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Summary

• This paper proposes a payoff perturbation technique 
for the Mirror Descent (MD) algorithm

• Existing algorithms typically find an equilibrium in an 
average sense (average-iterate convergence) 

• Perturbing payoffs leads us to approximate an 
equilibrium (a stationary point)
• The magnitude depends on the distance between current 

strategy and an anchoring or slingshot strategy

• Our Adaptively Perturbed MD updates the slingshot at 
an interval
• Stationary points gradually get close to an exact equilibrium 

(last-iterate convergence)
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Two-Person Zero-Sum Games

R P S

R 0,0 -1,1 3,-3

P 1,-1 0,0 -1,1

S -3,3 1,-1 0,0

• Biased Rock-Paper-Scissor Game

• Our work covers N-player monotone games, 
including Cournot competition 

𝐴 =
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You (may) think nothing left

• Linear programming (LP) can solve all

•Player 1’s strategy is obtained by solving 
• max
𝜋∈Δ(𝑋)

𝑣

• 𝑠. 𝑡. σ𝑖 𝜋𝑖𝐴𝑖𝑗 ≥ 𝑣 for each action 𝑗 of 
Player 2

• σ𝑖 𝜋𝑖 = 1
• 𝜋𝑖 ≥ 0 for each action 𝑖 of Player 1
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Players doesn’t know everything

Large Setting Online Setting

1 2 ... 10 ... 100

1 0,0 1,-1 ?,? -1,1 ?,? ?,?

2 ?,? ?,? 0,0 ?,? 1,-1 -1,1

...

10 0,0 1,-1 ?,? -1,1 ?,? ?,?

...

100 ?,? ?,? 0,0 ?,? 1,-1 -1,1

Can’t reason by the end Can’t know payoffs at the 
beginning 5



Dynamics for Learning in Games

• LP and minimax theorem frontiered learning 
dynamics
• Players choose their actions with a simple procedure

• They observe the outcomes and learn the next actions

• Possibility of online learning techniques
• (Un)Constrained optimization

• Robustness to adversarial environments

• Convergence at faster rate

• No-regret learning has been emerged
• Associates the consequences with equilibrium concepts
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No-regret Learning

• Compared to LP, the advantage lies in the 
simplicity
• Follow-The-Regularized-Leader (FTRL)

• Mirror Descent (MD)

• MD is quite different from FTRL, but 
sometimes equivalent
• If the regularizer is entropy, both becomes 

Multiplicative Weights Update (MWU) 

• This talk concentrates on MD, but the same 
holds on FTRL
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Mirror Descent 
[Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003]

• A class of algorithms for online convex optimization

Next 
strategy

Make strategies
with higher expected 
values more likely

Don’t move too 
far away from 
current strategy

• 𝐷𝜓 𝜋𝑖 , 𝜋𝑖′ : Bregman divergence with strongly convex function 𝜓
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Multiplicative Weights Update (MWU)

• MD with entropy regularizer
• Bregman divergence: 𝐷𝜓 𝑥, 𝜋𝑡 = σ𝑖

𝑁𝐷𝜓 𝑥𝑖 , 𝜋𝑖
𝑡

• Let 𝜓 𝜋𝑖
′ = σ𝑗 𝜋𝑖𝑗

′ ln 𝜋𝑖𝑗
′ where 𝜋𝑖

′ = 𝑥𝑖 or 𝜋𝑖
𝑡

• Fast convergence

• (Coarse) correlated equilibrium in general-sum games
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MWU enters a limit cycle

• Average-Iterate 
1

𝑡
σ𝑡 𝜋𝑖

𝑡 converges to an 

equilibrium as 𝑡 → ∞

Equilibrium
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Aim of this work is 

• Let last-iterate 𝜋𝑖
𝑡 converge to an equilibrium

• Optimistic family is the central of the recent success [Daskalakis 
et al., 2018; Daskalakis & Panageas, 2019; Mertikopoulos et al., 2019]

• Recency bias: the outcome of the second last-iterate is outweighed 

Equilibrium
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Perturbation approach

• Instead of recency bias, we perturb the expected 
payoff vector [Perolat et al. 2021, Liu et al. 2023, Abe et al. 

