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Summary

* This paper proposes a payoff perturbation technique
for the Mirror Descent (MD) algorithm

* Existing algorithms typically find an equilibrium in an
average sense (average-iterate convergence)

* Perturbing payoffs leads us to approximate an
equilibrium (a stationary point)

* The magnitude depends on the distance between current
strategy and an anchoring or slingshot strategy

e Our Adaptively Perturbed MD updates the slingshot at
an interval

 Stationary points gradually get close to an exact equilibrium
(last-iterate convergence)



Two-Person Zero-Sum Games

* Biased Rock-Paper-Scissor Game

R 00 -1,1 3,-3
A= P 1-1 00 -1,1
S -3,3 1,-1 0,0

* Our work covers N-player monotone games,
including Cournot competition



You (may) think nothing left

* Linear programming (LP) can solve all
* Player 1’s strategy is obtained by solving

* max v
mTeEA(X)
*s.t. );mA;; = v for each action j of
Player 2
* 2T =1

. m; = 0 for each action i of Player 1



Players doesn’t know everything
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Dynamics for Learning in Games

e LP and minimax theorem frontiered learning
dynamics
* Players choose their actions with a simple procedure
* They observe the outcomes and learn the next actions

* Possibility of online learning techniques
e (Un)Constrained optimization
* Robustness to adversarial environments
e Convergence at faster rate

* No-regret learning has been emerged
* Associates the consequences with equilibrium concepts



No-regret Learning

 Compared to LP, the advantage lies in the
simplicity
* Follow-The-Regularized-Leader (FTRL)
* Mirror Descent (MD)

 MD is quite different from FTRL, but
sometimes equivalent
* If the regularizer is entropy, both becomes
Multiplicative Weights Update (MWU)

* This talk concentrates on MD, but the same
holds on FTRL



Mirror Descent
[INemirovskij & Yudin, 1983; Beck & Teboulle, 2003]

* A class of algorithms for online convex optimization

Make strategies

with higher expected

values more likely

T ' |= arg max {?"'H. <€;m—, vi (), ;’Ii> — Dy (. ?Tf)}
T EX;

Next Don’t move too
far away from
current strategy
* Dy, (r;, ;"): Bregman divergence with strongly convex function i

strategy



Multiplicative Weights Update (MWU)

* MD with entropy regularizer
* Bregman divergence: Dlp(x,nt) = Zliv Dw(xi,ﬂf)
» Lety(m}) = X ;m; Inm; where r; = x; or ;]

T = arg max {;q,;, <€’W vi(mh), > Dy(x,m )}

rEX;
— £z
"’—I_]' AR i b ! V. -1-'-‘{' ??
m, T = arg max {r];, <\7ﬂi?_,¢(“ ). T> E (55 In —= )}
e ? ﬂ-??

* Fast conve rgence

 (Coarse) correlated equilibrium in general-sum games



MWU enters a limit cycle

1
* Average-lterate ?Zt nf converges to an
equilibriumast — o

P

® Equilibrium




Aim of this work is

* Let last-iterate nf converge to an equilibrium
P

® Equilibrium

S R

* Optimistic family is the central of the recent success [paskalakis
et al., 2018; Daskalakis & Panageas, 2019; Mertikopoulos et al., 2019]

* Recency bias: the outcome of the second last-iterate is outweighed



Perturbation approach

* Instead of recency bias, we perturb the expected
payoff vector [Perolat et al. 2021, Liu et al. 2023, Abe et al.
2022, 2023]

* This idea is analogue to mutate actions

* Players may mistakenly choose a different action from
the one they intended

* MWU is equivalent to replicator dynamics,
assuming continuous time

+ % = 2 (f;(0) — o))

* Introducing mutation makes dynamics likely to
converge to a stationary point



P

Replicator-Mutator Dynamics :@2\/

S

* Mutation stabilizes learning dynamics [Bauer et al. 2019]

1
£,00 = @) +u (5 - x)

