > 1 for some i = 1, 2 and demonstrate that

there is a region of parameter values such that there are multiple equilibria in the

synchronous model without a public randomization device while there is a unique

PBE in our main model.

Proposition 6. Suppose xi > 1. For any p−i ∈ (0, 1], there exists δ′ ∈ (0, 1) such

that, for any δi ∈ (δ′, 1), the strategy σ
(T,1)
i is a best response against σ

(T,1)
−i if and only

†Department of Decision Sciences and IGIER, Bocconi University, Via Roentgen 1, Milan 20136,
Italy, e-mail: satoshi.fukuda@unibocconi.it
‡Haas School of Business, University of California Berkeley, 2220 Piedmont Avenue, Berkeley, CA

94720-1900, USA, and University of Tokyo, Faculty of Economics, 7-3-1 Hongo, Bunkyoku, Tokyo,
113-0033, Japan, e-mail: y.cam.24@gmail.com

1



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 4: Illustration of Proposition 6 for different values of (p, x). The shaded region
depicts the pairs of (p, x) such that σ(T,1) is a PBE for sufficiently high discount factors
in the synchronous model without a public randomization device. Left: T = 1. Right:
T = 2. In both panels, we set `1 = `2 = 2. The dashed and dashed-dotted curves
illustrate the constraints given by (A.1) and (A.2), respectively. The solid curve
illustrates the threshold below which σG is a unique PBE for sufficiently high discount
factors in our main model with asynchronous moves.

if the following two conditions hold:

(1− p−i)Txi ≥ (1− (1− p−i)T )(−`i) + (1− p−i)T
(
T + (1− p−i)Txi

)
; (A.1)

xi − 1

xi
< (1− p−i)T . (A.2)

Letting p = p1 = p2 and x = x1 = x2 ≥ 1, Figure 4 uses Proposition 6 to depict

the set of (p, x) such that σ(T,1) is a PBE for sufficiently high discount factors for a

fixed T . Figure 5 then depicts the set of (p, x) such that σ(T,1) is a PBE for sufficiently

high discount factors for some T . Both figures also depict the threshold probability

p = 2
1+x+`

below which σG is a unique PBE for sufficiently high discount factors in

our main model with asynchronous moves.
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Figure 5: Illustration of Proposition 6 for different values of (p, x). The shaded region
depicts the pairs of (p, x) such that σ(T,1) is a PBE for sufficiently high discount factors
for some T in the synchronous model without a public randomization device. Left:
`1 = `2 = 2. Right: `1 = `2 = 4. In both panels, the solid curve illustrates the
threshold below which σG is a unique PBE for sufficiently high discount factors in
our main model with asynchronous moves. By Proposition 5, the shaded area would
occupy the entire region (except at p = 0) when x ≤ 1.

B.2 Supplementary Discussions for Section 4.4

We provide two examples in which the assumptions made in Section 4.4 are violated

and the conclusion of Theorem 2 does not hold. In the first example, the assump-

tion on payoffs is violated. The second example pertains to the assumption on the

evolution of action sets.

Example 1. Consider the symmetric normal-form game as depicted in Table 2. Sup-

pose δ1 = δ2 =: δ.

A B C
A 2, 2 −2, 3 −2, 3
B 3,−2 −1,−1 0, 1
C 3,−2 1, 0 −2,−2

Table 2: The payoff matrix of the stage game in Example 1

Note that this game does not satisfy our conditions on the payoffs: If it were to

satisfy the conditions, then, since ui(A,A) > ui(B,B) > ui(C,C) for each i, we must

have (a1, a2, a3) = (A,B,C) by condition (A). However, we have ui(C,B) ≥ ui(C,C),

violating condition (B).
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Suppose, in contrast, that the evolution of action sets satisfies the assumption

specified in this subsection, where the actions are ordered as (a1, a2, a3) = (A,B,C).

We assume there is p ∈ (0, 1) such that pik,k′ = p for each i, k, and k′.

The following strategy profile, in which the players play A forever on the path of

play, is a PBE when δ ≥ 1
2
: (i) player i plays A as long as only A has been taken; (ii)

i plays C if i has privately learned C and −i’s current action is B; (iii) otherwise, i

plays B. See Appendix B.4.2 for the proof of this claim.

The following strategy profile σ∗ does not play A forever and constitutes a PBE

when δ is large and p is small.

• At a history at which player i has taken C, i plays C (this is her only choice).

• At a history at which player i has not taken C:

– if the opponent has taken C, then player i takes B.

