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Abstract

I develop a unified framework with schools and residential choices to study

the welfare and distributional consequences of public schools’ switching from the

traditional neighborhood assignment to the Deferred Acceptance mechanism. I

show that when families receive higher priorities at neighborhood schools, the De-

ferred Acceptance mechanism improves aggregate or average welfare compared to

neighborhood assignment. Additionally, under general conditions, the Deferred

Acceptance mechanism improves the welfare of lowest-income families, both with

and without neighborhood priorities. My work lays theoretical foundations for

analyzing assignment games with externalities.
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1 Introduction

According to the Brookings Institution’s Center on Children and Families, the propor-

tion of large school districts in the US that allow parental choice over public schools

has doubled from 2000 through 2016 (Whitehurst, 2017). Many school districts have

replaced the traditional neighborhood assignment with choice-based assignment mech-

anisms which reflect recent advances in matching theory and market design. A promi-

nent example is the widespread application of the celebrated Deferred Acceptance

mechanism of Gale and Shapley (1962). Following a scholarly article by Abdulka-

diroğlu and Sönmez (2003), Deferred Acceptance has been adopted for student assign-

ment by school districts in New York City, Boston, Chicago, Denver, Washington DC

and Newark, among many others.

Under neighborhood assignment families enroll their children to the designated neigh-

borhood schools. In contrast, the Deferred Acceptance mechanism assigns children

to schools based on families’ reported preferences and their priorities at schools. The

Deferred Acceptance mechanism and its welfare properties are extensively studied in

the matching theory literature. However, previous papers predominantly assume that

the preferences and priorities are exogeneously given, while in reality, they depend

on families’ endogeneous neighborhood choices. It has been empirically documented

that families strategically choose where to live, and they do so by taking into account

the schooling options (Chung, 2015; Kane, Riegg, and Staiger, 2006; Reback, 2005).

Those strategic neighborhood choices affect families’ probabilities of being assigned to

different schools through their effects on preferences and priorities.1

In this paper I develop a unified framework with school choice and a housing market,

1Neighborhood choices affect preferences since families prefer schools closer to their homes (e.g.,

Glazerman (1998), Burgess, Greaves, Vignoles, and Wilson (2011), Abdulkadiroğlu, Agarwal, and

Pathak (2017a), Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2020b)), and they affect priori-

ties since schools typically grant higher priorities to neighborhood applicants.
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where families make residential choices prior to school admission, and I evaluate the

welfare and distributional consequences of the widespread education reform of switch-

ing from neighborhood assignment to Deferred Acceptance. The timing of the model

is as follows. First, the city or the school district announces the school assignment

mechanism. Then, families make neighborhood choices optimally, given the school

assignment mechanism, other families’ neighborhood choices and the market-clearing

neighborhood prices. Lastly, children are assigned to schools through the announced

assignment mechanism. There are two major findings. First, I show that when there

are neighborhood priorities (i.e., when families receive higher priorities at neighbor-

hood schools), the Deferred Acceptance mechanism improves aggregate (or average)

welfare compared to neighborhood assignment. Second, I show that under general

conditions the lowest-income families prefer the Deferred Acceptance mechanism, both

with and without neighborhood priorities, to neighborhood assignment. To the best

of my knowledge, mine is the first theoretical evaluation of welfare and distributional

effects of school choice in a general model with unrestricted preference domain and

endogenous neighborhood choices. I now elaborate on the results and their policy

implications.

When there are no neighborhood priorities, the welfare comparison between the De-

ferred Acceptance and neighborhood assignment is ambiguous. On one hand, the

Deferred Acceptance mechanism may generate higher welfare as it gives families more

flexibility to reside in their preferred neighborhoods and enroll their children to their

preferred schools, potentially outside of the neighborhoods. On the other hand, neigh-

borhood assignment may generate higher welfare as families with highest valuations

for certain schools can guarantee enrollment there by purchasing a house in the corre-

sponding neighborhoods. Despite this welfare trade-off, I show that with neighborhood

priorities, the Deferred Acceptance mechanism always generates higher aggregate wel-

fare than neighborhood assignment. I also show that, under some conditions such as

identical ordinal preference rankings over neighborhoods and schools, Deferred Accep-
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tance generates higher aggregate welfare with neighborhood priorities than without

those.

Neighborhood priorities may be thought of as a compromise between neighborhood

assignment and open enrollment without neighborhood priorities (i.e., where all fam-

ilies receive a fair shot at each school). In Boston Public School (BPS) there have

been constant debates about using neighborhood assignment or allowing choice (Da-

ley, 1999; Dur, Kominers, Pathak, and Sönmez, 2018; Menino, 2012). Those debates

have resulted in redesigning the school assignment system by granting higher prior-

ities to families (at a fraction of seats2) at their neighborhood schools (Dur et al.,

2018). Neighborhood priorities are applied not only in BPS, but in predominant ma-

jority of the US school districts allowing parental choice. My theoretical findings that

Deferred Acceptance with neighborhood priorities improves aggregate welfare com-

pared to neighborhood assignment and, under some conditions, compared to Deferred

Acceptance without neighborhood priorities, potentially provide a rationale for the

widespread application of neighborhood priorities for school assignment. To the best

of my knowledge, this is the first theoretical justification of using neighborhood prior-

ities in school assignment for welfare considerations.

Although the aggregate welfare is always larger under Deferred Acceptance with neigh-

borhood priorities compared to neighborhood assignment, some families may be better-

off under the latter mechanism. Since the welfare of low-income and disadvantaged

communities is a major consideration for education policy (Fuller, 1996; Orfield and

Frankenberg, 2013), the question that I ask next is how the mechanisms compare in

terms of lowest-income families’ welfare. In Section 5 I extend the model so that

families are differentiated by incomes or budgets. A budget denotes the maximum

amount a family can pay for a house. Proponents argue that school choice weakens the

links between schools and the housing market, and potentially leads to more equitable

2In 1999, BPS adopted what is known as the ‘50-50 seat split’, where families are granted higher

priorities at only half of the seats at their neighborhood schools.
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outcomes by allowing families in less affluent neighborhoods to apply to higher quality

schools outside of their neighborhoods (Bedrick and Burke, 2015; Coons and Sugarman,

1978). Although the argument is intuitive, it has limited theoretical foundation. Papers

on the topic typically analyze stylized models where families have identical preferences

over neighborhoods and schools. Such an assumption is unrealistic for the school choice

setting.3 To the best of my knowledge, mine is the first work to compare distributional

effects of the Deferred Acceptance mechanism in a general matching model with rich

preferences and residential choices. I show that under general conditions lowest-income

families prefer both versions of the Deferred Acceptance mechanism to neighborhood

assignment. The sufficiency conditions have two parts: (1) underdemanded neighbor-

hoods remain underdemanded when the school assignment mechanisms is switched

from neighborhood assignment to Deferred Acceptance, (2) underdemanded (or to

put it simply, cheapest) neighborhoods have underdemanded (least selective) schools.4

The former condition is intuitive: the poorest neighborhoods are unlikely to signifi-

cantly gain in value to become overdemanded when the school assignment mechanism

is switched from neighborhood assignment to Deferred Acceptance. The latter condi-

tion is consistent with the empirical evidence: Owens and Candipan (2019) document

that in large metropolitan areas in the US the poorest neighborhoods typically have

underperforming schools. I show that the conditions are satisfied for natural special

cases. Thus, my findings provide a theoretical justification for a major argument in

favor of school choice, namely, that lowest-income families benefit from choice.

Finally, my work builds theoretical foundations for studying assignment games with

externalities. In my model a family’s valuation for a neighborhood depends on other

families’ neighborhood choices through the latter’s effects on the family’s school as-

3For example, it has been shown that families prefer schools that are closer to their homes (Ab-

dulkadiroğlu et al., 2017a,2; Burgess et al., 2011; Glazerman, 1998).
4I show that (1) and (2) are also ‘necessary’ conditions for lowest-income families to prefer Deferred

Acceptance over neighborhood assignment if one requires ‘robustness’. The result is formally stated

in Theorem 6.
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signment probabilities. These externalities may preclude the existence of a competitive

equilibrium in discrete economies. However, I show that a competitive equilibrium al-

ways exists in a large economy with a continuum of families. The result builds on the

fact that in a large economy a family’s school assignment probabilities are continuous

in other families’ neighborhood choices. This allows me to use a novel application of

Schauder-Tychonoff fixed point theorem to establish equilibrium existence. Not only

does the continuum model circumvent the equilibrium non-existence issue, but it also

buys us tractability. In the continuum model I derive closed-form expressions for school

assignment probabilities which are used for proving many of the results. In Appendix

B I show that the continuum model is an arbitrarily close approximation of sufficiently

large discrete ones. This implies that all results, such as the existence of a competitive

equilibrium and welfare comparisons across the mechanisms, hold in an approximate

sense for every sufficiently large discrete economy. Equilibrium existence and large

market approximation results extend to general assignment games with externalities,

such as complementarities or peer preferences.

The remainder of the paper is organized as follows. Section 2 reviews related literature.

Section 3 describes the model and establishes the existence of competitive equilibria.

Section 4 compares aggregate welfare across the school assignment mechanisms. Sec-

tion 5 studies a model with budget constraints and studies the implications of school

choice for lowest-income families. Section 6 discusses simulation results. Section 7

concludes. All omitted proofs are in the main Appendix. The main Appendix also dis-

cusses the existence of approximate equilibria in discrete economies. Alternative school

assignment mechanisms (such as Top Trading Cycles and Immediate Acceptance) and

further extensions are studied in the Supplementary Appendix.
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2 Related Literature

Welfare and distributional consequences of school choice have been theoretically ana-

lyzed by several earlier works (Avery and Pathak, 2020; Barseghyan, Clark, and Coate,

2013; Calsamiglia, Mart́ınez-Mora, and Miralles, 2015; Epple and Romano, 2003; Lee,

1997; Xu, 2019). These papers feature stylized models, where: (1) types are described

by a single parameter which reflects ability or income, (2) families’ have no preferences

over neighborhoods, (3) schools are ranked by quality and all families prefer the higher

quality schools, (4) valuations for schools are supermodular in income and school qual-

ity. Some of these assumptions may be highly unrealistic in the context of school

choice. For example, assumption (3) implies that families have identical ordinal prefer-

ence rankings over schools. My work, on the other hand, features a general preference

domain with arbitrary valuations over neighborhoods and schools. Such unrestricted

heterogeneity is an important aspect in Gale and Shapley (1962) and the vast literature

on the two-sided matching literature that followed this seminal work.

The generality of my model allows me to reveal novel insights on welfare and distri-

butional consequences of school assignment mechanisms which are missing from prior

papers on the topic. First, unlike most works above that are mainly interested in

distributional outcomes of school choice, my paper also compares school assignment

mechanisms in terms of aggregate or average welfare. Such an analysis becomes trivial

when families have no intrinsic preferences for neighborhoods, or when families have

identical ordinal preference rankings over neighborhoods and schools, and supermodu-

lar valuations. In those settings, if the number of seats at schools equals the neighbor-

hood’s housing supply, then neighborhood assignment maximizes aggregate welfare.

I show that this is not true in the general model: Deferred Acceptance may create

strictly higher aggregate welfare than neighborhood assignment, and it always creates

weakly higher aggregate welfare when there are neighborhood priorities. Second, some

of the conclusions on lowest-income families’ welfare in previous theoretical papers de-
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pend on the preference restrictions those works impose. For example, in Calsamiglia

et al. (2015) and Xu (2019) lowest-income families always prefer Deferred Acceptance

to neighborhood assignment. In contrast, in my model lowest-income families may

not necessarily benefit from the Deferred Acceptance mechanism.5 I provide general

sufficient conditions under which the lowest-income families’ prefer both versions of

the Deferred Acceptance mechanism to neighborhood assignment, and I show that the

conditions are satisfied for some natural special cases.

My setup corresponds to a two-sided matching problem with endogenous preferences

and/or priorities. Papers on the topic, such as Peters and Siow (2002) and Bodoh-Creed

and Hickman (2018), typically assume unidimensional family types, supermodular val-

uations and identical preference rankings for tractability. Bodoh-Creed and Hickman

(2018) write that “the richness of the preferences admitted by most models building

on Gale and Shapley ... makes it very difficult to include an element of endogenous

student quality”. I allow general preferences and I apply a continuum framework to

gain tractability. Despite the generality of my model, I obtain strong results on welfare

comparisons across the mechanisms.

The second part of my work is related to papers that study assignment problems with

budget-constrained agents. In particular, Che, Gale, and Kim (2013a) and Che, Gale,

and Kim (2013b) show that in that environment a random assignment with resale

improves aggregate welfare compared to the market equilibrium. In my model, there is

no resale option for school assignment and therefore aggregate welfare comparisons are

ambiguous. However, I show that under fairly general conditions random assignment

improves the welfare for agents with the smallest budgets.

My work contributes to the relatively new strand of matching theory literature on ‘pri-

5Avery and Pathak (2020) also observe that lowest-income families may prefer neighborhood as-

signment to open enrolment in a model with endogenously priced outside options or multiple school

districts. In my model, the result is driven by the richness of families’ preferences over neighborhoods

and schools.

8



ority design’ (Celebi and Flynn, 2021; Shi, 2021). These papers study optimal priority

structures for general assignment mechanisms. In contrast, I am interested in the role of

neighborhood priorities and its welfare implications for a particular assignment mech-

anism, namely the Deferred Acceptance. My results suggest that using priorities may

potentially improve aggregate welfare. First, I show that with neighborhood priorities

the Deferred Acceptance mechanism always generates higher aggregate welfare than

neighborhood assignment. This is not necessarily true without neighborhood priorities.

Second, I show that, under some conditions, such as when families have identical ordi-

nal preferences over neighborhoods and schools, the Deferred Acceptance mechanism

generates higher aggregate welfare with neighborhood priorities than without those.

The last finding is in the spirit papers that show that incorporating ‘signaling devices’

into matching problems without money may be welfare improving (Abdulkadiroğlu,

Che, and Yasuda, 2015; Coles, Cawley, Levine, Niederle, Roth, and Siegfried, 2010;

Hylland and Zeckhauser, 1979; Lee and Niederle, 2015). When there are neighborhood

priorities, families are allowed to signal their high valuations for schools by choosing

the corresponding neighborhoods. Thus, neighborhood choices act as signaling devices

in my model, potentially improving aggregate welfare.

Lastly, my work contributes to the literature on large matching markets (Abdulka-

diroğlu et al., 2015; Azevedo and Leshno, 2016; Gretsky, Ostroy, and Zame, 1992,9;

Kamecke, 1992; Leshno and Lo, 2017) and assignment externalities (Pycia and Yen-

mez, 2019; Sasaki and Toda, 1996). Unlike the continuum assignment game of Gretsky

et al. (1992) and Gretsky et al. (1999), in my model there are assignment externalities:

a family cares not only about her own neighborhood choice, but also those of other

families since those affect the family’s school assignment probabilities. Although ex-

ternalities preclude the existence of competitive equilibrium in finite discrete markets,

I show that a competitive equilibrium always exists in large markets with a continuum

of families. Analogous results have been established in alternative matching environ-

ments with complementarities and externalities, e.g., Azevedo, Weyl, and White (2013)
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Azevedo and Hatfield (2018), Che, Kim, and Kojima (2019) and Greinecker and Kah

(2021). My model is potentially closest to the last paper. The authors assume that

agents have continuous preferences over a superset of assignments to prove the exis-

tence of a competitive equilibrium. The assumption is abstract, and the paper does

not clarify whether it is satisfied for specific matching problems. I do not impose

such an assumption, but instead I prove that in my model families’ expected utilities

are equicontinuous in neighborhood choices,6 which is sufficient to guarantee the exis-

tence of a competitive equilibrium. My existence proof technique can be applied more

broadly for general assignment games with externalities, such as peer preferences or

complementarities.

3 Preliminaries

3.1 The Continuum Model

There is a unit mass of families with a single child and a finite and equal number of

neighborhoods H and schools S. There is a unique school in each neighborhood h ∈ H.

Let us denote this school by sh ∈ S. The capacity qh ∈ N of neighborhood h is the

mass of families that can reside in the neighborhood. Similarly, the capacity qs ∈ N of

school s is the mass of families that can enroll (their children) in school s. I assume

that qh ≤ qsh for all h ∈ H. The assumption is necessary for defining neighborhood

assignment, i.e., schools need to have enough seats for all neighborhood families.

Each family has a type v ∈ [0, 1]|H|×|S| := V , where v(h, s) ∈ [0, 1] denotes the type’s

valuation for living in neighborhood h and enrolling in school s. The economy is

described by a (Borel) probability measure η over the type space V .

6The last result uses that school assignment probabilities under the Deferred Acceptance mecha-

nism change continuously with families’ neighborhood choices.
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My model abstracts away from direct externalities or peer preferences. Namely, fami-

lies’ valuations over neighborhood-school pairs are exogenously given and do not depend

on other families’ neighborhood choices.7 In Supplementary Appendix B, I establish

the robustness of some of my main results for an extension where valuations depend

on the housing values. This is motivated by that property taxes are a major source of

school expenditure funds (Chetty and Friedman, 2011).

Valuations induce preference rankings, which are complete, reflexive and anti-symmetric

relations on S. Let P be the space of preference rankings. Conditional on living in

neighborhood h, the preference ranking ≻vh∈ P of type v satisfies

v(h, s) > v(h, s′) ⇒ s ≻vh s
′. (1)

When v(h, s) = v(h, s′), ties are broken arbitrarily. For example, we may assume that

a fixed ordering over schools is used to break ties.