2022, 2023]

• This idea is analogue to mutate actions
• Players may mistakenly choose a different action from 

the one they intended

• MWU is equivalent to replicator dynamics, 
assuming continuous time 

• ሶ𝑥𝑗 = 𝑥𝑗 𝑓𝑗 𝑥 − 𝜙 𝑥

• Introducing mutation makes dynamics likely to 
converge to a stationary point
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Replicator-Mutator Dynamics

• Mutation stabilizes learning dynamics [Bauer et al. 2019]

ሶ𝑥𝑗 = 𝑥𝑗 𝑓𝑗 𝑥 − 𝜙 𝑥 −𝜇𝑥𝑗 +
1

𝑛
𝜇𝑥1 +⋯+ 𝜇𝑥𝑛

= 𝑥𝑗 𝑓𝑗 𝑥 − 𝜙 𝑥 + 𝜇
1

𝑛
− 𝑥𝑗

• 𝑛: Number of strategies

• After producing strategy 𝑗, with probability 𝜇, it 
mutates to others with equal probability

• Special case of Mutant MWU [Abe et al. AISTATS 2023]

• Guaranteed to last-iterately converge to a 2𝜇-Nash 
equilibrium 13



Perturbed Mirror Descent with 
Uniform Distribution

• Let us perturb MD, along with RMD

Next 
strategy

Make strategies
with higher expected 
values more likely

Don’t move too 
far away from 
current strategy

Perturbation 
Strength

Perturbation
Function
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Perturbed MD with slingshot 𝜎𝑖

• Let 𝜎𝑖 be a slingshot strategy, generalizing the 

uniform strategy 
1

𝑛

• Current strategy converges to a stationary point 
that balances the payoff gradient with the 
perturbation term

current strategy 𝜋𝑖
𝑡

gets close to 𝜎𝑖Perturbation term

15
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Observation

• Different slingshot leads to different stationary 
point

• As a slingshot gets close to an equilibrium, so does 
the stationary point. 

Equilibrium

Initial strategy 𝜋𝑖
0

Slingshot 𝜎𝑖

Stationary point 𝜋𝑖
𝜇,𝜎
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Intuitive Idea

• Update slingshot at a predefined interval

• Slingshot 𝜎𝑘 is overrode by approximating 𝜋𝜇,𝜎
𝑘

• The sequence gradually goes to an equilibrium

Equilibrium

Initial strategy 𝜋𝑖
0

Slingshot 𝜎𝑖

Stationary point 𝜋𝑖
𝜇,𝜎

𝜎𝑖
𝑘

𝜎𝑖
𝑘+1

𝜎𝑖
𝑘+2
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Adaptively Perturbed MD

• Slingshot is updated at a predefined interval 𝑇𝜎
• Let 𝜎𝑖

𝑘 be slingshot updated 𝑘 =
𝑡

𝑇𝜎
times for each 

iteration 𝑡. 

• 𝜋𝑖
𝑡+1 approximates the stationary point 𝜋𝜇,𝜎𝑖

𝑘
during 𝑇𝜎

• Update the slingshot 𝜎𝑖
𝑘 to 𝜎𝑖

𝑘+1 = 𝜋𝜇,𝜎
𝑘

• The procedure is repeated 𝑇 iterations

• We will argue how 𝜋𝑖
𝑇 gets close to an equilibrium
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Further Notions for APMD

• Squared ℓ2-distance on 𝐺 and 𝐷𝜓

• Feedback types: Full or Noisy
• Gradient of payoff vector may have noise

• Metric: GAP function

Perturbation term

Next 
strategy

Make strategies
with higher expected 
values more likely
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Squared ℓ2 distance

• Perturbation function 𝐺 𝜋𝑖
𝑡 , 𝜎𝑖

𝑘 =
1

2
∥ 𝜋𝑖

𝑡 − 𝜎𝑖
𝑘 ∥2

• Regularizer 𝐷𝜓 𝜋𝑖
𝑡 , 𝑥 where 𝜓 𝜋𝑖

𝑡 , 𝑥 =
1

2
∥ 𝜋𝑖

𝑡 − 𝑥 ∥2

• Note that our results are extend beyond.