– if the opponent has not taken C either, then:

∗ if action C is available to player i, then i takes C.

∗ if action C is not available to player i, then:

· if the opponent has played B, then player i takes B.

· if the opponent has not played B, then player i takes A.

Under this strategy profile, the players play C as soon as it becomes available. The

reason why this constitutes an equilibrium is that in the small game that excludes

action A, there are two Pareto-unranked Nash equilibria: (B,C) and (C,B), where

each player prefers the one in which she plays C. Given that the opponent −i will

play C as soon as possible, it is i’s best response to play C as soon as possible.

This sort of construction depends on the multiple Pareto-unranked equilibria in the

small game, and our assumption on the payoff functions excludes such a possibility.

Appendix B.4.2 formally shows that the above strategy profile is a PBE.

Example 2. Consider the symmetric normal-form game as depicted in Table 3. Sup-

pose δ1 = δ2 =: δ.

Note that this game satisfies the conditions on the payoffs, where the actions are

ordered as (a1, a2, a3) = (A,B,C).

Suppose, however, that the evolution of action sets does not satisfy our condition

but is given as follows.
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A B C
A 2, 2 −2, 3 −3, 4
B 3,−2 1, 1 −1, 2
C 4,−3 2,−1 0, 0

Table 3: The payoff matrix of the stage game in Example 2

1. Each player’s action set is {A} at the beginning.

2. At each period, with probability p ∈ (0, 1), each player’s action set {A} becomes

{A,B,C}.

3. Once i plays B or C, her action set becomes {B,C} forever.

4. If i has been always playing A and −i has played B or C in the past, then i’s

action set is {A,B,C}.

The following strategy profile, in which the players play A forever on the path of

play, is a PBE when δ ≥ 1
2
: Play A as long as only A has been taken; otherwise, play

C. See Appendix B.4.2 for the proof of this claim.

We argue that the following strategy profile σ∗ does not play A forever and is a

PBE when the players are sufficiently patient. For each i, construct a PBE strategy

profile σ(i) and denote by u
(i)
j the payoff this strategy profile yields player j. The

standard argument shows that, if the players are sufficiently patient, we can construct

(σ(i))i=1,2 satisfying u
(1)
1 > u

(2)
1 and u

(2)
2 > u

(1)
2 . Now we define σ∗ as follows:

• Player i plays A if it is the only available action.

• Player i plays C if C is available to i and no player has taken C in the past.

• Once some player has taken C, the players play σ(j) forever, where j is the first

player who has taken C.

We show in Appendix B.4.2 that σ∗ is a PBE when the players are sufficiently patient.

The reason why this constitutes an equilibrium is analogous to the analysis of the

reversible model in Section 4.1 because the “subgame” after each player chooses an

action other than A is that of a reversible model. Recall that the reversible model has

multiple equilibria due to the flexibility of action switches. Our assumption on the

evolution of action sets in this section shuts down such flexibility of action switches.
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B.3 Supplementary Results for Section 4.6

We provide formal statements of the alternative characterization of PBE discussed

in Section 4.6 and comparative-statics results based on the characterization. In our

comparative statics, we show that the set of the profiles of discount factors (δ1, δ2)

under which σG is a unique PBE is weakly decreasing in pi, xi and `i (in the set-

inclusion sense). To that end, we denote by

S = S(p1, p2, x1, x2, `1, `2)

the set of profiles of discount factors (δ1, δ2) ∈ (0, 1)2 such that σG is a unique PBE

for given parameters (p1, p2, x1, x2, `1, `2).

The results are stated for each of the following three cases that are exhaustive

besides nongeneric cases: (i) xi > 1 for each i = 1, 2; (ii) xi < 1 for each i = 1, 2; and

(iii) xi > 1 > x−i for some i = 1, 2. The proofs are relegated to Appendix B.4.3.

First, we start with the case in which xi > 1 for each i = 1, 2.

Proposition 7. Fix p1, p2 ∈ [0, 1]. Let δ1, δ2 ∈ (0, 1). Suppose xi > 1 for each

i = 1, 2. Then, 0 < δ̂i < δi(p−i) for each i = 1, 2. Moreover, the following hold.

1. If there is i = 1, 2 such that δi > δ̂i and δ−i > δ−i(pi), then σG is a unique PBE.

2. If δi ∈ (δ̂i, δi(p−i)) for each i = 1, 2, then both σG and σN are PBE.

3. If there is i = 1, 2 such that δi ∈ (0, δ̂i) and δ−i ∈ (δ̂−i, δ−i(pi)), then σN is a

unique PBE.