Let H̄ := H ∪ {0}, where 0 denotes the outside option of not buying a house in the

school district. Neighborhood choices τ is a probability measure on V × H̄, with the

property that

τ
(
(v, h) ∈ V × H̄ : v ∈ U, h ∈ H

)
= η(U),

for any measurable U ⊆ V . The interpretation of neighborhood choices τ is that for

each measurable U ⊆ V and H ′ ⊆ H̄, τ
(
(v, h) ∈ V × H̄ : v ∈ U, h ∈ H ′

)
denotes the

mass of families whose types are in U and who choose some neighborhood in H ′. I

denote the space of neighborhood choices by T .

In general, school assignment probabilities depend on the reported preference rankings

of families. I consider strategyproof school assignment mechanisms, where each fam-

ily has a dominant strategy to report preferences truthfully. Thus, assuming truthful

preference reports, valuations and neighborhood choices uniquely pin down the prefer-

ence reports of families through equation 1 (and the tie-breaker). Let λϕvs(h, τ) ∈ [0, 1]

7In my model there are ‘indirect’ externalities as a family’s expected utilities depend on other fam-

ilies’ neighborhood choices through their effects on the first family’s school assignment probabilities.
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denote the probability that type v is assigned to school s. This probability depends

on the valuation, chosen neighborhood h, the population’s neighborhood choices τ and

the school assignment mechanism ϕ.

Given school assignment probabilities and neighborhood price vector p ∈ [0, 1]|H|, the

expected utility of type v choosing neighborhood h ∈ H is equal to

uϕv (h, τ)− ph.

where uϕv (h, τ) :=
∑

s∈S λ
ϕ
vs(h, τ) v(h, s). Also, let uϕv (0, τ) := 0 for all v ∈ V and

τ ∈ T . I now define the solution concept.

Definition 1. For neighborhood choices τ ∈ T and price vector p ∈ R|H|
+ , we say a pair

(τ, p) is a competitive equilibrium (CE) of mechanism ϕ if it satisfies the following

conditions:

1. τ
(
(v, h) ∈ V × H̄ : h = argmaxh′∈H̄ uϕv (h

′, τ)− ph′
)
= 1, where p0 := 0,

2. τ
(
(v, h) ∈ V × H̄ : h = h′

)
≤ qh′ ,∀h′ ∈ H,

3. τ
(
(v, h) ∈ V × H̄ : h = h′

)
< qh′ ⇒ ph′ = 0.

The definition is standard. The first two conditions in Definition 1 are the optimality

and feasibility of neighborhood choices, respectively. The third condition says that

neighborhoods with excess capacity are priced at zero. This would guarantee that the

sellers of vacant houses in the neighborhood have no incentives to undercut the prices.

3.2 School Assignment Mechanisms

I now describe the school assignment mechanisms and derive school assignment prob-

abilities under each of them.

Neighborhood Assignment.
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Under neighborhood assignment (NA), families are assigned to their neighborhood

schools. Then, for all s ∈ S, h ∈ H and τ ∈ T ,

λNAvs (h, τ) =

1 if s = sh,

0 otherwise.

Deferred Acceptance.

Deferred Acceptance for the continuum model is defined as in Azevedo and Leshno

(2016) and Abdulkadiroğlu et al. (2017a). I consider two versions of the Deferred

Acceptance mechanism: in the first version families do not receive higher priorities at

neighborhood schools, and in the second version they do.

Deferred Acceptance without Neighborhood Priority (DA).

School assignment under DA is determined based on families’ preferences, lottery num-

bers and market clearing admission cutoffs, or simply cutoffs. Preferences are decided

by neighborhood choices through equation 1. Lottery numbers are drawn uniformly

and independently from the unit interval. Formally, neighborhood choices τ result in

a probability measure Gτ over P × [0, 1], given by

Gτ

(
(≻, r) ∈ P × [0, 1] : ≻∈ P ′, r ∈ (r0, r1)

)
= τ

(
(v, h) ∈ V × H̄ : ≻vh∈ P ′

)
×
(
r1 − r0

)
,

for each P ′ ⊆ P and (r0, r1) ⊆ [0, 1]. Here, Gτ

(
(≻, r) ∈ P × [0, 1] : ≻∈ P ′, r ∈ (r0, r1)

)
is the mass of types with preferences in P ′ and lottery numbers in the interval (r0, r1).

8

Cutoffs are derived through an iterative procedure that I describe below. For a vector

8The versions of Deferred Acceptance described in this section apply a single tie-breaking rule, i.e.,

a family has a single lottery number which is commonly used for tie-breaking at all schools. My main

results (with slightly modified proofs) hold for the case of multiple tie-breaking, i.e., when different

schools use different lottery numbers for a given family. The extension is discussed in Appendix D.
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c ∈ [0, 1]|S|, the demand function D : [0, 1]|S| → [0, 1]|S| is given by

Ds(c) = Gτ

(
(≻, r) ∈ P × [0, 1] : r ≥ cs and s ≻ s′ for all s′ with r ≥ cs′

)
.

In words, Ds(c) is the mass of families whose lottery numbers exceed cs, and who

prefer s to any other school s′ where their lottery numbers exceed cs′ . For c ∈ [0, 1]|S|

and x ∈ [0, 1] let c(s, x) ∈ [0, 1]|S| denote the vector that differs from c only by that

cs(s, x) = x.

Define a sequence of vectors (ct)∞t=1 recursively by c1 = 0 and

ct+1
s =

0 if Ds(c
t) < qs,

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise.

As shown by Abdulkadiroğlu, Angrist, Narita, and Pathak (2017b), (ct)t∈N is conver-

gent. Let cDA := limt→∞ ct denote the DA cutoffs. This cutoffs depend on neighbor-

hood choices τ , but I omit this dependence to keep notation simple. The DA cutoffs

determine school assignment as follows. A family is assigned to school s if her lottery

number exceeds cDAs , and she prefers s to any school where her lottery number exceeds

the corresponding DA cutoff. The probability of this event is

λDAvs (h, τ) = min
{
cDAs′ : s′ ≻vh s

}
×max

{
min

{
cDAs′ : s′ ≻vh s

}
− cDAs

min
{
cDAs′ : s′ ≻vh s

} , 0

}
(2)

= max
{
min

{
cDAs′ : s′ ≻vh s

}
− cDAs , 0

}
.

The first term in the middle part of equation 2 denotes the probability that v’s lottery

number does not exceed the cutoff at any school that she prefers more than s. The sec-

ond term is the probability that her lottery number exceeds the cutoff at s, conditional

on it not exceeding those in more preferred schools.

Deferred Acceptance with Neighborhood Priority (DN).

Under DN, school assignment is determined based on families’ preferences, lottery

numbers, priorities and cutoffs. Again, preferences are decided by neighborhood choices
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through equation 1 and lottery numbers are drawn uniformly and independently from

the unit interval. Families receive priority 1 at neighborhood schools and priority 0

at non-neighborhood ones. Formally, neighborhood choices τ result in a probability

measure Gτ on P × S × [0, 1] satisfying

Gτ

(
(≻, s, r) ∈ P × S × [0, 1] : ≻∈ P ′, s ∈ S ′, r ∈ (r0, r1)

)
= τ

(
(v, h) ∈ V × H̄ : ≻v,h=≻, sh ∈ S ′

)
×
(
r1 − r0

)
,

for each P ′ ⊆ P , S ′ ⊆ S and (r0, r1) ⊆ [0, 1]. Thus, Gτ

(
(≻, s, r) ∈ P × S × [0, 1] :≻∈

P ′, s ∈ S ′, r ∈ (r0, r1)
)
equals the mass of families with preferences in P ′, who reside

in the neighborhood of some school in S ′ ⊆ S and whose lottery numbers are in the

interval (r0, r1). For a vector c ∈ [0, 1]|S| the demand function D : [0, 1]|S| → [0, 1]|S| is

given by

Ds(c) = Gτ

(
(≻, s′, r) ∈ P × S × [0, 1] : r + 1[s′ = s] ≥ cs and

s ≻ s′′ for all s′′ with r + 1[s′ = s′′] ≥ cs′′
)
.

For c ∈ [0, 1]|S| and x ∈ [0, 1] we let c(s, x) ∈ [0, 1]|S| denote the vector that differ from

c by that cs(s, x) = x. Consider the sequence of vectors recursively defined by

ct+1
s =

0 if Ds(c
t) < qs

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise

Again, as shown by Abdulkadiroğlu et al. (2017b), the sequence is convergent. Let

cDN := limt→∞ ct denote the DN cutoffs. A family is assigned to school s if her

priority at s plus her lottery number exceeds cDNs , and she prefers s to any school

where her priority plus the lottery number exceeds the corresponding DN cutoff. From

the description of DN, it can be verified that the probability of this event for a school

s is equal to
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λDNvs (h, τ) =


0 sh ≻vs s,

min
{
cDNs′ : s′ ≻vs sh

}
sh = s

max
{
min

{
cDNs′ : s′ ≻vs sh

}
− cDNs , 0

}
otherwise.

(3)

3.3 Existence of CE

In this subsection I establish the existence of CE under the school assignment mecha-

nisms.

I first discuss existence of a CE of NA. Under NA, families’ expected utilities of choosing

different neighborhoods do not depend on other families’ neighborhood choices. Hence,

my problem is equivalent to a continuum assignment game without externalities (Gret-

sky et al., 1992,9). The existence of a (unique) CE of NA is therefore guaranteed by

an analogous result for continuum assignment games.

Theorem 1. When η is non-atomic and has full support, there is a unique CE of NA.

Proof. For any τ ∈ T , uNAv (h, τ) = v(h, sh). Let η̃ be a probability measure on

Ṽ := [0, 1]|H| given by

η̃
(
Ũ
)
= η

(
v ∈ V : (v(h, sh))h∈H ∈ Ũ

)
,

for all measurable Ũ ⊆ Ṽ . Since η has full support, so does η̃. A CE of NA corresponds

to Walrasian equilibrium of the non-atomic assignment model of Gretsky et al. (1999).

Therefore, the existence of a unique CE of NA follows from their Proposition 6.

My next result establishes the existence of CE of DN and DA.

Theorem 2. When η is absolutely continuous and has full support, there is a CE of

DN and DA.
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Proof. Appendix A.

A crucial step for the proof is establishing that school assignment probabilities change

continuously with families’ neighborhood choices. I use the Schauder-Tychonoff fixed

point theorem to establish CE existence.

In discrete economies assignment externalities may preclude existence of CE of DN

and DA. I illustrate this through an example in Appendix B. However, I show that

for any level of approximation, approximate equilibria exist in any sufficiently large

discrete economies. Moreover, all the welfare comparisons for the continuum case also

hold (approximately) for the discrete one as as the market gets large.

4 Aggregate Welfare

In this section I compare the school assignment mechanisms in terms of aggregate (or

utilitarian) welfare.9

Definition 2. For two mechanisms ϕ and ψ we say that ϕ creates higher aggregate

welfare than ψ if for arbitrary CE neighborhood choices τϕ of ϕ and τψ of ψ,∫
uϕv (h, τ

ϕ)dτϕ ≥
∫
uψv (h, τ

ψ)dτψ.10

My definition of aggregate welfare does not account for neighborhood prices. Therefore,

it should not be interpreted as the welfare of the families only, but that of the entire

economy. That is, the aggregate welfare in my model is the ‘sum’ of utilities of all

families and house sellers, who may be thought of as passive agents in the model.

9In Section 5, I also compare school assignment mechanisms in terms of welfare of lowest-income

families, which is a realistic comparison notion to understand the distributional consequences of school

choice.
10The way I define aggregate welfare comparisons across the mechanisms is robust to the CE selec-

tion rule when there is a multiplicity.
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4.1 DN versus NA

A major result of this paper is that DN creates unambiguously higher aggregate welfare

than NA.

Theorem 3. DN creates higher aggregate welfare than NA.

Before proving the result I first provide some intuition behind it. Like NA, DN al-

lows families with high valuations to enroll their children to their preferred schools by

choosing the corresponding neighborhood. In addition, it provides more flexibility for

families to enroll their children to schools outside of their neighborhoods when those

have empty seats (i.e., ‘unclaimed’ by neighborhood families). In the special case where

CE prices are equal under both mechanisms, it is immediate that all families prefer

DN to NA, as families can choose the same neighborhood and have superior schooling

options. However, this observation does not extend to the general case: when CE prices

are not the same under DN and NA, some families may be worse off under DN because

of price increases in their preferred neighborhoods. Such an example is provided in

Appendix C. Although some families’ may prefer NA to DN, Theorem 3 says that the

aggregate welfare is always larger under the former mechanism. The proof uses the

result that Walrasian equilibria of continuum assignment games maximize aggregate

welfare (Gretsky et al., 1992). I outline the proof below.

When fixing school assignment probabilities, my model may be thought of as a contin-

uum assignment game where families’ valuations for neighborhoods are their expected

utilities from choosing those. Consider an arbitrary CE of NA and DN. If families

choose neighborhoods according to the CE of NA, but their expected utilities from

choosing neighborhoods are calculated as if the other families choose neighborhoods

according to DN and the school assignment mechanism is DN, then the correspond-

ing aggregate welfare (in fact, the welfare of each family) would be larger than that

under the CE of NA. This is true since under DN families can be assigned to their
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neighborhood school due to their higher priorities. Moreover, assuming that the ex-

pected utilities are as described above, families’ choosing neighborhoods according to

DN instead of NA would further improve aggregate welfare. This is true since DN

neighborhood choices constitute a Walrasian equilibrium of the corresponding contin-

uum assignment game, and therefore maximize aggregate welfare. For the sake of

completeness, I give the formal proof below.

Proof. Let (τDN , pDN) be a CE of DN. Also, let Ṽ := [0, 1]|H| and η̃DN be a measure

on Ṽ given by

η̃DN
(
Ũ
)
= η

(
v ∈ V : (uDNv (h, τDN))h∈H ∈ Ũ

)
,

for all measurable Ũ ⊆ Ṽ . Since η has full support, so does η̃DN . Define a measure

τ̃DN on Ṽ × H̄ by

τ̃DN
(
(ũ, h) ∈ Ṽ×H̄ : ũ ∈ Ũ , h ∈ H ′

)
= τDN

(
(v, h) ∈ V×H̄ :

(
uϕv (h, τ

DN)
)
h∈H ∈ Ũ , h ∈ H ′

)
,

for all measurable Ũ ⊆ Ṽ and H ′ ⊆ H. Then, (τ̃DN , pDN) is a Walrasian equilibrium of

the non-atomic assignment game η̃DN . Hence, by Theorem 4 of Gretsky et al. (1992),

τDN = argmax
τ∈T

∫
uDNv (h, τDN)dτ, (4)

s.t. τDN
(
(v, h) ∈ V ×H : h = h′

)
≤ qh′ , for all h

′ ∈ H.

Hence, ∫
uDNv (h, τDN)dτDN ≥

∫
uDNv (h, τDN)dτNA

≥
∫
v(h, sh)dτ

NA =

∫
uNAv (v, τNA)dτNA,

where the first inequality above follows from equation 4, and the second inequality fol-

lows from that each type is assigned to a school she weakly prefers to the neighborhood

school under DN.
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4.2 DN versus DA

In this subsection I compare aggregate welfare between the two versions of the Deferred

Acceptance mechanism.

The welfare comparison across DN and DA is less straightforward. Generally, each

mechanism can result in a higher aggregate welfare than the other one. I show that

DN outperforms DA in two special case of my model.

Assumption 1. Suppose V = {vα}α∈[0,1], H = {hi}Ni=1, S = {si}Ni=1 and for almost all

α ∈ [0, 1],

• vα(hi, sm) ≥ vα(hj, sn) for all hi, hj ∈ H, i ≥ j and sm, sn ∈ S,m ≥ n,

• vα(h1, s1) = 0 and vα(hi, sm)− vα(hj, sn) is increasing in α for all hi, hj ∈ H, i ≥

j and sm, sn ∈ S,m ≥ n.

In other words, Assumption 1 says that families, neighborhoods and schools are in-

dexed, all families have a higher valuation for higher indexed neighborhoods and schools

and these valuations have increasing differences in (α; i, j). The index of the family may

reflect the child’s ability, parent’s education level, family income or some combination

of those. The index of a neighborhood or a school reflects its quality.

The assumptions of same ordinal preference rankings and increasing differences of val-

uations are also made by papers like Calsamiglia et al. (2015), Xu (2019) and Avery

and Pathak (2020). However, those papers also assume that families only care about

schools, while I allow valuations for neighborhoods too. None of those works provides

welfare comparisons between the two version of the Deferred Acceptance mechanism.

My next assumption relaxes increasing differences, but imposes common and additively

separable valuations for neighborhoods.
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Assumption 2. Suppose H = {hi}Ni=1, S = {si}Ni=1, and there are constants (ei)
N
i=1

such that for almost all v ∈ V ,

• v(h, sm) ≥ v(h, sn) for all h ∈ H and sm, sn ∈ S,m ≥ n,

• v(hi, s)− v(hj, s) = ei − ej ≥ 0 for all hi, hj ∈ H, i ≥ j and s ∈ S.

Theorem 4. Suppose either Assumption 1 or 2 is satisfied. Then, DN creates higher

aggregate welfare than DA.

Proof. The proof of the first part (for Assumption 1) is in Appendix A.2. I now prove

the second part (for Assumption 2.

Let (τDN , pDN) and (τDA, pDA) be arbitrary CE of DN and DA, respectively. Suppose∑
h∈H qh = 1. This is without loss of generality since we can add a neighborhood and

a school with large enough capacities that are undesirable for all families, or we can

add families that are indifferent across all neighborhoods and schools

First, I compute admission cutoffs and school assignment probabilities under DA. Since

families have identical ordinal rankings over the schools, all families will demand sN .

Since the school’s capacity is qsN , its cutoff shall be equal to cDAsN = max{1 − qsN , 0}.