Next 
strategy

Perturbation term Regularization term
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Full and Noisy Feedback

• Full feedback:

• Noisy feedback:

• 𝜉𝑖
𝑡 ∈ ℝ𝑑𝑖 has zero-mean and its variance is bounded

Next 
strategy

Make strategies
with higher expected 
values more likely
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Gap Function

• A strategy profile 𝜋∗ is a Nash equilibrium iff
• ∀𝑖 ∈ 𝑁 , ∀𝜋𝑖 ∈ Χ𝑖 , 𝑣𝑖 𝜋𝑖

∗, 𝜋−𝑖
∗ ≥ 𝑣𝑖 𝜋𝑖 , 𝜋−𝑖

∗

• A metric of the distance current strategy 𝜋
and a Nash equilibrium

• Given 𝜋, 

• How much 𝜋 is improvable by unilateral 
deviation 
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Convergence Rate under Full Feedback

• Given last iteration 𝑇 and update interval 𝑇𝜎 ,

• Last-iterate 𝜋𝑇 has the bounded GAP on 𝑇
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Convergence Rate under Noisy Feedback

• Given last iteration 𝑇 and update interval 𝑇𝜎 ,

• Learning rate depends on iteration 𝑡 to prevent noise 
from leading dynamics to a wrong stationary point
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Proof Sketch

• Convergence to a stationary point is 
straightforward

• Derive the upper bound of 𝐺𝐴𝑃 𝜎𝑘+1 for an 
arbitrary 𝑘
• Cannot directly be bounded between current and the 

next strategy

• We decompose the gap using stationary point into 
three terms
• One term is bounded by Cai’s lemma [Cai et al. 2022]

• The other two is done by Cauchy-Schwarz inequality
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Experiments 1 

• Three Player Biased RPS 
game 

• Each player 
simultaneously joins 
two BRPS with two 
other players

• Parameters for FULL
• 𝜂 = 0.1

• 𝜇 = 0.1

• 𝑇𝜎 = 20

• Parameters for NOISY
• 𝜂 = 0.01

• 𝜇 = 0.1

• 𝑇𝜎 = 200

26



GAP values

Full Feedback Noisy Feedback

APMD with 𝜇 = 1.0 and 𝐺 = 𝐷𝜓 = ℓ2 is sufficiently 
competitive 
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Experiments 2

• Three-Player random payoff games with 50 actions

• Each player 𝑖 participates in two instances of the 
game with two other players 𝑗 simultaneously

• The payoff matrix of each instance is drawn from 
the uniform distribution
• Each payoff has the interval of [−1,1]

• Full feedback: 𝜂 = 0.01, 𝜇 = 1.0, 𝑇𝜎 = 200

• Noisy feedback: 𝜂 = 0.001, 𝜇 = 1.0, 𝑇𝜎 = 2000
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GAP values

Full Feedback Noisy Feedback

APMD with 𝜇 = 1.0 and 𝐺 = 𝐷𝜓 = ℓ2 is sufficiently 
competitive 
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Conclusions

• This paper proposes a novel variant of mirror descent 
(APMD) that achieves last-iterate convergence even 
when the noise is present

• The adaptive adjust of the perturbation magnitude 
enables us to bound the gap of values in each iteration

• APMD outperforms optimistic MWU and is competitive 
against the existing state-of-the-art algorithms
• E.g., Perolat et al. 2021

• Future  works
• Extensive-form games, Markov games, Mean field games and 

so on
• Asymmetric learning
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