4. If there is i = 1, 2 such that δi ∈ (0, δ̂i) and δ−i ∈ (δ−i, 1), then (σNi , σ
G
−i) is a

unique PBE.

This result is illustrated in the left panel of Figure 2 in Section 4.6 of the main

text. Figure 6 illustrates the characterization of PBE for different values of (p−i, δi).

For the symmetric cases, the left panel of Figure 3 in Section 4.6 of the main text

illustrates the characterization. The specific shapes and cutoff values in these graphs

can be obtained by algebra (the same comment applies to the other figures to be

introduced in this subsection).
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Figure 6: Illustration of Proposition 7 for different values of (p−i, δi). For example,
“Unique σG” means that σG is a unique PBE in the interior of the corresponding
region. Also, “σG and σN” means that both σG and σN are a PBE when the param-
eters satisfy the coditions in the corresponding region. The same comment applies
to the subsequence figures. Left : The case with δ−i < δ̂−i. Center : The case with
δ̂−i < δ−i < δ−i(pi). Right : The case with δ−i(pi) < δ−i.

Although the proposition above does not cover the cases of some knife-edge pa-

rameter values, the equilibrium characterization in such cases can be easily obtained

by using the upper-hemicontinuity of the set of PBE.1

Proposition 7 implies that, when xi > 1 for each i = 1, 2, we have

S = {(δ1, δ2) ∈ (0, 1)2 | δi > δ̂i and δ−i > δ−i(pi) for some i = 1, 2}. (A.3)

Now, we provide the comparative-statics result.

Remark 1. Suppose xj > 1 for each j = 1, 2. Fix i = 1, 2.

1. If pi ≥ p′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(p′i, p−i, xi, x−i, `i, `−i).

2. If xi ≥ x′i > 1, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, x
′
i, x−i, `i, `−i).

3. If `i ≥ `′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, xi, x−i, `
′
i, `−i).

That is, the uniqueness of PBE holds for a wider range of discount factors when

private learning is less likely, the instantaneous gain from deviation is smaller, or the

loss from the opponent deviating is smaller. These conditions are intuitive.

1For example, if δ1 = δ̂1 and δ2 > δ2, parts 1 and 4 of Proposition 7 imply that both σG and
(σN

1 , σ
G
2 ) are PBE.
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Figure 7: Illustration of Proposition 8 for different values of (p−i, δi). Left : The case
with δ−i(pi) < δ−i < δ−i(pi). Right : The case with δ−i < δ−i(pi) or δ−i(pi) < δ−i.

Second, we consider the case in which xi < 1 for each i = 1, 2.

Proposition 8. Fix p1, p2 ∈ [0, 1]. Let δ1, δ2 ∈ (0, 1). Suppose xi < 1 for each

i = 1, 2.

1. If δi ∈ (δi(p−i), δi(p−i)) for each i = 1, 2, then both σG and σN are PBE.

2. If δi 6∈ [δi(p−i), δi(p−i)] for some i = 1, 2, then σG is a unique PBE.

The central panel of Figure 2 in Section 4.6 of the main text depicts this result

when pi satisfies δ−i(pi) ≤ δ−i(pi) for each i = 1, 2.2 Figure 7 illustrates Proposition

8 for different values of (p−i, δi). For the symmetric cases, the right panel of Figure

3 in Section 4.6 of the main text depicts the characterization for different values of

(p, δ).

Proposition 8 implies that, when xi < 1 for each i = 1, 2, we have

S = {(δ1, δ2) ∈ (0, 1)2 | δi 6∈ [δi(p−i), δi(p−i)] for some i = 1, 2}. (A.4)

We obtain the same comparative statics as before, as follows:

Remark 2. Suppose xj < 1 for each j = 1, 2. Fix i = 1, 2.

2If δ−i(pi) < δ−i(pi), then δ−i(pi) = 0 and δ−i(pi) = 1. Thus, σG is a unique PBE for any
(δ1, δ2).
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Figure 8: Illustration of Proposition 9 for different values of (p−i, δi). Left : The case
with δ−i(pi) < δ−i < δ−i(pi). Right : The case with δ−i < δ−i(pi) or δ−i(pi) < δ−i.

1. If pi ≥ p′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(p′i, p−i, xi, x−i, `i, `−i).

2. If xi ≥ x′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, x
′
i, x−i, `i, `−i).

3. If `i ≥ `′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, xi, x−i, `
′
i, `−i).

Finally, we consider the case in which xi > 1 > x−i for some i = 1, 2.