Then, all families with lottery numbers smaller than the cutoff cDAsN will demand school

sN−1. Hence, the school’s cutoff shall equal to cDAsN−1
= max

{
1− qsN − qsN−1

, 0
}
. By an

induction argument, we can show that the cutoff at sk, for any k ∈ {2, ..., N}, is equal

to

cDAsk = max
{
1−

N∑
j=k

qsj , 0
}
.

Hence, the probability that a family assigned to sk or a better school is equal to

min
{∑N

j=k qsj , 1
}
.

Now consider DN. All families will demand school sN . Applicants residing in hN will

be guaranteed admission at the school, and the remaining (qsN − qhN ) seats will be be
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assigned among (1− qhN ) applicants not residing in hN . Hence, the cutoff of the school

shall equal to cDNsN = max
{
1− qsN−qhN

1−qhN
, 0
}
=

1−qsN
1−qhN

. All applicants who reside outside

of school sN and whose lottery numbers are smaller than the cutoff cDNsN will demand

school sN−1. Among those applicants, the ones residing in hN−1 will be guaranteed

admission at the school. Hence, the school will only have qsN−1
− qhN−1

cDNsN remaining

seats to the remaining ones. Assuming the cutoff cDNN−1 is non-zero, it shall satisfy

cDNsN − cDNsN−1
=
qsN−1

− qhN−1
cDNsN

1− qhN − qhN−1

.

Therefore,

cDNsN−1
= cDNsN −

qsN−1
− qhN−1

cDNsN
1− qhN − qhN−1

= cDNsN

(
1 +

qhN−1

1− qhN − qhN−1

)
−

qsN−1

1− qhN − qhN−1

= cDNsN

( 1− qhN
1− qhN − qhN−1

)
−

qsN−1

1− qhN − qhN−1

=
(1− qsN
1− qhN

) ( 1− qhN
1− qhN − qhN−1

)
−

qsN−1

1− qhN − qhN−1

=
1− sN − sN−1

1− qhN − qhN−1

.

Hence,

cDNsN−1
= max

{ 1− sNsN−1

1− (qhN − qhN−1
)
, 0

}
.

By an induction argument, we can show that for any k ∈ {2, ..., N},

cDNsk = max

{
1−

∑N
j=k qsj

1−
∑N

j=k qhj
, 0

}
.

The probability that a family residing in neighborhood hi is assigned to sk or a better

school is equal to one if i ≥ k (since the neighborhood school can be guaranteed) and

is equal to

min

{
1−

1−
∑N

j=k qsj

1−
∑N

j=k qhj
, 1

}
= min

{∑N
j=k

(
qsj − qhj

)
1−

∑N
j=k qhj

, 1

}
,

if i < k.
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Consider the ‘strategy’ of a family where she chooses neighborhood hj with probability

qhj for all j ∈ {1, 2, ..., N}. Let k be such that
∑N

j=k qsj ≤ 1. Then, the probability

that a family employing this strategy is assigned to sk or a better is equal to

N∑
j=k

qhj +
(
1−

N∑
j=k

qhj

) (∑N
j=k

(
qsj − qhj

)
1−

∑N
j=k qhj

)
=

N∑
j=k

qsj

The right hand side of the equation is the probability of being assigned to sk or a

better school under DA. Hence, any family can replicate the DA school assignment

probabilities by employing the strategy mention above. Formally, neighborhood choices

τ corresponding to almost all types playing this strategy is given by

τ
(
U × {hj}

)
= η(U)× qhj ,

for all measurable U ⊆ V and hj ∈ H. Finally, note that τ is a ‘feasible’ strategy, or

τ
(
(v, h) ∈ V ×H : h = h′

)
≤ (=)qh′ , for all h

′ ∈ H.

Therefore,∫
uDNv (h, τDN)dτDN ≥

∫
uDNv (h, τDN)dτ =

∫
uDAv (h, τDA)dτDA,

where the first inequality follows from equation 4 (and ‘feasibility’ of τ), and the

second inequality follows from strategy τ replicates DA assignment probabilities.11

This complete the proof of the second part of Theorem 4.

Assumptions 1 and 2 are restrictive as they imply that families have common ordinal

preferences over neighborhoods and schools. Such a preference structure has been

commonly imposed by the previous works on the topic to gain tractability (Avery and

Pathak, 2020; Calsamiglia et al., 2015; Xu, 2019). My work too uses the assumption

11Neighborhood choices are not necessarily the same under τ and τDA, however since the families’

valuations over neighborhoods are identical, only school assignment is relevant for the aggregate

welfare.
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for tractability, and I do not provide more general conditions to give stronger welfare

comparisons across DN and DA. Therefore, the superior welfare performance of DN

compared to DA in Theorem 4 should be interpreted with care. In Appendix C I

provide two counterexamples, where Assumption 1 and 2 fail, and DA outperforms

DN in terms of aggregate welfare.

Despite these limitations, my results that DN creates higher aggregate welfare than

DA in certain special cases may serve as a potential justification of the fact that school

district typically grant higher priorities to neighborhood students.

5 Budget Constraints and Lowest-Income Family

Welfare

In this section a family’s type is her valuations v ∈ [0, 1]|H|×|S| := V for neighborhoods

and schools and her budget (or income) b ∈ [0, 1], which denotes the maximum amount

she can pay for a neighborhood. The economy is described by a probability measure

η on V × [0, 1]. In this section I study the welfare of lowest-income families, i.e., those

whose budget is zero (or sufficiently close to zero).12

Neighborhood choices τ is a probability measure on V × [0, 1] × H̄ satisfying τ
(
U ×

I × H̄
)
= η

(
U × I

)
for all measurable U × I ⊆ V × [0, 1].

Definition 3. For neighborhood choices τ and price vector p ∈ R|H|
+ , we say a pair

12Instead of modelling budget constraints, an alternative way of incorporating income levels would

be through assuming that families are differentiated by an income parameter, and those with a smaller

income parameter have a ‘higher valuation for money’ (Avery and Pathak, 2020; Epple and Romano,

1998; Xu, 2019). My results would extend to that environment if lowest-income families would have

sufficiently high valuation for money so that they would choose the cheapest neighborhood in equi-

librium. I find it natural to model income levels through budget, and therefore, all the analysis is

described for this setup.
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(τ, p) is a competitive equilibrium (CE) of mechanism ϕ if it satisfies the following

conditions:

1. τ
(
(v, b, h) ∈ V × [0, 1]× H̄ : h = argmaxh′∈H̄b

uϕvb(h
′, τ)− ph′

)
= 1,

where p0 := 0 and H̄b := {h ∈ H̄ : ph ≤ b},

2. τ
(
(v, b, h) ∈ V × [0, 1]× H̄ : h = h′

)
≤ qh′ ,∀h′ ∈ H.

3. τ
(
(v, b, h) ∈ V × [0, 1]× H̄ : h = h′

)
< qh′ ⇒ ph′ = 0.

In general, existence of CE is not guaranteed under any of the studied mechanisms.

This is an immediate consequence of an analogous result for Walrasian equilibria of

assignment games with budget constraints (e.g., see van der Laan, Talman, and Yang

(2018)). I restrict attention to economies that admit a CE.

Definition 4. A mechanism ϕ creates higher welfare for lowest-income fam-

ilies than mechanism ψ if for arbitrary CE (τϕ, pϕ) of ϕ and (τψ, pϕ) of ψ, there is a

number b̄ > 0, such that for any measurable U × I ⊆ V × [0, b̄],∫
U×I

[
uϕvb(h, τ

ϕ)− pϕh
]
dτϕ ≥

∫
U×I

[
uψvb(h, τ

ψ)− pψh
]
dτψ.

Throughout this section I assume that
∑

h∈H qh ≥ 1. This is without loss of generality,

since otherwise there will be no zero-priced neighborhood in equilibrium, making the

analysis for lowest-income family welfare trivial as they all will choose the outside

option 0.

Definition 5. For a CE (τϕ, pϕ) of ϕ, we say neighborhood h is underdemanded if

pϕh = 0. Similarly, for ϕ ∈ {DN,DA}, we say school s is underdemanded if cϕs = 0.

My next result gives a sufficient condition under which lowest-income families prefer

DN and DA to NA.

Theorem 5. The following is true:
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1. If underdemanded neighborhoods under NA are also underdemanded under DN,

then DN creates higher welfare for lowest-income families than NA.

2. If underdemanded neighborhoods under NA are also underdemanded under DA,

and moreover, these neighborhoods have underdemanded schools, then DN creates

higher welfare for lowest-income families than NA.

For CE (τϕ, pϕ) of a mechanism ϕ, let Hϕ
− and Sϕ− denote the set of underdemanded

neighborhoods and schools at (τϕ, pϕ), respectively. I now prove Theorem 5.

Proof. First, I prove point 1. Let b̄ := minh∈H\HNA
−

pNAh /2. Then, by Definition 3,

τNA
(
(v, b, h) ∈ V × [0, 1]× H̄ : b ∈ [0, b̄], h ∈ HNA

−

)
= η

(
(v, b) ∈ V × [0, 1] : b ∈ [0, b̄]

)
. (5)

In words, equations 5 says that almost all families with budgets in [0, b̄] choose a

neighborhood in HNA
− under τNA. Consider an arbitrary measurable U×I ⊆ V × [0, b̄].

Then, ∫
U×I

[
uDNvb (h, τDN)− pDNh

]
dτDN ≥

∫
U×I

[
uDNvb (h, τDN)− pDNh

]
dτNA

=

∫
U×I

uDNvb (h, τDN)dτNA ≥
∫
U×I

v(h, sh)dτ
NA

=

∫
U×I

uNAvb (h, τNA)dτNA =

∫
U×I

[
uNAvb (h, τNA)− pNAh

]
dτNA. (6)

The first inequality in equation 6 follows from equation 5 and the optimality of neigh-

borhood choices. The first equality follows from that HNA
− ⊆ HDN

− . The second in-

equality follows from that under DN each family is guaranteed a weakly better school

than the neighborhood school. The last equality again follows from equation 5.

I now prove point 2. Let b̄ be as before and consider an arbitrary measurable U × I ⊆

V × [0, b̄]. Then,∫
U×I

[
uDAvb (h, τDA)− pDAh

]
dτDA ≥

∫
U×I

[
uDAvb (h, τDA)− pDAh

]
dτNA
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=

∫
U×I

uDAvb (h, τDA)dτNA ≥
∫
U×I

v(h, sh)dτ
DA

=

∫
U×I

uNAvb (h, τNA)dτNA =

∫
U×I

[
uNAvb (h, τNA)− pNAh

]
dτNA. (7)

The second inequality in equation 7 follows from that
{
sh ∈ S : h ∈ HNA

−
}
⊆ S̄DA.

The condition along with equation 5 implies that schools in neighborhoods chosen by

types in U×I are underdemanded. Thus, under DA each of these families is guaranteed

a weakly better school than the neighborhood school. The arguments for other steps

in equation 7 are as in point 1.

In other words, the conditions in in Theorem 5 say the following. First, they say

that underdemanded neighborhoods remain underdemanded once we switch from a

CE of NA to a CE of DN or DA. Second, they say that schools in underdemanded

neighborhoods are underdemanded. The conditions are intuitive, and later in this

section I show that they are satisfied for some natural special cases (Corollaries 1 and

2).

Conditions in Theorem 5 are sufficient, but not necessary. That is, there are economies

that do not satisfy the conditions, but where all lowest-income families prefer DN or

DA to NA. However, for any such economy, or for any economy in general, one can

find another economy that is arbitrarily close to the original one, such that either the

conditions in Theorem 5 hold, or a positive measure of zero-income families prefer NA

to DN or DA. Thus, in a sense, the conditions in Theorem 5 are necessary if we also

require ‘robustness’ of lowest-income family welfare comparisons to small perturbations.

Theorem 6. Consider an arbitrary economy η′ and ϵ > 0.

1. There is an economy η satisfying,

∥η − η′∥2 < ϵ
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(where ∥·∥2 denotes the L2 norm), such that HNA
− ⊆ HDN

− , or DN does not create

higher welfare for lowest-income families than NA.

2. There is an economy η satisfying

∥η − η′∥2 < ϵ,

such that HNA
− ⊆ HDA

− and
{
sh ∈ S : h ∈ HNA

−
}
⊆ SDA− , or DA does not create

higher welfare for lowest-income families than NA.

Proof. Appendix A.3.

I finish this section by showing that the conditions is Theorem 5 are satisfied for

natural special cases. The first case assumes common ordinal preference rankings over

neighborhoods and schools.

Assumption 3. Suppose H = {hi}Ni=1, S = {si}Ni=1, and for almost all v ∈ V ,

• v(h, sm) ≥ v(h, sn) for all h ∈ H and sm, sn ∈ S,m ≥ n,

• v(hi, s) ≥ v(hj, s) for all hi, hj ∈ H, i ≥ j and s ∈ S.

Note that Assumption 3 is weaker than Assumptions 1 and 2.

Corollary 1. Suppose Assumption 3 is satisfied. Then, DN and DA create higher

welfare for lowest-income families than NA.

Proof. Appendix A.4.

The result is intuitive: with a common ordinal preferences rankings over neighborhoods

and schools, the least preferred neighborhoods and schools are the underdemanded ones

for all school assignment mechanisms. Thus, the conditions Theorem 5 are satisfied.
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Although widely applied for tractability (e.g., Abdulkadiroğlu, Che, and Yasuda (2011);

Avery and Pathak (2020); Calsamiglia et al. (2015); Neilson, Akbarpour, Kapor, van

Dijk, and Zimmerman (2020); Xu (2019)), the assumption of common ordinal prefer-

ence rankings is restrictive. My next result (Corollary 2) provides another condition

that guarantees that families prefer DA over NA. We say an economy is uniform if

each valuation profile is equally likely. Formally, η is a uniform economy if for each

measurable U×I ⊆ V × [0, 1] and U ′×I ⊆ V × [0, 1], U and U ′ have the same Lebesgue

measure only if η
(
U × I

)
= η

(
U ′ × I

)
.

Suppose
∑

h∈H qh = 1 and

h̄ ∈ argmax
h∈H

qh ⇒ qsh̄ ∈ argmax
s∈S

qs.

In words, the first condition says that the total capacity at neighborhoods equals to

the total mass of families, and the second condition says that largest neighborhoods

have the largest schools. I show that the uniform economy satisfies the second part of

conditions in Theorem 5 for this special case, and therefore DA creates higher welfare

for lowest-income families than NA.

Corollary 2. Let η be the uniform economy. Then, DA creates higher welfare for

lowest-income families than NA.

Proof. Appendix A.5.

The proof uses the fact that in the uniform economy the underdemanded neighborhoods

and schools are the ones with the largest capacities.

The uniform economy framework is commonly applied in matching theory literature

to obtain analytical results without restricting the preference domain (Abdulkadiroğlu,

Che, Pathak, Roth, and Tercieux, 2020a; Che and Tercieux, 2017; Grigoryan, 2020).

The uniform economy can be thought of as an ‘average’ economy. Hence, the result
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may be interpreted as that ‘on average’ lowest-income income families prefer DA over

NA.

6 Simulations

I compare school assignment mechanisms in a simulated environment 1000 students,

10 neighborhoods and 10 schools. The valuation of family f for the joint assignment

to neighborhood h and school s is equal to

vf (h, s) = αUh + (1− α)Us + β1[s = sh] + ϵfhs,

where

• Uh is the common valuation for neighborhood h,

• Us is the common valuation for school s,

• ϵfhs is the idiosyncratic valuation of family f for the joint assignment to h and s,

• α and β are parameters.

Values of Uh, Us and ϵfhs are iid uniform draws from the unit interval. The capacity of

school s is equal to 100 + κs, where κs is a random draw from the set {1, 2, ..., 100/γ}.

Thus, a larger value of γ means a smaller variance in schools’ capacities. I report

simulations results for the following parameters: α ∈ {0, 0.5, 1}, β ∈ {0.1, 0.2} and

γ ∈ {2, 4}.

Table 4 reports the percentage gains or losses in aggregate welfare under DN and DA

compared to NA. As the theory predicts, DN always generate larger aggregate welfare

than NA. The average aggregate welfare gains are 2.40%. Those gains are larger when

neighborhood schools are less desirable (i.e., β is smaller) and when schools have more
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𝛼 
 

 

𝛽 
 
 

𝛾 
 
 

DN 
 

 

DA 
 

 
     
     

0 0 2 4.96 −3.75 
  4 3.17 −7.93 
     
 0.1 2 2.73 −9.88 
  4 1.54 −14.53 
     
 0.2 2 2.01 −13.30 
  4 0.69 −18.26 
     

0.5 0 2 4.32 1.50 
  4 3.19 −0.43 
     
 0.1 2 2.10 −3.87 
  4 1.13 −5.52 
     
 0.2 2 0.98 −5.79 
  4 0.49 −7.82 
     

1 0 2 5.57 5.65 
  4 5.55 5.58 
     
 0.1 2 1.82 1.61 
  4 1.55 1.54 
     
 0.2 2 0.71 0.55 
  4 0.70 0.55 
     
     
     

Average   2.40 −4.12 
     

 
 
 
 
 

2.40055556  
-

4.1166667 
 
 

Table 1: Aggregate welfare, % gains/losses compared to NA

31



seats (i.e., γ is larger). The table also illustrates that NA and DA are not comparable in

terms of aggregate welfare: the former mechanism performs better for smaller values of

α, while the latter mechanism performs better for larger ones. Here is the intuition be-

hind the comparative statics. When α = 0, families’ preferences for schools are aligned.

In that case, NA (and also DN) allows families’ with highest cardinal valuations for

schools to guarantee admission there by choosing the corresponding neighborhood.