* n: Number of strategies

* After producing strategy j, with probability u, it
mutates to others with equal probability

* Special case of Mutant MWU |[Abe et al. AISTATS 2023]

* Guaranteed to last-iterately converge to a 2u-Nash
equilibrium



Perturbed Mirror Descent with
Uniform Distribution

* Let us perturb MD, along with RMD

Make strategies

with higher expected
values more likely

ATZ TNax {m <"~Fm1,-'.,-(?r”) @" F&'f ( i
e

Perturbation
Strength

)} ,-;.~> D, (x,7") }

ﬂ_.lf.-l—l

Next —

strategy Perturbation
Function

Don’t move too
far away from
current strategy
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Perturbed MD with slingshot o;

* Let g; be a slingshot strategy, generalizing the
: 1
uniform strategy -

current strategy 7}
Perturbation term | gets close to o;

W,f+1 — arg max {nt <§W1’U,i(7rf) _[j,f,vﬂ-lG(ﬁf, O'fi)} ”I> — D@(:)ﬁ, Wf)}

* Current strategy converges to a stationary point
that balances the payoff gradient with the
perturbation term

o,



Observation

. Dif_ferent slingshot leads to different stationary
point
® Equilibrium
o B |pitial strategy nlp
A Slingshot g;

Stationary point nfw

* As a slingshot gets close to an equilibrium, so does
the stationary point.



Intuitive Idea

e Update slingshot at a predefined interval

® Equilibrium
Initial strategy nlp
A Slingshot g;

Stationary point ni”’a

' : . . k
e Slingshot @ ” is overrode by approximating w#°

* The sequence gradually goes to an equilibrium



Adaptively Perturbed MD

* Slingshot is updated at a predefined interval T,
* Let g be slingshot updated k = {Ti‘ times for each

iteration t.
! = arg max {nt <§T vi (') — uVax, G(rt|oF), :1:> — Dy (x, ﬂ-f)}
LEX@ | |
: : : k :
- wf*! approximates the stationary point m#: during T,

. k
* Update the slingshot ¢ to g/**1 = g#o

)
T = arg max < <va?;(7rt) — uV,G(7l, af“)j :r> — Dy (x, Wf)}
S’L‘EXL \

* The procedure is repeated T iterations
* We will argue how n%r gets close to an equilibrium



Further Notions for APMD

Make strategies
with higher expected

values more likely Perturbation term
it = arg max {-m <§W§ v; (7" —Eu.VmG(Wf, crf")} :1:> — Dy (x, ﬂ—f)}
reX; ‘ |
Next
strategy

e Squared #?-distance on G and Dy,

* Feedback types: Full or Noisy
e Gradient of payoff vector may have noise

e Metric: GAP function



Squared £4 distance

Perturbation term Regularization term
it = arg max {m <6m vi (") LUV G(m, Gk)} 1> —| Dy (x, Wf)}
TEX;
Next
strategy

. . 1
» Perturbation function G(r}, o) = ~ | nf — ol |2

 Regularizer D¢(nf,x) where 1/)(nf,x) = % I T} — x |2

* Note that our results are extend beyond.
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Full and Noisy Feedback

Make strategies
with higher expected
values more likely

it = arg max {m <$m vi(7")| = uVa, G(7}, 07), -'1“> — Dy (x, Wf)}

Next
strategy
* Full feedback: V. v;(7l, 7t .) = V. v(nk. 7t)
* Noisy feedback: V _ v; (7!, 7t ) = V. v;(nl, 7)) + &

. fit € R4 has zero-mean and its variance is bounded



Gap Function

* A strategy profile =™ is a Nash equilibrium iff
e Vi E [N],VT[i (S Xi,vi(ﬂ';,ﬂ'ii) = Ui(T[i,T[ii

* A metric of the distance current strategy
and a Nash equilibrium
* Given T,
N
GAP(’JT) = I}la‘)}g <vﬂ—_i'?).i(?ﬁ'j ’FT_Z'), ’ﬁ'? — ’}Ti>
TE
1=1