Proposition 9. Fix p1, p2 ∈ [0, 1]. Let δ1, δ2 ∈ (0, 1). Suppose xi > 1 > x−i for some

i = 1, 2.

1. Suppose δi > δ̂i.

(a) If δ−i ∈ (δ−i(pi), δ−i(pi)) and δi < δi(p−i), then both σG and σN are PBE.

(b) If δ−i 6∈ [δ−i(pi), δ−i(pi)] or δi > δi(p−i), then σG is a unique PBE.

2. Suppose δi < δ̂i.

(a) If δ−i ∈ (δ−i(pi), δ−i(pi)), then σN is a unique PBE.

(b) If δ−i 6∈ [δ−i(pi), δ−i(pi)], then (σNi , σ
G
−i) is a unique PBE.

The right panel of Figure 2 in Section 4.6 of the main text illustrates this proposi-

tion. The figure depicts the case in which δ−i(pi) ≤ δ−i(pi). Figure 8 illustrates PBE

for different values of (p−i, δi).

9



Proposition 9 implies that, fixing i = 1, 2 with xi > 1 > x−i, we have

S = {(δ1, δ2) ∈ (0, 1)2 | δi > δ̂i and (δ−i 6∈ [δ−i(pi), δ−i(pi)] or δi > δi(p−i))}. (A.5)

Again, we obtain the following comparative statics:

Remark 3. Suppose there exists j = 1, 2 such that xj > 1 > x−j. For each i = 1, 2,

the following hold.

1. If pi ≥ p′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(p′i, p−i, xi, x−i, `i, `−i).

2. If xi ≥ x′i > 1 or 1 > xi ≥ x′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, x
′
i, x−i, `i, `−i).

3. If `i ≥ `′i, then S(pi, p−i, xi, x−i, `i, `−i) ⊆ S(pi, p−i, xi, x−i, `
′
i, `−i).

B.4 Proofs for Supplementary Results

B.4.1 Proofs for Appendix B.1

Proof of Proposition 5. Suppose q = 1. The proof of Proposition 2 goes through up

to (6) under q = 1. Now, (6) reduces to

xi ≤
1− δsi
1− δi

+ δsi min{xi, 0},

which is equivalent to

max{(1− δsi )xi, xi} ≤
1− δsi
1− δi

. (A.6)

Now, suppose that xi ≤ 1 for each i = 1, 2. Then, the left-hand side of (A.6) is no

greater than 1. Also, the right-hand side of (A.6) is no less than
1−δ1i
1−δi = 1 because it

is increasing in s. Hence, (A.6) holds. This implies that the continuation payoff from

playing O is no less than the one from playing N .

Proof of Proposition 6. We consider two cases.

Case 1. Consider any history hi,t ∈ H i,t such that t = n · T for some n = 1, 2, . . . .

The continuation payoff from N is (1−p−i)T (1− δi)xi. The continuation payoff

from O is

(1− (1− p−i)T )(1− δi)(−`i) + (1− p−i)T ((1− δTi ) · 1 + δTi (1− δi)(1− p−i)Txi).
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Thus, the continuation payoff from N is no less than the one from O if and only

if

(1−p−i)T (1−δi)xi ≥ (1−(1−p−i)T )(1−δi)(−`i)+(1−p−i)T ((1−δTi )·1+δTi (1−δi)(1−p−i)Txi),

or

(1− p−i)Txi ≥ (1− (1− p−i)T )(−`i) + (1− p−i)T
(

1− δTi
1− δi

+ δTi (1− p−i)Txi
)
.

There exists δ′′ < 1 such that this holds for all δi > δ′′ if and only if:

(1− p−i)Txi ≥ (1− (1− p−i)T )(−`i) + (1− p−i)T
(
T + (1− p−i)Txi

)
,

which we obtain by letting δi → 1. This is condition (A.1).

Case 2. Consider any history hi,t ∈ H i,t such that t 6= n · T for any n = 1, 2, . . . .

Let s ∈ {1, . . . , T − 1} be such that the current period is t = nT − s for some

n = 1, 2, . . . . If i plays N at hi,t, then her continuation payoff is (1 − δi)xi. If

she plays O instead, then her continuation payoff is

(1− δsi ) · 1 + δsi (1− p−i)T (1− δi)xi. (A.7)

Notice that this is a convex combination of 1 and (1− p−i)T (1− δi)xi.