Hence, NA generates higher aggregate welfare than DA. In contrast, when α = 1,

families have no common valuations for schools, and preferences for schools are not

aligned. Hence, DA (and also DN) manages to assign almost all families to their most

preferred schools, and generates higher aggregate welfare than NA.

Finally, Table 5 illustrates how DN and DA compare to NA in terms of welfare of

lowest-income family.

The welfare of lowest-income families is computed by assuming that 10 out of 1000

individuals have budgets of 0.05 and the remaining ones have infinite budgets.13 As the

table illustrates, DN and DA create larger welfare for lowest-income families compared

to NA. The average gains are 26.51% and 38.25%, respectively. Thus, simulations

show that the superior performance of the Deferred Acceptance mechanism in terms

of lowest-income families’ welfare extends beyond the special cases in Corollaries 1 and

2.

13I restrict attention to this simple case for tractability: in general, as discussed in Section 5, CE

may not even exist.
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𝛼 
 
 

𝛽 
 
 

𝛾 
 
 

DN 
 

 

DA 
 
 

     
     

0 0 2 47.80 68.40 
  4 37.54 62.58 
     
 0.1 2 29.24 47.16 
  4 21.68 41.23 
     
 0.2 2 24.43 41.62 
  4 15.75 35.64 
     

0.5 0 2 35.78 46.67 
  4 29.80 43.11 
     
 0.1 2 24.22 31.55 
  4 13.64 31.14 
     
 0.2 2 13.36 19.85 
  4 8.94 18.71 
     

1 0 2 47.05 50.64 
  4 46.77 50.34 
     
 0.1 2 28.93 31.72 
  4 28.45 32.42 
     
 0.2 2 12.10 17.49 
  4 11.62 18.19 
     
     
     

Average   26.51 38.25 
     

 
 
 
 
26.5055556  38.2477778 

 
 
 

Table 2: Lowest-income welfare, % gains compared to NA
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7 Discussion

My findings suggest that the Deferred Acceptance mechanism has superior welfare and

distributional properties compared to neighborhood assignment. The results poten-

tially justify the mechanisms’ widespread application for school assignment.

School choice programs take diverse forms, including open enrollment, expansion of

magnet or charter schools, private schools and voucher programs. Hence, my findings

should not be interpreted as arguments for school choice programs in general, but argu-

ments for open enrollment, potentially through the Deferred Acceptance mechanism.

Arguments against (and for) other school choice programs are numerous. For exam-

ple, Epple and Romano (2003) show that voucher programs may lead to higher ability

stratification (at schools) compared to neighborhood assignment, which, in turn, leads

to more stratification compared to open enrollment. This, as the authors describe it

as another example of the truism that “all choice programs are not alike”. A different

argument has been made against charter schools by Zheng (2019). She shows that

opening a charter school may hurt low-income families through its effect on neighbor-

hood prices. Other papers provide arguments against open enrollment through some

alternative school assignment mechanism. For example, the well-studied Immediate

Acceptance mechanism, also known as the ‘Boston’ mechanism, has been criticized

on the grounds that it is not strategyproof: families have incentives to ‘game the sys-

tem’ by misreporting preferences to obtain better choices (Abdulkadiroğlu and Sönmez,

2003). Moreover, the Immediate Acceptance mechanism may exacerbate inequalities

as low-income families might be disproportionately hurt if they are worse at ‘gaming

the system’ (Pathak and Sönmez, 2008) or if they have worse outside options (Cal-

samiglia et al., 2015; Neilson et al., 2020). In the Supplementary Appendix A.3 of

this paper I show that, when there are neighborhood priorities, the lowest-income fam-

ilies may prefer Deferred Acceptance to Immediate Acceptance. Although I do not

directly model heterogeneous outside options, neighborhood schools act as outside op-

34



tions in my model. This is because those schools are guaranteed for neighborhood

applicants due to neighborhood priorities. Therefore, my result is analogous to those

in Calsamiglia et al. (2015) and Neilson et al. (2020).

In my model families’ valuation for neighborhood-schools pairs are exogenously given

and do not depend on other families’ neighborhood choices. However, in reality there

are multiple sources of endogenous valuations or externalities. For example, school

quality oftentimes depends on the level of local public expenditure, which is typically

financed through property taxes (Chetty and Friedman, 2011). Families may also

have direct preferences for higher-income neighbors, better performing peers (Bachas,

Fonseca, and Pakzad-Hurson, 2021), or higher representation of their own race or ethnic

group (Bridge and Blackman, 1978; Glazerman, 1998). Matching models with general

externalities and rich preference domains are intractable due to the non-existence of

desirable solution concepts (Sasaki and Toda, 1996) or the computational complexity

issues (Ronn, 1990). Tractable analyses are possible when one puts restriction on the

nature of externalities. For example, in the context of education economics, papers

allowing peer effects typically study a stylized setup with ordered family types and

simple peer preferences where all families’ prefer the higher-type peers (e.g., Epple and

Romano (2003), Calsamiglia et al. (2015), Barseghyan et al. (2013) and Avery and

Pathak (2020)).

To understand the possible implications of endogenous valuations, in the Supplemen-

tary Appendix B, I extend the model to allow for local public financing, so that valu-

ations for schools depend on the housing values in the corresponding neighborhood. I

find that my findings on the aggregate welfare comparisons across the Deferred Accep-

tance mechanism and neighborhood assignment may not extend to this environment.

Under Deferred Acceptance (with or without neighborhood priorities), schools at higher

priced neighborhoods will attract applicants from other neighborhoods (because of the

school spending financed by neighborhood families). This may diminish social welfare
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if those schools are a bad match for the applicants absent the school spending.14 How-

ever, I show that most of my other main results, including the sufficiency conditions for

comparing lowest-income family welfare (i.e., Theorem 5), extend to the environment

with local public financing.

My work restricts attention to the setting with fixed outside options. In contrast,

Avery and Pathak (2020) study a setting with endogenously priced outside options,

which for example can be motivated by having multiple school districts. In their setting,

moving from neighborhood assignment to open enrollment may increase the price of the

cheapest neighborhood as open enrollment makes that neighborhood more attractive.

This may hurt lowest-income family welfare as they will be forced to leave the school

district. In my model with fixed outside options, if there is enough housing for all

families, cheapest neighborhoods are always priced at zero. Hence, my model does

not account for the possibility of hurting lowest-income families through the channel

described by Avery and Pathak (2020). However, my results would extend to the

setting with endogenously priced outside options if for example lowest-income families

are guaranteed public housing.

There are other arguments (both in favor or against) on school choice that my work does

not address. For example, I do not consider schools’ incentives to improve education

quality, whereas proponents consider it as a major argument in favor of school choice.

They argue that parental choice enhances school quality through competitive pressures

(Chubb and Moe, 1990; Friedman, 1962; Hoxby, 2003). My work also ignores the

possibility of sorting on dimensions other than income (O’Neil, 1996; Smith, 1995).

For example, when families have same-race preferences, parental choice may exacerbate

racial segregation, which is another major concern in public policy of school choice.

14This finding is analogous to that of Barseghyan et al. (2013), who show that in a model with peer

preferences and endogenous school quality open enrollment may reduce aggregate welfare compared

to neighborhood assignment.
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Despite the potential limitations above, my results provide a unique theoretical justifi-

cation for using the Deferred Acceptance mechanism as an alternative to neighborhood

assignment by establishing its superior welfare and distributional properties under gen-

eral conditions. Additionally, I develop a theoretical framework that can be used for

future research and potential extensions which would address the limitations above.
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A Omitted Proofs

A.1 Proof of Theorem 2

The proof below is for DN. The result for DA is proved analogously.

In what follows, whenever discussing continuity and convergence on measure spaces,

the topology under consideration is the topology of weak convergence of measures. Let

us τn ⇀ τ to denote that the sequence (τn)n∈N converges to τ in that topology.

As mentioned in Section 3, each τ ∈ T results in a measure Gτ on P × S × [0, 1] given

by

Gτ

(
(≻, s, r) ∈ P × S × [0, 1] : ≻∈ P ′, s ∈ S ′, r ∈ (r0, r1)

)
= τ

(
(v, h) ∈ V × H̄ : ≻vh∈ P ′, sh ∈ S ′

)
×
(
r1 − r0

)
,

for each P ′ ⊆ P, S ′ ⊆ S and (r0, r1) ⊆ [0, 1].

For two measures G and G′ on P ×S× [0, 1], let us define a distance between them by

d(G,G′) := sup
P ′⊆P,S′⊆S,r0,r1∈[0,1]

∣∣∣G((≻, s, r) ∈ P × S × [0, 1] : ≻∈ P ′, s ∈ S ′, r ∈ (r0, r1)
)

−G′
(
(≻, s, r) ∈ P × S × [0, 1] : ≻∈ P ′, s ∈ S ′, r ∈ (r0, r1)

)∣∣∣.
Lemma 1. Let (τ, p) be an arbitrary competitive equilibrium of DN and let c denote

the corresponding cutoffs vector. Consider a sequence of economies (τn)n∈N converging

to τ and the corresponding sequence of DN cutoffs (cn)n∈N. Then, cn → c.

Proof. The proof has two part.

Part 1. First, I show that Gτn
d−→ Gτ . By definitions of the distance function d and

measures Gτn and Gτ ,

d(Gτn , Gτ ) =

sup
P ′⊆P,S′⊆S,r0,r1∈[0,1]

(
r1 − r0

)
×

∣∣∣τn((v, h) ∈ V × H̄ : ≻vh∈ P ′, sh ∈ S ′
)
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−τ
(
(v, h) ∈ V × H̄ : ≻vh∈ P ′, sh ∈ S ′

)∣∣∣
≤ max

P ′⊆P,S′⊆S

∣∣∣τn((v, h) ∈ V × H̄ : ≻vh∈ P ′, sh ∈ S ′
)

− τ
(
(v, h) ∈ V × H̄ : ≻vh∈ P ′, sh ∈ S ′

)∣∣∣. (8)

Since τn ⇀ τ , by Portmanteau theorem (e.g., Billingsley (2013)) the last term in

equation 8 converges to zero. This establishes Part 1.

Part 2. We say Gτ has rich preferences if a positive measure of each preference type

resides in each neighborhood. Formally,

Definition 6. Gτ has rich preferences if for all ≻∈ P and s ∈ S,

τ
(
(v, h) ∈ V × H̄ : ≻vh=≻, sh = s

)
> 0.

The condition of rich preferences is stronger than that in Grigoryan (2022). Hence, by

their Theorem 3, rich preferences are sufficient to to have cn → c. I now show that the

condition is satisfied.

First, I will show that ph < 1 for all h ∈ H. Suppose, for the sake of contradiction,

that ph ≥ 1 for some h ∈ H. Then,

0 < qh = η
(
v ∈ V : uv(h, τ)− ph = argmax

h′∈H̄
uv(h

′, τ)− ph′
)

≤ η
(
v ∈ V : uv(h, τ)− ph ≥ 0

)
≤ η

(
v ∈ V : max

s∈S
v(h, s)− ph ≥ 0

)
= 0,

a contradiction.

Now, consider an arbitrary h ∈ H and let ϵ := 1− ph > 0. Define a subset Vh ⊆ V by

Vh :=
{
v ∈ V : v(h, s) > 1− ϵ/2, v(h′, s) < ϵ/2,∀s ∈ S, h′ ∈ H \ {h}

}
.

When choosing h, type v ∈ Vh guarantees a payoff strictly larger than

1− ϵ/2− ph = 1− ϵ/2− (1− ϵ) = ϵ/2,
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and when choosing h′ ∈ H \ {h}, she can obtain at most

ϵ/2− ph′ ≤ ϵ/2.

Thus, almost all types in Vh choose h at any CE and

τ
(
v ∈ Vh : sh = s

)
= η(Vh) > 0.

The last inequality follows from that η has full support. Again, by full support of η,

for each ≻∈ P there is a positive measure of types in Vh whose preferences are ≻.

Denoting by δ the smallest of these measures, we obtain the desired result.

As Part 2 of Lemma 1 demonstrates, all types in Vh choose neighborhood h in any CE

(τ, p). Consider an arbitrary τ ∈ T satisfying

τ
(
(v, h) ∈ V × H̄ : v ∈ Vh′ , h = h′

)
= η

(
Vh′

)
for all h′ ∈ H. (9)

Let τn ⇀ τ be an arbitrary sequences of neighborhood choices with cutoffs the corre-

sponding cutoffs sequence cn. Then, with similar arguments as in Lemma 1 one can

establish that cn → c, where c denotes the cutoff of τ . Thus, the continuity of cutoffs

hold for any neighborhood choices τ satisfying equation 9. For the rest of the proof,

let us restrict attention to such neighborhood choices. With abuse of notation, this set

is denoted by T .

Lemma 2. The collection of functions (uv(h, τ))v∈V,h∈H is equicontinuous in τ .

Proof. Recall that uv(h, τ) =
∑

s∈S λs(≻v,h, h, τ)v(h, s). First, I show that λs(≻, h, τ)

is continuous in τ . That λvs(h, τ) is continuous in c is immediate from equation 3.

Thus, by Lemma 1, λvs(h, τ) is continuous in τ .

Since
{
λvs(h, τ)

}
v∈V,h∈H is a finite collection of functions, it is equicontinuous. Since

v is bounded,
{
uv(h, τ)

}
h∈H,v∈V is equicontinuous too.
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Lemma 3. For any τ ∈ T , there is a unique price vector P(τ) ∈ R|H|
+ such that for

all h ∈ H,

η
(
v ∈ V : uv(h, τ)− Ph(τ) = argmax

h′∈H̄
uv(h

′, τ)− Ph′(τ)
)
≤ qh. (10)

and the equality is strict only if Ph(τ) = 0. Moreover, P(τ) is continuous in τ .

Proof. Let Ṽ := [0, 1]|H| and define a measure η̃ over Ṽ by

η̃
(
Ũ
)
= η

(
v ∈ V : (uv(h, τ))h∈H ∈ Ũ

)
,

for all measurable Ũ ⊆ Ṽ . Since η̃ is absolutely continuous and full support, the

existence of the unique vector P(τ) ∈ RN satisfying equation 10 follows from Gretsky

et al. (1999).

I prove the continuity of P : T → R|H|
+ in two parts.

Part 1. Suppose τn ⇀ τ . Let us show that η̃n ⇀ η̃. Consider an arbitrary ϵ > 0 and

Ũ ⊆ Ṽ with a measure zero boundary ∂Ũ . By Portmanteau theorem, it is sufficient to

show that η̃n(Ũ) → η̃(Ũ).

By absolute continuity of η̃, there is an open cover {O}i∈I of ∂Ũ such that η̃
(
∪i∈IOi

)
<

ϵ. Since ∂Ũ is a compact set, there is δ > 0 such that for any ũ ∈ ∂Ũ , the δ-ball around

ũ is contained in some element of the open cover {Oi}i∈I . For any δ ∈ [0, δ], let Ẽδ

denote the union of δ-balls around each point in ∂Ũ . Then, ∂Ũ ⊆ Ẽδ and

η̃(Ẽδ) ≤ η̃
(
∪i∈I Oi

)
< ϵ. (11)

By Lemma 2, for any sufficiently large n ∈ N,

η̃n(Ẽ
δ/2) = η

(
v ∈ V :

(
uv(h, τn)

)
h∈H ∈ Ẽδ/2

)
≤ η

(
v ∈ V :

(
uv(h, τ)

)
h∈H ∈ Ẽδ

)
= η̃(Ẽδ) < ϵ. (12)

By equation 11,

η̃(Ũ) ≤ η̃
(
Ũ \ Ẽδ

)
+ η̃(Ẽδ) < η̃

(
Ũ \ Ẽδ

)
+ ϵ. (13)
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By Lemma 2, potentially for a larger n ∈ N,

η̃
(
Ũ \ Ẽδ

)
= η

(
v ∈ V :

(
uv(h, τ)

)
h∈H ∈ Ũ \ Ẽδ

)
≤ η

(
v ∈ V :

(
uv(h, τn)

)
h∈H ∈ Ũ

)
= η̃n(Ũ). (14)

Combining equations 13 and 14,

η̃(Ũ) < η̃n(Ũ) + ϵ.

Similarly, by equation 12,

η̃n(Ũ) ≤ η̃n
(
Ũ \ Ẽδ/2

)
+ η̃n(Ẽ

δ/2) < η̃n
(
Ũ \ Ẽδ/2

)
+ ϵ, (15)

and by Lemma 2,

η̃n
(
Ũ \ Ẽδ/2

)
= η

(
v ∈ V :

(
uv(h, τn)

)
h∈H ∈ Ũ \ Ẽδ/2

)
≤ η

(
v ∈ V :

(
uv(h, τ)

)
h∈H ∈ Ũ

)
= η̃(Ũ). (16)

Combining 15 and 16,

η̃n(Ũ) < η̃(Ũ) + ϵ.

Part 2. Now, let us show that P is continuous in η̃. Let η̃n ⇀ η̃ and (Pn)n∈N be the

corresponding sequence of prices. Note that Pn
h < 1 for all h ∈ H. Suppose, for the

sake of contradiction, that Pn
h ≥ 1 for some h ∈ H and n ∈ N. Then,

0 < qh = η
(
v ∈ V : uv(h, τ

n)− Pn
h = argmax

h′∈H̄
uv(h

′, τn)− Pn
h′

)
≤ η

(
v ∈ V : uv(h, τ

n)− ph ≥ 0
)
≤ η

(
v ∈ V : max

s∈S
v(h, s)− Pn

h ≥ 0
)
= 0,

a contradiction. By Bolzano-Weierstrass theorem, (Pn)n∈N has a convergent subse-

quence. Without loss of generality, suppose Pn → P∗. It is sufficient to show that

P∗ satisfies equation 10. By uniqueness, this would imply P∗ = P and the desired

continuity result. For all h ∈ H define

Ṽh :=
{
ṽ ∈ Ṽ : h = argmax

h′∈H̄
ṽ(h′)− P∗

h′

}
.
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Suppose, for the sake of contradiction, that η̃(Ṽh) ̸= qh for some h ∈ H. Without loss

of generality, let η̃(Ṽh) > qh. Since η̃n ⇀ η̃ there are δ > 0 and M ∈ N such that

η̃n(Ṽh) > qh + δ, ∀n > M . By selecting a large enough n, one can make Pn arbitrarily

close to P∗ and therefore

η̃n

(
ṽ ∈ Ṽ : h = argmax

h′∈H̄
ṽ(h′)− Pn

h′

)
> qh,

a contradiction. This completes the proof of Lemma 3.