* How much m is improvable by unilateral
deviation



Convergence Rate under Full Feedback

* Given last iteration T and update interval T,

Theorem 4.1. If we use the constant learning rate 1n; =

Q,upz | ¥ 12
n € (0, 52 p2 TR ), and set Dy, and G as the squared (*-

distance Dy (m;, 7;) = G(m;, 7!) = 5|m — 7|2 and set
T, = O(nT), then the strategy = updated by APMD
satisfies:

VT
e Last-iterate 7! has the bounded GAPon T

GAP(z!) =0 (E) .
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Convergence Rate under Noisy Feedback

* Given last iteration T and update interval T,

o, 2 2 2
Theorem 4.5. Let () = 2 ;,u. J;;RL and k = £. Assume that

Dy, and G are set as the squared { 2_distance Dy(m;, 7)) =
G(mi, ) = S||mi—l||?, and T,, = ©(T*/?). If we choose

the [earﬁing rate sequence of the formn, = 1/(k(t — T, -
1t/T,|) + 20), then the strategy m updated by APMD

satisfies:

E [GAP(r")] =0 (;“T) .

* Learning rate depends on iteration t to prevent noise
from leading dynamics to a wrong stationary point



N
GAP Z V»—_ 7)3 5, ’ﬁ'? —

Proof Sketch

* Convergence to a stationary point is
straightforward

e Derive the upper bound of GAP(O'k+1) for an
arbitrary k
e Cannot directly be bounded between current and the
next strategy

* We decompose the gap using stationary point into
three terms
* One term is bounded by Cai’s lemma [Cai et al. 2022]
* The other two is done by Cauchy-Schwarz inequality



Experiments 1 ]
* Three Player Biased RPS —
game

e Each player
simultaneously joins E™ . ™
\"\/'\ * 1 =0.01
&=

two BRPS with two = 2 :.:
other players
* Parameters for FULL e Parameters for NOISY
«n=0.1 1 =0.01
« u=0.1 « u=20.1
. T, = 20 * T, =200
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GAP values

APMD with 4 = 1.0 and G = Dy, = £ is sufficiently
competitive

Full Feedback Noisy Feedback
3BRPS 7 3BRPS
O_
Z E
a —51 o
<
% S
5 -10- =
3 3
_15_
10° 10! 102 10° 10* 10°
——— MWU = APMD p=0.1 Dy=KL G=KL APMD = 1.0 Dy=L2 G=L2

OMWU we= APMD pu=0.1 D,=KL G=RKL
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Experiments 2

* Three-Player random payoff games with 50 actions

* Each player i participates in two instances of the
game with two other players j simultaneously

* The payoff matrix of each instance is drawn from
the uniform distribution

* Each payoff has the interval of [—1,1]
* Full feedback:n = 0.01,u = 1.0,T, = 200

* Noisy feedback: n = 0.001,u = 1.0,T, = 2000



GAP values

APMD with 4 = 1.0 and G = Dy, = £ is sufficiently
competitive

Full Feedback Noisy Feedback

Random payoff (50 actions) Random payoff (50 actions)
0.0- 0.0 _ prosmsoney

251 \\ L"‘" e

_50_

_75-

—10.01

—12.51

10° 10! 102 103 104 105 10°

m— MWU e APMD = 0.1 Dy=KL G=KL APMD u=1.0 Dy=L2 G=L2

oMwu e APMD u=0.1 Dy,=KL G=RKL -



Conclusions

* This paper proposes a novel variant of mirror descent
(APMD) that achieves last-iterate convergence even
when the noise is present

* The adaptive adjust of the perturbation magnitude
enables us to bound the gap of values in each iteration

 APMD outperforms optimistic MWU and is competitive
against the existing state-of-the-art algorithms

* E.g., Perolat et al. 2021

e Future works

e Extensive-form games, Markov games, Mean field games and
SO on

* Asymmetric learning