Case 2-1. If 1 ≤ (1−p−i)T (1−δi)xi, then (A.7) is no greater than (1−p−i)T (1−
δi)xi. Thus, the continuation payoff from O is no less than the one from

N only if

(1− p−i)T (1− δi)xi ≥ (1− δi)xi,

which is equivalent to (1 − p−i)
T ≥ 1, a contradiction. Hence, we need

1 > (1− p−i)T (1− δi)xi for σ(T,1) to be a PBE.

Case 2-2. If 1 > (1 − p−i)T (1 − δi)xi, then (A.7) is minimized at s = 1, and

the minimized value is

(1− δi) · 1 + δi(1− p−i)T (1− δi)xi.

Thus, at any history hi,t that we consider in Case 2, the continuation payoff

11



from O is no less than the one from N if and only if

(1− δi)xi ≤ (1− δi) · 1 + δi(1− p−i)T (1− δi)xi,

which is equivalent to

xi ≤ 1 + δi(1− p−i)Txi,

or

(1− p−i)T ≥
xi − 1

δixi
.

Combining with 1 > (1− p−i)T (1− δi)xi, we need

xi − 1

δixi
≤ (1− p−i)T <

1

(1− δi)xi
.

There exists δ′′ < 1 such that this holds for all δi > δ′′ if and only if:

xi − 1

xi
< (1− p−i)T ,

which we obtain by letting δi → 1. This is condition (A.2).

B.4.2 Proofs for Appendix B.2

Proof for Example 1. For the first strategy profile, we show that this constitutes a

PBE if δ ≥ 1
2
. We consider player i’s incentives. If −i has been taking A and A is

available to i, then i’s following the given strategy yields a payoff of 2. If i deviates,

her payoff is at most (1− δ) · 3 + δ · 1. This is no greater than 2 if δ ≥ 1
2
. After any

history in which some player has taken B or C, following the given strategy is weakly

better than following any other strategy at any period for any realization of private

learning against the opponent’s given strategy.

Now we show that the strategy profile σ∗ is a PBE. First, at a history at which

player i has taken C, the only available action to her is C. Thus, below we consider

a history at which player i has not taken C.

Second, suppose that player −i has taken C. Since player −i will keep taking

12



C in the future, it is player i’s best response to take B. For this reason, below we

assume that no player has taken C.

Third, suppose that action C is available to player i. If her opponent −i has

taken B (note that this implies that player −i has taken B in the last period), then

it is player i’s best response to follow the prescribed strategy to obtain the maximum

continuation payoff (after the opponent takes action B) of 1. Thus, assume that

player −i has taken only A. Now, if player i takes C, then her continuation payoff,

which we denote by VC , is VC = (1− δ) · 3 + δ · 1. If player i takes A (this means that

both players have been taking A), then her continuation payoff, which we denote by

VA, is

VA = (1− δ) · 2 + δ (p̃ ((1− δ)(−2) + δ · 0) + (1− p̃) ((1− δ) · 2 + δ · VC)) ,

where p̃ is the probability that player −i takes C in the next period, which is a

convex combination of p−iA,C and p−iB,C and thus is p. Hence, in the limit as δ → 1, the

right-hand side becomes (1− p)VC . Thus, there is δ′ ∈ (0, 1) such that if δ > δ′ then

VC ≥ VA and thus the deviation is not profitable.

If player i takes B instead, then her continuation payoff, which we denote by VB,

is

VB = (1− δ) · 3 + δ (p · 0 + (1− p)((1− δ)(−1) + δ · 1)) .

We have VB ≤ VC because VB is a convex combination of 3 and a term which is

less than 1, VC is a convex combination of 3 and 1, and the weights on the convex

combinations are the same.

Fourth, assume that action C is not available to player i and that the opponent has

played B. If player i follows the prescribed strategy, then letting q̃ be the probability

that player −i takes C in the next period, her continuation payoff, which we denote

by WB, satisfies:

WB = (1− δ)(−1) + δ (q̃ · 0 + (1− q̃)(p · 1 + (1− p)WB)) .

If A is available to player i and she takes A, then her continuation payoff is

(1− δ)(−2) + δ (q̃((1− δ)(−2) + δ · 0) + (1− q̃)WB) .

To see that such a deviation is not profitable, for any q̃, it is enough to show that
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p · 1 + (1− p)WB ≥ WB, that is, 1 ≥ WB. This inequality follows because player i’s

maximum possible continuation payoff (after the opponent takes action B) is 1.