Define families’ best response mapping B : T → T by

Bτ
(
U, h

)
= η

(
v ∈ U : h = argmax

h′∈H̄
uv(h

′, τ)− Ph′(τ)
)
,

for all h ∈ H and measurable U ⊆ V .

Lemma 4. B is continuous.

Proof. Suppose τn ⇀ τ and U ⊆ V is a measure zero boundary set.

For any v ∈ V and h ∈ H, define Fτ (v, h) : T → R by

Fτ (v, h) = uv(h, τ)− Ph(τ)− max
h′∈H̄\{h}

(
uv(h

′, τ)− Ph′(τ)
)
.

By Portmanteau theorem, it is sufficient to show

Bτn(U, h) = η
(
v ∈ U : Fτn(v, h) ≥ 0

)
→ η

(
v ∈ V : Fτ (v, h) ≥ 0

)
= Bτ (U, h).

By Lemmas 2 and 3, the collection of functions {Fτ (v, h)}v∈V,h∈H is equicontinuous.

Fix an arbitrary ϵ > 0. By absolute continuity of η, there is δ > 0 such that

η
(
v ∈ U : Fτ (v, h) ∈ [0, δ)

)
< ϵ. (17)

By equicontinuity of {Fτ (v, h)}v∈V,h∈H , for any sufficiently large n ∈ N,

η
(
v ∈ U : Fτn(v, h) ∈ [0, δ/2)

)
< η

(
v ∈ U : Fτ (v, h) ∈ [0, δ)

)
< ϵ. (18)
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By equation 17,

η
(
v ∈ U : Fτ (v, h) ≥ 0

)
= η

(
v ∈ U : Fτ (v, h) ≥ δ

)
+ η

(
v ∈ U : Fτ (v, h) ∈ [0, δ)

)
< η

(
v ∈ U : Fτ (v, h) ≥ δ

)
+ ϵ. (19)

By equicontinuity of {Fτ (v, h)}v∈V,h∈H , and potentially larger n ∈ N,

η
(
v ∈ U : Fτ (v, h) ≥ δ

)
< η

(
v ∈ U : Fτn(v, h) ≥ 0

)
. (20)

Combining 19 and 20,

η
(
v ∈ U : Fτ (v, h) ≥ 0

)
< η

(
v ∈ U : Fτn(v, h) ≥ 0

)
+ ϵ.

Similarly, by equation 18,

η
(
v ∈ U : Fτn(v, h) ≥ 0

)
= η

(
v ∈ U : Fτn(v, h) ≥ δ/2

)
+η

(
v ∈ U : Fτn(v, h) ∈ [0, δ/2)

)
< η

(
v ∈ U : Fτn(v, h) ≥ δ/2

)
+ ϵ, (21)

and by equicontinuity of {Fτ (v, h)}v∈V,h∈H ,

η
(
v ∈ U : Fτn(v, h) ≥ δ/2

)
< η

(
v ∈ U : Fτ (v, h) ≥ 0

)
. (22)

Combining 21 and 22,

η
(
v ∈ U : Fτn(v, h) ≥ 0

)
< η

(
v ∈ U : Fτ (v, h) ≥ 0

)
+ ϵ.

This completes the proof of Lemma 4.

Each fixed point τ ∗ of B corresponds to a CE
(
τ ∗,P(τ ∗)

)
of DN. Since T is (weakly)

compact and B : T → T is (weakly) continuous, the existence of CE of DN follows

from Schauder-Tychonoff fixed point theorem.
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A.2 Proof of Theorem 4 (First Part)

The proof for the second part has been given in the main text. I now prove the first

part. Suppose the economy satisfies Axiom 1.

Let us assume that
∑N

i=1 qhi = 1. The assumption is without loss of generality,

since when
∑N

i=1 qhi < 1 one can add a neighborhood that no family likes, and when∑N
i=1 qhi > 1 one can add families who are indifferent across all schools and neighbor-

hoods, and who in equilibrium will choose lower indexed neighborhoods and schools.

Define the numbers 0 = a0 ≤ a1 ≤ ... ≤ aN = 1 by

η
(
{vα}α∈[ak−1,ak]

)
= qhk ,∀k ∈ {1, 2, ..., N}.

Then, it is immediate from the increasing differences property of valuations that a CE

exist, and in any CE (τϕ, pϕ) of ϕ ∈ {DN,DA},

τϕ
(
{vα}α∈[ak−1,ak] × {hk}

)
= qhk ,∀k ∈ {1, 2, ..., N}.

Let us compute school assignment probabilities and expected utilities under DA and

DN.

Under DA, school assignment is solely determined by lottery numbers. Any type vα is

assigned to a school she prefers weakly more than sk if and only if her lottery number

is in the interval
[
1−

∑k
j=1 qsj , 1

]
, the probability of which is min

{∑k
j=1 qsj , 1

}
.

Under DN, school assignment is determined based on both neighborhood choice and

lottery numbers. DN assignment can be given by the following procedure.

Round 1: Let VN = V and V̄N =
{
vα ∈ VN : α ∈ [aN−1, aN ]

}
. Each family in V̄N

is assigned to sN with probability one. Remaining seats at sN are assigned to families

qsN − η(V̄N) = qsN − qhN highest lottery numbers among the remaining ones.

Round k > 1: Let VN−k+1 denote the set of families that are unassigned by Round
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k and V̄N−k+1 =
{
vα ∈ VN−k+1 : α ∈ [aN−k, aN−k+1]

}
. If η(VN−k+1) < qsN−k+1

, all

remaining families are assigned to sN−k+1. Otherwise, families in V̄N−k+1 is assigned to

sN−k+1 with probability one and remaining seats at sN−k+1 are assigned to families with

qsN−k+1
− η(V̄N−k+1) = qsN−k+1

− qsN−k+1
highest lottery numbers among the remaining

ones.

Consider an alternative school assignment procedure, where one applies only Round 1

of DN, and assigns remaining students to schools uniform randomly. By an induction

argument, in order to show that DN creates higher aggregate welfare than DA, it is

sufficient to the alternative procedure creates higher aggregate welfare than DA.

The alternative procedure is equivalent to applying DA first, then switching the as-

signment of types in V̄N who are not assigned to sN , with types not in V̄N who are

assigned to sN . By increasing differences assumption, this reallocation improves ag-

gregate welfare. This completes the proof.

A.3 Proof of Theorem 6

First, I prove point 1. Consider an arbitrary economy η′ and ϵ > 0. Suppose HNA
− ̸⊆

HDN
− for all η with ∥η − η′∥2 < ϵ. Consider the economy

η =
(
1− ϵ

|H|+ 1

)
× η +

∑
h∈H

ϵ

|H|+ 1
× δ(vh,0),

where δ(vh,0) is the Dirac measure that puts all probability mass on the point (vh, 0),

and for each h ∈ H,

vh(h
′, s′) =

1 if (h′, s′) = (h, sh),

0 otherwise.

Consider a neighborhood h ∈ HNA
− \HDN

− . It is immediate that all families with type

(vh, 0) prefer NA to DN .

Now I prove point 2. Consider an arbitrary economy η′ and ϵ > 0. Suppose HNA
− ̸⊆
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HDA
− or

{
sh ∈ S : h ∈ HNA

−
}
̸⊆ SDA− for all η with ∥η − η′∥2 < ϵ. Consider the economy

η =
(
1− ϵ

2|H|+ 1

)
× η +

∑
h∈H

ϵ

2|H|+ 1
× δ(vh,0) +

∑
h∈H

ϵ

2|H|+ 1
× δ(vs,0),

where

vh(h
′, s′) =

1 if (h′, s′) = (h, sh),

0 otherwise,

and

vs(h, s
′) =

1 if s′ = s,

0 otherwise.

If there is a neighborhood h ∈ HNA
− \HDA

− , then all families with type (vh, 0) prefer NA

to DN . Otherwise, consider a school s ∈
{
sh ∈ S : h ∈ HNA

−
}
\ S ′DA

− . It is immediate

that all families with type (vs, 0) prefer NA to DA.

A.4 Proof of Corollary 1

Since neighborhoods and schools are ranked, the set of underdemanded neighborhoods

are those with index k satisfying
∑N

j=k qhj ≥ 1 under all three mechanisms. Moreover,

the set of underdemanded schools under DN and DA are those with index k satisfying∑N
j=k qsj ≥ 1. The result therefore follows from that qsj ≥ qhj for all j ∈ {1, 2, ..., N}.

A.5 Proof of Corollary 2

The proof has two parts. Part 1 establishes that HNA
− = H− := argmaxh∈H qh ⊆ HDA

− ,

and Part 2 establishes that
{
sh ∈ S : h ∈ HNA

−
}
⊆ SDA− . By Theorem 5, these two

conditions are sufficient to prove Corollary 2.

Part 1. Let us first show that HNA
− ⊆ H−. Suppose, for the sake of contradiction,
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that pNAh = 0 for some h ∈ H \H−. Consider an arbitrary h̄ ∈ H−. Then,

qh = η
(
(v, b) ∈ V ×B : h = argmax

h′∈H̄b

v(h′, sh′)− pNAh′
)

= η
(
(v, b) ∈ V ×B : v(h, sh) ≥ v(h̄, sh̄)− pNAh̄

and v(h, sh) ≥ v(h′, sh′)− pNAh′ , ∀h′ ∈ H̄b \ {h, h̄}
)

≥ η
(
(v, b) ∈ V×B : v(h, sh) ≥ v(h̄, sh̄) and v(h, sh) ≥ v(h′, sh′)−pNAh′ ,∀h′ ∈ H̄b\{h, h̄}

)
= η

(
(v, b) ∈ V×B : v(h̄, sh̄) ≥ v(h, sh) and v(h̄, sh̄) ≥ v(h′, sh′)−pNAh′ ,∀h′ ∈ H̄b\{h, h̄}

)
≥ η

(
(v, b) ∈ V ×B : v(h̄, sh̄)− pNAh̄ ≥ v(h, sh)

and v(h̄, sh̄)− pNAh̄ ≥ v(h′, sh′)− pNAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

≥ η
(
(v, b) ∈ V ×B : b ≥ pNAh̄ , v(h̄, sh̄)− pNAh̄ ≥ v(h, sh)

and v(h̄, sh̄)− pNAh̄ ≥ v(h′, sh′)− pNAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

η
(
(v, b) ∈ V ×B : h̄ = argmax

h′∈H̄b

v(h′, sh′)− pNAh′
)
= qh̄ > qh,

a contradiction. The second equality above follows from uniformity (therefore, sym-

metry) of η. The remaining steps are immediate. It is left to show that H− ⊆ HNA
− ,

or equivalently, pNAh = 0 for all h ∈ H−. Let h̄ ∈ H− be such that pNA
h̄

= 0. Such a

neighborhood exists since H− ⊇ HNA
− ̸= ∅. Suppose, for the sake of contradiction, that

pNAh > 0. Then,

qh = η
(
(v, b) ∈ V ×B : h = argmax

h′∈H̄b

v(h′, sh′)− pNAh′
)

= η
(
(v, b) ∈ V ×B : v(h, sh)− pNAh ≥ v(h̄, sh̄)− pNAh̄

and v(h, sh)− pNAh ≥ v(h′, sh′)− pNAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

< η
(
(v, b) ∈ V ×B : v(h̄, sh̄)− pNAh̄ ≥ v(h̄, sh)− pNAh

and v(h̄, sh̄)− pNAh̄ ≥ v(h′, sh′)− pNAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

= η
(
(v, b) ∈ V ×B : b ≥ pNAh̄ , v(h̄, sh̄)− pNAh̄ ≥ v(h, sh)
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and v(h̄, sh̄)− pNAh̄ ≥ v(h′, sh′)− pNAh′ , ∀h′ ∈ H̄b \ {h, h̄}
)

η
(
(v, b) ∈ V ×B : h̄ = argmax

h′∈H̄b

v(h′, sh′)− pNAh′
)
= qh̄,

a contradiction. The strict inequality above follows from uniformity of η and from that

pNAh > 0 = pNA
h̄

.

Let us now show that H− ⊆ HDA
− . Suppose, for the sake of contradiction, that pDAh > 0

for some h ∈ H−. Consider an arbitrary h̄ ∈ HDA
− . Then,

qh = η
(
(v, b) ∈ V ×B : h = argmax

h′∈H̄b

uDAv (h′, τDA)− pDAh′
)

= η
(
(v, b) ∈ V ×B : uDAv (h, τDA)− pDAh ≥ uDAv (h̄, τDA)− pDAh̄

and uDAv (h, τDA)− pDAh ≥ uDAv (h′, τDA)− pDAh′ , ∀h′ ∈ H̄b \ {h, h̄}
)

= η
(
(v, b) ∈ V ×B : uDAv (h̄, τDA)− pDAh ≥ uDAv (h, τDA)− pDAh̄

and uDAv (h, τDA)− pDAh ≥ uDAv (h′, τDA)− pDAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

< η
(
(v, b) ∈ V ×B : uDAv (h̄, τDA)− pDAh̄ ≥ uDAv (h, τDA)− pDAh

and uDAv (h̄, τDA)− pDAh̄ ≥ uDAv (h′, τDA)− pDAh′ ,∀h′ ∈ H̄b \ {h, h̄}
)

= η
(
(v, b) ∈ V ×B : h̄ = argmax

h′∈H̄b

uDAv (h′, τDA)− pDAh′
)
= qh̄,

a contradiction. The third equality follows from the uniformity of η and from that

school assignment probabilities do not depend on the neighborhood choices. The strict

inequality follows pDAh > 0 = pDA
h̄

.

Part 2. Consider an arbitrary h̄ ∈ H−. I show that s̄ := sh̄ ∈ SDA− . Suppose, for the

sake of contradiction, that

λ := λτ
DA

v̄s̄ (h, τDA) < λτ
DA

vs (h, τDA) = 1,

for some s ∈ S and types v̄ and v that rank s̄ and s as first choices, respectively. Note

that these probabilities are the same for all h ∈ H.

54



For each h ∈ H, let Uh ⊂ Vh denote the set of types that rank s̄ and s as the first two

choices, in arbitrary order. Then,∑
h∈H

η
(
(v, b) ∈ Uh ×B : v(h, s̄) > v(h, s) and h = argmax

h′∈H̄b

uDAv (h′, τDA)− pDAh′
)

=
∑
h∈H

η
(
(v, b) ∈ Uh ×B : v(h, s̄) > v(h, s)

and λv(h, s̄) + (1− λ)v(h, s)− pDAh ≥ λv(h′, s̄) + (1− λ)v(h′, s)− pDAh′ ,∀h′ ∈ H
)

<
∑
h∈H

η
(
(v, b) ∈ Uh ×B : v(h, s) > v(h, s̄)

and v(h, s)− pDAh ≥ h = v(h′, s̄)− pDAh′ ,∀h′ ∈ H
)

=
∑
h∈H

η
(
(v, b) ∈ Uh ×B : v(h, s) > v(h, s̄) and h = argmax

h′∈H̄b

uDAv (h′, τDA)− pDAh′
)
.

The strict inequality follows from uniformity of η and from that λ < 1. Thus, in

equilibrium the mass of types that rank s̄ as first choice and s as second choice is

larger than the mass of types that rank s as first choice and s̄ as second choice. With

analogous arguments, one can show that this is true for any position of choices for s̄

and s. This contradicts that the probability of being assigned to s̄ is smaller than the

probability of being assigned to s. This completes the proof.

B Continuum Economy as a Limit of Discrete Economies

B.1 The Discrete Model

There is a finite set of families F with a single child and equal number of neighborhoods

H and schools S. There is a unique school in neighborhood h ∈ H, which we denote

by sh ∈ S. Each neighborhood h has capacity qh ∈ N which denotes the maximum

number of families that can reside in the neighborhood. Similarly, each school s has a

capacity qs ∈ N, which denotes the maximum number of families that can enrol in the
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school. Each family f ∈ F has a valuation vf (h, s) ∈ [0, 1] for living in neighborhood h

and enrolling (their child) at school s. Valuations of all families are commonly known.

Families’ valuations induce preference rankings over schools. Conditional on living in

neighborhood h, the preference ranking of family f satisfies

vf (h, s) > vf (h, s
′) ⇒ s ≻fh s

′. (23)

When vf (h, s) = vf (h, s
′), ties are broken arbitrarily.

Let H̄ := H ∪ {0}. Neighborhood choices of families is a mapping σ : F → H̄.

Family’s expected utilities of choosing a certain neighborhood depend on other families’

neighborhood choices and the school assignment mechanism, as they jointly determine

the family’s school assignment probabilities. For a school assignment mechanism ϕ, let

λϕfs(h, σ) ∈ [0, 1] denote the probability that family f is assigned to school s when she

chooses neighborhood h and other families’ choose neighborhoods according σ.

Given the school assignment probabilities and neighborhood price vector p ∈ [0, 1]|H|,

the expected utility of family f choosing neighborhood h is equal to

uϕf (h, σ)− ph.

where uϕf (h, σ) :=
∑

s∈S λ
ϕ
fs(h, σ)vf (h, s). Also, let u

ϕ
f (0, σ) := 0. The housing market

is competitive: families choose neighborhoods to maximize expected utilities, given

other families’ neighborhood choices and the market clearing neighborhood prices.

Definition 7. For a neighborhood choices σ and price vector p ∈ R|H|
+ , we say a pair

(σ, p) is a competitive equilibrium (CE) of ϕ is it satisfies the following conditions:

1. uϕf (σ(f), σ)− pσ(f) = argmaxh∈H̄ uϕf (h, σ)− ph,∀f ∈ F , where p0 := 0,

2. |σ−1(h)| ≤ qh, ∀h ∈ H,

3. |σ−1(h)| < qh ⇒ ph = 0.
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School Assignment Mechanisms

In this section, I describe the school assignment mechanisms for the discrete model.

Neighborhood Assignment.

Under neighborhood assignment (NA), families are assigned to the neighborhood schools.

Therefore, school assignment probabilities are trivial:

λNAfs (h, σ) =

1 if s = sh,

0 otherwise

Deferred Acceptance.

As in the continuum model, I study two versions of DA, which differ on how schools’

priority ranking is determined.

Deferred Acceptance without Neighborhood Priority (DA).

School assignment under DA is determined based on families’ preferences and lottery

numbers. Preferences are induced by neighborhood choices through equation 23. A

lottery number for each family is uniformly and independently drawn from the unit

interval. All schools rank families according to their lottery numbers, i.e., a higher

lottery numbers denotes a higher rank. The assignment is determined through the

following algorithm by Gale and Shapley (1962): until there are no more rejections,

• each family f with σ(f) ̸= 0 applies to her most preferred school that has not

rejected her,

• each school considers all new applicants and previous applicants, tentatively ac-

cepts up to qs of them according to its ranking, and rejects the rest.

Deferred Acceptance with Neighborhood Priority (DN).
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Under DN, school assignment is determined based on families’ preferences, lottery

number and priorities. Preferences and lottery numbers are decided as under DA.

Families receive priority 1 at neighborhood schools and priority 0 at non-neighborhood

ones. Schools rank families according to their lottery numbers plus the priority. Again,

DN assignment is determined by the Gale and Shapley (1962) algorithm as described

above.

B.2 (Non)Existence of CE in the Discrete Model

Under NA, the existence of CE follows from Shapley and Shubik (1971). In contrast,

assignment externalities may preclude the existence of CE under DN and DA. The

example below shows the nonexistence result for DN.

Example 1. Suppose there are two families F = {f1, f2}, two neighborhoods H =

{h1, h2} and two schools S = {s1, s2}. Each neighborhood and school has a unit capac-

ity. Families’ valuations are shown in Table 3.

(h1, s1) (h1, s2) (h2, s1) (h2, s2)

f1 0 0.3 0 0.1

f2 0.1 0.2 0 0.1

Table 3: Valuations

Suppose, for the sake of contradiction, that there is a CE (σ, p) of DN. Consider cases:

(i) Suppose σ(f1) = h1 and σ(f2) = h2. Then, f1’s utility is 0, as she is rejected by s2,

where f2 has a higher priority. If f1 chooses h2 instead of h1, her utility is
1
2
×0.1 = 0.05

as she has 1
2
change of being assigned to s2. Thus, σ(f1) = h1 implies ph2 − ph1 ≥ 0.05.

Also, f2’s utility is 0.1 as she is guaranteed being assigned to s2. If f2 chooses h1, she

has a 1
2
chance of being assigned to s1 and 1

2
chance of being assigned to s2, thus her
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utility is 1
2
× 0.1 + 1

2
× 0.2 = 0.15. Thus, σ(f2) = h2 implies ph2 − ph1 ≤ −0.05, a

contradiction.

(ii) Now suppose σ(f1) = h2 and σ(f2) = h1. Then, f1’s utility is 0.1. If f1 chooses h1

instead of h2, her utility is 1
2
×0.3 = 0.15. Thus, σ(f1) = h2 implies ph2 −ph1 ≤ −0.05.

Also, f2’s utility is 0.1 as she is rejected by s2. If f2 chooses h2 instead of h1, her utility

is 1
2
× 0.1 = 0.05. Thus, σ(f2) = h1 implies ph2 − ph1 ≥ 0.05, a contradiction.

The next example shows the nonexistence result for DA.

Example 2. Consider a discrete economy with two families F = {f1, f2}, two neigh-

borhoods H = {h1, h2} and two schools S = {s1, s2}. Assume qh1 = qh2 = qs1 = 1 and

qs2 = 2. Valuations are given in Table 4.

(h1, s1) (h1, s2) (h2, s1) (h2, s2)

f1 0.5 0 0 0.4

f2 0 0.1 0.3 0

Table 4: Valuations

Suppose, for the sake of contradiction, that (σ, p) is a CE. Consider cases:

(i) Suppose σ(f1) = h1 and σ(f2) = h2. Then, f1’s utility is 1
2
× 0.5 = 0.25 when

choosing h1 and 0.4 when choosing h2. Thus, σ(f1) = h1 implies p2 − p1 ≥ 0.15.

Also, f2’s utility is 0.1 when choosing h1 and 1
2
× 0.3 = 0.15 when choosing h2. Thus,

σ(f2) = h2 implies p2 − p1 ≤ 0.05, a contradiction.

(ii) Now suppose σ(f1) = h2 and σ(f2) = h1. Then, f1’s utility is 0.5 when choosing

h1 and 0.4 when choosing h2. Thus, σ(f1) = h2 implies p1 − p2 ≥ 0.1. Also, f2’s

utility is 0.1 when choosing h1 and 0.3 when choosing h2. Thus, σ(f2) = h1 implies

p1 − p2 ≤ −0.2, a contradiction.
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As the proof demonstrates, the nonexistence results are due to assignment externali-

ties. A family’s expected utility from different neighborhood choices depend on other

families’ neighborhood choices through the latter’s effect on school assignment proba-

bilities. In contrast, as shown in Section 3, a CE always exists in the continuum model.

In Section B.3, I show that continuum economies are arbitrarily good approximations

of finite discrete economies when the number of families is sufficiently large. In par-

ticular, this implies that approximate CE exist in sufficiently large discrete economies,

and welfare comparisons for the continuum model carry over to the discrete one.

B.3 Existence of Approximate CE in Large Markets

Let η be an absolutely continuous and fully supported probability measure on V :=

[0, 1]|H|×|S|. For a fixed k ∈ N let {vf}f∈F , |F | = k, be k independent draws from V

according to η. Suppose neighborhood h ∈ H has a capacity ⌊qhk⌋ and each school

s ∈ S has a capacity ⌊qsk⌋.

Definition 8. For an ϵ > 0, neighborhood choices σ : F → H̄ and a price vector

p ∈ R|H|
+ , we say a pair (σ, p) is an ϵ−competitive equilibrium (ϵ-CE) of ϕ if it

satisfies the following conditions:

1. uϕf (σ(f), σ)− pσ(f) + ϵ ≥ max
{
uϕf (h, σ)− ph, 0

}
, ∀f ∈ F, h ∈ H,

2. |σ−1(h)| ≤ (qh + ϵ)k, ∀h ∈ H,

3. |σ−1(h)| < (qh − ϵ)k ⇒ ph = 0.

Let (τϕ, pϕ) denote a CE of a continuum economy η for ϕ ∈ {DN,DA,NA}. For each

size k discrete economy (vf )f∈F , consider neighborhood choices σk : F → H̄ satisfying

σk(f) = argmax
h∈H̄

uϕf (h, τ
ϕ)− pϕh.
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Theorem 7. Let (τϕ, pϕ) be a competitive equilibrium of the continuum economy η.

Then for any ϵ > 0 the probability that (σk, p) is an ϵ-competitive equilibrium of the

discrete economy converges to one as k goes to infinity.

In other words, Theorem 7 says that in a sufficiently large market approximate equi-

libria exist with a probability that is arbitrarily close to one.

Proof. First, consider ϕ = NA. Let (τ, p) be a CE of NA for each size k ∈ N economy

(vf )f∈Fk
, define σk : Fk → H by

σk(f) = argmax
h∈H

vf (h, sh)− ph.

I show that for a sufficiently large k ∈ N, the probability that (σk, p) satisfies the

conditions of Definition 8 of ϵ-CE approaches to one.

1. The first point is immediate from the definition of σk.

2. Let Fkh =
{
f ∈ F : vf (h, sh) − ph = argmaxh′∈H vf (h

′, s′h) − ph′
}

denote the set of

families in F whose optimal choice is h (ties broken arbitrarily). Then,∣∣σ−1
k (h)

∣∣
k

=
|Fkh|
k

p−→ η
(
v ∈ V : h = argmax

h′∈H
v(h′, sh′)− ph′

)
= τ

(
V × {h}

)
≤ qh < qh + ϵ, (24)

where the convergence in probability follows from low of large numbers. Multiplying

the first and last terms of equation 24 by k, we obtain the desired result.

3. The proof is by contrapositive. Suppose ph ̸= 0. Then,∣∣σ−1
k (h)

∣∣
k

=
|Fk,h|
k

p−→ η
(
v ∈ V : h = argmax

h′∈H
v(h′, sh′)− ph′

)
= τ

(
V × {h}

)
= qh > qh − ϵ, (25)

where the last equality follows from ph ̸= 0. Multiplying the first and last terms of

equation 25 by k, we obtain that
∣∣σ−1
k (h)

∣∣ > (qh− ϵ)k with probability approaching to

one.
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Now consider ϕ = DN . The proof for ϕ = DA is similar. Let (τ, p) be a CE of NA for

each size k ∈ N economy (vf )f∈Fk
, define σk : FN → H by

σk(f) = argmax
h∈H

uf (h, τ)− ph.

I show that for a sufficiently large k ∈ N, the probability that (σk, p) satisfies the

conditions of Definition 8 of ϵ-CE approaches to one.

1. Let Fkh =
{
f ∈ F : h = argmaxh′∈H uf (h

′, σk) − ph′
}

denote the set of families in F

whose optimal choice is h (ties broken arbitrarily). Then, by law of large number,∣∣σ−1
k (h)

∣∣
k

=
|Fkh|
k

p−→ η
(
v ∈ V : h = argmax

h′∈H
uf (h

′, σk)− ph′
)
= τ

(
V × {h}

)
.

Thus, the proportion of individuals with given preferences and priorities in the discrete

economy converges to its continuum analog. This, by Lemma 3 of Abdulkadiroğlu

et al. (2017b), implies that uf (h, σk) converges to uf (h, τ) in probability for all h ∈ H,

establishing the desired result.

2. The proof for this part is similar to that for ϕ = NA.

3. The proof for this part is similar to that for ϕ = NA.

The proof of Theorem 7 uses the fact that expected utilities in the discrete markets

converge to their continuum analogous. This also implies that all welfare comparisons

that I establish for the continuum economy, hold ‘approximately’ for the corresponding

sufficiently large discrete ones.
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C Examples

My first example shows that when we relax the common valuations of neighborhoods

and the increasing differences assumptions, then DA may create higher aggregate wel-

fare than DN.

Example 3. There are two neighborhoods H = {h1, h2} and two schools S = {s1, s2}.

Each neighborhood and school has a capacity 0.5. Economy η is supported at only two

points v1 and v2, with

η
(
v ∈ V : v = v1

)
= η

(
v ∈ V : v = v2

)
= 0.5.

Valuations are given in in Table 3.

(h1, s1) (h1, s2) (h2, s1) (h2, s2)

v1 0 0.3 0 0.3

v2 0.1 0 0.5 0.6

Table 5: Valuations

It is easy to verify that prices pϕh1 = 0 and pϕh2 = 2 support CE (τϕ, pϕ) of ϕ ∈

{DN,DA}, satisfying

τϕ
(
(v, h) ∈ V × H̄ : v = vi, h = hi

)
= η

(
v ∈ V : v = vi

)
for all i ∈ {1, 2}.

Under DN, type v2 receives a higher priority at s2 and therefore she is assigned there

with probability one. Under DA, each type has an equal probability of being assigned to

s2. Expected utilities are

uDNv1 (h1, τ
DN) = 0 uDAv1 (h1, τ

DA) = 0.15

uDNv2 (h2, τ
DN) = 0.6 uDAv2 (h2, τ

DA) = 0.55
.

Therefore,∫
uDNv (h, τDN)dτDN =

1

2
× uDNv1 (h1, τ

DN) +
1

2
× uDNv2 (h2, τ

DN) = 0.3
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< 0.35 =
1

2
× uDAv1 (h1, τ

DA) +
1

2
× uDAv2 (h2, τ

DA) =

∫
uDAv (h, τDA)dτDA.

My second example maintains the assumption of common and additively separable val-

uation over neighborhoods, but relaxes the assumption of identical ordinal preferences

over schools.

Example 4. There are three neighborhoods H = {h1, h2, h3} and three schools S =

{s1, s2, s3}. Capacities are qh1 = 0.6, qh2 = qh3 = 0.2 and qs2 = qs3 = 0.3. Economy η

is supported at only three points v1, v2 and v3, with

η
(
v ∈ V : v = v1

)
= 0.6, η

(
v ∈ V : v = v2

)
= η

(
v ∈ V : v = v3

)
= 0.2.

Families only care about schools. Formally, vi(hj, s) = vi(hk, s) for all i, j, k ∈ {1, 2, 3}

and s ∈ S. Thus, a type can be described by its valuation for schools. Valuations are

given in Table 6.

s1 s2 s3

v1 0 1 0.9

v2 0 0.9 0

v3 0 0 0.9

Table 6: Valuations

Let us first compute aggregate welfare under DN. I prove that prices pDNh1 = 0, pDNh2 =

0.7, and pDNh3 = 0.6 supports CE neighborhood choices

τDN
(
(v, h) ∈ V × H̄ : v = vi, h = hi

)
= η

(
v ∈ V : v = vi

)
for all i ∈ {1, 2, 3}.

First, let us show the optimality of type v1 families’ neighborhood choices at (τDN , pDN).

Since families receive higher priorities at neighborhood schools, almost all v2 type fami-

lies are assigned to s2 and almost all v3 type families are assigned to s3. The remaining

0.2 cumulative capacity at schools s2 and s3 are assigned to highest ranked families of
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type v1. Thus, the probability that v1 is assigned to either s2 or s3 is equal to 1
3
.

Therefore,

uDNv1 (h1, τ
DN)− pDNh1 ≥ 1

3
× 0.9 = uDNv1 (h2, τ

DN)− pDNh2 = uDNv1 (h3, τ
DN)− pDNh3 .

Now consider a type v2 family. If a v2 family chooses neighborhood h1 or h3, she is

assigned to s2 only if she has one of the 0.1 highest lottery numbers among 0.6 mass of

type v1 families. The probability of this event is 1
6
. Therefore,

uDNv2 (h2, τ
DN)−pDNh2 = 0.9−0.7 >

1

6
×0.9 = uDNv2 (h1, τ

DN)−pDNh1 > uDNv2 (h3, τ
DN)−pDNh3 .

Finally, consider a type v3 family. Conditional on being assigned to h1 or h2, type v3 is

assigned to s3 only she has one of the highest 0.1 highest lottery numbers among mass

0.5 type v1 families who do not have a high enough lottery number to be assigned to s2.

The conditional lottery numbers’ distribution of families not assigned to s2 is uniform

in
[
0, 5

6

]
, and the probability that v3 is assigned to s3 is 1

6
+ 5

6
× 1

5
= 1

3
. Therefore,

uDNv3 (h2, τ
DN)−pDNh3 = 0.9−0.6 =

1

3
×0.9 = uDNv3 (h1, τ

DN)−pDNh1 > uDNv3 (h2, τ
DN)−pDNh2 .

Aggregate welfare under DN is∫
uDNv (h, τDN)dτDN = 0.1× 1 + 0.1× 0.9 + 0.2× 0.9 + 0.2× 0.9 = 0.550.

Now consider DA. Since families only care about schools, any neighborhood choice

τDA ∈ T is supported as a CE with prices pDAh1 = pDAh2 = pDAh3 . Then, a mass 0.15 of

type v1 families who have valuation 1 for s2 are assigned to the school. The remaining

0.15 capacity at s2 is filled with families who have valuation 0.9 for s2. The entire

0.3 capacity of school s3 is filled with families who have valuation 0.9 for s3.
15 Thus,

aggregate welfare under DA is∫
uDAv (h, τDA)dτDA = 0.15× 1 + 0.15× 0.9 + 0.3× 0.9 = 0.555.

15I implicitly assume that types v2 and v3 apply to s1 before s3 and s2, respectively. This is without

loss of generality, as alternatively one could slightly increase valuations at s1 for all families and adjust

prices accordingly.
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The following example demonstrates that some families may prefer NA to DN.

Example 5. There are two neighborhoods H = {h1, h2} and two schools S = {s1, s2}.

Each neighborhood and school has a capacity 0.5. Economy η is supported at only two

points v1 and v2, with

η
(
v ∈ V : v = v1

)
= η

(
v ∈ V : v = v2

)
= 0.5.

Valuations are given in in Table 7.

(h1, s1) (h1, s2) (h2, s1) (h2, s2)

v1 0 0.1 0.2 0.3

v2 0.5 0 0.8 0.3

Table 7: Valuations

It is easy to verify that prices pNAh1 = pNAh2 = 0 support CE (τNA, pNA) of NA, satisfying

τNA
(
(v, h) ∈ V × H̄ : v = v1, h = h2

)
= η

(
v ∈ V : v = v1

)
,

and

τNA
(
(v, h) ∈ V × H̄ : v = v2, h = h1

)
= η

(
v ∈ V : v = v2

)
.