Fifth, suppose that action C is not available to player i and player −i has been

taking A. If the only available action to player i is A, then she takes A. Suppose

action B is available to player i. Note that the probability that player −i takes C in

the next period is p. If player i follows the prescribed strategy, then her continuation

payoff, which we denote by XA, satisfies:

XA = (1− δ)2 + δ (p((1− δ)(−2) + δ · 0) + (1− p)((1− δ)2 + δ (p · VC + (1− p)XA)))

= (1− δ)2 + δ (p(1− δ)(−2) + (1− p)((1− δ)2 + δ (p · ((1− δ)3 + δ · 1) + (1− p)XA))) .

Hence, the limit of XA as δ → 1, which we denote by X∗A, satisfies

X∗A = (1− p)p+ (1− p)2X∗A.

Thus,

X∗A =
(1− p)p

1− (1− p)2
.

If player i instead takes B, then her continuation payoff, which we denote by XB,

is

XB = (1− δ) · 3 + δYB,

where YB is the continuation payoff when the latest action profile is (B,A) or (B,B),

it is −i’s turn to move, and i has not privately learned C:

YB = p · 0 + (1− p) ((1− δ)(−1) + δ (p · 1 + (1− p) ((1− δ)(−1) + δYB))) .

Hence, the limit of YB as δ → 1, which we denote by Y ∗B, satisfies

Y ∗B = (1− p)p+ (1− p)2Y ∗B.

Thus,

Y ∗B =
(1− p)p

1− (1− p)2
.
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Hence, the limit of XB as δ → 1, which we denote by X∗B, satisfies

X∗B = Y ∗B.

Thus, we have X∗A = X∗B. Now, a tedious calculation shows that

d(XA −XB)

dδ

∣∣∣∣
δ=1

= 2 +
4

2− p
− 3

p
.

Note that this is increasing in p and is negative for a sufficiently small p. Hence, there

exist δ′′ ∈ (0, 1) and p′ ∈ (0, 1) such that XA > XB for all δ > δ′′ and p < p′.

In sum, there exist δ ∈ (0, 1) and p ∈ (0, 1) such that the given strategy profile

constitutes a PBE for all δ ∈ (δ, 1) and pA,C = pB,C ∈ (0, p).

Proof for Example 2. For the first strategy profile, we show that this constitutes a

PBE if δ ≥ 1
2
. We consider player i’s incentives. If player i can choose her action

from {A,B,C} because she has privately learned B and C and the opponent has

been taking A, then she receives a payoff of 2 as long as she follows the strategy. If

she deviates by taking C, then she receives a payoff of (1 − δ)4 (if she deviates by

taking B, her payoff is bounded by (1− δ)3 < (1− δ)4). Thus, she plays A if

(1− δ) · 4 ≤ 2, that is, δ ≥ 1

2
.

If player i can choose her action from {A,B,C} because the opponent has taken

B or C in the past, then it is player i’s best response to always choose C.

If player i’s available action set is {B,C}, then it is player i’s best response to

always choose C.

Second, we show that the second strategy profile σ∗ is a PBE when the players

are sufficiently patient. We consider two cases. Suppose first that both players have

been taking only A. Player i plays C when she privately learns it if

(1−δ)4+δu
(i)
i ≥ (1−δ)2+δ

(
p
{

(1− δ)(−3) + δu
(−i)
i

}
+ (1− p)

{
(1− δ)2 + δ

(
(1− δ)4 + δu

(i)
i

)})
,

or,

(1− δ2(1− p))
(

(1− δ)4 + δu
(i)
i

)
≥ (2− p)(1− δ)2 + δp

{
(1− δ)(−3) + δu

(−i)
i

}
.
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When δ = 1, since p > 0, the above inequality holds because it reduces to u
(i)
i > u

(−i)
i .

Thus, there exists δ ∈ (0, 1) such that the above inequality holds when δ ∈ (δ, 1).

Next, suppose that some player has taken B in the past and that C has never

been taken. Player i plays C when she privately learns it if

(1− δ)2 + δu
(i)
i ≥ (1− δ)2 + δ

(
(1− δ)(−1) + δu

(−i)
i

)
,

where the left-hand side is a lower bound of the payoff from playing C and the right-

hand side is an upper bound of the payoff from playing A or B. This inequality holds

for any δ because u
(i)
i > u

(−i)
i ≥ −1: The strict inequality follows by assumption, and

the weak inequality follows because u
(−i)
−i must be feasible in the game with actions

B and C while −1 is the worst payoff in such a game.