Also, prices pDNh1 = 0, pDNh2 = 0.2 support (τDN , pDN) of DN , satisfying

τDN
(
(v, h) ∈ V × H̄ : v = v1, h = h1

)
= η

(
v ∈ V : v = v1

)
,

and

τDN
(
(v, h) ∈ V × H̄ : v = v2, h = h2

)
= η

(
v ∈ V : v = v2

)
.

Thus,

uNAv1 (h2, τ
NA) = 0.3 > 0.1 = uDNv1 (h1, τ

DN),

and type v1 families prefer NA to DN.
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D Multiple Tie-breaking

Consider the model in Section 3. I first define the Deferred Acceptance mechanisms

for multiple tie-breaking. With abuse of notations, I use DA and DN to denote the

mechanisms.

D.1 School Assignment Mechanisms

Deferred Acceptance without Neighborhood Priority (DA).

School assignment under DA is determined based on families’ preferences, school-

specific lottery numbers and market clearing cutoffs, or simply cutoffs. Preferences are

decided by neighborhood choices through equation 1. School-specific lottery numbers

are drawn uniformly and independently from the unit interval. Formally, neighborhood

choices τ result in a probability measure Gτ over P × [0, 1]|S|, given by

Gτ

(
(≻, r) ∈ P × [0, 1]|S| : ≻∈ P ′, rs ∈ (rs0, rs1),∀s ∈ S

)
= τ

(
(v, h) ∈ V × H̄ : ≻vh∈ P ′

)
×

∏
s∈S

(
rs1 − rs0

)
,

for each P ′ ∈ P and (rs0, rs1) ⊆ [0, 1]. Thus, Gτ

(
(≻, r) ∈ P × [0, 1] : ≻∈ P ′, rs ∈

(rs0, rs1),∀s ∈ S
)
equals the mass of types with preferences in P ′ and school s lottery

numbers in the interval (rs0, rs1) for each s ∈ S.

Cutoffs are derived through an iterative procedure that I describe below. For a vector

c ∈ [0, 1]|S|, the demand function D : [0, 1]|S| → [0, 1]|S| is given by

Ds(c) = Gτ

(
(≻, r) ∈ P × [0, 1]|S| : rs ≥ cs and s ≻ s′ for all s′ with rs′ ≥ cs′

)
.

In words, Ds(c) is the mass of families whose school s lottery numbers exceed cs, and

who prefer s to any other school s′ where their school s′ lottery numbers exceed cs′ .
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For c ∈ [0, 1]|S| and x ∈ [0, 1] let c(s, x) ∈ [0, 1]|S| denote the vector that differs from c

only by that cs(s, x) = x.

Let us define a sequence of vectors (ct)∞t=1 recursively by c1 = 0 and

ct+1
s =

0 if Ds(c
t) < qs,

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise.

As shown by Abdulkadiroğlu et al. (2017b), (ct)t∈N is convergent. Let cDA := limt→∞ ct

denote the DA cutoffs.

The DA cutoffs determine school assignment as follows. A family is assigned to school

s if her school s lottery number exceeds cDAs , and she prefers s to any school where her

school-specific lottery number exceeds the corresponding DA cutoff. The probability

of this event is

λDAvs (h, τ) =
∏
s′:s′≻s

cDAs′ × (1− cDAs ). (26)

The first term in the right-hand side of equation 26 is the probability that the family

does not clear the cutoffs at choices more preferred to s, and the second term is the

probability that the family clears the school s cutoff.

Deferred Acceptance with Neighborhood Priority (DN).

Under DN, school assignment is determined based on families’ preferences, school-

specific lottery numbers, priorities and cutoffs. Again, preferences are decided by

neighborhood choices through equation 1 and school-specific lottery numbers are drawn

uniformly and independently from the unit interval. Families receive priority 1 at neigh-

borhood schools and priority 0 at non-neighborhood ones. Formally, neighborhood

choices τ result in a probability measure Gτ on P × S × [0, 1]|S| satisfying

Gτ

(
(≻, s, r) ∈ P × S × [0, 1]|S| : ≻∈ P ′, s ∈ S ′, rs′ ∈ (rs′0, rs′0),∀s′ ∈ S

)
= τ

(
(v, h) ∈ V × H̄ : ≻v,h=≻, sh ∈ S ′

)
×
∏
s∈S

(
rs1 − rs0

)
,
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for each P ′ ⊆ P , S ′ ⊆ S and (rs0, rs1) ⊆ [0, 1]. For a vector c ∈ [0, 1]|S| the demand

function D : [0, 1]|S| → [0, 1]|S| is given by

Ds(c) = Gτ

(
(≻, s′, r) ∈ P × S × [0, 1]|S| : rs + 1[s′ = s] ≥ cs and

s ≻ s′′ for all s′′ with rs′′ + 1[s′ = s′′] ≥ cs′′
)
.

Consider the sequence of vectors recursively defined by

ct+1
s =

0 if Ds(c
t) < qs

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise

and let cDN := limt→∞ ct denotes the DN cutoffs. A family is assigned to school s

if her priority at s plus her school s lottery number exceeds cDNs , and she prefers s

to any school where her priority plus the school-specific lottery number exceeds the

corresponding DN cutoff. Hence,

λDNvs (h, τ) =


0 sh ≻vs s,∏

s′:s′≻s c
DN
s′ sh = s(∏

s′:s′≻s c
DN
s′

)
× cDNs otherwise.

D.2 Results for Multiple-tie Breaking

Like in the single tie-breaking case, school assignment probabilities under multiple tie-

breaking are continuous in the cutoffs. Therefore, Theorem 2 - 7 all hold for this setting

too, and the proofs are almost identical to the one with a single tie-breaking.
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Supplementary Appendix

A Alternative School Assignment Mechanisms

A.1 Overview

This section studies two additional school assignment mechanisms: Top Trading Cycles

(TTC) and Immediate Acceptance (IA).

The TTC mechanism has been originally formulated by Shapley and Scarf (1974)

and has been introduced for public school assignment by Abdulkadiroğlu and Sönmez

(2003). For the continuum economy model, I use the formulation of TTC developed

by Leshno and Lo (2021). I show that most of our results on how Deferred Acceptance

mechanism compares to neighborhood assignment in terms of welfare also hold for

TTC.

The IA mechanism, also known as the ‘Boston’ mechanism, is widely applied for pub-

lic school admissions in the US and around the world. The mechanism has often

been criticized on the grounds of being manipulable, i.e., families have incentives to

misreport their true preferences to improve their school assignments (Abdulkadiroğlu

and Sönmez, 2003). Despite this potential shortcoming, it is also known that IA may

improve families’ welfare as it allows to ‘signal’ their valuations by preference manip-

ulation. For example, Abdulkadiroğlu, Che, and Yasuda (2011) show that in a setting
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without neighborhood priorities and where families have common ordinal preference

rankings over schools, all families prefer any (symmetric Bayesian) equilibrium outcome

of IA to the outcome of DA. This result does not extend to the setting with neighbor-

hood priorities. An important observation in our analysis of IA is that families who

reside in the neighborhoods of the least preferred schools may be worse-off under IA

with neighborhood priorities compared to DN. The reason is that when the more pre-

ferred schools are sufficiently demanded, the families in the neighborhood of the least

preferred schools have no ‘safe option’ other than the least preferred schools. Therefore,

under IA with neighborhood priorities they may find it optimal to rank a moderate

school as a first choice to avoid the possibility of being rejected by all higher ranked

choices and being assigned to their preferred one. As a consequence, those families are

worse off. This observation is analogous to the ones in Calsamiglia, Mart́ınez-Mora,

and Miralles (2015) and Neilson, Akbarpour, Kapor, van Dijk, and Zimmerman (2020).

Those papers demonstrate that families without outside options may prefer DA to IA.

I do not explicitly model outside options, but because of neighborhood priorities, in

our setting neighborhood schools correspond to outside options.

In what follows I talk about two versions of TTC and IA: one where families do not

receive higher priorities at neighborhood schools, and one where they do so. When it

is clear from the context, I do not mention which version of the mechanism is studied.

A.2 TTC

A.2.1 Overview

Consider the model in Section 3.

TTC without neighborhood priorities.

Neighborhood choices τ ∈ T uniquely determine a probability measure Gτ over P ×
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[0, 1], satisfying

Gτ

(
(�, r) ∈ P × [0, 1] : �∈ P ′, r ∈ (r0, r1)

)
= τ
(

(v, h) ∈ V × H̄ : �vh∈ P ′
)
×
(
r1 − r0

)
,

for each P ′ ⊆ P and (r0, r1) ⊆ [0, 1].

For the resulting measure Gτ the TTC assignment (without neighborhood priorities) is

found by the procedure given by Leshno and Lo (2021). I omit the technical details for

the sake of brevity. In a nutshell, TTC assignment is determined by cutoffs cTTC :=

(cTTCss′ )s,s′∈S ∈ [0, 1]|S|
2
, such that a family is assigned to school s if and only if her

lottery number is larger than mins′∈S c
TTC
s′s and she prefers s to any school s′′ ∈ S \ {s}

such that her lottery number is larger than mins′∈S c
TTC
s′s′′ . Let N := |S| and suppose

the schools are indexed as follows,

min
s∈S

cTTCssi
> min

s∈S
cTTCssj

if and only if i > j

. Also, let cTTCss0
:= 0,∀s ∈ S. Then, it follows from the TTC description by Leshno

and Lo (2021) that the cutoffs cTTC should satisfy

k∑
i=1

Gτ

(
(�, r) ∈ P×[0, 1] : sk � s,∀s ∈ S\{si, . . . , sN}, r ∈

[
min
s∈S

cTTCssi−1
,min
s∈S

cTTCssi

))
≤ qsk ,

and the equation holds with equality whenever mins∈S c
TTC
ssk

> 0. It then follows from

the description of DA cutoffs cDA, that cDAs = mins′∈S c
TTC
s′s for all s ∈ S. Thus, we

obtain the following equivalence result.

Proposition 1. For any v ∈ V, h ∈ H and τ ∈ T ,

uDAv (h, τ) = uTTCv (h, τ).

The result extends an earlier finding about the equivalence of DA (random serial dic-

tatorship) and TTC (core from random endowments) by Abdulkadiroğlu and Sönmez

(1998) to the continuum one-to-many matching model. To the best of our knowledge,

my Proposition 1 is the first documentation of this observation.
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TTC with neighborhood priorities.

Neighborhood choices τ uniquely determine a probability measure Gτ on P ×S× [0, 1],

satisfying

Gτ

(
(�, s, r) ∈ P × S × [0, 1] : �∈ P ′, s ∈ S ′, r ∈ (r0, r1)

)
= τ
(

(v, h) ∈ V × H̄ : �v,h=�, sh ∈ S ′
)
×
(
r1 − r0

)
,

for each P ′ ⊆ P , S ′ ⊆ S and (r0, r1) ⊆ [0, 1].

For the resulting measure Gτ the TTC assignment (with neighborhood priorities) is

given by cutoffs cTTC := (cTTCss′ )s,s′∈S ∈ [0, 2]|S|
2
, such that a family, choosing the

neighborhood of school s′, is assigned to school s if and only if her lottery number plus

1[s′ = s] is larger than mins′′∈S c
TTC
s′′s and she prefers s to any school s′′′ ∈ S \ {s} such

that her lottery number plus 1[s′ = s′′′] is larger than mins′′∈S c
TTC
s′′s′′′ .

Therefore, it follows from the TTC description by Leshno and Lo (2021) that the

cutoffs cTTC should satisfy

k∑
i=1

Gτ

(
(�, s′, r) ∈ P × S × [0, 1] : sk � s,∀s ∈ S \ {si, . . . , sN},

r ∈
[

min
s∈S

cTTCssi−1
,min
s∈S

cTTCssi

)
∪
[

max{0, cTTCs′si−1
},max{0, cTTCs′si

}
))

≤ qsk ,

and the equation holds with equality whenever mins∈S c
TTC
ssk

> 0.

When there are neighborhood priorities, TTC is no longer equivalent to the Deferred

Acceptance mechanism.1 However, the equivalence holds for a special case of my

problem, where families have common ordinal preference rankings over schools. This

observation is important for establishing some of the further results.

1In fact, Calsamiglia and Miralles (2020) show that with neighborhood priorities TTC may be a

better alternative to Deferred Acceptance with regard to providing better access to non-neighborhood

schools. Unlike in my work, the authors take neighborhood choices as exogenously given.
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Proposition 2. Let S = {si}|S|i=1 and suppose there is a V ′ ⊆ V with η(V ′) = 1, such

that v(h, si) ≥ v(h, sj) for all v ∈ V, h ∈ H and si, sj ∈ S, i ≥ j. Then, for any

v ∈ V, h ∈ H and τ ∈ T ,

uDNv (h, τ) = uTTCv (h, τ).

I now discuss which results established for the Deferred Acceptance mechanism extend

to TTC.

The proofs of Theorem 3 and Theorem 5 directly apply to TTC. Moreover, Assumptions

1 and 2 imply same ordinal rankings. Therefore, it is immediate from Propositions 1

and 2, that Theorem 4, Corollary 1 and 2 apply to TTC.

A.3 IA

Unlike the Deferred Acceptance and TTC, the IA mechanism is not strategyproof,

i.e., truthfully reporting preferences is not a dominant strategy for families. Since

preferences are typically unknown to the central planner, it is realistic to extend the

model to allow families to choose not only where to reside, but also what preference

ranking to report. Therefore I model families choices τ as a (Borel) probability measure

over V × H̄ × P . Let T be the space of such measures.

For a given mechanism φ and choices τ , I denote by λφvs(h,�, τ) ∈ [0, 1] the proba-

bility that type v is assigned to school s conditional on choosing neighborhood h and

submitting a preference ranking �. Later in this section, I derive school assignment

probabilities for IA with or without neighborhood priorities. Before that, I define

competitive equilibrium in this extended model.

Given school assignment probabilities and neighborhood price vector p ∈ [0, 1]|H|, the

expected utility of type v choosing neighborhood h ∈ H and submitting preference

5



ranking � is equal to

uφv (h,�, τ)− ph.

where uφv (h,�, τ) :=
∑

s∈S λ
φ
vs(h,�, τ) v(h, s). Also, let uφv (0,�, τ) := 0 for all v ∈

V,�∈ P and τ ∈ T .

Definition 1. For neighborhood choices τ ∈ T and price vector p ∈ R|H|+ , we say a pair

(τ, p) is a competitive equilibrium (CE) of mechanism φ if it satisfies the following

conditions:

1. τ
(

(v, h,�) ∈ V ×H̄×P : h = arg maxh′∈H̄ uφv (h′,�, τ)−ph′
)

= 1, where p0 := 0,

2. τ
(

(v, h,�) ∈ V × H̄ × P : h = h′
)
≤ qh′ ,∀h′ ∈ H,

3. τ
(

(v, h,�) ∈ V × H̄ × P : h = h′
)
< qh′ ⇒ ph′ = 0.

I now derive school assignment probabilities two versions of IA mechanism. To the

best of our knowledge, this is the first description of IA for the continuum economy

model.

IA without neighborhood priorities.

Neighborhood choices τ ∈ T uniquely determines a probability measure Gτ over P 2 ×

[0, 1], given by

Gτ

(
(�,�′, r) ∈ P 2 × [0, 1] : �∈ P ′,�′∈ P ′′, r ∈ (r0, r1)

)
= τ
(

(v, h,�′) ∈ V × H̄ × P : �vh∈ P ′,�′∈ P ′′
)
×
(
r1 − r0

)
,

for each P ′, P ′′ ⊆ P and (r0, r1) ⊆ [0, 1].

For any �∈ P and s ∈ S, let rk�(s) denote the rank of school s in the preference

ranking P in reverse order (i.e., rk�(s) = |S| when s the highest ranked according to

�, and rk�(s) = 1 if it is the lowest ranked).
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Like with the Deferred Acceptance mechanism, the IA assignment can be given by

cutoffs. Cutoffs are derived through an iterative procedure that I describe below. For

a vector c ∈ [1, |S|+ 1]|S|, the demand function D : [1, |S|+ 1]|S| → [0, 1] is given by

Ds(c) = Gτ

(
(�,�′, r) ∈ P 2×[0, 1] : r+rk�′(s) ≥ cs and s � s′ for all s′ with r+rk�′(s

′) ≥ cs′
)
.

In other words, one may think of families having scores at schools which equals their

lottery number plus the ranking of the school in their reported preferences. Thus, in

this way families receive higher ‘priorities’ at IA when they rank it higher. Then, Ds(c)

is the mass of families whose scores exceed cs, and who prefer s to any other school s′

where their scores exceed cs′ . For c ∈ [0, 1]|S| and x ∈ [1, |S|+1] let c(s, x) ∈ [1, |S|+1]|S|

denote the vector that differs from c only by that cs(s, x) = x.

Let us define a sequence of vectors (ct)∞t=1 recursively by c1 = 0 and

ct+1
s =

0 if Ds(c
t) < qs,

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise.

It follows from similar arguments as in Abdulkadiroğlu, Angrist, Narita, and Pathak

(2017), that the sequence (ct)t∈N is convergent. Let cIA := limt→∞ c
t denote the IA

cutoffs.

For cutoffs cIA and preference ranking �, let s̄ denote the most preferred school with

rk(s) ≥ cIAs . Also, let S̄ ⊆ S be the largest set such that for each s ∈ S̄, s � s̄

or s = s̄ and rk(s) ≥ cIAs − 1. Then, the probability that type v is assigned to

school s when choosing neighborhood h and reporting preference ranking � is equal to

λIAvs (h,�, τ) = 0 if s /∈ S̄, and otherwise,

λIAvs (h,�, τ) = max
{

0,min
{
cIAs′ : s′ � s, s′ ∈ S̄

}
− cDAs

}
.

IA with neighborhood priorities.
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Neighborhood choices τ ∈ T uniquely determines a probability measure Gτ over P 2 ×

S × [0, 1], given by

Gτ

(
(�,�′, s, r) ∈ P 2 × S × [0, 1] : �∈ P ′,�′∈ P ′′, s ∈ S ′, r ∈ (r0, r1)

)
= τ
(

(v, h,�′) ∈ V × H̄ × P : �vh∈ P ′, sh ∈ S ′,�′∈ P ′′
)
×
(
r1 − r0

)
,

for each P ′, P ′′ ⊆ P , S ′ ⊆ S and (r0, r1) ⊆ [0, 1].

For a vector c ∈ [1, 2(|S| + 1)]|S| consider the demand function D : [1, 2(|S| + 1)]|S| →

[0, 1] given by

Ds(c) = Gτ

(
(�,�′, s′, r) ∈ P 2 × S × [0, 1] : r + 2rk�′(s) + 1[s′ = s] ≥ cs

and s � s′′ for all s′′ with r + 2rk�′(s
′′) + 1[s′ = s′′] ≥ cs′

)
.

Define a sequence of vectors (ct)∞t=1 recursively by c1 = 0 and

ct+1
s =

0 if Ds(c
t) < qs,

min
{
x ∈ [0, 1] : Ds

(
ct(s, x)

)
≤ qs

}
otherwise,

and let cIA := limt→∞ c
t be the IA cutoffs.

Again, for cutoffs cIA, preference ranking � and neighborhood choice h, let s̄ denote

the most preferred school with 2rk(s) +1[sh = s] ≥ cIAs . Also, let S̄ ⊆ S be the largest

set such that for each s ∈ S̄, s � s̄ or s = s̄ and rk(s) + 1[sh = s] ≥ cIAs − 1. Then,

the probability that type v is assigned to school s when choosing neighborhood h and

reporting preference ranking � is equal to λIAvs (h,�, τ) = 0 if s /∈ S̄, and otherwise,

λIAvs (h,�, τ) = max
{

0,min
{
cIAs′ : s′ � s, s′ ∈ S̄

}
− cIAs

}
.

I briefly discuss how some of the results I established for the Deferred Acceptance

mechanism extend to the setting with IA. Theorem 3 applies to IA with neighborhood

priorities since a family can guarantee a neighborhood school by ranking it as a first
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choice. Since lowest-income families can guarantee underdemanded neighborhoods and

schools for both versions of IA, Theorem 5 applies to IA as well.

I finish this section by discussing how IA compares to DA in terms of families’ welfare.

When there are no neighborhood priorities and families have identical ordinal prefer-

ences over schools, Abdulkadiroğlu et al. (2011) show that all families prefer IA to DA.

I illustrate by an example that this is not necessarily the case when there are neigh-

borhood priorities. In what follows I use IA to denote the version of the mechanism

with neighborhood priorities.

Example 1. There are three neighborhoods H = {h1, h2, h3} and three schools S =

{s1, s2, s3}, with qh1 = 2 and qh2 = qh3 = 0.4, qs1 = 0.4 and qs2 = qs3 = 0.58. The

economy η is supported at only three points v1, v2 and v3, with

η
(
v ∈ V : v = v1

)
= 0.2

and

η
(
v ∈ V : v = v2

)
= η
(
v ∈ V : v = v3

)
= 0.4,

where v1, v2 and v3 are shown in Table 1.

(h1, s1) (h1, s2) (h1, s3) (h2, s1) (h2, s2) (h2, s3) (h3, s1) (h3, s2) (h3, s3)

v1 0.95 0.9 0.8 0.15 0.1 0 0.15 0.1 0

v2 0.95 0.9 0.8 0.95 0.9 0.8 0.15 0.1 0

v3 0.15 0.1 0 0.15 0.1 0 0.15 0.1 0

Table 1: Valuations

There is a CE of DN, where

• pIAh1 = 0.5, pIAh2 = 0.2 and pIAh3 = 0,
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• all type v1 families choose neighborhood h1 and submit their true preference rank-

ings,

• all type v2 families choose neighborhood h2 and submit their true preference rank-

ings,

• all type v3 families choose neighborhood h3 and submit preference ranking s2 �

s1 � s3.

and a CE of IA, where

• pIAh1 = 0.5, pIAh2 = 0.2 and pIAh3 = 0,

• all type v1 families choose neighborhood h1 and submit their true preference rank-

ings,

• all type v2 families choose neighborhood h2 and submit their true preference rank-

ings,

• all type v3 families choose neighborhood h3 and submit preference ranking s2 �

s1 � s3.

The expected utility of type v3 under IA is 0.1, whereas, under DN her expected utility

is
1

4
× 0.15 +

3

4
× 58

60
× 0.1 > 0.1.

Thus, when there are neighborhood priorities, families in less preferred neighborhoods

may prefer DN to IA.
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B The Model with Local Public Financing

B.1 Preliminaries

In this section I assume that families’ utilities from neighborhoods and schools depend

on the housing values. This is motivated by the observation that local public expen-

diture funds are generated by property taxes, which are proportion to property values

or equilibrium neighborhood prices.

I extend the model in Section 3 to assume that families’ utilities depend on neighbor-

hood prices.

More specifically, given neighborhood choice τ , neighborhood prices p ∈ R|H|+ and school

assignment mechanism φ, a type-v families expected utility when choosing neighbor-

hood h ∈ H is Uφ
v (h, τ, p)− ph, where

Uφ
v (h, τ, p) :=

∑
s∈S

λφvs(h, τ) X
(
v(h, s), ph, phs

)
,

for all h ∈ H, and Uv(0, τ, p) ≡ 0. Here hs denotes the neighborhood of school s,

X : R3 → R+ is a function satisfying

• X is non-decreasing in the first argument,

• X is non-increasing in the second argument,

• X is non-decreasing in the third argument,

• X
(
v(h, s), 0, 0

)
≡ v(h, s).

The second point is motivated by that families pay property taxes which is propor-

tional to the housing values. The third point is motivated by that the school spending

is largely generated by local public funds, i.e., the property taxes from neighborhood
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families. The previous two arguments also motivate the fourth point: namely, valua-

tions are unaffected if there is no taxation and no school spending.

Definition 2. For neighborhood choices τ ∈ T and price vector p ∈ R|H|+ , we say a pair

(τ, p) is a competitive equilibrium (CE) of mechanism φ if it satisfies the following

conditions:

1. τ
(

(v, h) ∈ V × H̄ : h = arg maxh′∈H̄
∑

s∈S U
φ
v (h′, τ, p)− ph′

)
= 1, where p0 := 0,

2. τ
(

(v, h) ∈ V × H̄ : h = h′
)
≤ qh′ ,∀h′ ∈ H,

3. τ
(

(v, h) ∈ V × H̄ : h = h′
)
< qh′ ⇒ ph′ = 0.

When defining the Deferred Acceptance mechanism, families’ preferences over school

account for the endogeneity of school valuations. Namely, given neighborhood choices

τ and price vector p,

X
(
v(h, s), ph, ps

)
> X

(
v(h, s′), ph, ps′

)
⇒ s �hv s′.

Otherwise, the school assignment mechanisms are as in Section 3.

B.2 Aggregate Welfare

For CE (τ, p) of mechanism φ, let Mφ
h (τ) and Mφ

s (τ) denote the measure of types that

choose neighborhood h and enroll in school s, respectively. Formally,

Mφ
h (τ) := τ

(
(v, h′) ∈ V × H̄ : h′ = h

)
and

Mφ
s (τ) :=

∫
λφvs(h, τ)dτ.

In this subsection I assume that public expenditures enter linearly in the families

valuations. Namely, there are constants α and β, with α, β ∈ [0, 1], such that for

neighborhood choices τ and price vector p,

X
(
v(h, s), ph, ps

)
= v(h, s)− αph + βphs . (1)
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In equation 1, we may think of α as the property tax rate and of β as the per student

school spending.

I first compare school assignment mechanisms in terms of utilitarian or aggregate wel-

fare, which may be interpreted as the ‘sum’ of families’ and house sellers’ utilities and

public savings. For a CE (τ, p) of mechanism φ, families’ utilities are∫ (
Uφ
v (h, τ, p)− ph

)
dτ =

∫
Uφ
v (h, τ, p)dτ −

∑
h∈H

phM
φ
h (τ)

=

∫
λφvsv(h, s)dτ − α

∑
h∈H

phM
φ
h (τ) + β

∑
s∈S

phsM
φ
s (τ)−

∑
h∈H

phM
φ
h (τ)

the sellers utilities are
∑

h∈H phM
φ
h (τ), and the public savings are

α
∑
h∈H

phM
φ
h (τ)− β

∑
s∈S

phsM
φ
s (τ).

Hence, the aggregate welfare is ∫
λφvsv(h, s)dτ.

Definition 3. For mechanisms φ and ψ we say that φ creates higher aggregate

welfare than ψ if for arbitrary CE (τφ, pφ) of φ and (τψ, pψ) of ψ,∫
λφvs(h, τ

φ)v(h, s)dτφ ≥
∫
λψvs(h, τ

ψ)v(h, s)dτψ.

My first observation is that the welfare comparison across DN and NA (Theorem 3)

does not extend to the setting with local public financing, even in this special case

where public expenditures enter the valuations linearly. I demonstrate this through

the following example.

Example 2. There are two neighborhoods H = {h1, h2} and two schools S = {s1, s2},

with qh1 = 1/3, qh2 = 2/3 and qs1 = qs2 = 1. The economy η is supported at only three

points v1, v2, v3 with

η
(
v ∈ V : v = v1

)
= η
(
v ∈ V : v = v1

)
= η
(
v ∈ V : v = v1

)
= 1/3,
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(h1, s1) (h1, s2) (h2, s1) (h2, s2)

v1 1 1 0 0

v2 0.55 0.55 0 0

v2 0 0.01 0 0.01

Table 2: Valuations

where v1, v2 and v3 are shown in Table 2.

Suppose α = 0.1 and β = 0.05.

First consider DN. There is a CE of DN, where

• pDNh1 = 0.5 and pDNh1 = 0,

• all type v1 families choose h1,

• all type v2 and v3 families choose h2,

• all families are assigned to s1.

The aggregate welfare is 1/3× 1 + 1/3× 0 + 1/3× 0 = 1/3.

Now consider NA. There is a CE of NA, where

• pNAh1 = 0.5 and pNAh1 = 0,

• all type v1 families choose h1,

• all type v2 and v3 families choose h2,

• all families are assigned to their neighborhood schools.

The aggregate welfare is 1/3× 1 + 1/3× 0 + 1/3× 0.01 > 1/3.
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Next, I study how DN compares to DA in the setting with local public financing. My

main result is that, like in the model without local public financing, DN creates higher

aggregate welfare than DA for the special cases satisfying Assumptions 1 in Section 3.

Proposition 3. Suppose Assumption 1 is satisfied. Then, DN creates higher aggregate

welfare than DA.

The proof is (almost) identical to that of the first part of Theorem 4 in the main text.

B.3 Lowest-Income Family Welfare

I now study how the mechanisms compare in terms of lowest-income family welfare.

The model is as in Section 5 of the main text, with the difference that the utility of

type (v, b) ∈ V × [0, 1] is

Uφ
vb(h, τ, p) :=

∑
s∈S

λφvs(h, τ) X
(
v(h, s), ph, phs

)
,

where again X : V × R2 × T → R+ satisfies the four points mentioned before.

The definition of CE and underdemanded neighborhoods and schools are as in Section

5. Same is true for the notion of comparing mechanisms in terms of lowest-income

family welfare. I (re)state this last definition below.

Definition 4. A mechanism φ creates higher welfare for lowest-income fam-

ilies than mechanism ψ if for arbitrary CE (τφ, pφ) of φ and (τψ, pφ) of ψ, there is a

number b̄ > 0, such that for any measurable U × I ⊆ V × [0, b̄],∫
U×I

[
Uφ
vb(h, τ

φ)− pφh
]
dτφ ≥

∫
U×I

[
Uψ
vb(h, τ

ψ)− pψh
]
dτψ.

A major finding of this section is that Theorem 5 in the main section extends to the

environment with local public financing.
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Proposition 4. The following is true:

1. If underdemanded neighborhoods under NA are also underdemanded under DN,

then DN creates higher welfare for lowest-income families than NA.

2. If underdemanded neighborhoods under NA are also underdemanded under DA,

and moreover, these neighborhoods have underdemanded schools, then DN creates

higher welfare for lowest-income families than NA.

The proof of Proposition 4 is (almost) identical to that of Theorem 5. The result

uses that X
(
v(h, s), 0, 0

)
≡ v(h, s), and hence the valuations for underdemanded

neighborhoods and the corresponding schools are unaffected by the public financing.

Finally, we can establish that the conditions in Proposition 4 are satisfied under As-

sumption 3, i.e., for the special case of ranked neighborhoods and schools.

Corollary 1. Suppose Assumption 3 is satisfied. Then, DN and DA create higher

welfare for lowest-income family than NA.

C Aggregate Welfare and (In)Efficiency

C.1 Overview

None of the studied assignment mechanisms maximizes aggregate welfare. The goal of

this section is to quantify the inefficiencies admitted by DN, DA and NA by comparing

them to two benchmarks: (1) welfare maximizing assignment (first best), and (2)

welfare maximizing stable assignment. All subsequent analysis builds on the discrete

economy model of Section 6.1.
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C.2 Results

The first benchmark that I study is the (aggregate) welfare maximizing assignment.

A joint neighborhood-school assignment of families is given by a mapping µ : F →

H × S, satisfying

•
∑

s∈S

∣∣µ−1(h, s)
∣∣ ≤ qh,∀h ∈ H,

•
∑

h∈H

∣∣µ−1(h, s)
∣∣ ≤ qs,∀s ∈ S.

LetM denote the set of all assignments. We say assignment µ∗ is welfare maximizing

assignment if it solves,

µ∗ = arg max
µ∈M

∑
f∈F

vf (µ(f)).

When families valuations for joint neighborhood-school assignment take values of either

zero or one, finding welfare maximizing assignment reduces to the NP-complete 3-

dimensional matching problem (Karp, 1972). Therefore, finding a welfare maximizing

assignment is NP-hard problem. The problem is tractable in the special case where

families’ valuations for neighborhood schools are additively separable.

The second benchmark that I study is the welfare maximizing stable assignment.

When the school district applied neighborhood priorities, stability (also known as elim-

ination of justified-envy) requires that a family is assigned to a school that she prefers

less than her neighborhood school only if the latter school does not admit any family re-

siding outside of the school’s neighborhood. Formally, an assignment µ is stable if there

are no families f, f ′ ∈ F , such that µ(f) = (h, s), µ(f ′) = (h′, sh), vf (h, sh) > vf (µ(f))

and h′ 6= h. To simplify the analysis, I consider additively separable valuations for

neighborhoods and schools. Moreover, instead of maximizing welfare in the entire set

of stable assignments, I first fix families’ neighborhood choices σ∗ : F → H̄ to maxi-

mize the sum of neighborhood valuations, and then maximize aggregate welfare in the
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set of stable assignments that ‘agree’ with σ∗, i.e., for all f ∈ F , there is an s ∈ S,

such that µ(f) = (σ∗(f), s).

Even with the simplifications above, finding a welfare maximizing stable assignment

is an NP-hard problem. However, I solve this problem in our simulated environment

using the methodology developed by Abdulkadiroğlu, Dur, and Grigoryan (2021). The

authors provide an algorithm that is polynomial time in the number of students, but

potentially exponential time in the number of schools. Since the number of school dis-

tricts is typically much smaller than the number of students, the algorithm is tractable

for real-life problems.

In the remainder of this section, I compare welfare across assignment mechanisms

through simulations. There 1000 students, 10 neighborhoods and 10 schools. The

valuation of family f for the joint assignment to neighborhood h and school s is equal

to

vf (h, s) = αUh + (1− α)Us + 0.5εfh + 0.5εfs,

where

• Uh and Us are the common valuation for neighborhood h and schools s, respec-

tively,

• εfh and εfs are the idiosyncratic valuations of family f for neighborhood h and

schools s, respectively,

• α is a parameter.

Values of Uh, Us, εfh and εfs are iid uniform draws from the unit interval. The capacity

of school s is 100+κs, where κs is a random draw from the set {1, 2, ..., 100/γ}. I report

results for the following values for our parameters: α ∈ {0, 0.5, 1} and γ ∈ {2.4}.
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𝛼 
 

𝛾 
 

DN 
 

DA 
 

WM 
 

WMS 
 

      
      

0 2 5.28 −7.47 14.15 12.04 
 4 3.15 −13.79 10.85 8.19 
      
      

0.5 2 4.73 0.33 10.28 9.45 
 4 3.28 −2.56 8.79 7.74 
      
      

1 2 7.15 7.15 7.17 7.17 
 4 7.14 7.14 7.17 7.17 
      
      
      
Average  5.12 −1.58 9.74 8.63 

      
 
 
 
 
 
 
 
 

Table 3: Aggregate welfare, % gains/losses compared to NA

The last two columns show the percentage gains in aggregate welfare from the welfare

maximizing assignment and welfare maximizing stable assignment compared to NA.

The numbers are 9.74% and 8.63%, respectively. Those gains are less than twice as

large as those under DN. Therefore, DN eliminates more than half of the inefficiency

admitted by NA (and DA).
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Abdulkadiroğlu, A., J. D. Angrist, Y. Narita, and P. A. Pathak (2017):

“Research Design Meets Market Design: Using Centralized Assignment for Im-

pact Evaluation,” Econometrica, 85, 1373–1432.
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