In sum, σ∗ is a PBE when δ ∈ (δ, 1).

B.4.3 Proofs for Appendix B.3

Proof of Proposition 7. For each i = 1, 2, when xi > 1, it follows from the proof

of Lemma 5 that δ̂i = xi−1
xi

> 0 and δ̂i < δi(p−i). Also, for each i = 1, 2, since

πi(0) = 1 < xi, we have δi(p−i) = 0. Hence, xi < πi(δi) if δi > δi(p−i), and xi > πi(δi)

if δi < δi(p−i).

Then, the proposition follows from Theorem 3.

Proof of Proposition 8. Recall that, for each i = 1, 2, if xi < 1 then δ̂i = 0. Also, for

each i = 1, 2, since πi(0) = 1 > xi, we have δi(p−i) > 0.

Since δ̂i = 0 for each i = 1, 2, it follows from parts 1 and 3 of Theorem 3 that σG

is a unique PBE if xi < πi(δi) for some i = 1, 2; and that both σG and σN are a PBE

if xi > πi(δi) for all i = 1, 2.

Thus, it suffices to show the following two assertions for each i = 1, 2. First,

if δi ∈ (δi(p−i), δi(p−i)), then xi > πi(δi). Second, if δi 6∈ [δi(p−i), δi(p−i)], then

xi < πi(δi).

Fix i = 1, 2. We consider the following three exhaustive cases. As the first case,

suppose δi(p−i) = 1. Then, the first assertion vacuously follows because (δi(p−i), δi(p−i)) =

∅. For the second assertion, it follows from the definition of δi(p−i) that xi < πi(δi)

for all δi ∈ (0, 1). Then, we have xi < πi(δi) for all δi 6∈ [δi(p−i), δi(p−i)], as desired.

As the second case, suppose that δi(p−i) 6= 1 and δi(p−i) = 1. Then, δi(p−i) ∈
(0, 1). Also, xi ≥ πi(1) (otherwise, δi(p−i) < 1). This means that the quadratic
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equation xi = πi(δi) has a unique interior solution in (0, 1), which is δi(p−i). Thus,

xi < πi(δi) if δi ∈ (0, δi(p−i)), that is, δi 6∈ [δi(p−i), δi(p−i)]. Also, xi > πi(δi) if

δi ∈ (δi(p−i), 1), that is, δi ∈ (δi(p−i), δi(p−i)). Hence, the two assertions hold.

As the third case, suppose that δi(p−i) 6= 1 and δi(p−i) 6= 1. Then, δi(p−i) ∈ (0, 1).

Also, xi < πi(1) (otherwise, δi(p−i) = 1). This means that the quadratic equation

xi = πi(δi) has either (i) two interior solutions in (0, 1), which are δi(p−i) and δi(p−i)

with δi(p−i) < δi(p−i), or (ii) a unique solution in (0, 1), which is δi(p−i) = δi(p−i).

Thus, xi < πi(δi) if δi ∈ (0, δi(p−i)) ∪ (δi(p−i), 1), that is, δi 6∈ [δi(p−i), δi(p−i)]. Also,

xi > πi(δi) if δi ∈ (δi(p−i), δi(p−i)). Hence, the two assertions hold.

In sum, for each of the three cases, the statement of the proposition holds.

Proof of Proposition 9. Suppose that xi > 1 > x−i for some i = 1, 2. Then, it follows

from the proof of Lemma 5 that δi(p−i) > δ̂i = xi−1
xi

> 0. Also, δ̂−i = 0. For player

i, as in the proof of Proposition 7, xi < πi(δi) if δi > δi(p−i), and xi > πi(δi) if

δi < δi(p−i). For player −i, similarly to the proof of Proposition 8, x−i < π−i(δ−i)

if δ−i 6∈ [δ−i(pi), δ−i(pi)], and x−i > π−i(δ−i) if δ−i ∈ (δ−i(pi), δ−i(pi)). Given these

conclusions, the statement of the proposition follows from Theorem 3.

To prove Remarks 1 to 3, we provide the following auxiliary result.

Lemma 10. Fix i = 1, 2.

1. The threshold discount factor δi is non-decreasing in p−i, xi, and `i.

2. The threshold discount factor δi is non-increasing in p−i, xi, and `i.

Proof of Lemma 10. We prove both parts at once. We define

D(p−i, xi, `i) := {δi ∈ [0, 1] | xi < πi(δi; p−i, xi, `i)},

where we made explicit the dependence of πi on the parameters.

(i) Comparative statics with respect to p−i: For any xi and `i, we define

A(δ) := 1 + δi(−`i) + δ2i · 0 and B(δ) := 1 + δi · 1 + δ2i xi.

We consider the two cases.
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Case 1. Suppose A(1) ≥ B(1) and xi < 0. Since B(1) = 2 + xi, xi <

πi(1; p−i, xi, `i). Since πi is concave in δi and πi(1; p−i, xi, `i) = 0, it follows

that xi < πi(δi; p−i, xi, `i) for all δi ∈ [0, 1]. Thus, we have δi(p−i) = 0 and

δi(p−i) = 1 for all p−i.

Case 2. Suppose A(1) < B(1) or xi ≥ 0. We first show A(δi) ≤ B(δi) for all

δi ∈ [0, 1]. We consider the following two subcases.

Case 2-1. Suppose xi ≥ 0. Then, we have B(δ)−A(δ) = xiδ
2
i +(1+`i)δi ≥

0 for all δi ∈ [0, 1].

Case 2-2. Suppose xi < 0 and A(1) < B(1). Since B is concave in δi and

A(0) = B(0), we have A(δi) ≤ B(δi) for all δi ∈ [0, 1].

Since πi(δi; p−i, xi, `i) = p−iA(δi) + (1− p−i)B(δi),

πi(δi; p
′′
−i, xi, `i)− πi(δi; p′−i, xi, `i) = (p′′−i − p′−i)(B(δi)− A(δi)).

If p′−i < p′′−i, then this is non-negative. Thus, D(p′−i, xi, `i) ⊇ D(p′′−i, xi, `i).

Hence, by the definition of δi, δi is no greater under p′−i than under p′′−i.

Similarly, by the definition of δi, δi is no smaller under p′−i than under p′′−i.

(ii) Comparative statics with respect to xi: For any δi, p−i, and `i, we have

πi(δi; p−i, x
′′
i , `i)− πi(δi; p−i, x′i, `i) = (1− p−i)δ2i (x′′i − x′i) ≤ x′′i − x′i.

Thus,

πi(δi; p−i, x
′
i, `i)− x′i ≥ πi(δi; p−i, x

′′
i , `i)− x′′i ,

which implies D(p−i, x
′
i, `i) ⊇ D(p−i, x

′′
i , `i). Hence, by the definition of δi, δi is

no greater under x′i than under x′′i . Similarly, by the definition of δi, δi is no

smaller under x′i than under x′′i .

(iii) Comparative statics with respect to `i: For any δi, p−i, and xi, we have πi(δi; p−i, xi, `
′
i) ≥

πi(δi; p−i, xi, `
′′
i ) if `′i ≤ `′′i . Thus, D(p−i, xi, `

′
i) ⊇ D(p−i, xi, `

′′
i ). Hence, by the

definition of δi, δi is no greater under `′i than under `′′i . Similarly, by the defini-

tion of δi, δi is no smaller under `′i than under `′′i .
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Proof of Remark 1. Recall that the set S is given by equation (A.3). All the state-

ments of this remark follow if, for each j = 1, 2, the threshold discount factors δ̂j

and δj are non-decreasing in xj, p−j, and `j. Since xj > 1, δ̂j =
xj−1
xj

is indeed non-

decreasing in xj, p−j, and `j. For δj, it follows from part 1 of Lemma 10 that δj is

non-decreasing in xj, p−j, and `j.

Proof of Remark 2. Recall that the set S is given by equation (A.4). All the state-

ments of this remark follow if, for each i = 1, 2, (i) the threshold discount factor

δi is non-decreasing in xi, p−i, and `i; and (ii) the threshold discount factor δi is

non-increasing in xi, p−i, and `i. Statement (i) follows from part 1 of Lemma 10, and

statement (ii) follows from part 2 of Lemma 10.

Proof of Remark 3. Take i = 1, 2 with xi > 1 > x−i. Recall that the set S is given by

equation (A.5). All the statements of this remark follow if the following hold: (i) δ̂i

is non-decreasing in xi, p−i, and `i; (ii) δi is non-decreasing in xi, p−i, and `i; (iii) δ−i

is non-decreasing in x−i, pi, and `−i; and (iv) δ−i is non-increasing in x−i, pi, and `−i.

Statement (i) follows because, as shown in Remark 1, δ̂i = xi−1
xi

is non-decreasing in

xi, p−i, and `i. Statements (ii) and (iii) follow from part 1 of Lemma 10. Statement

(iv) follows from part 2 of Lemma 10.
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